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Abstract – In this paper, a novel automatic approach to the unsupervised identification of changes 

in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on 

the formulation of the unsupervised change-detection problem in terms of the Bayesian decision 

theory. In this context, an adaptive semi-parametric technique for the unsupervised estimation of the 

statistical terms associated with the gray levels of changed and unchanged pixels in a difference image 

is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation 

procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) 

algorithm. Then, thanks to the resulting estimates and to a Markov Random Field (MRF) approach 

used to model the spatial-contextual information contained in the multitemporal images considered, a 

change detection map is generated. The adaptive semi-parametric nature of the proposed technique 

allows its application to different kinds of remote-sensing images. Experimental results, obtained on 

two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the 

validity of the proposed approach.  

 

Index terms - Change detection, multitemporal images, remote sensing, adaptive semi-parametric 

estimation, Bayes theory, reduced Parzen estimate, expectation-maximization  algorithm. 
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I. INTRODUCTION 

Automatic change detection in images of a given scene acquired at different times is one of the most 

interesting topics of image processing. It finds important applications within different contexts, ranging from 

video surveillance [1], [2] to video coding [3], [4], tracking of moving objects [5], [6], and motion estimation 

[7], [8]. Recently, the increasing interest in the field of environmental protection has led to the recognition of 

the fundamental role played by change-detection techniques in monitoring the earth’s surface [1], [9]-[14]. In 

this respect, the importance of change-detection methods relies on the possibility of identifying changes that 

occurred in land covers (e.g. due to urban expansion, deforestation, floods, forest fires, etc.) by analyzing 

multispectral images acquired at different dates by use of sensors mounted on board of satellites.  

Change detection in multitemporal remote-sensing images is characterized by several peculiar factors that 

render ineffective some of the multitemporal image analysis techniques typically used in other application 

domains. The main difficulties affecting change detection in remote-sensing images arise from [10], [11], 

[13]: the lack of a-priori information about the shapes of changed areas; the absence of a reference 

background; differences in light conditions, atmospheric conditions, sensor calibration, and ground moisture 

at the two acquisition dates considered; problems of alignment of multitemporal images (registration noise). 

These factors restrict the use of most classical multitemporal image-analysis techniques to few particular 

remote-sensing problems; for instance, model-based approaches can be adopted only for special purposes, 

like detection of specific man-made objects [1]. 

In the literature, several supervised and unsupervised techniques for detecting changes in remote-sensing 

images have been proposed [1], [9]-[16]. The former require the availability of a “ground truth” from which 

to derive a training set containing information about the spectral signatures of the changes that occurred in 

the considered area between the two dates. The latter performs change detection without any additional 

information besides the raw images considered. Therefore, from an operational point of view, it is obvious 

that using unsupervised techniques is mandatory in many remote-sensing applications, as suitable ground-

truth information is not always available. 

 This paper deals with the widely used type of unsupervised techniques that perform change detection 

through a direct comparison of the original raw images acquired in the same area at two different times. The 

change-detection process performed by such unsupervised techniques is usually divided into three main 

sequential steps: 1) pre-processing, 2) image comparison and 3) analysis of the difference image. These steps 
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are detailed in the following. 

 

1) Preprocessing - Unsupervised change-detection algorithms usually take two digitized images as 

input and return the locations where differences between the two images can be identified. To 

accomplish such a task, a preprocessing step is necessary aimed at rendering the two images 

comparable in both the spatial and spectral domains.  

Concerning the spatial domain, the two images should be co-registered so that pixels with the 

same coordinates in the images may be associated with the same area on the ground. This is a 

very critical step, which, if inaccurately performed, may render change-detection results 

unreliable (we refer to [10] for more details on the impact of registration noise on the accuracy 

of change detection, to [17]-[19] for techniques aimed at supporting the registration process, and 

to [11], [20] and [21] for techniques devoted to reducing registration noise).  

With regard to the spectral domain, changes in illumination and atmospheric conditions between 

the two acquisition times may be a potential source of errors and should be taken into account in 

order to obtain accurate results [22]-[23]. This problem can be mitigated by performing a 

radiometric calibration of the images. To this end, two different approaches can be taken: 

absolute calibration and relative calibration. The former involves the conversion of the grey-

level values in the images into the corresponding ground reflectance values [25]-[27]. The latter 

aims at modifying the histograms of the images so that the same grey-level values in the two 

images may represent the same reflectance values, whatever the reflectance values on the 

ground may be [22], [23], [27]. The choice of one of the two approaches depends on the 

particular application considered and on the specific information available. Generally, in 

remote-sensing applications, illumination can be assumed to change smoothly with respect to 

the pixel coordinates in each image considered. Therefore, in many cases, one can divide an 

original scene into different areas of interest (AOIs), so that that differences in illumination 

conditions will be constant for each pixel in a given area of interest. Hence, a separate analysis 

of each AOI allows the suppression of the main effects of varying illumination on the change-

detection process. It is worth noting that selecting the AOI dimensions should involve a tradeoff 

between obtaining uniform illumination conditions and relying on sufficient statistics for 
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carrying out the change-detection process. However, even though selecting the AOI size may be 

a critical issue in other application domains, usually it does not represent a serious limitation in 

operational remote sensing. In fact, illumination variations inside images acquired by space-

borne sensors are usually smooth enough to allow operators to easily select a suitable size. The 

reader is referred to [7] for a more detailed analysis of this issue. 

 

2) Image comparison - The two registered and corrected images (or a linear or non-linear 

combination of the spectral bands of such images [13]) are compared, pixel by pixel, in order to 

generate a further image (“difference image”). The difference image is computed in such a way 

that pixels associated with land-cover changes present gray-level values significantly different 

from those of pixels associated with unchanged areas [13]. For example, the univariate image 

differencing (UID) technique [12], [13] generates the difference image by subtracting, on a pixel 

basis, a single spectral band for each of the two multispectral images under analysis. The choice 

of the spectral band to be subtracted depends on the specific type of change to be detected. An 

analogous concept is followed by the widely used change vector analysis (CVA) technique. In 

this case, several spectral channels are considered at each date (i.e. each pixel of the image 

considered is represented by a vector whose components are the gray-level values associated 

with that pixel in the different spectral channels selected). Then, for each pair of corresponding 

pixels, the so-called “spectral change vector” is computed as the difference in the feature vectors 

at the two times. At this point, the pixels in the difference image are associated with the 

magnitudes of the spectral change vectors; it follows that unchanged pixels present small gray-

level values, whereas changed pixels present rather large values. 

3) Analysis of the difference image - Land-cover changes can be detected by applying a decision 

threshold to the histogram of the difference image. For instance, when the CVA technique is 

used (i.e. each pixel in the difference image is associated with the magnitude of the difference 

between the corresponding feature vectors in the original images), changed pixels can be 

identified on the right side of the histogram as they are associated with large gray-level values. 

The selection of the decision threshold is of major importance as the accuracy of the final 

change-detection map strongly depends on this choice. Although in the image processing 

literature some automatic techniques for choosing a suitable decision threshold for change-
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detection problems have been proposed [28], in remote-sensing applications such a choice has 

generally been made by using non-automatic heuristic strategies based on trial-and-error 

approaches [11], [13], [29]. The classical approach to choosing the decision threshold implies 

the assumption (reasonable but not always verified) that few changes occurred between the two 

dates considered. Under this hypothesis, the density function of the pixel gray-level values in 

the difference image may be confused with the density function of the unchanged pixels. Under 

this assumption, a decision strategy based on the single -hypothesis testing theory can be 

adopted [30], i.e. pixels with gray-level values significantly different from the mean of the 

density function of the difference image are labeled as changed. When this strategy is used, the 

decision threshold is typically fixed at n Dσ  from the mean value of the difference image, Dσ  

being the standard deviation of the density function of the pixel gray-level values in the 

difference image and n a real number derived by a trial-and-error procedure. Some authors [31]-

[33] have experimentally studied the effects of different n values on the accuracy of change-

detection results. 

 

In this paper, we focus on the last step of the change-detection process. In particular, we propose a novel 

approach to the analysis of the difference image that overcomes the aforementioned drawback, i.e. the lack 

of effective and theoretically founded procedures for an automatic identification of changes in a difference 

image. Such an approach is based on the assumption that the histogram of the difference image can be 

modeled as a mixture density composed of the distributions of two classes associated with changed and 

unchanged pixels, respectively. In this context, an adaptive semi-parametric and unsupervised method for the 

estimation of the conditional density functions of these classes is proposed. The present method, which is an 

extension to the parametric technique presented in [34], exploits the effectivenesses of two theoretically 

well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure [35] and the expectation-

maximization (EM) algorithm [36]-[38]. In particular, the RPE procedure is used to derive initial non-

parametric estimates of the probability density functions of changed and unchanged pixels in the difference 

image. Then, these non-parametric estimates are iteratively improved by using the EM algorithm to provide a 

more accurate description of the difference-image statistics. We define this estimation procedure as an 

adaptive semi-parametric approach. On the one hand, the term "adaptive" points out the fact that the 
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proposed method does not assume any a-priori model on the data distribution; this allows one to apply the 

present approach to different kinds of remote-sensing images (e.g. optical and SAR images). On the other 

hand, the term "semi-parametric" refers to the nature of the final estimates, which are derived by converting 

the initial non-parametric model into a more suitable semi-parametric description of the difference-image 

statistics (these aspects will be clarified in Section III). 

In addition, the proposed approach, unlike classical techniques for unsupervised change detection in 

remote-sensing applications [13], uses the spatial-contextual information contained in the difference image in 

order to increase the accuracy of the final change-detection map. In particular, a method based on Markov 

Random Fields (MRFs) is proposed that exploits the interpixel class dependence to model the prior 

probabilities of the classes. This allows both the accuracy and the reliability of the final change-detection 

map to be increased.  

 The paper is organized into six sections. The problem formulation and the general description of the 

proposed technique are provided in Section II. In Section III, the method for estimating the statistical terms 

necessary to apply the Bayesian theory is detailed. In Section IV, the data sets used for the experiments are 

described. Experimental results are reported in Section V. Finally, in Section VI, results are discussed and 

conclusions are drawn. 

 

II. PROBLEM FORMULATION AND GENERAL DESCRIPTION 

 OF THE PROPOSED TECHNIQUE 

Let us consider two co-registered multispectral images, X1 and X2, acquired by a space-borne sensor in 

the same geographical area at two different times, t1 and t2. Let ( ){ }JjIijiX AOI ≤≤≤≤= 1,1,,1   XAOI
1  and 

( ){ }JjIii,jX AOI ≤≤≤≤= 1,12   ,XAOI
2  be two corresponding AOIs of size I×J extracted from the original 

images X1 and X2, respectively (Table I provides a summary of all the variables used in the paper). Let us 

assume that illumination variations in the selected AOI can be considered to present a constant behavior 

versus the pixel coordinates. Let X be a random variable that represents the values of the I×J pixels in the 

difference image { }JjIijiX ≤≤≤≤= 1,1),(   ,X D ; such values have been obtained by applying to AOI
1X  and 

AOI
2X  the CVA technique [13] (i.e. ( ) ( ) ( )jiXjiXjiX AOIAOI ,,, 21 −= ); the generalization of the method to 
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other techniques based on the difference image is straightforward.  

Unlike classical unsupervised techniques used in remote-sensing applications, we formulate the change-

detection problem in terms of the Bayesian decision theory. In this context, for a given pixel in the difference 

image XD, we want to choose one of two classes, ωc and ωn, associated with changed and unchanged pixels, 

respectively. Let the set { }Ll,l ≤≤= 1 CC , with 2IJL = , be composed of all the possible sets of labels in 

the difference image XD, where { }Jj,Ii),j,i(Cll ≤≤≤≤= 11    C , with { }cnl ,)j,i(C ωω∈ , is a 

generic set of labels in XD. Let us define the neighbor system of the pixel with the coordinates (i,j) as 

{ }N  N ∈ςς+= ),v(),,v()j,i()j,i( , where N is a specific spatial neighborhood system (in this paper, we 

shall consider a second-order spatial neighborhood system { })1,1(),1,1),(1,0),(0,1( ±−±±±=N ). 

In terms of the Bayesian formulation, the set of labels Ck  that minimize the overall change-detection error 

can be derived by using the following decision rule: 

 

 ( ){ } ( ) ( ){ }lDlDlk pPmaxargPmaxarg
ll

CXC    XCC
CCCC ∈∈

==  (1) 

 

where P(Cl) is the prior model for the class labels, and p(XD/Cl) is the joint density function of the pixel 

values in the difference image, given the set of labels Cl. The application of (1) requires the estimations of 

both P(Cl) and p(XD/Cl), which are very complex tasks. To simplify the problem, we make two widely used 

assumptions: 1) we model the spatial-contextual information in a local spatial neighborhood (this is rather a 

reasonable approach, given the interpixel class dependence, as the interactions between pixel labels decrease 

rapidly as the distances between pixels increase [39]); 2) we assume the following conditional independence:  

 

 [ ]
( )
∏

∈

=
Dj,iX

l )j,i(C)j,i(Xp)/(p
X

CX lD . (2) 

It is worth noting that the validity of the last assumption is difficult to demonstrate and in our application it 

may be more critical than in other cases. However, from the computational viewpoint, it can be considered a 

reasonable simplification that allows a good trade-off between theoretical aspects and computational 

complexity.  

We can use an MRF approach to modeling the spatial context in the prior model for the class labels P(Cl).  

According to (1), the generation of the final change-detection map involves the labeling of all the pixels 
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in the difference image so that, under the aforesaid assumptions, the posterior probability may be maximized. 

In terms of the Markovian approach, this is equivalent to minimizing the following energy function [40]-

[42]: 

 

 { }( ) ( )[ ]∑∑
= =

+∈=
I

i

J

j
ldatallcontextlD )j,i(C)j,i(XU)j,i()h,g(),h,g(C)j,i(CU),CX(U

1 1

N    (3) 

 

The energy term ( )⋅contextU  describes the interpixel class dependence, whereas the term ( )⋅dataU  

represents the statistics of the gray levels in the difference image under the assumption of conditional 

independence, as defined in (2).  

For the estimation of ( )⋅contextU , we suggest using the simple MRF model presented in [34], [43]. In 

particular, the Markov modeling of the conditional distribution of the pixel label Cl(i,j), given the pixel 

labels elsewhere, can be  expressed as [40]-[43]: 

 

 { }( ) { }( ) =∈=≠ )j,i()h,g(),h,g(C)j,i(CP)j,i()h,g(),h,g(C)j,i(CP llll N      

 { }( )[ ]),(),(  ),,(),(exp
1

jihghgCjiCU
Z llcontext N∈−=  (4) 

 

where ( )⋅contextU  is the Gibbs energy function and Z is a normalizing factor. 

{ }( )),(),(  ),,(),( jihghgCjiCU llcontext N∈  is defined as [40]-[43]: 

 

 { }( ) ( )∑
∈

=∈
),(),(

),(),,(),(),(),,(),(
jihg

llkllcontext hgCjiCjihghgCjiCU
N

N  βδ , (5) 

 

where δk  is the Kronecker delta function and β is a constant that tunes the influence of spatial-contextual 

information on the change-detection process. 

For the estimation of the class conditional energy functions ( )⋅dataU , we propose a novel adaptive semi-

parametric technique based on the RPE [35] technique and the EM algorithm [34], [36]-[38]. In the next 

section, a detailed description of this technique is provided. 

Finally, the minimization of (3) can performed by using different approaches (e.g. the simulated 

annealing algorithm [44]). In this paper, for the sake of simplicity, we shall adopt a simple and fast approach 

based on Besag’s iterated conditional modes (ICM) algorithm [45].  
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The basic idea of the ICM algorithm consists in the relationship between the class labels for pixels, the 

current estimate of the labels of neighboring pixels, and the considered image (i.e., the difference image XD): 

 

 { }( ) ( )( ) ( ))h,g(C)j,i(CP)j,i(Cj,iXP)j,i()h,g(),h,g(C,X)j,i(CP lllll ∝∈    N . (6) 

 

The implementation of the algorithm is as follows: 

 

Step 1. Initialize Cl by assigning each pixel to the class that minimizes the non-contextual energy 

function ( )⋅dataU . 

Step 2. For all pixels in the difference image, update the label with the one that minimizes equation 

(3). 

Step 3. Repeat Step 2 until convergence is reached. 

 

Convergence is reached when, at a given iteration, the number of pixels that modify the label is below a 

predefined threshold. It is worth noting that, even if the ICM algorithm converges to a local minimum of the 

energy function, it allows a good trade-off between computational complexity and accuracy obtained.  

 

III. THE PROPOSED ADAPTIVE SEMI-PARAMETRIC ESTIMATION TECHNIQUE 

The estimation of the class conditional energy ( )),(),( jiCjiXU ldata  can be carried out under the pixel 

independence hypothesis, as the spatial-contextual information is assumed to be represented by the energy 

term ( )⋅contextU . Let us assume that the histogram hD(X) of the difference image XD is an accurate estimate of 

its density function p(X). We propose modeling p(X) as a mixture density composed of the two components 

associated with the classes ωn and ωc, respectively, i.e., 

 

)(P)/X(p)(P)/X(p)X(p ccnn ωωωω += .                                     (7) 

 

The authors have already addressed the problem of estimating p(X/ωn), p(X/ωc), P(ωn), and P(ωc) in [34]. 
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In that work, a parametric method was proposed that assumed Gaussian distributions for the class-

conditional density functions p(X/ωn) and  p(X/ωc). In this paper, we extend such an approach to the semi-

parametric case by exploiting the RPE technique [35] and the EM algorithm [36]-[38]. A general scheme of 

the method is shown in Fig. 1. The method can be divided into two different phases: 

 

1) initial non-parametric estimation of p(X/ωn), p(X/ωc), P(ωn), and P(ωc); 

2) iterative semi-parametric optimization. 

 

In the first phase (non-parametric initialization), a small number of pixels, which can be reasonably 

labeled as belonging to either ωn or ωc, are selected by exploiting the properties of the difference image 

together with the prior information that may be available for the specific problem considered. Then, on the 

basis of such pixels, the initial estimates of the statistical terms involved in (7) are derived with the non-

parametric RPE technique. In the second phase (iterative semi-parametric optimization), the unlabeled pixels 

that are located in the middle region of the histogram, and that can turn out to be either changed or 

unchanged, are used to improve the estimates of the aforesaid statistical terms by performing an iterative 

process based on the EM algorithm. In the following, we describe these two phases in detail. 

 

A. Non-parametric initialization 

Let us assume that we can identify both a subset Sn of Nn pixels belonging to ωn and a subset Sc of Nc 

pixels belonging to ωc in the difference image XD. This is a reasonable assumption, if we consider the 

particular properties of the difference image: pixels with small gray-level values exhibit a high probability of 

being unchanged pixels, whereas pixels with large gray-level values are associated with a high probability of 

being changed pixels. In this context, we can define the initial sets of pixels Sn and Sc in terms of two 

thresholds, Tn and Tc, applied to the tails of the histogram hD(X) (i.e. ( ) ( ){ }nTjiXjiX <= ,|,  S n  and 

( ) ( ){ }cTjiXjiX >= ,|,   S c ), such that the subset ( ) ( ){ }cn TjiXTjiX ≤≤= ,|,   S u  represents the pixels in the 

difference image XD that cannot be easily identified as changed or unchanged pixels. Then both initial sets of 

pixels, Sn and Sc, can be used to derive the initial estimates of the probability density functions p(X/ωn) and 

p(X/ωc) and of the prior probabilities of the classes P(ωn) and P(ωc). 
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Different strategies can be adopted in order to obtain two reasonable values of Tn and Tc, depending on 

the prior information available for the problem considered. Two simple strategies are described in the 

following.  

The first strategy assumes that end-users rely on some prior information concerning the possible 

maximum and minimum extents of changed areas. In this case, Tn and Tc can be determined by fixing some 

constraints on the initial prior probabilities of the classes according to the information available. In 

particular, Tc can be selected as the threshold value that renders the cardinality of Sc equal to the number of 

pixels corresponding to the minimum extent of the changed area. A similar procedure can be adopted to 

select Tn.    

The second strategy does not require any kind of prior information about the specific problem considered. 

It follows that, the initial thresholds can be selected by properly exploiting only the aforementioned 

peculiarities of the difference image. In particular, Tn and Tc can be defined in terms of the middle value MD 

of the histogram hD(X) as: 

 ( )α−= 1Dn MT ;       ( )α+= 1Dc MT   (8) 

where α  is a real number ( 10 << α ) that defines the range around MD in which pixels cannot be easily 

classified as either changed or unchanged pixels. MD can be expressed by { } { }( ) 2/DD XX minmaxMD −= , 

where { }DXmax  and { }DXmin  are the maximum and minimum gray-level values in XD, respectively. 

In both above-described cases, a precise selection of Tn and Tc is rather a difficult task. However, the 

objective of the initialization phase is not to obtain accurate estimates of the density functions and of the 

prior probabilities of the classes, but only a meaningful starting point for the next iterative estimation 

procedure. 

Once Tn and Tc have been fixed, first rough estimates of p(X/ωn), p(X/ωc), P(ωn) and P(ωc) can be 

obtained from the initial sets of pixels, Sn and Sc. On the one hand, the prior probabilities can be estimated 

by exploiting the relative frequencies of the pixels in the initial sets Sn and Sc. On the other hand, the density 

functions of the classes can be estimated by using the nonparametric RPE technique (proposed by Fukunaga 

and Hayes in [35]), as described in the following.  

The classical Parzen density estimate of p(X/ωv) (with { }cnv ωωω ,∈ ) is given by the following 
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equation: 

 
( )( )

( )
∑

∈




 −

=
vSj,iXv

vN h
j,iXX

k
hN

)/X(p̂
v

11
ω , (9) 

where k(⋅) is a kernel function satisfying ∫ = 1)( dXXk , and h is the kernel-size control parameter. However, 

the use of the Parzen estimate may involve a very large number of kernel functions, which may render this 

estimation approach inappropriate to our purposes. In order to avoid this problem, according to [35], we 

propose to use a reduced number of representative kernels, selected so that the resulting estimates can be as 

close as possible to the Parzen estimate obtained with all available samples. In particular, when Rv 

representatives are selected from each set Sνν  (with Rv << Nv), the density function p(X/ωv) is estimated by: 

 
( )∑

=





 −
=

vR

r

r

v
vvR h

YX
k

hR
)/X(p̂

1

11
ω , (10) 

where Yr represents each of the Rv representative pixels. According to [35], the representative pixels Rv are 

selected from Sνν  so that the entropy between (10) and the corresponding true Parzen estimate (9) can be 

maximized [35]. In particular, the set of Rv representatives for the initial set of pixels Sνν  is computed by 

maximizing the following criterion function Jv: 

 ( )( )[ ] ( )( )[ ]{ }∑
∈

−=
v

v
S)j,i(X

vNvvR
v

v /j,iXp̂/j,iXp̂
N

1
J ωω LnLn . (11) 

The maximization of (11) is performed by the suboptimal search procedure proposed in [35]. The 

resulting estimates represent a reasonable starting point to derive the final density functions of changed and 

unchanged pixels in the difference image.  

The selection of a model for the kernel functions is not a critical issue. However, taking into account the 

following iterative optimization phase carried out by the EM algorithm, we suggest the use of Gaussian-like 

functions. Concerning the selection of both the number of representatives and the initial smoothing 

parameter h, we followed the indications provided in [35]. However, it is worth noting that, in the present 

approach, the proposed iterative optimization step (see next paragraph) renders this selection less critical 

than in other cases, where, for instance, the smoothing parameter h is not optimized once it has been fixed. 

According to Fukunaga and Hayes [35], the estimates obtained with the aforementioned approach can be 

considered non-parametric, as it does not require any a priory knowledge on the statistical models for the 
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distributions of changed and unchanged pixels in the difference image.  

For a more detailed description of the RPE technique we refer the reader to [35].  

 

B. Iterative semi-parametric optimization 

The above-described initialization phase provides rather rough initial estimates of the required density 

functions as they are strongly biased by the two initial sets of pixels, Sn and Sc. Therefore, it is necessary to 

improve such estimates by optimizing the set of parameters that characterize the corresponding density 

models. In this context, we propose to use the subset { }cnDu SSXS ∪−=  of pixels that cannot be easily 

classified as changed or unchanged pixels to increase iteratively the accuracies of the estimates of the 

statistical terms that define the mixture density p(X). This procedure is carried out by applying the EM 

algorithm [36]-[38]. 

To accomplish such a task, a more flexible expression for the estimation of each density function p(X/ωv) 

is proposed. In particular, the kernel-size control parameter may be different for each kernel; in addition, 

each kernel function is associated with a different weight such that the sum of the Rv weights associated with 

the class ωv may be equal to one. On the one hand, this increases the number of parameters to be estimated; 

on the other hand, it makes it possible to obtain more accurate approximations for the real distributions. It is 

worth noting that the aforementioned procedure implies the conversion of the non-parametric model (derived 

from the previous initialization phase) into a more suitable semi-parametric model. This semi-parametric 

model provides (by exploiting the unlabeled samples present in the subset Su) a more accurate description of 

the probability density functions of changed and unchanged pixels. 

In this context, the new expression for each density function p(X/ωv) can be obtained by rewriting 

expression (10) as: 

 
( )

∑
=








 −Π
=

v

v

R

r v,r

v,r

v,r

v,r
vR h

YX
k

h
)/X(p̂

1

ω . (12) 

Using this formulation, the parameter vector to be optimized becomes 

[ ]vRvvRvvRvv vvv
YYhh ,,1,,1,,1 ,...,,,...,,,..., ΠΠ=θ , where vlh , , vlY ,  and vl,Π  represent the l-th kernel size 

control parameter, the l-th representative sample and the l-th weight, respectively, associated with the class 
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ωv.  

The EM algorithm is initialized with the values derived from the initialization phase. Therefore, the initial 

parameters for the values of each class ωv are set to hh vl =0
, , vlvl YY ,

0
, =  and 

v

v
v,l R

)(P̂ ω
=Π 0 . It is possible 

to prove that, at each iteration of the EM algorithm, the estimated parameters provide an increase in the log-

likelihood function )|(pln)(L θθ DX=  (where [ ]cn θθθ ,=  is the parameter vector to be computed) [36]-

[38]. At convergence, a local maximum of the log-likelihood function is reached. Although convergence can 

be ensured, it is not possible to guarantee that the algorithm will converge to the global maximum of the 

likelihood [36]-[38].  

It is worth noting that, even if the EM algorithm usually requires a significant computational time, this 

aspect is not critical in our case, as we are dealing with a one-dimensional problem. 

The estimates obtained at convergence (which is attained when the difference between the values of the 

log-likelihood function at two successive iterations is below a given threshold) can be used to derive the final 

estimate of the required energy function: 
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This expression can be used in (3) to generate the final change-detection map. 

 

IV. DATA SET DESCRIPTIONS 

In order to carry out an experimental analysis aimed at assessing the performances of the proposed 

approach, we considered two multitemporal data sets corresponding to geographical areas on the 

Peloponnesian Peninsula, Greece, and the Island of Elba, Italy, respectively. Detailed descriptions of such 

data sets are provided in the following. 

 

A. Data Set Related to the Peloponnesian Peninsula 

The first of the two data sets used in the experiments was composed of two images acquired in the same 

area by a passive multispectral scanner installed on a satellite (i.e. the Wide Field Sensor (WiFS) mounted on 

board the IRS-P3 satellite). The area shown in the two images was a section (512×512 pixels) of a scene 
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acquired in the southern part of the Peloponnesian Peninsula, Greece, in April 1998 and September 1998. As 

an example, Figs. 2(a) and (b) show channels 2 (i.e. near-infrared spectral channels) of both images. As is 

readily apparent, various wildfires destroyed a significant portion of the vegetation in the aforesaid area 

between the two dates. The available information concerning the locations of the wildfires was used to 

prepare a “reference map” (see in Fig. 2(c)) useful to assess change-detection errors. Such a map was refined 

by a manual analysis of the two remote-sensing images.  

The images were registered by using the multispectral image acquired in April as a reference image. The 

analysis of the histograms of the April and September images did not reveal any significant difference in the 

light conditions at the two acquisition times. Therefore, no correction algorithms were required.  

 

B. Data Set Related to the Island of Elba 

 The second data set used in the experiments was composed of a section (414×326 pixels) of two 

multispectral images acquired by the Thematic Mapper (TM) sensor installed on board of the Landsat-5 

satellite. The two images were acquired in the western part of the Island of Elba, Italy, in August 1992 and 

September 1994. As an example, Figs. 3(a) and (b) show channels 4 (i.e. near-infrared spectral channels) of 

both images. As one can see by comparing the two images, a wildfire, which occurred in 1993, destroyed a 

significant part of the vegetation in the selected area. The damage is still evident in the September 1994 

image. Also in this case, the available ground truth concerning the location of the wildfire was used to 

prepare a “reference map” (see Fig. 3(c)). 

The images were registered by using the multispectral image acquired in 1992 as a reference image. In 

this case, too, no correction algorithms were applied as the analysis of the histograms of the two images did 

not reveal any significant difference in the light conditions at the two acquisition times.  

 

V. EXPERIMENTAL RESULTS 

A. Description of the Experiments 

 Four kinds of experiments were carried out to assess the effectiveness of the proposed technique on the 

two data sets considered. For the sake of simplicity, in all the trials made, we used the same values of the 

initial parameters of the classes of changed and unchanged pixels, i.e., Nn = Nc =N and hn= hc =h. 

First, the capabilities of the proposed adaptive semi-parametric technique for estimating the probability 
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density functions of changed and unchanged pixels were evaluated. To this end, the histograms of the 

considered difference images were normalized and compared with the estimates obtained by the proposed 

iterative estimation process.  

Secondly, on the basis of the resulting estimates, both a qualitative and a quantitative analysis of the 

effectiveness of the presented technique were carried out. In particular, the change-detection map obtained 

by using the proposed technique was compared with the change-detection map provided by the application of 

the optimum decision threshold To that minimizes the overall change-detection error (i.e. the best result 

yielded by the classical thresholding method). To this end, the value of the optimum threshold To was 

achieved by applying a manual trial-and-error procedure to the difference image. This was accomplished by 

performing an accurate evaluation of the change-detection errors versus the values of the decision threshold 

and then by associating To with the value that gave the minimum overall change-detection error. This 

experiment aimed to demonstrate that the proposed technique is able to yield, in an automatic way, more 

accurate results than those obtainable by the classical non-automatic thresholding (CNT) approach. 

In the third experiment, the accuracy provided by the proposed technique was compared with the 

accuracy exhibited by classical post-processing approaches used to reduce noise in the change-detection 

maps. In particular, the map provided by the proposed technique was compared with the change-detection 

map obtained by applying a classical filtering algorithm (a running median filter) to the minimum-error 

image derived by the CNT approach (i.e. by using the optimum decision threshold To). The objective of this 

experiment consists in assessing the effectiveness of the proposed spatia l-contextual model to automatically 

provide accuracies higher than those that can be obtained by classical post-processing filtering approaches. 

Finally, in the fourth experiment, the robustness of the proposed method versus the values of the main 

parameters selected in the initialization phase of the algorithm was assessed. To this end, the behavior of the 

overall change-detection error was evaluated by varying the values of α, N, h, and β. The results were 

compared with the minimum overall error resulting from the application of the CNT approach. 

 

B. Results on the Data Set Related to the Peloponnesian Peninsula 

In all the experiments, the difference image was computed by applying the CVA technique only to 

channels 2 of the multispectral images considered. This choice was made because such a spectral band was 
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found to be very effective in detecting burnt areas. In this experiment, no prior knowledge was assumed to be 

available for the initialization of the proposed technique; therefore, the performances of the proposed method 

were assessed under rather critical conditions. 

For the first experiment, the initial thresholds, Tn and Tc, were selected by setting α equal to 0.5. As 

suggested in [35], the initial number N of kernels was fixed at 6 and the corresponding initial smoothing 

parameter h  was set to 50. The result obtained is shown in Fig 4. As one can see, the obtained estimates of 

the density functions of the classes ωc and ωn provide an accurate description of the behavior of the 

histogram of the difference image. Such estimates were then used in equation (3) to derive the final change-

detection map (the parameter β was set to 1.5). The resulting map of changes (see Fig. 5(a)) was compared 

both quantitatively and qualitatively with the change-detection map provided by the CNT approach (see Fig. 

5(b)). The result of the quantitative comparison is shown in Table II. In particular, the table gives the 

numbers of false alarms (i.e. unchanged pixels identified as changed ones) and missed alarms (i.e. changed 

pixels categorized as unchanged ones) incurred by the proposed and classical approaches. As can be seen, 

the overall error obtained with the proposed technique (i.e. 2763 pixels) is smaller than the overall error 

resulting from the application of the manually determined threshold To (i.e. 3553 pixels). In greater detail, 

the number of missed alarms was reduced from 1129 to 1010 pixels, and the number of false alarms 

decreased from 2424 to 1753 pixels. This represents a significant improvement, considering that we have 

compared the proposed technique with the best result that can be obtained by the CNT. A better 

understanding of these results can be achieved by a qualitative analysis of the change-detection maps shown 

in Figs. 5(a) and (b). As one can see, the proposed technique provided, in an automatic way, a more accurate 

change-detection map than the one obtained by the application of the CNT approach. In particular, the use of 

the spatial-contextual information allowed a more precise identification of the changed areas and yielded a 

less noisy result.  

At this point, the change-detection map provided by the proposed approach was compared with the maps 

derived by applying a running median filter to the minimum-error image yielded by the CNT approach. To 

this end, 3×3, 5×5, and 7×7 window sizes were used. In the best case (i.e. 3×3 window size), the overall error 

was reduced from 3553 pixels (provided by the pixel-by-pixel CNT approach) to 2973 pixels, whereas the 

error provided by the proposed automatic technique was smaller (i.e. 2763 pixels). This is a direct result of 
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the weak capabilities of filtering techniques to preserve borders of changed areas [46].  

Finally, the robustness of the proposed technique to the initial values of the parameters involved in our 

approach was assessed. To this end, the change-detection map was obtained for different values of the 

parameters N, h, α and β. The resulting diagrams of the overall error versus the values of the different 

parameters are shown in Fig. 6. It is easy to see that the proposed technique presents rather a stable behavior. 

For instance, the overall errors obtained for different values of the parameter α (from 0.4 to 0.6) ranged from 

1.00% (for α = 0.6) to 1.05% (for α = 0.55), 1.35% being the overall error provided by the CNT approach. 

The stablest behavior was observed for the parameter β, whereas the number N of kernels turned out to be 

the most critical parameter. However, it is worth noting that, in all the trials made, the overall error 

associated with the proposed method was always smaller than the error obtained by the CNT approach.  

 

C. Results on the Data Set Related to the Island of Elba 

For this data set, the difference image was computed by applying the Change Vector Analysis (CVA) 

method to images that had been filtered using a 3×3 mean filter. We applied the CVA technique to spectral 

bands 1, 2, 3, 5 and 7 of the two multispectral images, as preliminary experiments had demonstrated that this 

set of channels contains useful information for the detection of the damaged area.  

In the first experiment, the initial parameters were fixed at α=0.5; N=6 and h=50, as for the previous data 

set. The results obtained are shown in Fig 7. As one can see, also in this case, the obtained estimates provide 

an accurate approximation for the histogram of the difference image. To evaluate the effectiveness of the 

proposed approach, the resulting estimates were used to derive the final change-detection map by minimizing 

equation (3) (the parameter β was set to 1.5) (see Fig. 8(a)). The overall error was quantitatively compared 

again with the one obtained by the CNT approach (see Table III). The proposed technique incurred an 

overall error (i.e. 1607 pixels) smaller than the one obtained with the CNT technique (i.e. 1936 pixels). In 

particular, the proposed method allowed decrements of both missed alarms (reduced from 1342 to 1326 

pixels) and false alarms (reduced from 594 to 281 pixels). Also for this data set, the qualitative analyses of 

the two change-detection maps provided by the proposed technique (see Fig. 8(a)) and the CNT technique 

(see Fig. 8(b)) demonstrate the effectiveness of our method. In particular, the comparisons of the two maps 

with the reference image (see Fig. 3(c)) confirm the capability of the proposed method to provide, in an 
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automatic way, a change-detection map more reliable than the one resulting from the application of the CNT 

approach. 

Also in this case, the change-detection map provided by the proposed approach was compared with the 

maps obtained by applying a running median filter (3×3, 5×5, and 7×7 window sizes were considered) to the 

minimum-error image yielded by the manual CNT approach. The results confirm the effectiveness of the 

proposed contextual approach. In particular, in the best case (i.e. 3×3 window size), the overall error was 

equal to 1707 pixels, whereas the proposed technique resulted in an overall error equal to 1607 pixels. As in 

the previous data set, the accuracy provided by the filtering approach decreases as the window size increases.    

At this point, the robustness of the proposed technique to the initialization phase was evaluated. The 

results obtained are shown in Fig. 9. As one can see, the proposed technique exhibits a stable behavior versus 

the values of the initial parameters. For example, the overall errors associated with different values of α (i.e., 

from 0.4 to 0.6) ranged from 1.17% (for α = 0.6) to 1.28% (for α = 0.4), 1.43% being the overall error 

provided by the CNT. In greater detail, as for the previous data set, the stablest behavior was observed for 

the parameter β, whereas the least stable one was observed for the number N of kernels. However, in all the 

trials made, the proposed technique yielded better results than the CNT approach. This confirms the 

reliability and the effectiveness of the presented method. 

 

VI. CONCLUSIONS 

A novel automatic approach to unsupervised change detection in multitemporal remote-sensing images 

has been proposed. The presented approach is based on three theoretically well-founded methods for data 

and image analysis: the non-parametric RPE procedure [35], the EM algorithm [36]-[38] and MRFs [40]-

[43]. The RPE technique is used to obtain rough non-parametric initial estimates of the density functions of 

the classes of changed and unchanged pixels in the difference image. Such estimates are iteratively improved 

by applying the EM algorithm in order to obtain a more accurate semi-parametric description of the statistics 

of the difference image. The resulting estimates are then used within the framework of an MRF approach to 

generate the change-detection map by taking into account also the spatial-contextual information contained 

in the difference image.  
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The proposed approach presents some important advantages over the classical unsupervised change-

detection techniques that are typically used in remote-sensing applications: i) it provides a well-founded 

methodological framework for the automatic analysis of the difference image, thus avoiding heuristic 

approaches generally used in operational remote sensing; ii) it does not require any a-priori assumption for 

the statistical model of the distribution of changed and unchanged pixels in the difference image; iii) it 

allows the spatial-contextual information to be exploited efficiently in the change-detection process. 

Experimental results reported in this paper point out the effectiveness of the proposed approach. In 

particular, in all the experiments carried out, the presented technique provided, in an automatic way, more 

accurate and less noisy change-detection maps than those obtained with the CNT technique. In addition, 

experiments highlighted the stability of the presented approach versus the values of the initial parameters. 

However, even though in all our experiments we always obtained a good stability, we think that the most 

critical step in the initialization phase of the algorithm lies in deriving the two initial sets of pixels, Sn and Sc.  

Therefore, if possible, we suggest using any kind of prior knowledge available concerning the specific 

problem faced (e.g. expected maximum and minimum extents of changed areas, shapes or spatial 

distributions of changes) in order to derive these subsets in the most accurate possible way. This may result 

in a more precise change-detection map. 

An important characteristic of the proposed approach is that it does not assume any a priori model for the 

density functions of changed and unchanged pixels in the difference image. Consequently, it can be applied 

to different types of images (e.g. SAR images [47], optical images, etc.). 

In terms of computation time, the proposed method is quite fast. In fact, the phase of the estimation of the 

statistical terms of changed and unchanged pixels, which is the most time-consuming phase of the algorithm, 

requires a low computational load, thanks to the fact that the estimation process is carried out in a one-

dimensional space. 

It is worth noting that the change-detection map resulting from the application of the MRF approach 

might be used to derive more accurate estimates of the density functions of the classes. In this context, these 

estimates might be used again in (3) to derive a new change-detection map. Such a process might be iterated 

in order to increase the accuracy of the final change-detection result. However, the slight improvement in the 

final result obtainable by this approach may not justify the considerable increase in the computation time 

required. 



 
21 

Two limits of the proposed approach may be associated with a possible very low frequency of changed 

pixels or with a low contrast in the difference image. However, in operational remote-sensing applications, 

these problems can be addressed in advance by selecting a suitable space-borne sensor. On the one hand, a 

sufficient spatial resolution may allow the changed area to be identified with the required spatial scale, thus 

minimizing the problem of a “too small” prior probability for the changed pixels. On the other hand, suitable 

spectral bands or a suitable set of features derived from the original images (e.g., texture features) may allow 

the land-cover changes of interest (e.g., forest to burned area, grassland to flooded area) to be clearly pointed 

out in the difference image, thus reducing the potential problem of low contrast.  

As a final remark, it is important to note that, although the proposed method has been presented in the 

specific context of the analysis of multitemporal remote-sensing images, it exhibits general characteristics, 

hence it could be used in any change-detection application requiring a technique based on the difference 

image. 
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FIGURE CAPTIONS 

 

Fig. 1. Schematic representation of the proposed adaptive semi-parametric estimation technique. 

 

Fig. 2.  Images of the Peloponnesian Peninsula, Greece, utilized in the experiments: (a) NIR band of the IRS-

PE WiFS image acquired in April 1998; (b) NIR band of the IRS-PE WiFS image acquired in 

September 1998; (c) ground-truth map of the changed area used as a reference map in the 

experiments. 

 

Fig. 3.  Images of the Island of Elba, Italy, utilized in the experiments: (a) band 4 of the Landsat TM image 

acquired in August 1994;  (b) band 4 of the Landsat TM image acquired in September 1994; (c) 

ground-truth map of the changed area used as a reference map in the experiments. 

  

Fig. 4. Histogram of the difference image corresponding to the data set related to the Peloponnesian 

peninsula. For the sake of comparison, the estimates obtained by the proposed technique for the 

densities of the two classes, ωn and ωc, are superimposed. The histogram has been normalized in 

order to permit a direct comparison with the estimated distributions of the classes. 

 

Fig. 5. Change-detection maps obtained for the images related to the Peloponnesian Peninsula: (a) proposed 

technique; (b) CNT technique. 

 

Fig. 6. Behaviors of the change-detection error (%) versus the values of the initial set of parameters used for 

the images related to the Peloponnesian Peninsula: (a) α; (b) N; (c) h; (d) β. 

 

Fig. 7. Histogram of the difference image corresponding to the data set related to the Island of Elba. For the 

sake of comparison, the estimates obtained by the proposed technique for the densities of the two 



 
26 

classes, ωn and ωc, are superimposed. The histogram has been normalized in order to permit a direct 

comparison with the estimated distributions of the classes. 

 

Fig. 8. Change-detection maps obtained for the images related to the Island of Elba: (a) proposed technique; 

(b) CNT technique. 

 

Fig. 9. Behaviors of the change-detection error (%) versus the values of the initial set of parameters used for 

the images related to the Island of Elba: (a) α; (b) N; (c) h; (d) β. 

 

 

TABLE CAPTIONS 

 

TABLE I. Legend of notations used in this paper. 

 

TABLE II. Overall error, false and missed alarms resulting from the application of the proposed 

technique to the data set related to the Peloponnesian peninsula. For the sake of comparison, 

the table also gives the overall error, false and missed alarms involved by the CNT 

technique. 

 

TABLE III. Overall error, false and missed alarms resulting from the application of the proposed 

technique to the data set related to the Island of Elba. For the sake of comparison, the table 

also gives the overall error, false and missed alarms involved by the CNT technique. 
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Fig. 9 



 
36 

 
TABLE I 

 
 

Symbol Description 

Xi Image acquired at the time ti 

AOI
iX  Area of interest, extracted from image Xi 

I, J Dimensions of the selected area of interest 

( )jiX AOI
i ,  Feature vector of coordinates (i,j) belonging to AOI

iX  

DX  Difference image 

X Random variable that represents the pixel values in DX  

),( jiX  Value of pixel of coordinates (i,j) belonging to DX  

ωc, ωn Classes associated with changed and unchanged pixels, respectively 

C Set of all possible sets of labels in XD 

Cl Generic set of labels in XD 

N(i,j) Neighbor system of the pixel with the coordinates (i,j) 

hD(X)  Histogram of XD 

MD Middle value of the histogram hD(X)  

Sn, Sc, Su Sets of pixels used for initializing the proposed technique 

α Initialization parameter  

Tn , Tc Initial threshold values used for defining Sn, Sc, and Su 

( )⋅U  Energy functions 

k(⋅), h Kernel function and corresponding smoothing parameter 

jijiji Yh ,,, ,, Π  Parameters that describe the class-conditional energy function  ( )⋅dataU   

Nj, Rj Cardinality of Sj and number of selected representatives, respectively  

β Parameter that tunes the influence of spatial-contextual information 

δk  Kronecker delta function  

To Minimum-error threshold  
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TABLE II 
 

 

Approach False alarms  Missed alarms  Overall error 

Proposed 1010 1753 2763 

CNT 1129 2424 3553 

 
 
 
 
 
 
 
 

TABLE III 
 
 

Approach False alarms  Missed alarms  Overall error 

Proposed 281 1326 1607 

CNT 594 1342 1936 

 
 

 
 


