8,658 research outputs found

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    A literature review on the application of evolutionary computing to credit scoring

    Get PDF
    The last years have seen the development of many credit scoring models for assessing the creditworthiness of loan applicants. Traditional credit scoring methodology has involved the use of statistical and mathematical programming techniques such as discriminant analysis, linear and logistic regression, linear and quadratic programming, or decision trees. However, the importance of credit grant decisions for financial institutions has caused growing interest in using a variety of computational intelligence techniques. This paper concentrates on evolutionary computing, which is viewed as one of the most promising paradigms of computational intelligence. Taking into account the synergistic relationship between the communities of Economics and Computer Science, the aim of this paper is to summarize the most recent developments in the application of evolutionary algorithms to credit scoring by means of a thorough review of scientific articles published during the period 2000–2012.This work has partially been supported by the Spanish Ministry of Education and Science under grant TIN2009-14205 and the Generalitat Valenciana under grant PROMETEO/2010/028

    Particle swarm optimization for linear support vector machines based classifier selection

    Get PDF
    Particle swarm optimization is a metaheuristic technique widely applied to solve various optimization problems as well as parameter selection problems for various classification techniques. This paper presents an approach for linear support vector machines classifier optimization combining its selection from a family of similar classifiers with parameter optimization. Experimental results indicate that proposed heuristics can help obtain competitive or even better results compared to similar techniques and approaches and can be used as a solver for various classification tasks

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    Credit scoring: comparison of non‐parametric techniques against logistic regression

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceOver the past decades, financial institutions have been giving increased importance to credit risk management as a critical tool to control their profitability. More than ever, it became crucial for these institutions to be able to well discriminate between good and bad clients for only accepting the credit applications that are not likely to default. To calculate the probability of default of a particular client, most financial institutions have credit scoring models based on parametric techniques. Logistic regression is the current industry standard technique in credit scoring models, and it is one of the techniques under study in this dissertation. Although it is regarded as a robust and intuitive technique, it is still not free from several critics towards the model assumptions it takes that can compromise its predictions. This dissertation intends to evaluate the gains in performance resulting from using more modern non-parametric techniques instead of logistic regression, performing a model comparison over four different real-life credit datasets. Specifically, the techniques compared against logistic regression in this study consist of two single classifiers (decision tree and SVM with RBF kernel) and two ensemble methods (random forest and stacking with cross-validation). The literature review demonstrates that heterogeneous ensemble approaches have a weaker presence in credit scoring studies and, because of that, stacking with cross-validation was considered in this study. The results demonstrate that logistic regression outperforms the decision tree classifier, has similar performance in relation to SVM and slightly underperforms both ensemble approaches in similar extents

    Using neural networks and support vector machines for default prediction in South Africa

    Get PDF
    A thesis submitted to the Faculty of Computer Science and Applied Mathematics, University of Witwatersrand, in fulfillment of the requirements for the Master of Science (MSc) Johannesburg Feb 2017This is a thesis on credit risk and in particular bankruptcy prediction. It investigates the application of machine learning techniques such as support vector machines and neural networks for this purpose. This is not a thesis on support vector machines and neural networks, it simply looks at using these functions as tools to preform the analysis. Neural networks are a type of machine learning algorithm. They are nonlinear mod- els inspired from biological network of neurons found in the human central nervous system. They involve a cascade of simple nonlinear computations that when aggre- gated can implement robust and complex nonlinear functions. Neural networks can approximate most nonlinear functions, making them a quite powerful class of models. Support vector machines (SVM) are the most recent development from the machine learning community. In machine learning, support vector machines (SVMs) are su- pervised learning algorithms that analyze data and recognize patterns, used for clas- si cation and regression analysis. SVM takes a set of input data and predicts, for each given input, which of two possible classes comprises the input, making the SVM a non-probabilistic binary linear classi er. A support vector machine constructs a hyperplane or set of hyperplanes in a high or in nite dimensional space, which can be used for classi cation into the two di erent data classes. Traditional bankruptcy prediction medelling has been criticised as it makes certain underlying assumptions on the underlying data. For instance, a frequent requirement for multivarate analysis is a joint normal distribution and independence of variables. Support vector machines (and neural networks) are a useful tool for default analysis because they make far fewer assumptions on the underlying data. In this framework support vector machines are used as a classi er to discriminate defaulting and non defaulting companies in a South African context. The input data required is a set of nancial ratios constructed from the company's historic nancial statements. The data is then Divided into the two groups: a company that has defaulted and a company that is healthy (non default). The nal data sample used for this thesis consists of 23 nancial ratios from 67 companies listed on the jse. Furthermore for each company the company's probability of default is predicted. The results are benchmarked against more classical methods that are commonly used for bankruptcy prediction such as linear discriminate analysis and logistic regression. Then the results of the support vector machines, neural networks, linear discriminate analysis and logistic regression are assessed via their receiver operator curves and pro tability ratios to gure out which model is more successful at predicting default.MT 201

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí
    corecore