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We deal with one-parameter families of optimization problems in finite dimensions. The 
constraints are both of equality and inequality type. The concept of  a 'generalized critical point'  
(g.c. point) is introduced. In particular, every local minimum, Kuhn-Tucker point, and point of  
Fritz John type is a g.c. point. Under fairly weak (even generic) conditions we study the set Z 
consisting of all g.c. points. Due to the parameter, the set X is pieced together from one-dimensional 
manifolds. The points of Z can be divided into five (characteristic) types. The subset of 'nondegen- 
erate critical points' (first type) is open and dense in 2 (nondegenerate means: strict complemen- 
tarity, nondegeneracy of the corresponding quadratic form and linear independence of the 
gradients of  binding constraints). A nondegenerate critical point is completely characterized by 
means of four indices. The change of these indices along X is presented. Finally, the Kuhn-Tucker 
subset of 2; is studied in more detail, in particular in connection with the (failure of the) 
Mangasarian-Fromowitz constraint qualification. 
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1. Introduction 

Let ck(R",R) ,  k ~ l ,  denote the space of real valued, k-times continuously 
differentiable functions defined on the n-dimensional Euclidean space R ", n i> 1. 
Given finite index sets I, J, a differentiable optimization problem ~ has the following 
standard formulation: 

where 

~ :  Minimize f on M, (1) 

M =  {x eR"l h~(x) =0,  gj(x)>~O, i e I, j e J}, (2) 

a n d f  h,, gj~ C2(Rn, R), i ~ I , j ~ J .  
The function f is the objective function, hi(gj) are the (in)equality constraints 

and M is the feasible set. 
Our paper is a study of  one-parameter families of optimization problems of the 

type (1). The motivation for this is manifold and we start with a short exposition 
of our incentives. 

Currently, there is a growing interest in the subject of sensitivity and stability 
analysis of mathematical programming problems. Important contributions are con- 
tained in [3, 4]. One-parameter families play a special role in this area. In fact, 
within a path-connected set of perturbation parameters two problems can be joined 
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by means of a one-parameter  family. Moreover, a detailed description of the generic 
behaviour of problem ~ depending on one-parameter  can be given, as will be shown 
in this paper. However, such a description becomes extremely difficult if more 
parameters are involved. The latter fact is related with complicated phenomena in 
the theory of singularities of  higher 'singularity-codimension';  see [2] and, in 

particular, also [15]. Of  course, there are many problems where the number of  
parameters is essentially greater than one, such as, for example problems of vector- 
optimization. But also in this case one-parameter  families play a role as being 
one-dimensional sections of the total parametric problem; see [5]. If  we look at 
one-parameter  families as deformations of one problem into another one, we have 
an intimate relation with continuation, resp. homotopy methods; see [1] for an 
extensive survey. Finally, interpreting the parameter  as time, we obtain an insight 
into the dynamic behaviour of problem ~. 

In [9] we studied the generic behaviour of  the feasible set depending on one 
parameter, from both a local and global point of  view. Now we proceed by 
investigating the structure of the set of  'critical' points (for the special case of  
equality constraints only, see [ 11]). Our concept of  a 'critical' point will be a quite 
general one. But it turns out that it is very suitable when studying parametric 
problems. 

For & c Cl(~ ", ~) let D e ( x )  denote the row vector of the first partial derivatives 
at x and let Jo(x) denote the index set of  active (=binding) inequality constraints: 

Jo(x) = {j ~ J[gj(x) = 0}. (3) 

Definition 1.1. A point 2 c R n is called a generalized critical point (g.c. point) for 
(or for riM), if 2 belongs to M and, moreover, if the set of  vectors 

{Dr,, Dhi, Dgj, i c I , j  ~ Jo()2)} Ix-~ (4) 

is linearly dependent. 

I f  2 is a g.c. point for ~, then obviously there exist real numbers A, hi, tzj, i ~ I, 
j c Jo()2), not all vanishing, such that 

h D f =  ~ hiDhi+ ~ tzjDgj[ . . . .  (5) 
iel  jeJo(~) 

In case that (h, hi,/xj) in (5) can be chosen such that h > 0, /~j/> 0, j ~ Jo()2) resp. 
h f> 0, /xj/> 0, j ~ Jo(2), the point )2 is usually called a Kuhn- Tucker point, resp. a 
point of  Fritz John type. In particular, a local minimum )2 for ~ is always a point 
of  Fritz John type (cf. [6]). However, it need not be a Kuhn-Tucker  point, unless 
some constraint qualification is satisfied. The simplest constraint qualification is 
linear independence of the set {Dhi, Dgj, i~ I , j~  Jo()2)}[x-x. In the latter case, the 
number h in (5) must be unequal to zero and, moreover, the set M is locally 
C2-diffeomorphic to EP x H q, where H q is the nonnegative orthant in R q and 
p = n - [ I [ - [ J o ( x ) [ ,  q = [Jo(2)[ (cf. [10]). This gives rise to the following definition. 
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Definition 1.2. The set M in (2) is called regular at g, ~ 6 M, if {Dhi, Dgj, i ~ I, 
j ~ J0(~)} [x-~ is a linearly independent set. Moreover, a generalized critical point 
g is called a criticalpoint (for ~ orf[~a)  if M is regular at g. 

In order to give an outline of the paper  we need one more definition ( 'nondegener- 
ate' critical point). For 4~ ~ C2(R ", R) we denote by D2cb(x) the (symmetric) matrix 
of  the second order partial derivatives at x (i.e. the Hessian). I f  A is a symmetric 
n x n matrix and L a linear subspace of En, then by A[L we mean some matrix of  
the family °V, ~V= (VTAV] V is a matrix with n rows, whose columns form a basis 
for L}. In view of Sylvester's theorem (cf. [13]), the number  of negative, resp. zero, 
positive eigenvalues of  VrAV does not depend on the incidental choice of  V. 
Therefore, the number of  negative, resp. zero, positive eigenvalues of  A[L is defined 
to be the corresponding number of VTAV, where VTAV~ ~V. Furthermore, AlL is 
said to be nonsingular if VTAV is nonsingular, where VTAV~ ~V. 

For an r × q matrix B, the set Ker B will be 

Ker B = {s ~ c a q [B~: = 0}. (6) 

Definition 1.3. Let M be regular at ~ and let g be a critical point for flM, i.e. there 

exist (Lagrange parameters) Xi, t2j, i 6 I, j ~ J0(~), such that 

Df= )] X~Dh~ + ~ 12jDgj[ . . . .  (7) 
iEI jEJo('2 ) 

The critical point ~ is called nondegenerate if the following two conditions hold: 

NDI: t2~ ~ O,j ~ Jo(~), 

ND2: D2L(~)[ T is nonsingular, 

where (L = Lagrange function, T = tangent space) 

L(x) = f ( x ) -  2 Xih,(x)- ~, 12jgj(x), (8) 
i e I  j~Jo(YQ 

T = A Ker Dh,(YO c~ ("1 Ker Dgj(X). (9) 
i~ l  j~Jo(~) 

The linear index LI, resp. linear coindex LCI, is defined to be the number  of/2j in 
(7) which are negative, resp. positive. The quadratic index QI, resp. quadratic 
coindex QCI,  is defined to be the number of  negative, resp. positive eigenvalues of  
D2L(g)[r, with L, T as in (8), (9). 

The numbers LI, LCI, QI, QCI at a nondegenerate critical point ~ completely 
characterize the local behaviour o f f [M and in this sense they are intrinsic (cf. [10] 
for a detailed exposition). In particular, if LI = QI = 0, resp. LCI = QCI = 0, then 

is a local minimum, resp. local maximum for riM. In all other cases, g is a certain 
kind of saddle-point. I f  LI = 0, then g is a Kuhn-Tucker  point and in that case the 
quadratic index is the appropriate generalization of the so called Morse-index (cf. 

[10, 14]). 
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In the sequel we consider the following setting of a one-parameter family of 
problems, where a vector z ~ ~,+1 is always partitioned as z = (x, t), x c R n, t ~ R 
(t = parameter): 

where 

~ ( t ) :  Minimize f ( . ,  t) o n M ( t )  (tc~) (10) 

M(t) ={x6R" lh , (x ,  t)=0, gj(x, t)>~O, i6 I, jcJ},  (11) 

I = { 1 , . . . , m } ,  m < n ,  J = { 1 , . . . , s } ,  (12) 

f hi, gj c C3(~ n+l, R), i c / ,  j 6 J. 

A point fie R "+1 is called a (generalized, nondegenerate) critical point for ~ ( .  ) 
if ff is a (generalized, nondegenerate) critical point for N(t-), where if= ()7, ?). The 
set of all generalized critical points will be denoted by X, so 

~--- {Z E ~rl+l IX is g.c. point for ~ ( t ) ,  where z = (x, t)}. (13) 

Roughly speaking, for most problems ~ ( .  ) it turns out that most points of ,~ are 
nondegenerate critical points (points of Type 1 in the subsequent terminology). This 
observation is in a certain sense connected with an interesting study in [16]. However, 
one cannot expect that all points of ~ are nondegenerate critical points. In fact, 
for some parameter values t it might happen that at some points x the regularity 
of the set M(t) is not satisfied (if the number of active constraints is less than (n + 1) 
we are dealing with a point of  Type 4; if this number equals (n + 1) we will have a 

point of Type 5). So, this is one 'degeneracy' phenomenon. Other degeneracies can 
take place at critical points (so M(t) is regular) where one of the conditions ND1, 
ND2 does not hold. Note, if ND1 fails to hold, then the 'strict complementarity' is 
not satisfied (Type 2). Further, if ND2 is not satisfied, then one of the eigenvalues 
of D2L(ff)IT vanishes (Type 3). We emphasize that the degeneracies (Type 2, 3, 4, 
5) are stable, i.e. they remain present under 'C3-perturbations ' of  the problem- 
defining functions f, hi, gj. The set 2 will generically be one-dimensional. Walking 
along ~ we will meet at certain (discrete) points a degeneracy (Type 2, 3, 4, 5). A 
basic question then arises: if we pass a point of Type 2, 3, 4, 5, what effect does 
this have on the local structure of the nondegenerate critical points before and after 
passing; i.e. how does the set of indices LI, LCI, QI, QCI change? 

An important related study on Kuhn-Tucker  points is done in [12], where it is 
assumed that the Mangasarian-Fromowitz constraint qualification holds (cf. Section 
4). Finally we remark that 'Kuhn-Tucker '  branches of the set 2 might be connected 
by means of non-Kuhn-Tucker  branches (see [8]). In a certain sense this is analogous 
to the complexification-effect of a one-parameter family of real analytic systems 
(see [1, Section 4]). 

The paper is organized as follows. In Section 2 we state a genericity theorem 
which clarifies the concept 'most problems ~ ( .  )'. In Section 3 we describe in five 
subsections the local behaviour of the set 2 in a neighbourhood of each of the 
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points of Type 1-5 (including the change of the indices LI, LCI, QI, QCI). Finally, 
in Section 4 we concentrate on the (closure of the) Kuhn-Tucker subset and discuss 
those situations where the Mangasarian-Fromowitz constraint qualification is not 
satisfied. 

2. The generieity theorem 

In this section we adopt the notation of Section 1. The space C3(R n+l, R) will be 
endowed with the strong (or Whitney-) C~-topology (cf. [7]), the C3-topology of 
the product of a finite number of copies of C3(E n+~, R) being the induced product 
topology. A typical C 3 base-neighbourhood N~ of the zero function in C3(R "+~, E) 
is induced by means of a continuous positive function e : R "+~ ~ R as follows: 

0 2 

+ 2  - -  4)(z) < e ( z )  f o r a l l z e ~  "+~ • 

A typical C 3s base-neighbourhood o f f e  C3(R n+l, N) will be the set f+N~.  
In Section 1 we intuitively introduced points of Type 1-5. These types will be 

made precise in the next section. Taking this for granted at this stage we can proceed 
with the statement of the genericity theorem. 

Definition 2.1. Let the subset ~- of C3(Rn÷I,R) l+m+s be defined as follows: 

(f, h b - . . ,  hm, g l , - . . ,  gs) E o ~ if each point of 2 (cf. (13)) is one of the Types 1, 2, 
3, 4, 5. 

Theorem 2.1 ( Genericity) .  The set ~ is C 3 open and  dense in C3(R n÷l, R) l+'+s. 

The dense-part of the proof  of Theorem 2.1 is tedious and based on transversal 
approximation. A sketch of  the proof  in case J = 0 (i.e. without inequality constraints) 
is given in [11] and that proof  can be extended without severe difficulties to a proof  
of the present situation. The open-part of the proof  of  TheOrem 2.1 can be accom- 
plished by means of continuity arguments (note that C3-differentiability is needed 
in view of points of Type 3). We define: 

2 ' = { z ~ , ~ l z i s o f T y p e i } ,  i = 1 , . . . , 5 .  (14) 

Theorem 2.2. Let  (f ,  h a , . . . ,  hm, gl,  . .  • ,  gs) belong to ~:. Then we have: 21  is open 

and  dense in ~ and, f o r  i - -2 ,  3, 4, 5, the set ~ i  is a discrete point  set. 

The proof  of  Theorem 2.2 is a straightforward consequence of the local structure 
of the set 2; in a neighbourhood of the points of Type 1-5, as will be explained in 
the next section. 
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3. Analysis of the five types 

In this section we will make an analysis on the points of  Type 1-5 which we 
intuitively introduced in Section 1. To this aim we divide this section into five 
subsections, each of them being dedicated to one single type. Every subsection is 
organized as follows. Firstly, we state a number  of  conditions which are necessary 
to describe the type under consideration, and we introduce so-called characteristic 
numbers which determine the .essence of the type. Based on this information we 
proceed with a local description of the set 2 and the index-relations involved. 

The notation of the foregoing sections will be adopted. In particular, a vector 
Z C ~  n+l will always be partitioned as z =  (x, t), x c R  ", t c ~ ,  and Jo(z) denotes the 

index set of  active (=binding)  inequality constraints. For 4~ ~ ck(R "+~, ~), Dx4, 
stands for the row vector of first partial derivatives with respect to x; D,4~, D2b are 

to be interpreted analogously. 

3.1. Points of type 1 

A generalized critical point ~ = (2, f) is of Type 1 if ~ is a nondegenerate critical 
point, i.e. g is a nondegenerate critical point for ~(t-). 

Characteristic numbers: LI, LCI, QI, QCI. 

Let ~-- (g, t-) be a point of  Type 1. Then, in an (R "*~ - )  neighbourhood of ~ we 
can parametrize the set 2~ by means of the parameter  t, whereas the indices LI, 
LCI ,  QI, QCI remain (locally) constant. To see this, we use the implicit function 
theorem. Without loss of  generality we may assume, in case J0(~)# 0, that Jo(~)= 
{ 1 , . . . , p ) .  Let A, resp. /~, be an m, resp. p vector, with components Ai, resp. /zj. 
Consider the map 3-: ~n+m+p+l --> ~n+rn+p, 

3-: A ~__~ hi(x,t), i = l , . . . , m  (15) 

gj(x, t), j = 1 , . . . , p  

The map 3- in  (15) is of  class C 2 since f, hi, gj are of  class C 3. Let (Tti), (/2j) be the 

Lagrange parameters at g as a critical point for ~ ( [ )  (cf. (7)). Then 3- vanishes at 
the point (~, ~,/2, t-). The partial derivative of 3- at (2, X,/2, T) with respect to (x, A,/z) 
has the following typical blockstructure: 

(D~L(~) 
BT oB), (16) 

where 

t(z)  = f ( z ) -  ~ 7tih,(z)- ~ /2jgj(z) (17) 
i=1 j = l  

D T and B = (DWhll . . . I  xgp)]z=~. 
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Note that the matrix B in (16) has rank (m +p) .  Then, from condition ND2 (cf. 
Definition 1.3) it follows that the matrix in (16) is nonsingular (see [10]). Now we 
can apply the implicit function theorem and o b t a ~  C2-mappings x( t ) ,  h(t ) ,  tz(t) 
(in an open neighbourhood of t-) such that 3-(x( t) ,  h( t ) , / z ( t ) ,  t) -= 0. Note that all 
components o f / 2  are unequal to zero (condition ND1) and that /~(~')= t2. Con- 
sequently, for t sufficiently close to f we see that no component  of  t*(t) vanishes. 

In an open neighbourhood of ~ we can parametrize the set ~Y by means of a unique 
C2-map t~--~(x(t), t). Hence, 21 is a one-dimensional C%manifold and the indices 
LI, LCI, QI, QCI are constant on every connected component  of  2; 1. 

3.2. Points of  Type 2 

A generalized critical point ~= (~, ~') is of  Type 2 if the following conditions 
A1-A6 hold: 

A1. ~ is a critical point for ~(t-). 

A2. Jo(~) #0 .  
After renumbering we may assume that Jo(z) = { 1 , . . . ,  p}, p/> 1. Then, we have 

(cf. A1 and (7)) 

D,O c= ~ Jt~D~h~+ ~ 12sD~gs[== ~. (18) 
i--1 j--1 

In (18) exactly one of the Lagrange parameters 12j vanishes. 
renumbering we may assume that/2p = 0 and/2j ¢ 0, j = 1 , . . . ,  p - 1. Let the 

A3. 
After 

Lagrange function L be defined as in (17) and put 

T =  O Ker Dxhi(5) ~ 0 Ker Dxgj(2), 
i~ l  j~Jo(Y.) 

= f~ Ker Dxh,(~) n ('~ Ker Dxgs(z,). 
i c I  j~Jo(~)\{p} 

A4. DZ~L(g)]r is nonsingular. 
A5. DZL(~)[~ is nonsingular. 

(19) 

(20) 

Let B be an n × r-matrix of rank r. By B* we denote the matrix (BTB)-IB T. In  

fact, B* is the Moore-Penrose  inverse of  B. 
Let W be a matrix with n rows, whose columns form a basis for the linear space 

T. Put q~ = (hi, • • . ,  hm, g l , . . . ,  gp-1) T and define the n x 1-vectors: 

a =- ( (D~q~)*)  T. D,~,  (21) 

/3 = - W(  W T . D~L .  W) -1WT{D~L • a + DtD~L}. (22) 

In (21), (22), D, stands for O/Ot and all partial derivatives are evaluated at ~. Next, 
we put 

3, = Dxgv(~)(a +/3) + D,gp(~) (23) 

Note that /3 (and thus 3' as well) is independent of  the choice of  the matrix W. 
A6. 3,#0.  
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Let 81, resp. 62 denote the number of negative eigenvalues of D2L(~)I~, resp. 
D2L(~)IT,  and put 6 = 81-82. 

Characteristic numbers: sign(3,), 6. 

In the special case that I = 0  and p =  1, we have T = R  n (cf. A5) and we just 
delete all entries of • in (21). 

We proceed with an analysis of the set X in a neighbourhood of ~. 
The simplest example to have in mind is the following (one-dimensional): f ( x ,  t) 

is one of the four functions ± ( x + t )  2, there is only one constraint, namely the 
constant inequality constraint x ~> 0, and the point ~ is the origin in •2. Note that, 
as t passes zero, an unconstrained critical point is moving into the feasible set or 
out of the feasible set. (A similar higher dimensional example is obtained by choosing 

j,2+,~n-1 2 and taking only one constraint, f ( x ,  t) from the functions ± ( x n ± t )  L~=I ± x j  
namely xn/> 0 into account). 

It will turn out that, locally, I; is pieced together from two curves which intersect 
at i In fact, since/2p vanishes, it follows that )7 is a critical point both for problem 
~(t--) as well as for the problem ~(t--), where ~(t--) differs from ~(t--) only in the fact 
that the inequality constraint gp is deleted. The Lagrange parameters i l l , . . . ,  tip-1 
are unequal to zero. 

Together with condition A5 it follows that ~ is a nondegenerate critical point for 
~(t--). Now we can apply the result of Section 3.1 to problem ~ ( .  ). Let X denote 
the set of g.c. points for problem ~( -  ). Then, in a neighbourhood of ~ the set .,~ is 
a one-dimensional manifold, parametrized by means of a unique C2-map t ~  
(Y(t), t). The latter curve belongs to X as far as q,(t) is nonnegative, where ~( t ) :=  
gp(Y(t), t), and it traverses the zero set 'gp = 0' transversally if[ (dq~/dt)(t-)~ 0. A 
few calculations show that (dY/dt)(t-) = a +/3 (cf. (21), (22)). Hence (d0/dt)(t-)  = 3,, 
with 3' as in (23). So, if we walk along X as t increases, then at t = ?we leave (enter) 
the feasible set M ( t )  (cf. (11)) according to sign(3,) = -1  (+1). 

Next, we consider a problem ~ ( f )  which differs from 3~(t --) only in the fact that 
gp is treated as an equality constraint. Of course, $ is also a critical point for ~ ( f )  
and, moreover, ~ is a nondegenerate critical point for ~(t-'). In fact, the non- 
degeneracy condition ND1 (cf. Definition 1.3) is satisfied, since the vanishing 
Lagrange parameter tip does not anymore correspond to an inequality constraint 
(by the very definition of ~(t-')). Condition ND2 holds in view of A4. Let 2 be the 
set of g.c. points for problem ~ ( . ) .  Again we can apply the result of Section 3.1 

and hence, in a neighbourhood of ~ the set X is a one-dimensional manifold, 
parametrized by means of a unique C2-map t~--~(~(t), t). (Note that gp(:~(t), t) =- 0). 
Since the curve X traverses the zero set 'gp = 0' at ~ transversally, it follows that 
and ~ intersect at ~ under a nonvanishing angle. Obviously, in a neighbourhood 
of £, the set X consists of X and that part of 2 on which gp is nonnegative. Altogether, 
the set X has a local structure as depicted in Fig. lc,d, and note that ~\{~} consists 

of nondegenerate critical points. 
We proceed with the calculation of the index-relations between the branches of 

nondegenerate critical points in X\{~}. Let us consider the (above defined) curve 
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t~-~(~(t), t) once more, i.e. we treat gp as an equality constraint. For each t we can 
calculate the Lagrange parameter corresponding to gp, say tZp(t), at the point ~(t),  
viewed at as a critical point for ~( t ) .  Since all data are of class C 3, /x(. ) will be 
of class C 2. Now, if we look at gp as an inequality constraint, then, except for t = ~, 
the point ~(t) is a nondegenerate critical point for ~( t ) .  In fact, the only difference 
between two critical points .~(tl) , ~(t2) for ~ ( t ) ,  where q <  ?< t2, lies in the fact 
that one Lagrange parameter (/Xp(t)) belonging to an inequality constraint (gp) 
changes sign. In particular, we will show the more general relation: 

s ign(y) ,  sign(~tP(t-) ) =+1  ( r e sp . -1 )  iff 6 =  1 (resp. 8 = 0 ) ,  (24) 

where sign(y) and 6 are the characteristic numbers. 
Taking (24) for granted at this stage and noting that the dimensions of T and T 

(cf. (19), (20)) differ by one, the index-relations are easily derived. In Fig. 2 we 
made a picture of all four possibilities; the 4-vectors stand for (LI, LCI, QI, QCI). 
Note that LI + LCI + QI + QCI = n - rn, whereas LI + LCI equals p or p - 1. 

T t 

(a+l,b-l,c,d) 

( a _ l , b . l , c , d ) ~  

I ~ig~O_-I, 8~1=1 

(a_l,b,c+l,d~ 

Ca+l,b-l,c,d) 

I 

~ (a,b_l,c,d+l) 

} (~a-1, b +1,c ,d) 

sign('y)=l , 8--0] 

Lall iiilc. .,, 
sign(y)---1,6_-O ] 

a,b,c,d) 

(a-l,b,c +l,d) 

[sign(y)=-l,(~=l I 

Fig. 2. 
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In order to derive (24) we start with the following observation: the inequality 

constraints g l , - . . ,  gp-1 remain active (locally) along X and 2. Consequently, the 
only inequality constraint function that really counts is the function gp. So, we can 
simplify the verification of (24) in local coordinates in a neighborhood of the origin 
in R q÷~, where q - - d i m  7 " = n - m - p + l .  In these new coordinates, say ( y , u ) =  
qt(x, t), 'u-hyperplanes '  correspond to ' t -hyperplanes '  and the orientation of t is 

preserved. 
In fact, choose vectors ~i ~ •", i = 1 , . . . ,  q - 1 ,  which form together with the set 

{DThi(~), DTgj(~), i = 1 , . . . ,  m, j = 1 , . . .  ,p} a basis for R ~, and consider the local 
C3-coordinate transformation in R "÷~, (Yb- • • ,Y,, u) = ~ ( x b  • • . ,  x,, t), defined by 

yi = ~ T ( x -  ~), 

yq = gv(x, t), 

yq+j = gj(x, t), 

Yq+p+i-1 = hi(x, t), 

i -  1 , . . . , q - i ,  

j - -1 , . . . ,p -1 ,  

i = l , . . . , m ,  

u = t - ? .  

Note that (if, t-) is sent to the origin, and that, for t close to ? and x close to ~, the 
intersection of the feasible set M ( t )  with the zero set (t fixed): gl . . . . .  gp-1 = hl = 
. . . .  hm =0 ,  is transformed to the following set of  dimension q (constant with 
respect to u): 

{(Yb.- . ,Yq)  c R  qlya ~0}" 

Let us denote the transformed function f ( x ,  t) by g(Yl, • • •, Yq, U). Instead of the 
critical points Y(t), resp. 2( t)  we obtain vector functions 071(u) , . . . ,  ~q(U)), resp. 

( ;I(U), . . . ,  ;q I(U), O) satisfying: 

y i (y , (u)  . . . .  ,fiq(U), u)=--O, i= 1 , . . . ,  q, 

~y (2C,(u), . . . ,y%_,(u),O,u)=-O, i = l , . . . , q - 1 .  

(25) 

moreover, txv(t ) (recall (24)) becomes tx(u), where 

g(~) := o-~(;,(~),..., i~_,(~), 01 ~), (26) 

and the corresponding % say y', becomes (d37q/du)(0). 
Put G = DZyg(O) and let G be the ( q - 1 ) x  ( q - 1 )  matrix obtained from t~ by 

deleting the last column and last row. In view of (A4), (A5) we see that (3 and 
are both nonsingular. Furthermore, we put g,.i = (02g/OuOYi)(O), i = 1 , . . . ,  q, and 

gid = (02 g/OYiOYj)(O). 
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Differentiation of (25), (26) yields: 

~u(0)  = [-(gl,q, • • •, gq-,,q)" 1]. (gu,,, • • •, gu, q) T, 

(27) y, T ~ - l  = --eq • " ( g ~ 3 , ' " ,  gu, q) T, w h e r e  eq = ( 0 , . . . ,  0, 1) T. 

A short calculation shows: 

T " 1 * 1 eqG =[eTG leq][--(g,,q,. . . ,gq_,,q) " G -  , 1]. (28) 

Now, substitution of (28) in (27) yields the relation: 

y '=  - ~u(O) " [eT G - '  eq], 

and hence 

sign(y ') ,  s i g n ( d ~ ( 0 ) ) = - s i g n [ e ~ G - l e q ] .  (29) 

Let the symbol # denote 'the number of negative eigenvalues'. 
Note that we have: 

sign[eTG-leq] = +1(--1) iff # G-1lspan{eq } = 0(1). (30) 

The characteristic number 6 becomes 

6 = # G -  # C~. (31) 

We have to show (cf. (24)) 

s i g n ( y ' ) . s i g n ( d ~ ( 0 ) ) = + l  ( -1)  iff 6 = 1 ( 0 ) .  (32) 

In view of (29), (30), (31), it suffices to show the following equality: 

G -  # G = ~ G llspan{e~ }. (33) 

The equality (33) is a direct consequence of  the following lemma (recall the definition 
of  G and G). Its proof is given in [11], in case dim L =  n - 1 .  However, the idea of 
that proof fits the general case as well, and therefore we delete the proof here. 

Lemma 3.2.1. Let A be a nonsingular symmetric n × n matrix, L a linear subspace of  
R n and L ± its orthogonal complement. Suppose that A ~IL~ is nonsingular. Then we have 

a. AlL is nonsingular, 
b. # ( A ) =  #(AID+ #(A-'I~O. 
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3.3. Points o f  Type 3 

A generalized critical point  ff = (~, ?) is o f  Type 3 if the following conditions 

B1-B4 hold:  
B1. ~ is a critical point  for ~(t--). 

After renumber ing we may assume in case Jo(~) ~ 0 that Jo(z) = { 1 , . . . ,  p}. From 

B1 and (7) we see that the critical point  relation (18) holds. 

B2. In  (18) we h a v e / / j # 0 ,  j =  1 , . . . , p .  
Let the Lagrange function L be defined as in (17) and let the tangent  space T be 

as in (19). 
B3. Exactly one eigenvalue of  D~L(e)I~ vanishes. 
Let V be a matrix with n rows, whose columns form a basis for the tangent space 

T. According to B3, let w be a nonvanishing vector such that V T D 2 L ( 5 ) V w  = O, 

and put v = Vw. Put cl) = (hi,  . . . ,  hm, gl, . . . ,  gp)T and define (the symbol * denoting 

as in (21) the Moore -Penrose  inverse): 

131 v T ( D 3 L  " v ) v _ 3 v T D 2 L  " T t T T 2 = ( (Dxq~) )  (v  DSrpv) ,  (34) 

[32 = J t ( J x n "  v ) -  J~c l ) .  (DTq) )  *" j 2 n v ,  (35) 

where 

v T ( o 3 g  • D ) v  = i (a3/ax~OxjaxDL" v~vjvk, 
i,j,k -- 1 

vTD2qT~V = (vTD2xhlV ' T 2 T . . . , V D xgpv ) , 

all partial derivatives being evaluated at ~. In  case that  I = Jo(2) = 0 we have T = Rn 

and we delete the entries o f  q~ in (34), (35). 

Next we define: 

13 = ]31" 132. (36) 

B4. 13~0.  
We note that  v is determined up to a scalar and hence, 13 is determined up to a 

positive scalar. 
Let ~ denote  the number  o f  negative eigenvalues o f  D~b(~)]r .  

Characteristic numbers:  c~, sign(13). 

Before we proceed with a local analysis o f  the set X, let us firstly present the 

easiest example.  In  fact take the one-dimensional ,  unconst ra ined case: f ( x ,  t ) =  

~x3+tx.  The point  ff is now the origin and for  the set X we obtain: I ; =  
{(x, t) Ix a + t = 0}. Obviously,  X is a parabola.  Note  that  (02f/Ox2)(O) = 0. This corre- 

sponds with condi t ion B3. However,  both (03f/Ox 3) and (02f/OtOx) do not vanish 

at the origin (cf./31,132 in (34), (35)). In  fact, condi t ion B4 is a generalization of  this. 
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Now we consider  the general  case. F rom condi t ion B1 and Defini t ion 1.2 we see 
that  the set {Dxhi(ff), D~gj(~), i c I, j c J0(z)} is l inearly independent ,  and f rom B2 
we learn that  all Lagrange paramete rs  /iv, j ~ J0(ff) are unequal  to zero. From this 
we conclude t h a t - - i n  some ne ighbourhood  ~ of  ~---the set Z consists entirely of  
critical points  and,  moreover ,  that  Jo(z)= Jo(~) for  all z ~ X ~ (7. The latter fact 
follows f rom the observat ion  that  the set {Dxf, D~h~, i c I, D~gj, j c aT}le is l inearly 

independen t  if J c  Jo(ff) and J # Jo(ff). But then, we m a y - - l o c a l l y - - c o n s i d e r  the 
inequali ty constraint  funct ions gj, j c Jo(~) as equali ty constraint  funct ions in order  
to describe the structure o f  the set X. 

For  equal i ty-const ra ined problems,  the present  type has been  s tudied extensively 
in [11, 'Type  2']. Therefore ,  we may  restrict ourselves to a ci tat ion of  those results 
within this context.  In fact, in a ne ighbourhood  of  if, the set X is a one-d imens iona l  
C2-manifo ld .  Moreover ,  the pa ramete r  t, v iewed at as a funct ion on 2,  has a 
(nondegenera te)  local max imum,  resp. local min imum,  at (if, t-') according to 
sign(/3) = +1,  resp. sign(/3) =- - 1 .  Consequent ly ,  the set X can be app rox ima ted  by 
means  of  a parabola ,  in a ne ighbourhood  o f  ft. The or ienta t ion o f  this pa rabo la  as 
well as the index-relat ions are depicted in Fig. 3. In view of  condi t ion B2, the indices 
LI,  LCI  do not change when  passing the point  ~ along Z. Moreover ,  apar t  f rom 

the degenera te  critical point  if, we have Q I + Q C I =  n-IIl-IJo(~)l. Therefore ,  in 
Fig. 3 we only ment ion  the change of  QI. 

_ OI=CI+I ~ . . ~  

x (R n) sign([~) = 1 sign([~) : - - 1  

O l = O + l  

Fig. 3. 

3.4. Points of  Type 4 

A general ized critical poin t  ~ = (~, t-) is o f  Type  4 if the fol lowing condit ions 

C1-C6  hold: 

C1. III + IJo(~)l > o, I" I denoting the cardinality. 
After r enumber ing  we may  assume in case Jo(~) # 0, that  Jo(~) = { 1 , . . . ,  p}. 

C2. dim. span{Dxhi(~),  Dxgj(~), i c I , j  ~ Jo(z)} = m + p -  1. 
C3. m + p - l < n .  

From C2 we see that  there exist A~, /xj, i ~ I, j ~ Jo(~), not all vanishing such that  

AiDxhi(~) + ~ tz~Dxgj(~,) : O. (37) 
i : 1  j = l  

Note  that  the numbers  Ai, ~j in (37) are unique up to a c o m m o n  multiple.  
C4. In case p # 0, we have ~j # 0, j = 1 . . . .  , p, and we normal ize  the txj's by 

setting txp = 1 (normal izat ion) .  
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We define furthermore 

p 

L(z)= E aA(z)+ E mgAz), (38) 
i--1 j = l  

where A~, /xj in (38) satisfy (37), 

T = O Ker Dxh~(~) c~ A Ker Dxg~(~). (39) 
i c t  )CYo(~) 

Let W be a matrix with n rows, whose columns form a basis for T. Define 

A = D ,L .  W T. D ~ L .  W, (40)  

w = W T" D~f, (41) 

all partial derivatives being evaluated at ~. 
C5. A is nonsingular. 
Finally, define 

a = wTA -1 w. (42) 

C6. a 30 .  

We remark that a is independent of the choice of  the matrix W. Let /3 denote 
the number  of  positive eigenvalues of  A. In case p # 0, let 3' be the number  of 
negative/x~, j c { 1 , . . . ,  p - 1} and put 6 = D,L(~).  Note, in particular, that y <p .  

Characteristic numbers: sign(a), /3.  

Characteristic numbers (corresponding to/xp = 1): y, sign(g). 

We proceed with an analysis of  the set ,~. Note that ~ is not a critical point for 
~ (? ) .  In fact, from (37) we see that the vectors Dxh~(Y.), Dxgj(~), i ~ I, j ~ Jo(~), are 
not linearly independent. In the case Jo(~)= ~ we are deal ing-- local ly--only  with 
equality constraints. The equality-constrained case is treated extensively in [11, 
'Type 3']. Now we will generalize the corresponding results obtained in [11] for 
the case that Jo(~)#  9. In accordance with the conditions C1-C6 we assume that 
Jo(~) = { 1 , . . . ,  p} and, in addition, that p 1> 1. In particular, we use the normalization 
/Zp = 1 (cf. condition C4). 

Conditions C2 and C4 imply that for every q c Jo(~) the following set is linearly 
independent: 

{Dxhi(~), Dxgj(~), i c I , j  ~ Jo(~)\{q}}. (43) 

From condition C5 and (43) it follows that there exists a neighbourhood (7 of  ~ such 
that {Dxhi(z),  Dxgj(z),  i c I , j  ~ Jo(z)} is linearly independent for all z ~ 6\{~}. But 

then, all g.c. po in t s - -apar t  from ~ in some neighbourhood of ~ are critical points. 
Condition C6 implies in particular that wT. DTxf¢  O. Consequently, ~ is not a critical 

point if we delete any gq as a constraint function, where q c Jo(~) (cf. (43)). In 
particular we obtain that, in some neighbourhood of ~, at all points of ~ the active 
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set Jo is constant (= J0(~)). But then, the local structure o f ~  around ~ is in accordance 
with the equality-constrained case as treated in [11], of course including the change 
of the indices QI, QCI. As a consequence, locally around ~, the set X is a one- 
dimensional C2-manifold, and the parameter t, viewed at as a function on X, has 
a (nondegenerate) local maximum, resp. local minimum, at (~, t-) corresponding to 
sign(a) = +1, resp. s i g n ( a ) = - 1  (cf. [11], where the characteristic numbers have 
different names). So, locally around ~, the set ~ can be approximated by means of 
a parabola. It remains to compute the change of the linear indices LI, LCI, in 
relation with the change of the indices QI, QCI. Let z be a critical point, close to 
~, and let ~ ( z )  be the Lagrange parameter corresponding to the inequality constraint 
function g~, j.¢ Jo(~). Then, it is not difficult to see that [/2j(z)[ tends to infinity as z 
tends to g. Furthermore, taking (37) and condition C4 into account, a moment of 
reflection shows that, for j # p, the sign of/2j(z) equals sign(/xj) • sign(/2p(z)), with 
/xj as in (37). Therefore, we may reduce our considerations to the case I = 0 and 

p = l J o ( e ) l  = 1. 

In the case I =0,  p = 1, we have the following simplification: L =  gl, T =  Nn 
(cf. C2), W=iden t i ty  matrix (without loss of generality), w = D~f  and thus, 
A= Dtgl 2 2 -1 f 2 

• = Dxgl] D x f  In particular, Dxf#O and is Dxgl, c~ Dxf[Dtgl" Dxgl 
nonsingular (at z = ~). 

The critical point equation, with ~7 denoting the corresponding Lagrange param- 
eter, becomes 

Dxf-rIDxgl=O0} , z#~,. (44) 
gl 

Let the symbol # again denote 'the number of negative eigenvalues'. At a critical 
2 2 point z (z # ~) the quadratic index QI equals # (D~f-r/Dxgl]Ker Oxgl), which, in 

view of (44), equals 
2 2 # ( D x f -  "qDxgliKer Oxf). (45) 

Note that in (45) the number 1~71 tends to infinity as z tends to 3. Furthermore, ,/-1 
changes sign at z = ~. Since D]gl(Y) is nonsingular and a ¢ 0, it follows from Lemma 
3.2.1a that D2~g~(~)lK~rO~y(e) is nonsingular. But then, for z close to ~, the number 
in (45) equals 

2 
( - -~Dxgl[KerO~f ) .  ( 4 6 )  

From (46) it follows that the quadratic index QI of a critical point z, z close to y, 
corresponds to the following list (the partial derivatives being evaluated at z = ~): 

1. r l>0 ,  D,g l>0:  Q I = # ( - B ) ]  
! 

2. rl>O, Dtgl<O: QI # ( B )  | 
B = Dtgl . DxgllKer D~f (47) 

3. ~1<0, Dtgl>O: QI # ( B )  / '  
/ 

4. 71<0, Dtgl<O: QI # ( - B ) )  
2 So it remains to relate # (+D,gl" D2gO with the number # (+Dtg~" D~g~lKo~o~). 
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This can be accomplished by means of Lemma 3.2.1b. In particular we have: 

• • • D ~ g l ]  D ~ f ) .  # ( D t g l  D 2 x g ~ ) = # ( D , g l  D ~ g d K ¢ ~ D j ) + # ( D x f [ D t g ~  2 -~ V 

(48) 

Note that # (D,~f[Dtg~ 2 ~ T • D,,g~] D x f ) = + l  (resp. 0) according to s i g n ( e ) = - I  
(resp. +1). 

Now we return to the general case. Then, in (48), Dtg l  2 • D , ,g l  has to be replaced 

by D , L .  W T .  D 2 L  • W, etc. A few calculations show that the index-relations are as 
depicted in Fig. 4, where the parabolas are local approximations of  the set X. If  we 

L l = y  
Zl;  QI = [3-1 

I t  L I = p-y 
Z 1 Z 2 Z2: QI = n-m_p_~+l  

T t 

Zl: L I = y 
Ql=n_m_p_~+l  

.LI = p _ y  
z 2 . 

Z 1 Z 2 0.1 = p_l  

I t  
Z l ~  sign(G)---1 ? 

Z 2  z1 :  L I = y 

QI=I3 

Z 2 :  L I = p -y  
QI= n - m - p - p  

T t 
Z l ~  sign((3) = -  1 ? 

Zl  :LI = y 
Z2 0,1 = n-m-  P-~ 

LI = p - y  
z 2 :  

O,I--p 

p = I J o ( ~ ) l  , m =111, n o r m a l i z a t i o n  : t ip  -- 1 

LI+LCI = p at + O~CI = n - m - p  

Fig. 4. 
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would replace f by the function - f  this has the following effect on Fig. 4: interchange 
the index-entries corresponding to Zl, % 

3.5. Points of Type 5 

A generalized critical point ff = (2, t-) is of Type 5 if the following conditions 
D1-D4 hold: 

Ol.  [I[+[Jo(~)l=n+l. (49) 
D2. The set {Dh~(~), Dgj(~), i c I , j  ~ Jo(~)} is linearly independent (derivatives 

in R"+I). 
Since m = ]I[ < n throughout the paper, (49) implies that [Jo(~)[ ~> 2. After renum- 

bering we assume that Jo(z)= {1 , . . . ,  p}. From D1, D2, we see that there exist hi, 
/xj, i c / ,  j c do(~), not all vanishing (unique up to a common multiple) such that: 

hiDxhi(~) + ~ tzjDxgj(Y) = 0. (50) 
i=l j=l  

D3. In (50) we have/~j ~0 ,  j =  1 , . . . , p .  
From D1, D2, it follows that there exist unique numbers a~, /3j, i ~ / ,  J c Jo(~), 

such that 

Vf(~) = ~ agDhi(~)+ ~ ~jOgj(~). (51) 
i = l  j = l  

Put 

Ao=f l i - f l j .  ~ i /m , i , j : l , . . . , p ,  

and let zl be the p x p  matrix with A~ as its ( i , j ) th element. 
D4. All off-diagonal elements of A are unequal to zero. 
Put 

(52) 

L ( z ) =  ~ hih,(z)+ ~ tzjgj(z), (53) 
i - 1  j 1 

where hi, Izj satisfy (50). From D2 we see that DtL(~) ~ O. We define: 

yj = sign(/~j. D,L(2)), j - -  1 , . . . ,  p. (54) 

By 6j we denote the number of negative entries in the j th  column of A, j -- 1 , . . . ,  p. 

Characteristic numbers: yj, 6j, j = 1 , . . . ,  p. 

We proceed with an analysis of the set Z. From conditions D1-D3 it follows that 
for every q ~ { 1 , . . . ,  p} the following set is linearly independent: 

{Dxhi(~), Dxg~(~), i c I , j  ~ Jo(~)\{q}}. (55) 

Next, conditions D1, D2 and the linear independence of (55) for all q c Jo(z)= 
{ 1 , . . . , p }  imply that there exists a neighbourhood 6 of 2 such that 
{Dxhi(z), D~gj(z), i ~ I , j  c Jo(z)} is linearly independent for all z e (Y\{2}. But then, 
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apart from ~, all generalized critical points in some neighbourhood of ~ are critical 

points. A combination of (50) and (51) implies at z = ~: 

DjC=i~_l (cei-flq'~q)Dxh,+j~=, (flj-flq~q)Dxgj, q = l , . . . , p .  (56) 

Consequently, for q = 1 , . . . ,  p, we obtain that ~ is a nondegenerate critical point if 
we delete gq as a constraint (combine (56) and condition D4). We put 

Mq={zlhi(z)=O, gj(z)=O, icLJcJo(e)\{q}},  q = l , . . . , p ,  (57) 

Mq = {z c M q l g q ( Z  ) ~ 0}. (58) 

From conditions D1, D2, and the fact that hi, gj are CLfunctions,  it follows that, 
locally around if, the set Mq is a one-dimensional C3-manifold, q = 1 , . . . ,  p. Further- 
more, locally around ~, the set 2; is equal to the union P + Uq~l Mq. A moment of 
reflection shows that there exists a local CLcoordinate  transformation of a neigh- 
bourhood 7/" of ~ which maps the set 2; c~ °V to the union of the coordinate-axes of 
the orthant H p = {y c R p lYi >~ 0, i = 1 , . . . ,  p}. The indices (LI, LCI, QI, QCI) along 
M~\{£} are equal to (~q,p-1-8q,  0, 0), where 80 is a characteristic number as 
introduced above (combine the definition of ~q with (52) and (56)). 

It is easily seen that the t-component of the tangent space of Mq at £ is unequal 
to zero, q = 1 , . . . ,  p. Furthermore, a short calculation shows that, as t increases and 
passes the value [, the set Mq emanates from (~, t-), resp. ends at (£, t-) according 
to 7q = +1, resp. 7q = - 1 ,  where 3'q is one of the characteristic numbers (cf. (54)). 

4. The Kuhn-Tucker subset 

In this section we will look more closely to the subset of 2; consisting of 
Kuhn-Tucker  points. This set has been studied extensively in the important paper 
[12] under the additional assumption of the so-called Mangasarian-Fromowitz 
Constraint Qualification (shortly: MFCQ). However, the MFCQ is not a generic 
condition in optimization problems depending on parameters. With the aid of the 
foregoing analysis we are able to describe generically the Kuhn-Tucker  subset 
(without explicitly appealing to the MFCQ) and we will discuss those situations 
where the MFCQ fails to hold. 

We will adopt the notations used in the foregoing sections. In particular, recall 
that ~- denotes the set of generic one-parametric programs (cf. Definition 2.1 and 
Theorem 2.1) and note that 2;1 stands for that subset of 2;, consisting entirely of 
nondegenerate critical points. 

Definition 4.1. The subset 2;/~r (the 'Kuhn-Tucker  subset') of 2; is defined to be 
the closure of the set {z ~ 2;1 [LI = 0 at z}. 
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Definition 4.2. Let ~=(2 ,  t-) and let ff be a feasible point for ~(t-), i.e. ff~ M(t-). 
The Mangasarian-Fromowitz Constraint Qualification (MFCQ) is said to be satisfied 
at ~ if both of the following conditions hold: 

a. {D~hi(~), i c I} is a linearly independent set, 
b. There exists a vector ~ ~ R" such that 

Dxh~(~)~=0, i c I ,  D x g j ( z ) ~ > O ,  j c J o ( ~ ) .  (59) 

Lemma 4.1. Let  ( f ,  hl, . . . , hm, ga, . . . , gs) ~ o% and ~ ~ 2KT. Then, at  ~, the MFCQ is 

not satisfied i f f  

either: ~ is o f  Type 4, or: ~ is o f  Type 5, and all txj in (50) have the same sign. 

Proof. If  ~ is of Type 1, 2 or 3, then the set {Dxhi(~), Dxgj(~),  i ~ / , j C J o ( ~ ) }  is 
linearly independent, and this obviously implies the validity of the MFCQ. Next, 
suppose that ~ is of Type 4. If  Jo($) = 0, then condition C2 implies that {Dxhi(~), i c I} 
is a linearly dependent set and hence the MFCQ is not satisfied in view of condition 
a in Definition 4.2. Now, let Jo(z)#  0. Since ~6 2m- it follows from Fig. 4 that 
y = 0  (recall: y < p ) .  Hence, all /zj in (37) have the same sign (unequal zero, by 
taking C4 into account). But then it is easily seen that a solution ~ of (59) contradicts 
(37). So, also in this case the MFCQ is not satisfied. Next, let ~ be of Type 5. Since 
Jo(~) # 0 in this case, it follows from condition D3 that the linear independence 
condition a in Definition 4.2 is satisfied. From the well-known alternative theorems 
of Farkas' type (e.g. [6]) and condition D3 it follows that (59) is not solvable iff in 
(50) all/zj have the same sign. This proves the lemma. [] 

Theorem 4.1. Let  ( f ,  hb • . . ,  h,,, gl, • • •, gs) c 4 .  Then 2 m - i s  a one-dimensional (piece- 

wise C2-)mani fo ld  with boundary. In particular, ~ ~ ~ , r r  is a boundary point i f f  at  

we have: Jo(~) # 0 and the MFCQ fai ls  to hold. 

Proof. It suffices to consider the structure of ~'KT in a neighbourhood of each of the 
points of Type 1-5. Locally around a point of Type 1, the set 2KT is a C2-manifold 
(cf. Section 3.1). If g is of Type 2, it follows from Fig. 2 that, locally, the structure 
of £nT is one of those depicted in Fig. 5. Now, let g be of Type 3. Then, the local 
structure of 2KT coincides with Fig. 3. If  ~ is of  Type 4, then, in view of Fig. 4, 

T ' 
, , 

t 2 - 

t t 

: YKT 

Fig. 5. 
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.10(2) ~ ~ Jo (2) ~ ~ Jo (2) : 

Fig. 6. 

Jo(~) = 

, z z 

.# 
k J k v ~ 

MFCO fails to hold MFCQ holds 

F i g .  7 .  

the set X r r  has a local structure as depicted in Fig. 6. Note:  ff is a bounda ry  point  
of  EKr if Jo(ff) ~ 0, and recall L e m m a  4.1. 

Finally, let ~ be of  Type  5. A short  calculat ion shows that  the numbers  A~j in (52) 
satisfy the fol lowing relation: 

A i j  = --]~i Aji , i , j  = 1 , . . . ,  p. (60) 
tXj 

In case that  all txi, i = 1 , . . . , p ,  have the same sign (and thus, in view of  L e m m a  
4.1, the M F C Q  is not satisfied), (60) implies: sign(A0) = -sign(Aji) .  But then,  if for  
some q c { 1 , . . . , p }  we have 8q=O, it follows that  6 j > 0  for  all j c { 1 , . . . , p } k { q } .  
Hence,  ff is a bounda ry  point  of  VKr. N o w  suppose  that/xj,  j = 1 , . . . ,  p, do not all 
have the same sign. Then,  the M F C Q  is satisfied. F rom (60) it is easily seen that  
we have for  at most  one of  the Mq\{~} (cf. (58)), emana t ing  f rom ff (resp. ending 

at if) as t increases and passes  the value f, that  LI = 0. A m o m e n t  of  reflection shows 
+ - 4- that  in case L I = 0  on M q \ { Z } ,  M q  ending at if, there exists  exactly one r c  

{ 1 , . . . ,  p}\{q} such that  M + emanates  f rom ff and LI  = 0 on M+\{5}.  Altogether,  
the local structure of  XKr a round  ~ has one of  the forms as depicted in Fig. 7. This 
completes  the p r o o f  of  our  theorem.  [] 
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