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Abstract By applying recent results in optimization theory variously
known as optimization transfer or majorize/minimize algorithms, an algorithm
for binary, kernel, Fisher discriminant analysis is introduced that makes
use of a non-smooth penalty on the coefficients to provide a parsimonious
solution. The problem is converted into a smooth optimization that can
be solved iteratively with no greater overhead than iteratively re-weighted
least-squares. The result is simple, easily programmed and is shown to
perform, in terms of both accuracy and parsimony, as well as or better
than a number of leading machine learning algorithms on two well-studied
and substantial benchmarks.

Key words Kernel machines – Fisher discriminant analysis – majorize-
minimize algorithms – sparsity – parsimony

1 Introduction

Dimensionality reduction is an important step in pattern recognition and
classification where data may exist in high dimensions and Fisher discriminant
analysis (FDA) has played a central role in achieving this. FDA seeks a
linear projection that maximizes the separation between data belonging to
two classes while minimizing the separation between those of the same class.
Its properties are well-documented and under certain circumstances prove
optimal [1]. However, the linearity of the approach is frequently insufficient
to allow the required level of performance in practical applications. While
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explicit expansion of data in basis functions can resolve this for problems of
low dimension, the combinatorial increase in the number of coefficients to
be estimated may make this impractical. Recent focus on kernel machines in
the machine learning community seeks to address this problem via the so-
called “kernel trick” [2] and a number of solutions have been provided (see
e.g. [3–13]) that can be thought of generically as kernel Fisher discriminant
analysis (kFDA). While kernels lend the required degree of flexibility to the
discrimination task, they bring their own challenges, the foremost being a
potential to overspecialize to the sample data and a computational complexity
dominated by sample size which, in some problems, may be large. Complexity
control is therefore essential for a good outcome yet it has not been widely
explored in the context of kFDA. In [4] complexity is controlled through
explicit regularization – placing an appropriate penalty on the coefficients of
the estimator and solving by mathematical programming, while [14] exploits
the connection between FDA and an associated least-squares problem where
an orthogonalization technique based on the modified Gram-Schmidt procedure
is used for forward regressor selection. In benchmarks, the latter technique is
seen to be competitive with a number of leading machine-learning classifiers
including kFDA while providing more parsimonious estimators and is used
for direct comparison here, along with other results. Another approach that
might have application in the kFDA problem is described in [15].

In this paper we again exploit the association of FDA with least-squares
and control complexity by penalizing the objective function. It is well-known
that penalty functions that induce sparsity lead to non-smooth formulations
and these are traditionally solved via mathematical programming techniques
as is done in [4]. In a departure, we apply a majorize-minimize technique to
overcome this technical problem leading to a very simple iterative algorithm
that converges to the (penalized) least-squares solution. In [16] a general
majorize-minimize framework is presented for variable selection via penalized
maximum likelihood but there only a small least-squares problem in conjunction
with the SCAD (smoothly-clipped absolute deviations) penalty is examined.

Links between least-squares and FDA solutions are well-known in the
binary case [1,17] and [5] makes use of the method propounded in [18]
using “optimal scoring”1 to achieve multinomial discriminant analysis using
kernels – the issue of parsimony is not, however, addressed. The extension
of the proposed method to more than two classes via this route is more
challenging since (except in the trivial, non-parsimonious case), for C > 2
classes, the solution generates C operators (corresponding to the “hat” or
smoother matrix in conventional regression) and it is not yet clear how
these can be related to the multinomial linear discriminant co-ordinates. Of
course, one-versus-one and one-versus-remainder strategies can be employed
however, since each of these dichotomizers is trained independently, the
resulting set may not prove to be parsimonious overall.

1 Leading to a linear regression followed by a small eigen-decomposition.
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The paper is organized as follows. Section 2 briefly states the well-
known link between FDA and least-squares [1], presents the kernel-based
formulation and motivates the use of penalized optimization. The following
section introduces the majorize-minimize principle and sketches a derivation
of the iterative algorithm. Section 4 presents a performance comparison
with other leading machine learning methods on two well-studied sets of
benchmarks.

2 Fisher Discriminant Analysis

The relationship between FDA and least-squares is well known [1]. Consider
the matrix of m-dimensional sample vectors U = [u1, u2, . . . , uN ]T comprising
two groups, Gi, of size, Ni, i = 1, 2 represented by the partition,

[
UT

1 UT
2

]T.
Membership of G1 is denoted by ŷ = +N/N1 and of G2 by ŷ = −N/N2

then it is straightforward to verify that the solution for
[
b wT

]T, to the
following least-squares problem lies in the same direction as the solution for
the Fisher discriminant [1].

arg min
(b,w)

∥∥∥∥
[ N

N1
1N1

− N
N2

1N2

]
−

[
1N1 U1

1N2 U2

] [
b
w

]∥∥∥∥
2

2

(1)

where 1p denotes a p-vector of ones.
To accommodate more complex discriminants, data can be mapped into

a new feature space, F , via some function, φ : Rm 7→ Rν , say. However,
vectors in F will typically be of very high, or even infinite, dimension,
precluding any practical manipulation. The kernel trick recognizes that the
coefficients, w, in the linear model implicit in (1) can themselves be written
as a linear combination of the mapped data, w =

∑i=N
i=1 αiφ (ui), leading

to a formulation entirely based on inner products that can be computed
through the agency of a suitable kernel. These ideas have been explored
thoroughly elsewhere (see e.g. [2]) so we provide only a skeleton exposition of
the kernelized version of the least-squares problem (see e.g. [14] for details).

Briefly, arranging the mapped data into a ν×N -dimensional matrix, Φ,
w can be re-written w = Φα and the result as,

[
1N ΦT

] [
b
w

]
=

[
1N ΦT

] [
b

Φα

]
=

[
1N K

] [
b
α

]
(2)

where K = ΦTΦ denotes the Gram matrix associated with a suitable kernel,
k(., .), i.e. kij = k (ui, uj), i, j = 1, 2, . . . , N . The solution, ω =

[
b αT

]T,
to the following least-squares problem provides the coefficients of a linear
discriminant in the feature space associated with k(., .), hence a non-linear
discriminant in the original space containing the data (see e.g. [4]).

arg min
(b,α)

∥∥∥∥
[ N

N1
1N1

− N
N2

1N2

]
−

[
1N1 K1

1N2 K2

] [
b
α

]∥∥∥∥
2

2

(3)
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2.1 Complexity control

It is common to introduce a quadratic or ridge penalty on the coefficients
into least-squares regression and this can be interpreted in the Bayesian
framework as placing a Gaussian prior on the values of the coefficients,
e.g. [19]. In addition to reducing coefficient magnitudes where possible, the
quadratic penalty improves numerical condition when data are strongly
correlated, militates against over-fitting and also suggests a method for
selecting variables – those with relatively small coefficient magnitudes can
be discarded. Evidently, such an approach is not optimal but may still lead
to adequate performance. The quadratic penalty tends to discourage large
values but permits many small values to remain and these may, collectively,
contribute substantially to the result. Instead, a penalty corresponding to
a prior distribution with a sharp peak has the effect of penalizing non-zero
coefficients much more strongly. The pay-off for setting small coefficients
exactly to zero instead of just reducing their magnitude is therefore relatively
much greater. A penalty of the form ρ ‖ω‖q

q, 0 < q ≤ 1 ρ ≥ 0, among
others, has precisely this property2. This “sparsity-inducing” property is
well-studied when q = 1, for example, as the well-known Lasso estimator
in statistics [18,20–22] and has been used widely in the field of kernel
machines [2]. A choice of q < 1 exacerbates this effect as shown in figure 1.
Introducing penalties of this form means that closed-form solutions are no
longer possible and leads to difficulties in gradient-based optimization owing
to their discontinuous first derivatives. Mathematical programming is often
used to address this e.g. in the case that q = 1. Here we exploit the majorize-
minimize principle to provide a simple, iterative algorithm. The choice of
0 < q < 1 leads to a further difficulty – the loss of convexity in the penalized
objective function so that convergence of the resulting algorithms will be
towards a local, rather than global, optimum. This is illustrated in figure 2
for a simple linear regression in one dimension. The lack of convexity is
clear for the choice of parameters (q = 0.25, ρ = 3.5) and two initializations
of our resulting algorithm are shown indicating the dependence on initial
conditions.

3 Algorithm Development via the Majorize-Minimize Principle

The majorize-minimize principle seeks to replace a difficult optimization
problem, in our case, non-smooth, with a simpler (smooth) one having the
same solution. In the case of minimization, the idea is to find a non-unique
surrogate function that majorizes the objective function of interest and then
to minimize this. Here we are able to replace the non-smooth element of the
objective function with a quadratic function and then iterate toward the
solution.

2 The case of 1 < q ≤ 2 is also accommodated but does not deliver the required
parsimony.



Title Suppressed Due to Excessive Length 5

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

p(
ω

)

 

 

 q = 2
 q = 1
 q = 0.5

Fig. 1 Prior distribution functions associated with penalties of the form −‖ω‖q
q

for q ∈ { 1
2
, 1, 2} and scalar ω. The penalty function sharpens considerably around

the origin so that small values will contribute much more strongly to the likelihood
function by having their values set to zero.
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Fig. 2 The objective function for a simple, penalized linear regression with
q = 0.25 & ρ = 3.5 showing the lack of convexity and dependence on initial
conditions of the resulting algorithm. The leftmost sequence is shown converging
to the “sharp” minimum (dominated by the penalty) while the rightmost is
converging towards the broader minimum (dominated by the data misfit).
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Let ω(n) denote the value of the coefficient vector at the nth step in
an iterative procedure, then a function, S (ω|ω(n)), is said to majorize the
function, J (ω), if it is everywhere greater than J and is tangent to it at
ω(n) (e.g. [23]), i.e.:

S (ω(n)|ω(n)) = J (ω(n)) (4)
S (ω|ω(n)) ≥ J (ω) ∀ω

Majorization is closed under the operations of addition and multiplication.
Such a function that majorizes a convex objective function can itself be

minimized (w.r.t. ω), often analytically, and this fact can be exploited. The
majorizing function, S(., .), acts as a surrogate for the original objective
function. The descent property (e.g. [23]) then guarantees that the value of
J (ω) never increases, as follows:

J (ω(n + 1)) = S (ω(n + 1)|ω(n))
+ J (ω(n + 1))− S (ω(n + 1)|ω(n))

≥ S (ω(n)|ω(n)) + J (ω(n))− S (ω(n)|ω(n))
= J (ω(n))

owing to (4) since S (ω(n + 1)|ω(n)) ≥ S (ω(n)|ω(n)).
We outline the derivation of a very simple algorithm of Newton-Raphson

type for the penalized least-squares estimation of the kFDA coefficients
(c.f. [16]). The objective function, J (ω), is written as the sum of two
functions,

Je (ω) =
1
2
‖ŷ − K̃ω‖22, Jp (ω) = ρN‖ω‖q

q

where

ŷ =
[ N

N1
1N1

− N
N2

1N2

]
∈ RN , K̃ =

[
1N K

] ∈ RN×(N+1)

giving:

J (ω) =
1
2
‖ŷ − K̃ω‖22 + ρN‖ω‖q

q (5)

It is clear that in the case of interest, 0 < q ≤ 1, no closed-form solution
exists for the minimization of (5); however, by exploiting the fact that |ω|q
is convex on R+ and |ω|q =

(
ω2

) q
2 it can be shown that Jp (ω) is majorized

at every point, ω(n), by a quadratic function thus:

Jp (ω) = ρN‖ω‖q
q ≤

ρ

2
N

i=d∑

i=1

(
qω2

i

|ωi(n)|2−q
+ (2− q)|ωi(n)|q

)
(6)

=
ρ

2
N

(
qωTB (ω(n)) ω + (2− q)‖ω(n)‖q

q

)

with B (ω(n)) = diag
{|ωi(n)|q−2

}
. The result arises from the relationship

g(x) ≥ g(y) + dg(y)(x − y)∀x, y (see e.g. [23]) and is ascribed to [24]. The
function, J (ω), in equation (5) is therefore majorized when the second term
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on the RHS is replaced by the upper bound given in (6) giving a quadratic
surrogate:

S (ω|ω(n)) = ωTK̃Tŷ − 1
2
ωT

(
K̃TK̃ + ρNqB (ω(n))

)
ω

(omitting constant terms in ω) that has the ascent property and which
can be minimized analytically w.r.t ω. Setting the gradient of S (ω|ω(n))
to zero, solving for ω and identifying ω with ω(n + 1) gives the following
iteration

ω(n + 1) =
(
K̃TK̃ + ρNqB (ω(n))

)−1

K̃Tŷ (7)

assuming no ωi(0) = 0.
This last condition raises a potential problem: when the elements of

ω(n) approach zero – to be expected when a sparse solution emerges – the
surrogate, S (ω|ω(n)), is no longer defined. The authors of [16] have shown
that the addition of a small positive quantity to the denominator of the
diagonal elements of B (ω(n)) retains their maximum likelihood interpretation
and that this quantity can be allowed to decay to zero in the limit so that
the original problem is solved. They also present a method for the informed
selection of its value.

To avoid the difficulty we take the pragmatic approach advocated in [25–
27] by re-writing B (ω(n)) = Ψ−2

n with Ψn = diag
{
|ωi(n)| 2−q

2

}
leading to

ω(n + 1) = Ψn

(
ΨnK̃TK̃Ψn + ρNqIN+1

)−1

ΨnK̃Tŷ (8)

Evidently, if any ωi(0) = 0 this results in the permanent exclusion of the
ith coefficient from the optimization so we set ω (0) 6= 0. Furthermore,
during iteration one or more ωi may head towards zero which could affect
the convergence toward the minimizer of the objective function. Our own
experience here, in [28–30] and that of [25–27] suggests no practical problem.
Indeed [27] shows for the penalized least-squares case with convex objective
function that if ω (0) 6= 0 then, with probability one, no ωi achieves zero in
a finite number of iterations so from a practical viewpoint there should be
no difficulty. Here, convergence is declared when the relative change in the
objective function is less than some threshold, ε ¿ 1 (here ε = 10−5). We
denote the resulting classifiers kFDAq.

Majorize-minimize algorithms display, typically, a linear rate of convergence
in the vicinity of the optimum in contrast to the quadratic convergence of
a typical Newton-Raphson approach. On the plus side, though, they tend
to require simpler computations at each step and it is possible, therefore,
for the approach to be faster in clock-time. Computational speed-ups such
as Schultz-Hotelling acceleration and successive over-relaxation have been
suggested to improve matters [23] but these issues are not addressed here.
The iteration (8) has the same computational overhead as the familiar
iteratively re-weighted least-squares algorithm used widely in generalized
linear modelling.
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4 Performance Comparison with Previous Methods

To evaluate the performance of kFDAq extensive experimentation has been
carried out on the well-studied 13 datasets of the FIRST IDA repository [31]
that have been used to benchmark a number of machine learning techniques,
see e.g. [14,4,32] among 24 recent articles revealed by a citation search of
machine learning publications to reveal the current leaders in these samples.
An additional seven sets selected from the UCI repository [33] on the basis
of having no fewer than 100 samples, no more than 70% majority class
and less than 10% missing data were also studied3. These have also been
widely studied and a citation search disclosed a further 14 articles. The
methodology outlined in [14] was followed throughout, enabling direct comparison
with a number of techniques. In particular, we have made a detailed comparison
with the results from [14] because that work is specifically concerned with
complexity control and proved, at its time of writing, to be a consistently
high performer in terms of both accuracy and sparsity. The results in [14] are
computed using a decision threshold given by 0.5N(1/N1−1/N2) – the mid-
point between target values and since our main performance comparison is
with this work, we too have adopted it while recognizing that it will not
necessarily be optimal for any given sample.

We have updated the comparison with the results of the current best
performers in all 20 domains4. All experiments are carried out using the
Matlab environment [34] and the Gaussian Radial Basis Function kernel,
k (u, v) = exp

(
−‖u−v‖2

2σ2

)
.

The experimental method is based on 100 random partitions of the
samples5. To select regularization and kernel parameters, five-fold cross-
validation is used on each of the first five realizations and those corresponding
to the realization with lowest misclassification rate are used to test the
remaining realizations. Here we examine two situations: selection of classifiers
(i) for minimum misclassification rate (MCR) and (ii) for minimum number
of retained samples (NRS). Each is then applied to all test partitions. In
the literature most authors have reported results to one decimal place so
we too have followed that convention.

4.1 FIRST IDA Datasets

Table 1 shows percentage mean MCR and NRS calculated for the test sets
for each of the 13 domains. We report kFDAq for q ∈ {1, 0.5}, the better
of the two methods proposed in [14] referred to generically as kFDAOLS,
and the current best results from our citation search. From Table 1 it can
be seen that the previously published best MCR remains best in 3/13 cases

3 Missing data were simply excised from the samples.
4 It should be noted that the methodology of many of the techniques used in

the comparisons may not conform to that of [14].
5 Twenty partitions for “Splice” and “Image” datasets.
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(“Heart”, “Twonorm” and “Waveform”) and is joint best in “S. Flare”. The
kFDA1 classifier (selected for minimum MCR) proves most accurate in 6/13
domains and most accurate on average across all domains. Its sparseness
is, however, relatively poor in all 13 cases when compared to kFDAOLS

but improves on the other published results in 2/4 cases where a sparse
solution is reported6. Choosing the kFDA1 classifier for minimum NRS
instead, improves sparsity overall but results in a small loss of accuracy.
In particular kFDAOLS proves sparser in 12/13 cases but the situation is
reversed (10/13 with equality in “Image”) when considering accuracy.

To encourage further sparseness, q is reduced to 0.5. Selecting for minimum
MCR, kFDA0.5 exhibits highest accuracy in 6/13 cases (equal to kFDA1 in
“Diabetes” and “Titanic”, and to the best published in “S. Flare”) while
exceeding or matching the sparseness of kFDAOLS in 9/13 cases. Selecting
kFDA0.5 for minimum NRS even simpler models are frequently found (11/13
are most sparse across all methods with lowest average NRS) but again with
a small loss of accuracy. The loss of convexity in the objective function does
not appear to have led to any major loss in performance here.

4.2 UCI Datasets

Table 2 presents results from the second set of benchmarks7 The overall
picture here is much the same as for the FIRST IDA data with the previously
published best MCR remaining best in only 2/7 cases. kFDA1 is most
accurate in 4/7 cases and likewise on average. It is interesting to note
the rather spectacular accuracy achieved for the “Credit” dataset by the
method reported in [35]. This involves an initial clustering stage followed
by application of a neural network. The clustering stage is used to identify
and remove isolated and inconsistent clusters from the training set. Such
an approach is bordering on the use of prior knowledge rather than a direct
(agnostic) learning approach and this might explain the uncharacteristic
accuracy. The MCR value calculated from [35] that corresponds to the
agnostic situation is 10.6±1.4% which is more in line with the other results.

Again selecting to reduce NRS has the desired effect but at the cost
of reducing accuracy. Reducing q to 0.5 and selecting for minimum MCR
induces further sparsity improving mean sparsity considerably but with
a small degradation in accuracy. Selecting for minimum NRS maximizes
sparsity without too much loss of accuracy but still does not match the
sparsity of kFDAOLS. It should be noted that none of the previously reported

6 In 9/13 cases NRS is shown as 100% because the reported method, although
a kernel machine and therefore a candidate for sparsity control, no attempt has
been made to achieve this. Inclusion of these values has a strong effect on the
average NRS value in this column.

7 The results for kFDAOLS have not been previously reported but have been
computed by the authors.
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Table 1 FIRST IDA Repository Database: Comparison of mean misclassification
rate and sparsity for the proposed algorithm, kFDAq, kFDAOLS [14], and the
best published algorithm: Import Vector Machine [36] (F), conventional kFDA
(M) [7], Reformative kFDA (N) [7], Naive Kernel-based Nonlinear Method [8]
(O), Fast Kernel-based Nonlinear Method [8] (H), Kernel Logistic Regression [37]
(¤), Sparse kFDA with Linear Loss [38] (¥), Linear Programming AdaBoost [39]
(♦), and Suppressed Kernel Sample Space Projection [40] (¨). Bold type – best
performance/sparsity, italic type – sample size.

Database Published kFDAOLS kFDA1 kFDA0.5
Best (%) (%) MCR (%) NRS (%) MCR (%) NRS (%)

Banana 10.3 ± 0.5 10.7 ± 0.5 9.8 ± 0.1 12.8 ± 0.1 9.6 ± 0.1 9.6 ± 0.1
400 5.3 ± 1.8F 7.3 15.3 10.5 4.5 4.5

B.Cancer 22.7 ± 4.4 25.3 ± 4.1 21.3 ± 3.7 22.8 ± 4.4 20.5 ± 4.0 25.4 ± 4.0
200 100.0 M 3.5 12.5 6.5 3.5 1.0

Diabetes 22.1 ± 1.9 23.1 ± 1.8 21.6 ± 1.4 22.8 ± 1.6 21.6 ± 1.6 21.6 ± 1.6
468 100.0 M 2.1 4.1 2.4 1.3 1.3

German 21.3 ± 2.1 24.0 ± 2.1 21.0 ± 1.8 23.5 ± 2.0 23.5 ± 2.0 23.5 ± 2.0
700 100.0 M 1.1 9.4 2.7 1.1 1.1

Heart 10.8 ± 2.6 15.8 ± 3.4 14.6 ± 3.0 14.6 ± 3.0 14.8 ± 3.3 16.0 ± 3.2
170 16.0 N 1.7 10.6 10.6 2.4 1.8

Image 1.8 ± N/A 2.8 ± 0.6 1.6 ± 0.5 2.8 ± 0.6 2.1 ± 0.3 2.1 ± 0.3
1300 100.0 ¤ 21.5 24.6 23.5 15.5 15.5

Ringnorm 1.5 ± 0.1 1.6 ± 0.1 1.4 ± 0.0 1.4 ± 0.0 1.5 ± 0.0 1.8 ± 0.0
400 6.0 ¥ 1.8 5.5 5.5 2.8 0.8

S.Flare 31.6 ± 1.9 33.5 ± 1.6 33.0 ± 1.7 33.0 ± 1.7 31.6 ± 1.9 32.2 ± 1.8
666 100.0 O 1.4 27.9 27.9 2.4 0.5

Splice 9.3 ± 0.7 11.7 ± 0.6 7.1 ± 0.7 7.9 ± 0.9 7.0 ± 0.8 7.8 ± 0.8
1000 100.0 ♦ 33.0 85.0 71.9 75.3 54.3

Thyroid 1.4 ± 0.9 4.5 ± 2.4 1.0 ± 0.9 2.3 ± 1.4 1.1 ± 0.9 2.3 ± 1.3
140 16.4 H 16.4 22.9 10.7 12.9 2.1

Titanic 21.7 ± 0.3 22.4 ± 1.0 21.1 ± 0.2 22.1 ± 0.2 21.1 ± 0.2 22.7 ± 0.3
150 100.0 O 7.3 64.7 28.0 4.7 1.3

Twonorm 2.3 ± 0.1 2.7 ± 0.2 2.4 ± 0.0 2.4 ± 0.0 2.6 ± 0.0 2.6 ± 0.0
400 100.0 ¨ 2.5 7.0 7.0 1.3 1.3

Waveform 9.3 ± 0.4 10.0 ± 0.4 9.4 ± 0.1 10.2 ± 0.1 10.0 ± 0.1 10.7 ± 0.1
400 100.0 ♦ 3.5 6.8 5.5 3.0 2.3

Mean 12.8 14.5 12.7 13.7 12.8 13.7
72.6 7.9 22.8 16.4 10.0 6.7

best performers on the UCI Dataset can be assessed for sparsity in the sense
meant here.

To summarize, Table 3 presents the average results across all 20 datasets
and demonstrates the trade-off between accuracy and sparsity in these
methods. In particular, it can be seen that the proposed method can produce
parsimonious solutions with an accuracy comparable to the best published
methods. While differences in results are not great in most cases, especially
when their spread is taken into account, it is fair to say that kFDAq offers
convincingly competitive performance across a range of classification tasks.

5 Conclusion

We have introduced an algorithm for the parsimonious solution of the binary
kFDA problem through the application of the majorize-minimize principle.
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Table 2 UCI Repository Database: Comparison of mean misclassification rate
and sparsity for the proposed algorithm, kFDAq, kFDAOLS, and the best
published algorithm: Clustering + Neural Network [35] (F), C4.5 Decision Tree
Learning [41] (M), Heteroscedastic LDA + Support Vector Machine [42] (N),
Multi Feature Subsets + C4.5 Decision Tree Learning [43] (O), Local Boosted
Discriminant Projections + Support Vector Machine [42] (H), Naive Baysian [44]
(¤), Neural Network [45] (¥). Bold type – best performance/sparsity, italic type
– sample size.

Database Published kFDAOLS kFDA1 kFDA0.5
Best (%) (%) MCR (%) NRS (%) MCR (%) NRS (%)

Credit 2.0 ± 0.7 13.3 ± 1.4 10.8 ± 1.4 14.5 ± 1.4 13.0 ± 1.4 13.3 ± 1.4
327 N/A F 2.1 27.2 15.6 6.4 3.4

Chess 0.8 ± N/A 1.8 ± 0.2 0.7 ± 0.2 0.9 ± 0.2 0.7 ± 0.1 0.9 ± 0.2
1598 N/A M 7.8 44.7 34.0 20.0 16.1

Ionosphere 4.9 ± N/A 2.8 ± 0.8 2.8 ± 0.8 3.6 ± 1.0 2.4 ± 0.8 3.1 ± 0.9
176 N/A N 10.2 26.7 24.4 9.7 5.1
Liver 24.3 ± N/A 25.9 ± 2.0 25.1 ± 2.1 29.4 ± 2.3 26.6 ± 2.3 28.5 ± 2.2
173 N/A O 6.4 8.7 4.6 5.2 4.6

Sonar 10.1 ± N/A 6.6 ± 1.9 4.4 ± 1.5 9.5 ± 2.2 6.8 ± 1.9 6.8 ± 1.9
104 N/A H 45.2 94.2 83.7 51.0 51.0

WBC 2.6 ± N/A 2.8 ± 0.8 2.1 ± 0.5 2.1 ± 0.5 2.9 ± 0.7 2.9 ± 0.7
342 N/A ¤ 4.4 2.3 2.3 0.6 0.6

WDBC 2.5 ± 2.1 2.6 ± 0.6 1.1 ± 0.4 2.2 ± 0.6 1.8 ± 0.6 2.6 ± 0.7
285 N/A ¥ 4.9 44.6 14.0 7.0 4.2

Mean 6.7 8.0 6.7 8.9 7.8 8.3
N/A 11.6 35.5 25.5 14.3 12.1

Table 3 Average misclassification rates (MCR) and numbers of samples retained
(NRS) across all data sets.

Published kFDAOLS kFDA1 kFDA0.5

Best (%) (%) MCR (%) NS (%) MCR (%) NS (%)

MCR 10.7 12.2 10.6 12.1 11.1 11.8
NRS N/A 9.2 26.9 18.9 11.6 8.8

The method exploits the correspondence between FDA and least-squares
to pose a penalized least-squares problem that is known to have sparsity-
inducing properties. Flexibility is provided by means of the so-called “kernel
trick”.

The resulting formulation leads to a non-smooth optimization problem
of the same “size” as the (training) sample. The majorize-minimize principle
uses a quadratic (hence smooth) upper bound on the objective function that
permits a step-wise descent towards a minimum – global or local depending
on the choice of norm in the penalty function. While convergence to the
minimum cannot be proven, theoretical and empirical justification is given
as to why the method succeeds. The optimization is easily solved iteratively
with the same computational overhead as the widely-used iteratively re-
weighted least squares algorithm.

Extensive comparisons have been carried out across two well-studied
and substantial benchmark datasets using 100 random data partitions and
five-fold cross-validation for parameter selection. The outcome demonstrates
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that the proposed method delivers results as accurate and/or parsimonious,
or better, than a number of leading machine learning algorithms. Selective
choice of penalizing norm function has been shown to aid parsimony with
little or no degradation in performance, leading to highly compact, accurate
dichotomizers.

Extension of the method to the multinomial situation has so far eluded
us because the solution delivers as many operators as there are classes and it
is unclear how these can be employed to deliver sparse, multinomial kFDA
– this problem is currently under examination.

6 Originality and Contribution

The problem of binary classification is still an important one despite many
advances over the last three-quarters of a century. Extensions to Fisher’s
original linear discriminant analysis over that time have recently arrived
at the stage of arbitrary non-linear mappings though the application of
the so-called “kernel trick”. While having manifest advantages, this leads
to a formulation that is dominated by the size of the training sample
which is usually unnecessarily complex and requires regularization to avoid
overspecialization. The present work addresses these problems simultaneously
through the use of a non-smooth regularizer and the application of a “majorize-
minimize” algorithm to overcome the difficulties presented by the lack of
smoothness in achieving optimality. It does this via the connection of FDA
with least-squares to yield a very simple iterative algorithm. The use of
this approach in connection with the Fisher problem is, to the best of our
knowledge, novel.

The resulting algorithm has the same computational overhead as iteratively
re-weighted least-squares and, while convergence has not been proved, its
use is theoretically justified. Comprehensive comparisons across 20 publicly
available machine learning benchmarks reveal that the method provides
a classification performance that is comparable with or better than many
state-of-the-art methods. The extensive nature of these comparisons themselves
form a point of comparison for future developments in the area.
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4. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., and Müller,
K. (2003) Constructing descriptive and discriminative nonlinear features:
Rayleigh Coefficients in kernel feature spaces. IEEE T. Patt. Anal., 25: 623–
628.



Title Suppressed Due to Excessive Length 13

5. Roth, V. and Steinhage, V. (1999) Nonlinear discriminant analysis using
kernel functions. In Solla, S., Leen, T., and Müller, K. (eds.), Advances in
neural information processing systems , vol. 12, pp. 568–574.

6. Xu, Y., Yang, J., Lu, J., and Yu, D. (2004) An efficient renovation on kernel
Fisher discriminant analysis and face recognition experiments. Patt. Recogn.,
37: 2091–2094.

7. Xu, Y., Yang, J., and Yang, J. (2004) A reformative kernel Fisher discriminant
analysis. Patt. Recogn., 37: 1299–1302.

8. Xu, Y., Zhang, D., Jin, Z., Li, M., and Yang, J. (2006) A fast kernel-based
nonlinear discriminant analysis for multi-class problems. Patt. Recogn., 39:
1026–1033.

9. Yang, J., Frangi, A., Yang, J., Zhang, D., and Jin, Z. (2005) KPCA plus LDA:
A complete kernel fisher discriminant framework for feature extraction and
recognition. IEEE T. Patt. Anal., 27: 230–244.

10. Liang, Z. and Shi, P. (2004) An effiecient and effective method to solve kernel
Fisher discriminant analysis. Neurocomp., 61: 485–493.

11. Liang, Z. and Shi, P. (2005) Kernel direct discriminant analysis and its
theoretical foundation. Patt. Recogn., 38: 445–447.

12. Lu, J., Plataniotis, K. N., and Venetsanopoulos, A. N. (2003) Face recognition
using kernel direct discriminant analysis algorithms. IEEE T. Neur. Networ.,
14: 117–126.
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