2,745 research outputs found

    Hierarchical structure-and-motion recovery from uncalibrated images

    Full text link
    This paper addresses the structure-and-motion problem, that requires to find camera motion and 3D struc- ture from point matches. A new pipeline, dubbed Samantha, is presented, that departs from the prevailing sequential paradigm and embraces instead a hierarchical approach. This method has several advantages, like a provably lower computational complexity, which is necessary to achieve true scalability, and better error containment, leading to more stability and less drift. Moreover, a practical autocalibration procedure allows to process images without ancillary information. Experiments with real data assess the accuracy and the computational efficiency of the method.Comment: Accepted for publication in CVI

    A mask-based approach for the geometric calibration of thermal-infrared cameras

    Get PDF
    Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site

    Is Dual Linear Self-Calibration Artificially Ambiguous?

    Get PDF
    International audienceThis purely theoretical work investigates the problem of artificial singularities in camera self-calibration. Self-calibration allows one to upgrade a projective reconstruction to metric and has a concise and well-understood formulation based on the Dual Absolute Quadric (DAQ), a rank-3 quadric envelope satisfying (nonlinear) 'spectral constraints': it must be positive of rank 3. The practical scenario we consider is the one of square pixels, known principal point and varying unknown focal length, for which generic Critical Motion Sequences (CMS) have been thoroughly derived. The standard linear self-calibration algorithm uses the DAQ paradigm but ignores the spectral constraints. It thus has artificial CMSs, which have barely been studied so far. We propose an algebraic model of singularities based on the confocal quadric theory. It allows to easily derive all types of CMSs. We first review the already known generic CMSs, for which any self-calibration algorithm fails. We then describe all CMSs for the standard linear self-calibration algorithm; among those are artificial CMSs caused by the above spectral constraints being neglected. We then show how to detect CMSs. If this is the case it is actually possible to uniquely identify the correct self-calibration solution, based on a notion of signature of quadrics. The main conclusion of this paper is that a posteriori enforcing the spectral constraints in linear self-calibration is discriminant enough to resolve all artificial CMSs

    Uncalibrated and Self-calibrated Cameras

    Get PDF

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    Fast, Accurate Thin-Structure Obstacle Detection for Autonomous Mobile Robots

    Full text link
    Safety is paramount for mobile robotic platforms such as self-driving cars and unmanned aerial vehicles. This work is devoted to a task that is indispensable for safety yet was largely overlooked in the past -- detecting obstacles that are of very thin structures, such as wires, cables and tree branches. This is a challenging problem, as thin objects can be problematic for active sensors such as lidar and sonar and even for stereo cameras. In this work, we propose to use video sequences for thin obstacle detection. We represent obstacles with edges in the video frames, and reconstruct them in 3D using efficient edge-based visual odometry techniques. We provide both a monocular camera solution and a stereo camera solution. The former incorporates Inertial Measurement Unit (IMU) data to solve scale ambiguity, while the latter enjoys a novel, purely vision-based solution. Experiments demonstrated that the proposed methods are fast and able to detect thin obstacles robustly and accurately under various conditions.Comment: Appeared at IEEE CVPR 2017 Workshop on Embedded Visio
    • …
    corecore