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Abstract—Accurate and efficient thermal-infrared camera 

calibration is important for advancing computer vision research 

within the thermal modality. This paper presents an approach for 

geometrically calibrating individual and multiple cameras in both 

the thermal and visible modalities.  The proposed technique can 

be used to correct for lens distortion, and to simultaneously 

reference both visible and thermal-infrared cameras to a single 

coordinate frame. The most popular existing approach for the 

geometric calibration of thermal cameras uses a printed 

chessboard heated by a flood lamp, and is comparatively 

inaccurate and difficult to execute. Additionally, software toolkits 

provided for calibration are either unsuitable for this task or 

require substantial manual intervention. A new geometric mask 

with high thermal contrast and not requiring a flood lamp is 

presented as an alternative calibration pattern. Calibration points 

on the pattern are then accurately located using a clustering-

based algorithm which utilizes the MSER (Maximally Stable 

Extremal Region) detector. This algorithm is integrated into an 

automatic, end-to-end system for calibrating single or multiple 

cameras. The evaluation shows that using the proposed mask 

achieves an MRE (Mean Reprojection Error) up to 78% lower 

than using a heated chessboard. The effectiveness of the approach 

is further demonstrated by using it to calibrate two multiple-

camera, multiple-modality setups. Source code and binaries for 

the developed software are provided on the project website. 

 
Index Terms—Cameras, calibration, geometry, infrared image 

sensors, infrared imaging. 

 

I. INTRODUCTION 

ACCURATE geometric camera calibration must be performed 

for both single and multi-device imaging systems as a 

precursor to many existing computer vision algorithms. 

Geometric camera calibration is concerned with determining 

the camera parameters which map a 3-dimensional scene onto 

a 2-dimensional image, and is a separate problem to spectral or 

intensity calibration. Although spectral calibration is a useful 

process for many applications, it is in many cases not needed 

for the effective implementation of computer vision 

algorithms, and is not included in the scope of this paper. 

Algorithms that greatly benefit from accurate geometric 

calibration include those for feature matching, localization and 

3D reconstruction. Such algorithms form critical components 

in systems applied in domains such as surveillance, medical 

assessment and industrial inspection. The different 

characteristics of thermal-infrared cameras make them superior 

or complementary to conventional visible-spectrum cameras 

for many applications. For example, thermal-infrared cameras 

are more robust to poor lighting or lighting changes, and also 

to dust and fog [1]. However, these differences also affect the 

process of calibration and therefore the accuracy of results.  

Multiple-camera setups involving combinations of thermal 

and other cameras are an exciting platform for computer vision 

research and applications. These setups allow investigations 

into fusion techniques to enhance algorithm performance. The 

effectiveness of these systems has been demonstrated for many 

tasks such as hazard awareness [2], thermal analysis [3] and 

driver activity analysis [4]. To advance research in this area, it 

is important that an accurate and efficient geometric 

calibration procedure exists that is able to accommodate both 

modalities simultaneously. Such calibration can be used to 

spatially undistort and rectify imagery, as well as determine the 

relative poses of the cameras.  

The purpose of the proposed approach is to provide a 

convenient but accurate method of geometric camera 

calibration for both single and multi-camera systems involving 

thermal-infrared cameras. Existing approaches for this task 

have many limitations in terms of their accuracy, convenience 

and flexibility. The proposed system is an adaptation of 

Zhang’s method [5] and is available at [6]. The key 

modifications are the use of a new, easily prepared calibration 

pattern, the use of a new automatic pattern-finding algorithm, 

and the implementation of automatic frame selection. The 

proposed approach is structured as follows:  

1. A calibration pattern is manufactured and prepared. 

2. An input video or image sequence of the proposed 

calibration pattern at different angles is provided by the 

user for each camera (or all cameras together).  

3. Calibration points in each frame are located automatically 

using the proposed pattern-finding algorithm. 

4. A near-optimal subset of valid frames is selected using an 

implementation of the Enhanced-MCM (Monte Carlo 

Method) approach [7]. 

5. An optimization algorithm is used to fit a distortion 

model (for intrinsic calibration) or a 6-parameter pose 

model (for extrinsic calibration) to the data.  
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The proposed method makes calibration of thermal cameras 

and multi-modality camera setups easier and more accurate 

than the current most popular approach. It can be used in a 

number of scenarios where competing methods are unfeasible, 

such as when additional, powered equipment is unavailable, or 

when camera systems involve just one or two cameras.  

This paper is structured as follows. In Section II, a 

background into the process of camera calibration and existing 

methods is provided. Section III presents the new proposed 

calibration pattern. In Section IV, the proposed pattern finding 

algorithm is outlined. Section V presents the proposed 

calibration system implementation. In Section VI, the multiple-

camera multiple-modality camera setups used for the 

evaluation are presented. Section VII contains an evaluation of 

the contributions outlined in this paper. The paper is 

concluded in Section VIII. 

 

II. BACKGROUND 

A. Spectral calibration 

Although this paper deals with the problem of geometric or 

spatial calibration, the related problem of spectral or intensity 

calibration (also referred to as radiometric or photometric 

calibration) deserves some attention. Spectral calibration refers 

to the process of forming a quantitatively accurate mapping 

between the pixel intensity values of an image and the actual 

power incident on the imaging sensor. This can be relevant for 

visible spectrum cameras, but is particularly useful for 

thermal-infrared cameras as it enables accurate estimates of 

surface temperatures to be made from the image data [2]. 

Accurate spectral calibration results can benefit areas as 

diverse as remote sensing, robotics, astronomy and energy-

efficient design. 

Methods for performing spectral calibration of thermal-

infrared cameras are outlined in [8] and [9]. Both methods 

utilize a blackbody surface for which temperature is known in 

order to determine the relationship between intensity level and 

thermal-infrared radiance. It should be noted that actual 

thermal-infrared radiance is not only dependent on surface 

temperature, but also on surface emissitivity and reflectance. 

As a result, temperature estimates become less accurate as the 

properties of the material in the image differ more greatly from 

those which are assumed. 

 

B. Camera models 

 For most computer vision applications the pin-hole camera 

model (Equation 1) is assumed. In this model, the image-plane 

coordinates x of a physical point X can be found by 

multiplying by the matrix C representing the camera’s internal 

parameters and the matrix P representing the camera’s 

translation and rotation relative to the world coordinate frame 

[10]. 
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Here x represents the homogeneous coordinates of a point in 

the image. fx and fy are the focal lengths (in pixels) and cx and 

cy are the center coordinates of the camera. rmn and tm are the 

coefficients of rotation and translation of the camera and X 

represents the real-world coordinates of the corresponding 

point. The skew parameter s is typically negligible in modern 

imaging devices and is therefore often set to equal zero. 

The pin-hole model assumes zero distortion in the image, 

which is rarely the case. Therefore, distortion models are often 

used to correct for the effects of lens distortion on the image. 

Distortion models provide a mapping between each pixel in 

the original image, and its corresponding location in the ideal, 

undistorted image. In the past, the conventional model outlined 

in [11] has been overwhelmingly used, however, the more 

recent “Rational Function” (RF) model shown in Equation 2 

has been shown to have superior accuracy for modeling severe 

distortion, such as for cameras with wide-angle lenses [12]. 

The RF model does not specialize to any particular lens 

geometry, and its simplicity means that it is easy to estimate 

using standard calibration procedures. In the RF model, six 

radial coefficients (kn) and two tangential coefficients (pn) are 

used to describe the distortion.  

 

 

  ''2'2
1

1
'"

'2''2
1

1
'"

2

22

16

6

4

5

2

4

6

3

4

2

2

1

22

216

6

4

5

2

4

6

3

4

2

2

1

vupvrp
rkrkrk

rkrkrk
vv

urpvup
rkrkrk

rkrkrk
uu













 (2) 

  

Here (u",v") represents the normalized and distorted 

coordinate corresponding to a normalized and undistorted 

coordinate (u',v'), and r is the Euclidean distance between the 

normalized, undistorted coordinate and the image center. 

Equation 3 defines the relationship between the normalized 

coordinates and image coordinates (u, v). 
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The accuracy of a lens distortion model is highly dependent 

on the provided calibration footage. The footage must contain 

a sufficient variety of scales and positions of the calibration 

pattern within the camera’s field of view. Additionally, the 

calibration points within the pattern must have high acutance 

in order to be located accurately [13]. 

 

C. Previous work 

A proven approach for the accurate calibration of the 

intrinsic and extrinsic geometric parameters of cameras 



 

  
Fig. 1.  Left: The appearance of the heated chessboard in the thermal infrared 

modality. Right: Magnification of the highlighted sub-region.  

  

Fig. 2.  Left: Appearance of the proposed mask in the thermal-infrared 

modality. Right: Magnification of the highlighted subregion. 

involves the use of a planar calibration pattern or 3-

dimensional calibration object. The known geometry of the 

pattern or object is exploited in order to determine how the 

camera views the world [14]. A sequence of images of the 

calibration pattern or object from different angles is typically 

required by most calibration algorithms [5]. The accuracy (in 

pixels) of the calibration model is measured by MRE (Mean 

Reprojection Error) [15]. Initially, estimates of the 2D image 

coordinates of calibration points are extracted from an image. 

The 3D pose of the pattern is then estimated from these 2D co-

ordinates. The estimated 3D locations of calibration points are 

then "projected" back onto the image, with the average 

Euclidean distance between the original 2D estimates and the 

projections forming the MRE.
 

The most popular calibration pattern is a regular, printed 

chessboard. This pattern has been demonstrated to be highly 

effective and convenient for the task of calibrating visible-

spectrum cameras [5]. The calibration points (corners where 

the squares join) are easily located in the image with high 

precision due to the high image contrast. However, without 

additional preparation, the calibration points on a chessboard 

cannot be reliably located in a thermal-infrared image. This is 

because the pattern will typically have a near-uniform 

temperature and thermal radiance, and will therefore appear 

with low contrast in the image. A popular method for enabling 

the use of a calibration chessboard for thermal camera 

calibration involves heating the pattern through exposure to a 

flood lamp [4] [16]. This results in the appearance of the 

pattern in the thermal modality resembling its appearance in 

the visible modality. However, this approach struggles to get 

the crisp corners required for accurate calibration. As an 

example, Figure 1 shows perhaps the best quality calibration 

image that could be produced using the heated chessboard 

method. An alternative approach which appears to achieve 

better results involves printing the chessboard pattern onto a 

specially-manufactured PCB [17]. Another approach involves 

using a suspended wire grid, heated with a heat gun [3]. The 

cost and required equipment and preparation associated with 

these more sophisticated approaches was a motivating factor 

for the development of the proposed approach.  

Another interesting approach to the calibration of thermal-

infrared cameras is the adaptation by [18] of the method first 

presented in [19]. In the original method, a freely moving 

bright spot is used as the calibration object [19]. This bright 

spot can be generated by a laser pointer, flash light or other 

alternative. The adapted method uses a pole with an open-bulb 

flashlight attached to the end, which is clearly detectable to 

both the thermal-infrared and visible-spectrum cameras [18]. A 

significant limitation of this method is that it cannot be used 

for systems involving fewer than three cameras.  

Many toolkits exist which can be used to perform 

calibration when provided with a sequence of calibration 

images by the user. The Caltech MATLAB Calibration 

Toolbox [20] is a popular toolkit for end-to-end calibration. 

However, this toolkit has several weaknesses which make it 

ineffective for the problem of efficiently calibrating thermal-

infrared cameras. For example, the toolkit requires significant 

manual intervention, such as user guidance in searching for the 

pattern. Also, it includes the conventional distortion model 

[11] only, and does not take advantage of a high-order 

distortion model such as the RF model [12], which means it 

cannot model severe distortion accurately. Another weakness 

of this and many other toolkits (such as the example 

calibration code provided by OpenCV [21]) is that frames 

must be chosen specifically by the user based on what they 

think would lead to the best possible calibration results. This 

dependence on user expertise was another motivating factor 

for this research. 

 

III. GEOMETRIC MASK FOR CALIBRATION 

The proposed calibration pattern consists of a grid of 

regularly sized squares cut out of a thin material such as 

cardboard. It is important that the material is opaque in the 

modality of interest. The mask can be manufactured by hand 

using a ruler and box-cutter, or alternatively using a laser-

cutter. When used, the pattern is held in front of a backdrop 

with a different level of thermal radiance. This difference in 

radiance could be due to difference in temperature, or 

difference in thermal emissitivity. Example backdrops include 

a warm laptop case, or a powered computer monitor. When 

used in this way, the pattern is easily identifiable in the 

thermal-infrared domain, as shown in Figure 2. If the mask is 

differently colored to the backdrop, it will also be easily 

identifiable to visible cameras. Compared with Figure 1, it can 

be clearly seen that the corners (which serve as the calibration 

points) are much clearer than those when using a heated 

chessboard. Evidence that this improves calibration 

performance is presented in Section VII. 

For the experiments outlined in this paper, the mask pattern 

was cut out of an A4 sheet of cardboard. Squares were 20mm 

wide and spaced with 20mm separation. A grid of four squares 

along the shorter axis of the cardboard and six squares along 

the longer axis was used. These dimensions were selected to 



 

ensure that the distribution of corners over the pattern would 

be similar to that used in conventional chessboard-based 

methods. The size of the pattern is not critical, but should be 

chosen according to the camera field of view and the distance 

to the camera, so that the pattern covers a significant portion of 

the field of view. For higher resolution cameras (those used in 

this research were all 640x480), the square cuts may be made 

smaller – but it is not clear whether this would actually 

improve calibration performance. A template of the pattern can 

be found at [6]. 

To use the pattern for camera calibration, a video or image 

sequence must be captured which contains multiple views of 

the pattern from different angles. This can be achieved by 

moving the pattern relative to the camera or cameras, or vice 

versa. Best results are achieved with a trajectory that includes 

a variety of rotations and translations of the pattern, covering 

most of the camera’s field of view. With the current 

implementation, the entire pattern must be clearly visible to the 

camera. In the authors’ experience, best results are achieved by 

holding the pattern as close as possible to the camera while 

maintaining focus of the entire pattern. For cameras with a 

shallow depth of field (such as many thermal-infrared 

cameras), this may be difficult. A compromise may need to be 

made between having a large enough focal distance to keep the 

entire pattern in focus simultaneously, and holding the pattern 

close enough to get high resolution corner features. Estimates 

of the pattern distances from each camera, and the sizes of the 

calibration workspaces that were used in each experiment are 

outlined in Section VII.  

 

IV. PATTERN SEARCH ALGORITHM 

In order to locate the pattern in each image, a new algorithm 

is proposed which is available at [6]. The present version of 

the algorithm has not been optimized for speed and the entire 

pattern must be present in the image for a successful search to 

occur. The algorithm consists of the following process:  

1. The image histogram is linearly expanded to span from 

values of 0 to 255, to increase contrast.  

2. MSERs (Maximally Stable Extremal Regions) [22] are 

extracted from the image.  

3. Unfeasible MSERs are filtered out of the putative set.  

4. A clustering scheme is used to find all and only the 

MSERs that comprise the actual pattern. 

5. A local-homography guided search is used to estimate 

and then locate the subpixel accurate positions of the 

corners of each square. 

 

A. Histogram expansion 

Histogram expansion is often performed on-board for many 

thermal-infrared and visible-spectrum cameras. However, in 

some cases this process must be performed after the images are 

captured. Histogram expansion is needed in order to improve 

the contrast of the pattern, so that conventional computer 

vision algorithms used as part of the process of automatically 

locating the calibration pattern can be effective. Equation 4 

was used to improve the image contrast for a standard 8-bit 

grayscale image: 
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Here I(x,y) represents the original intensity value at co-

ordinate (x,y) in the image, and I'(x,y) represents the intensity 

at the same co-ordinate in the histogram-expanded image. 

max(I) and min(I) are the maximum and minimum intensities 

present in the original image.  

 

B. MSER extraction 

Initially, the OpenCV [21] MSER [22] detector 

implementation is used to locate candidate features in the 

image that may represent squares on the calibration pattern. 

Parameters for the detector can be very permissive as later 

steps work to remove incorrect features. The specific 

parameters used in the proposed implementation can be found 

in [6], with explanations for each parameter found in [21]. 

 

C. MSER filtering 

A filter cascade is then applied to the candidate features, to 

reduce the list to a smaller subset. The filters applied reject 

MSERs based on the following properties (listed in order of 

filter occurrence):  

 Abnormally shaped. 

 Too variant in their internal gray-levels. 

 Enclosing other MSERs. 

The shape filter measures the height and width of each 

feature, and rejects those which have a ratio that is too large. 

In the proposed implementation if the height and width differ 

by a factor of more than two then the feature is rejected. This 

is because such a ratio would represent either a non-square 

feature or a square feature at too great an angle to the camera 

for accurate corner extraction. 

The gray-level variance filter calculates the variance of the 

pixel intensities in each feature. If a feature has a variance of 

greater than 256 then it is rejected. This is because a variance 

this high suggests that the feature is not of uniform enough 

intensity to represent a single square in the calibration pattern. 

The enclosure filter simply rejects any feature that fully 

encloses another feature. 

Thresholds for these filters were manually set at very 

conservative levels, in the sense that they are highly unlikely to 

reject valid MSERs but may allow some invalid MSERs to be 

retained. Any invalid MSERs will generally be rejected later in 

the pattern-finding algorithm. The system does not need to be 

tuned by the user in order for it to be effective.  

 

D. MSER clustering 



 

 

Fig. 3.  All putative MSERs extracted by the OpenCV MSER detector 

implementation. The blue regions represent those that passed the filtering, 

clustering and graph-trimming stages. 

  

Fig. 4. Left: All initial square centroids (marked in red). Right: 

Magnification of highlighted subregion. The estimated positions of four 

internal corners are marked in blue. The red lines connect the four centroids 

used to guide the search for this subset of internal corner positions.  

A clustering algorithm is then implemented which connects 

all features which are similar in size and average intensity to 

their neighbors. A maximum size variation of 20% and 

intensity variation of 16 are allowed. These thresholds were 

found to be flexible enough for cameras with large amounts of 

lens distortion, whilst still rejecting most invalid features. At 

this point, only a cluster which is equal to or larger than the 

number of squares in the actual pattern is retained. If the 

remaining cluster has more squares than are known to be in the 

pattern, graph trimming is performed in order to remove any 

wrongly attached MSERs. This is a one-by-one removal of the 

MSERs which have the greatest variation in distances to their 

nearest three neighbors. The reasoning for this decision is that 

the MSERs within the pattern will have a small and relatively 

consistent distance to at least their three nearest neighbors, 

whereas incorrect MSERs located outside the actual pattern 

are unlikely to. The effectiveness of the filtering, clustering 

and graph-trimming stages of the algorithm is demonstrated in 

Figure 3. 

At this point, the pattern is assumed to be valid to enable an 

ordering of the MSERs from top left to bottom right. The 

validity of this assumption is then tested by ensuring that:  

 Features in the image are surrounded by features that 

physically surround them in the actual pattern. This 

works on the assumption that if the MSER ordering was 

unable to abide by the basic physical arrangement of the 

actual pattern, then the extracted pattern is invalid. 

 All sets of three adjacent features which represent 

physically co-linear regions are approximately co-linear 

in the image. The threshold chosen limited the variation 

of the position of the central feature from the line 

connecting the two outer features to one third of the 

length of the connecting line. 

 Distances between neighboring MSER centroids vary 

smoothly. For a single feature, the distance to its nearest 

neighbor must be at least half of the distance to its 

furthest neighbor. 

 

E. Homography-guided search 

In order to accurately locate the calibration points under 

potentially severe lens distortion, a local homography-based 

approach is used. Homography mapping can be seen as a 

linear planar transformation. A homography matrix H is used 

to relate a physical plane to the image coordinates, as shown in 

Equation 5. 
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Here [u v w] represents the co-ordinates of a point in the 

image plane and [x y z] represents the co-ordinates of the point 

in the physical plane (in this case the physical calibration grid). 

The image plane co-ordinate vector may need to be 

normalized by dividing by w in order to interpret the co-

ordinates in a meaningful way. 

The proposed algorithm initially uses a homography 

mapping from groups of four non-collinear square centroids to 

estimate the positions of all of the internal calibration points. 

The OpenCV function “findHomography()” [21] is used to 

calculate this homography. This algorithm uses a least-squares 

scheme to compute an initial homography estimate. The 

Levenberg-Marquardt method [23] is then used to optimize the 

homography by further reducing the reprojection error. Figure 

4 shows an example of the four centroids selected to estimate 

the positions of four internal calibration points. This works 

under the assumption that in the distorted image, small sub-

regions of the pattern are approximately planar.  

Each time an estimate of a calibration point is made, the 

OpenCV function “cornerSubPix()” [21] is used to refine the 

position of the calibration point. This function iterates to find 

the radial saddle point which represents the sub-pixel accurate 

location of the corner. The search window for this function is 

constrained to have a radius equal to half of the estimated 

distance to the nearest calibration point. This is to prevent the 

subpixel location being incorrectly assigned to another nearby 

corner in the pattern. 

Once all internal calibration points have been accurately 

located, a centrally-propagating tactic is employed to locate 

the remaining calibration points along the edges of the pattern. 

The propagation involves using the locations of known 

calibration points to accurately estimate and locate the position 



 

  
Fig. 5.  Left: Correction of the estimated positions of calibration points using 

“cornerSubPix()”. Right: Magnification of highlighted subregion. The red 

circle marks the corrected position, while the blue line represents the 

displacement from the original estimate. These images have been converted 

to grayscale from a color camera.  

 

Fig. 6. The structure of the proposed calibration system implementation. 

of remaining points from the inside out. Again, a homography 

mapping is used – this time involving the locations of the 

physically nearest four known and non-collinear calibration 

points. Using the internal calibration points as a starting point, 

the central propagation successively estimates and locates the 

remaining calibration points in the following order: 

1. All central edge points – those on the outer rim of the 

pattern, but at least two points in from the corner. 

2. Eight outer edge points – those on the outer rim of the 

pattern at a distance of one point from the corner. 

3. Four corner points – those at the extreme corners of the 

pattern. 

This approach to locating the calibration points was chosen 

because it utilizes the lower levels of distortion typically 

present in the center of the pattern to aid in the search for 

corners in regions with more severe distortion. Using the 

proposed approach, even the outermost corners which may be 

present in the most distorted regions of the image can be 

located accurately. Figure 5 illustrates the effectiveness of the 

approach in correcting the positions of initial local 

homography-based corner estimates. These images are taken 

prior to the final location correction of the calibration points 

on the edge of the pattern. 

 

V. SYSTEM IMPLEMENTATION 

The proposed implementation was designed for the purpose 

of thermal and visible-spectrum camera calibration for both 

the single and multiple camera cases.  

The proposed end-to-end system accepts one or more image 

or video sequences, and returns near-optimal calibration 

results without any intervention by the user. The approach 

utilizes an implementation of the Enhanced MCM approach 

for automatic frame selection [7]. All code associated with the 

system has been made public at [6] under the GPL [24]. The 

system is written in the C++ language and makes use of the 

OpenCV libraries [21]. It is intended that this can form the 

basis for further development of the tool for the benefit of the 

research community. It should also be noted that any pattern 

detection approach can be used within this framework. 

The structure of the implementation is shown in Figure 6.  

In the interests of efficiency, the user can optionally specify 

a maximum number of frames (or sets of frames for extrinsic 

calibration) from the original sequence to preserve for pattern 

searching. The calibration pattern is then searched for in all of 

these frames, and those in which the pattern and its corners are 

accurately located are preserved as a point set. This collection 

of point sets can then be further reduced if required to improve 

the speed of the Automatic Frame Selection module. 

 The Automatic Frame Selection module implements the 

Enhanced MCM approach [7]. This approach involves testing 

multiple combinations of point sets for calibration 

effectiveness. In the proposed implementation, initially just a 

single point set is used to calibrate the camera/s. The accuracy 

of the calibration results are evaluated in terms of their ability 

to generalize to the entire sequence of point sets. The point set 

which on in its own achieves the lowest MRE (Mean 

Reprojection Error) is then added to the stack. An optimum 

second point set is then searched for, and so on. 

 

VI. EXPERIMENTAL SETUPS 

For the experiments, five separate cameras of three different 

models were used: 

 2 Thermoteknix Miricle 307K Thermal-infrared cameras. 

 2 Videre ‘Apparen’ STH-MDCS2-VAR/-C Colour 

cameras. 

 1 GUIDIR IR210 Thermal-infrared camera. 

The Miricle 307K cameras consist of a long wave uncooled 

microbolometer detector sensitive in the 7 – 14 μm range. The 

cameras have a resolution of 640x480 pixels. They are tested 

to see objects in the temperature range of -20 to 150 degrees 

Celsius. The cameras have a NEDT (Noise-Equivalent 

Differential Temperature) of 85mK. 14-bit monochromatic 

images can be streamed from the cameras at 50Hz using a 

UVC (USB Video Class) connection. An estimate of the focal 

length of the camera based on the limited provided data is 598 

pixels. 

The Videre Apparen colour cameras contain a CMOS 

imager and the options of 640x480 or 1280x960 pixel 

resolutions. These cameras use a Bayer color filter array to 

encode color content – which makes calibration less accurate 

than a grayscale camera of equal resolution. Images can be 

streamed from the cameras using an IEEE1394 (FireWire) 

interface. A frame rate of 30Hz can be achieved with the lower 

resolution mode, which is preferred in this paper. There is 

insufficient data provided by the manufacturer to estimate the 

focal length for the camera. 

The IR210 camera consists of a UFPA microbolometer 



 

TABLE I 

EVALUATION OF ALTERNATIVE APPROACHES 

 

 Mask Chessboard 

Manufacturing Less than one hour work. 

Requires card, cutting. 

Printable from a standard 

printer. 

Heating Mask or the backdrop 

must be heated or cooled. 

A variety of convenient 

methods can be used. 

A powerful (500W+) 

flood lamp and an 

external power supply is 

required. Difficult to get 

even coverage. 

Footage Pattern can be used 

easily and effectively for 

several minutes. 

The pattern is only 

effective for a few 

seconds after heating. 

Searching Algorithms are not very 

common. However, one 

is provided in the 

implementation source 

code [14]. 

Generally requires pre-

processing (inversion/ 

thresholding). Many 

conventional algorithms 

will struggle to find the 

pattern automatically. 

Accuracy  see Experiment VII.B 

 

  
Fig. 7. Left: Multi-camera setup 1. The two outer cameras are color cameras, 

while the central camera is a thermal-infrared camera. Right: Multi-camera 

setup 2. Both cameras operate in thermal-infrared. 

detector, sensitive in the 8 – 14 μm range. The resolution of 

the camera is 384x288 pixels. The NEDT of this camera is 

80mK at a nominal temperature of 30 degrees Celsius. 

Unfortunately, images must be reduced to an 8-bit 

representation before being retrieved by a PC using an 

RCA/BNC interface, at a frame rate of 50Hz. There is 

insufficient data provided by the manufacturer to estimate the 

focal length for this camera. 

Two multi-camera setups were used in the experiments. The 

first consisted of a centrally-mounted thermal-infrared camera 

(Miricle 307K) surrounded by two color cameras (Videre). All 

three cameras are mounted in line in a 3-camera variable-

baseline stereo configuration. For the experiments the baseline 

is fixed at 100mm separation between each camera. An image 

of the multi-camera multi-modality setup is shown in Figure 7. 

An example application for this multi-modality setup would be 

in tasks where shape and depth were estimated using the two 

visible cameras and thermal-infrared temperature data were 

mapped on to a generated 3D model as visual texture. 

The second multi-camera setup consisted of two thermal-

infrared cameras (Miricle 307K) mounted in a variable-

baseline stereo configuration, also shown in Figure 7. It is 

anticipated that this rig will be useful for applications where 

depth mapping or 3D reconstruction in thermal-infrared is 

needed, such as in problems of night-time navigation. The 

separation of the cameras is fixed at 150mm for the 

experiments. 

In each of the multi-camera setups, data was streamed 

simultaneously from all cameras in the linux operating system. 

The two open-source programs utilized for data capture were 

yavta [25] and DDX [26]. All synchronization was managed 

by DDX – an open-source software architecture which allows 

programs to share data at run-time through a shared memory 

mechanism [26]. By using DDX, within a few seconds of all 

cameras streaming the images are synchronized within a 

consistency of approximately 6 microseconds.  

All computation was done on a MacBook Pro with a 

2.40GHz processor and 2GB of RAM. 

 

VII. EXPERIMENTS 

The proposed calibration framework is evaluated and 

compared to existing approaches for calibrating thermal 

cameras and multi-modal camera setups. Four experiments 

(VII.A – VII.D) are conducted. 

Section VII.A includes a qualitative evaluation of the 

proposed mask versus the heated chessboard, in terms of their 

convenience for thermal camera calibration. Section VII.B 

quantitatively compares the accuracy of calibration using the 

two patterns. Section VII.C evaluates the performance of the 

proposed pattern finding algorithm. Section VII.D 

demonstrates the effectiveness of the implementation and the 

mask-based approach in fully calibrating a multiple-camera, 

multiple modality setup.  

For Sections VII.B and VII.D, the extended MRE is used as 

the metric for comparison. In general, MRE is calculated using 

only the frames included in the calibration process. We chose 

to calculate MRE using an entire input sequence, 

predominately containing frames that are not actually selected 

for calibration. This helps to ensure that the metric indicates 

the generality of the model. Equation 6 shows the equation for 

extended MRE. The units of MRE are pixels. 
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Here M is the total number of frames in the extended 

sequence and N is the total number of calibration points per 

frame. p(m,n) is the pixel location of a point on the pattern and 

q(m,n) is the reprojected location of that point using an 

estimate of the  pose of the pattern in that particular frame. 

Experiments were conducted in a normal office environment, 

with an ambient temperature of approximately 24 degrees 

Celsius. The calibration objects were placed at the minimum 

focal distance for which the pattern was fully visible, which for 

all cameras was approximately 40cm from the lens. A 

workspace of approximately one cubic meter was required for 

all experiments. 

 

A. Evaluation of alternative approaches 

For this section, the proposed mask-based approach and the 

traditional heated chessboard are assessed in terms of their key 

limitations, as shown in Table I. 

 



 

  

  

Fig. 8.  Top row: The proposed mask. Bottom row: Conventional heated 

chessboard. Left column: Initial image immediately after heating. Right 

column: Image taken 30 seconds after heating. 

TABLE II 

PATTERN EFFECTIVENESS (MRE AND S.D.) 

 

Configuration MRE 

GUIDE IR210 (mask) 0.324±0.011 px 

GUIDE IR210 (board) 0.804±0.015 px 

Miricle 307K (mask) 0.284±0.006 px 

Miricle 307K (board) 1.274±0.020 px 

 

   

Fig. 9. Left: Error distribution for mask. Right: Error distribution for 

chessboard. The scale ranges from MRE of 0.0 (black) to 2.0 or higher 

(white). Red shades represent regions which contained no calibration points 

and therefore the error is unknown.  

TABLE III 

PATTERN EFFECTIVENESS (FOCAL LENGTHS AND S.D.) 

 

Configuration fx fy 

GUIDE IR210 (mask) 638.85±1.35 px 655.24±1.33 px 

GUIDE IR210 (board) 644.22±3.00 px 660.01±2.89 px 

Miricle 307K (mask) 604.66±1.73 px 606.27±1.65 px 

Miricle 307K(board) 615.55±14.71 px 615.73±14.84 px 

 

Effort was made to achieve the best possible performance 

from the conventional chessboard approach, with much 

difficulty. A chessboard was printed on an A4 sheet of paper 

and clipped flat to a rigid folder. A 500W heat lamp was then 

used for approximately five seconds to heat the pattern as 

evenly as possible. Footage was then captured immediately for 

approximately 10 seconds, at which point the image contrast 

had degenerated significantly. An identical software 

framework was used both for the proposed method and the 

conventional method, with the exception of the pattern-finding 

algorithm. For the chessboard, the OpenCV function 

“findChessboardCorners()” [21] was used. It should be noted 

that both pattern-finding algorithms involve the same 

technique to adjust the corner locations to sub-pixel accuracy. 

Figure 8 illustrates the difference in degradation in image 

quality over time using the two approaches. It is clear from the 

figure that the window of opportunity using the conventional 

heated chessboard is much smaller than with the mask-based 

approach. Together with the other limitations of the existing 

method, this makes the proposed approach appealing for 

many, if not all, cases. 

B. Comparison of pattern effectiveness 

The system implementation described in Section IV was 

used on sets of 200 calibration frames from video sequences of 

each pattern (both the proposed mask and the conventional 

heated chessboard) to compare performance. It should be 

noted that several attempts were required to capture a 

sufficient number of frames using the heated chessboard, 

whereas capturing the mask sequence required only one 

attempt. There was a significant challenge in evenly and 

effectively heating the chessboard pattern, and then quickly 

capturing footage before the image quality degraded. A limit 

of 10 frames was set for the optimal-frame selection module of 

the implementation. In the authors’ experience, improvements 

in accuracy are generally negligible using more than 10 

frames. 

 Ten trials were performed on each of two thermal-infrared 

cameras for each pattern and the average MRE scores were 

recorded. Each trial used a randomly selected set of 200 

frames from a much larger sequence. Results are shown in 

Table II. From this table it is clear that calibration points on 

the mask can be more accurately located than those on the 

heated chessboard. The improvement is particularly marked 

for the Miricle 307K camera, which has more extreme lens 

distortion than the GUIDE IR210. 

 Table III shows that the mask-based approach is also more 

consistent in its estimation of the cameras’ focal lengths. 

While no reliable ground truth was available for any of the 

cameras, for the Miricle 307K an estimate was able to be made 

from provided camera specifications. The estimate of 598.0 

pixels compares favorably to the performance of the proposed 

approach. 

To analyze the relationship between reprojection error and 

image location, an error map was generated from a typical set 

of results using both patterns. This is shown in Figure 9. From 

the images it can be seen that the central regions tend to have 

lower errors than the edges. This is likely because of at least 

two factors:  

 The image quality degrades towards the edges because of 

the curvature of the lens. 

 The scaling effect of the distortion multiplying the error.  

The mask managed to achieve a more even reprojection 

error distribution over the camera’s field of view than the 

heated chessboard. Given that even in the central region the 

reprojection error from the mask is significantly lower, this 

results in a superior error distribution over the conventional 

approach.  

The evaluation shows that the proposed mask is a more 

effective calibration pattern for thermal-infrared cameras than 

a heated chessboard. However, several failure conditions may 



 

TABLE IV 

MASK PATTERN-FINDER SUCCESS RATE 

 

 Positive Negative 

True 0.958 1.000 

False 0.000 0.042 

 

TABLE VII 

3-CAMERA SETUP – EXTRINSIC TRANSLATIONS 

 

Method Tx Ty Tz 

Mask 98.33±0.34mm 5.60±0.67mm 3.41±0.98mm 

Chessboard 95.77±0.36mm 2.89±0.41mm 6.18±0.97mm 

Measured 100.00±2.00mm 5.00±4.00mm 5.00±7.00mm 

 

 TABLE V 

CHESSBOARD PATTERN-FINDER SUCCESS RATE 

 

 Positive Negative 

True 0.225 1.000 

False 0.000 0.775 

 

TABLE VI 

PATTERN-FINDER CPU TIME COMPARISON (MS) 

 

 Mask Board 

 True False True False 

GUIDE IR210 98 61 44 185 

Miricle 307K 186 141 165 473 

Videre (visible) 202 181 47 635 

 

cause the mask to be ineffective for the task of calibration. 

These include an insufficient radiance difference between the 

mask and backdrop, the use of too thick a material (a 

maximum of 1mm is thickness is recommended), and the lack 

of rigidity of the mask. 

C. Performance of pattern finding algorithm 

In order to evaluate the effectiveness of the proposed pattern 

finding algorithm, a calibration sequence of 1000 frames from 

the Miricle 307K thermal camera was captured. For these 

tests, the null hypothesis was that the pattern was present in the 

image. A “True Positive” (TP) was defined as a correct 

acceptance of the null hypothesis, while a “true negative” (TN) 

was defined as a correct rejection. “False Positive” (FP) and 

“False Negative” (FN) correspond to an incorrect acceptance 

or rejection of the null hypothesis respectively. Therefore the 

conditions of Equation 7 must be satisfied in the tests. 
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Table IV shows the results for the proposed algorithm. 

From the table it can be seen that the proposed pattern 

finding algorithm is highly effective in locating the mask 

pattern. It is important that the number of false positives is 

kept at zero while obtaining the highest possible count of true 

positives.  The failure conditions of the algorithm do not 

tend to occur in normal, controlled calibration footage. One 

major failure condition is when the pattern is very distant from 

the camera, such that the corners of the squares on the pattern 

are no longer clearly visible. In the experiments of this paper, 

this was a distance of approximately 2.0m. Using a camera 

with a larger focal length will result in this maximum distance 

being larger. Another condition of failure is when the pattern is 

held at a significant angle (more than 45 degrees) relative to 

the camera plane. These conditions are generally undesirable 

for calibration footage regardless of the effectiveness of the 

detector. However, as mentioned in Section IV, a significant 

failure condition of greater importance is when part of the 

board is occluded from view. 

In contrast, the results of the OpenCV [21] pattern-finding 

algorithm in locating the chessboard from a similar calibration 

sequence are shown in Table V. 

The OpenCV function “findChessboardCorners()” [21] can 

be said to perform very poorly in automatically locating the 

heated chessboard in a typical sequence of calibration images. 

However, it should be noted that the algorithm was probably 

not designed to be used for as difficult a task as thermal-

infrared camera calibration. 

Table VI shows the CPU times in milliseconds of the two 

pattern finding algorithms for each of the three types of 

cameras used in the experiments, when the null hypothesis was 

both true (the pattern was present) and false (the pattern was 

not present). 

From Table VI it can be seen that the OpenCV function 

“findChessboardCorners()” [21] used to find the chessboard is 

considerably faster than the proposed algorithm when the 

pattern is present in the image. However, it should be noted 

that the proposed algorithm has not been optimized and 

therefore significant speed improvements are likely to be 

achievable. Nevertheless, the difference in processing time is 

unlikely to have a significant effect on usability for typical 

calibration tasks. Interestingly, the proposed algorithm is much 

faster than the OpenCV algorithm when the pattern is not 

present in the image. This is likely because of the iterative 

nature of the OpenCV function in continuously re-processing 

the image and re-searching for the pattern until it gives up. 

D. Multi-camera and multi-modal experiments 

For the final part of the performance evaluation, the two 

multi-camera setups outlined in Section VI and shown in 

Figure 7 were used. For both the heated chessboard and the 

proposed mask, sequences of 200 calibration frames were 

used, and a limit of up to 10 frames was set for actual 

calibration. Ten trials were run for each setup, each using a 

randomly selected sequence of 200 frames from a much larger 

set. The MRE, translations and rotations were recorded. The 

same set of camera intrinsic parameters was used for both 

calibration patterns and setups. The MRE associated with 

estimating the intrinsic parameters for each camera were 0.349 

(Miricle 307K), 0.484 (Videre camera 1) and 0.622 (Videre 

camera 2). It should be noted that the accuracy of extrinsic 

calibration is dependent on the accuracy of intrinsic results. 

For the 3-camera multi-modal setup, the proposed system 

using the mask approach achieved an average MRE of 1.910 

pixels, compared to an MRE of 2.497 pixels using the heated 

chessboard. For the thermal-stereo setup, the proposed system 

achieved an MRE of 1.109 pixels versus 2.746 pixels for the 



 

   

   
Fig. 10.  Demonstration of the intrinsic and extrinsic calibration of a 

multiple-camera, multiple-modality setup, using the proposed approach. Top 

row: Original camera views. Bottom row:  Undistorted and rectified camera 

views. Left column: Visible camera 1. Center column: Thermal-IR (infrared) 

camera. Right column: Visible camera 2. 

TABLE VIII 

THERMAL-STEREO SETUP – EXTRINSIC TRANSLATIONS 

 

Method Tx Ty Tz 

Mask 148.13±0.17mm 3.37±0.24mm 3.46±0.88mm 

Chessboard 151.20±2.88mm 2.93±1.61mm 2.98±1.55mm 

Measured 150.00±2.00mm 0.00±4.00mm 0.00±4.00mm 

 

 

conventional approach. It is apparent that the advantage of the 

proposed mask-based approach is more significant for the case 

with the two thermal-infrared cameras. This difference is 

because the accuracy improvement of the mask over the heated 

chessboard does not apply to the visible modality. 

Table VII shows the means and standard deviations in the 

estimated translations between two of the cameras (one 

thermal and one visible) in Setup 1, compared to those 

estimated using physical measurements. It should be noted that 

it is very difficult to measure the exact positions of the centers 

of the cameras, as these are internal and therefore difficult to 

access. Attempts to measure displacements manually were 

done with a T-square and ruler. The Z-axis is defined in the 

direction that the leftmost camera is facing, with the Y-axis 

being vertical, and the X-axis being horizontal. 

Table VIII similarly shows the results for Setup 2. 

 All measurements and estimates of rotations were 

approximately zero, as expected. 

From the tables it is evident that the translations estimated 

using the proposed approach are well within the bounds of 

practical physical measurements. However, the true camera 

centre locations are not known exactly and so the results from 

the automated approach are trusted more by the authors than 

the physical measurements. However, the results from the 

heated chessboard approach are also mostly within the bounds 

of measurements. This suggests that accurate extrinsic 

calibration may not depend on a high level of intrinsic 

calibration accuracy. Further research may be needed to more 

precisely understand the effect of errors in intrinsic calibration 

on the accuracy of extrinsic calibration.  

The proposed implementation is shown to be effective for 

the task of accurate geometric calibration of a multiple camera 

setup involving a thermal-infrared camera and two color 

cameras. Example results from the calibration of the 3-camera 

setup are shown in Figure 10. 

This clearly demonstrates the effectiveness of the mask-

based approach for the problem of multiple-modality extrinsic 

camera calibration. Failure conditions include when there are 

an insufficient number of frames containing full views of the 

pattern (less than 10 for each camera is not recommended), or 

when the estimates of the camera intrinsic parameters are very 

poor.  

For the experiments in this paper, intrinsic calibration 

typically required about five minutes of processing time per 

camera, with a similar amount of time required for extrinsic 

calibration. Higher resolution cameras or setups involving 

larger numbers of cameras would require longer periods of 

time for calibration.  

 

VIII. CONCLUSION 

A geometric mask was presented as an alternative pattern 

for the calibration of thermal-infrared cameras. The pattern is 

easily manufactured and requires none of the extra equipment 

existing methods do, such as flood lamps or other light 

sources. Results showed it can obtain an improvement in MRE 

of up to 78% compared to using the conventional approach of 

a heated chessboard.  

An MSER-clustering algorithm was proposed as a means for 

locating the calibration mask in images. Calibration points are 

then located to sub-pixel accuracy using an inside-to-outside 

local homography-based approach. The algorithm was shown 

to be highly effective in locating the pattern over an extended 

sequence. Future development for this algorithm could look at 

using local line curvature to help find corners in extremely 

distorted images. Alternatively, a single-parameter lens 

distortion model could be used to assist the homography 

computation. Additionally, the case-by-case rejection of 

individual calibration points based on a local-acutance test 

could help improve accuracy by reducing the negative effect of 

motion and out-of-focus blur [13]. 

An end-to-end implementation for intrinsic and extrinsic 

calibration of cameras was developed, which is shared online 

at [6] as an open-source project under the GPL [24]. The 

proposed calibration system does not require any manual 

intervention beyond providing the initial calibration sequence 

and pattern dimensions. The system was effectively used to 

solve the difficult problem of intrinsically and extrinsically 

calibrating three cameras, including a thermal camera and two 

color cameras. One potential avenue for future research is the 

use of region-weighted projection error, to ensure a fitted 

model is not biased by over fitting to the region of the image 

most occupied by calibration points and weak fitting to other 

regions.  

Future work planned by the authors includes performing 

wide-baseline matching on multiple-camera multiple-modality 

networks, using the approaches in [27] and [28]. 
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