
Journal of International Technology and Information
Management

Volume 23 | Issue 1 Article 5

2014

The Classification Performance of Multiple
Methods and Datasets: Cases from the Loan Credit
Scoring Domain
Jozef Zurada
University of Louisville

Niki Kunene
University of Louisville

Jian Guan
University of Louisville

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jitim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Technology and Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact
scholarworks@csusb.edu.

Recommended Citation
Zurada, Jozef; Kunene, Niki; and Guan, Jian (2014) "The Classification Performance of Multiple Methods and Datasets: Cases from
the Loan Credit Scoring Domain," Journal of International Technology and Information Management: Vol. 23: Iss. 1, Article 5.
Available at: http://scholarworks.lib.csusb.edu/jitim/vol23/iss1/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55335424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol23?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol23/iss1?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol23/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol23/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol23%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Cases from the Loan Credit Scoring Domain  J. Zurada, N. Kunene & J. Guan 

© International Information Management Association, Inc.  2014 57          ISSN:  1543-5962-Printed Copy       ISSN:  1941-6679-On-line Copy 

The Classification Performance of Multiple Methods and Datasets:  

Cases from the Loan Credit Scoring Domain 
 

Jozef Zurada 

Niki Kunene 

Jian Guan 

Department of Computer Information Systems 

University of Louisville 

USA 
 

ABSTRACT 
 

Decisions to extend credit to potential customers are complex, risky and even potentially 

catastrophic for the credit granting institution and the broader economy as underscored by 

credit failures in the late 2000s. Thus, the ability to accurately assess the likelihood of default is 

an important issue. In this paper the authors contrast the classification accuracy of multiple 

computational intelligence methods using five datasets obtained from five different decision 

contexts in the real world. The methods considered are: logistic regression (LR), neural network 

(NN), radial basis function neural network (RBFNN), support vector machine (SVM), k-nearest 

neighbor (kNN), and decision tree (DT). The datasets have various characteristics with respect 

to the number of cases, the number and type of attributes, the extent of missing values as well as 

different ratios for bad loans/good loans. Using areas under ROC charts as well as the 

classification accuracy rates for overall, bad loans, and good loans the performances of six 

methods across five datasets and the five datasets across the methods are examined to find if 

there are significant differences between the methods and datasets. Our results reveal some 

interesting findings which may be useful to practitioners. Even though no method consistently 

outperformed any other method using the above metrics on all datasets, this study provides some 

guidelines as to the most appropriate methods suitable for each specific data set. In addition, the 

study finds that customer financial attributes are much more relevant than the personal, social, 

or employment attributes for predictive accuracy.   

INTRODUCTION 

The great recession of the late 2000s has re-focused people’s attention on the risk of credit 

extension as an engine of global economic activity. The bust of the housing market and the 

defaults of subprime mortgages extended to borrowers with weak credit precipitated an 

implosion of the mortgage backed securities and collateralized debt obligations industry (Lim, 

2008). The consequences resulting from creditors’ failure, as well as the failure of regulators to 

accurately assess the credit risk of potential borrowers, had a catastrophic impact on the global 

financial system and broader economic activity. Credit scoring models are tools used to assess 

the likelihood of a potential debtor defaulting on a credit arrangement, allowing the creditor to 

determine whether to enter into a credit arrangement. These models have also been used by 

regulators to retrospectively assess credit agreements with profound impacts on an industry or 

economy. In general, credit-scoring models require that debtors be classified into groups of good 

credit (least risky) and bad credit (most risky).  An ability to correctly classify a debtor has broad 

financial implications for credit granting institutions and the economy. Studies show that even a 

1% improvement in the accuracy of a credit scoring model can save millions of dollars in a large 

loan portfolio (West, 2000). For modern economies where credit availability is central to 

economic activity, reliable credit-scoring models are an imperative. 

 

Credit scoring models have a history spanning decades within lending institutions (West, 2000). 

The research on credit scoring models has used a variety of analytical methods, including 

statistical and data mining methods and on a variety of datasets. These methods include: survival 

analysis (Stepanova & Thomas, 2002) which is used to predict the time to default, or time to 

early repayment, linear discriminant analysis (Bikakis et al., 2009), logistic regression (LR) 

(Sohn & Kim, 2007), k-nearest neighbor (kNN) (Laha, 2007), classification trees (Urdaneta et 

al.), neural networks (NN) (Khashman, 2009; West, 2000), radial basis function neural networks 

(RBFNN), support vector machines (SVM) (Belloti & Crook, 2009; Chen, Ma, & Ma, 2009; Li, 

Shiue, & Huang, 2006; Luo, Cheng, & Hsieh, 2009; Tsai, 2008; Zhou, Lai, & Yu, 2008), 

decision trees (DT) (Owen, 2003; Zurada, 2007, 2010), ensemble techniques (Chrzanowska et 

al., 2009; West et al., 2005), and genetic programming (Espejo, Ventura, & Herrera, 2010; 

Finlay, 2009; Huang, Tzeng, & Ong, 2006; Ong, Huang, & Tzeng, 2005). In these and related 
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studies, models are typically benchmarked, and the comparison of multiple models with respect 

to accuracy (Baesens, Setiono, Mues, & Vanthienen, 2003) is a regular feature. However, such 

studies frequently employ a single dataset. Comparisons based on a single dataset are limited by 

the inevitable idiosyncrasies of the dataset, its context, as well as the chosen computational 

method. Therefore studies that examine the performances of different methods on different 

datasets are important to help us better understand the relative strengths of different methods and 

the characteristics of datasets. To the best of our knowledge no credit scoring study has 

undertaken an in-depth comparative examination of these computational methods within the 

context of different data settings. This paper describes a carefully designed study to assess the 

effectiveness of several different methods on a collection of datasets from different contexts. In 

this study we use five datasets obtained from varying contexts to compare six methods. The 

datasets are Australian, SAS-1, SAS-2, German, and Farmer datasets. The six methods are: 

logistic regression (LR), neural network (NN), radial basis function neural network (RBFNN), 

support vector machine (SVM), k-nearest neighbor (kNN), and decision tree (DT).  

 

In this study, when methods are applied to data and its context, they are defined as models. This 

distinction is consistent with the design science tradition of March and Smith (1995) and 

(Hevner, March, Park, & Ram, 2004).  March and Smith (1995) describe methods as algorithms 

and practices. Methods “define processes…they define how to …search the solution space; on 

the other hand, models represent a real world situation, i.e., the design problem and the solution 

space” (March & Smith, 1995). Our results, therefore, refer to models rather than methods. 

 

In a guide to IS researchers on what constitutes a contribution, Zmud (2013) includes the 

following as a contribution: providing “new insights into why, when, and where of a 

phenomenon (i.e. drilling down inside the black box).” In this study, our results offer richer 

interpretation because not only is each model assessed against multiple datasets, but model 

performance on each dataset is also assessed using multiple modes. Model performance is 

evaluated not only using the common probability 0.5 cutoff point, but also using the area under 

receiver operating characteristic (ROC) curves and the curves themselves to determine the 

overall efficiency of the models, or look at more specific classification accuracy levels at various 

operating cut-off points. As a result, the findings in this study are more nuanced, frequently 

reflecting that a model’s performance cannot be said to be simply universally better or worse 

than others. There are wheres and whens.  

 

For example, our results show, with respect to dataset quality: The largeness of a dataset is not 

an unqualified positive performance characteristic. A dataset with only continuous variables 

performs poorly, even though real numeric variables are most important to the classification 

problem. A multidimensional dataset, i.e. with more attributes, doesn’t necessarily mean better 

performance, but more balanced datasets perform better overall. With respect to model 

performance: SVM performs best on the more balanced datasets using global performance 

metrics, whereas NN and DTs do very well on an unbalanced dataset with missing values. kNN 

does best on an unbalanced dataset without missing values using global performance metrics. 

DTs perform relatively better and certainly no worse than other models on average bad loan 

classification at the 0.5 cutoff performing especially better on the unbalanced datasets. The latter 

is a different, but more useful, finding than a prior study’s finding that NNs perform best on bad 

loans (Chen and Huang (2003), where the only dataset used was a balanced dataset. Finally, we 

also find that, for practitioners making data collection decisions in this area, customer financial 

attributes like the debt-ratio are more important than personal, social, or employment attributes 

like employment status for classification accuracy. 

 

The rest of the paper is organized as follows. Section 2 provides a literature background. Section 

3 discusses the six methods used. Section 4 presents the basic characteristics of the five datasets 

used, whereas section 5 describes the computer simulation experiments and the construction of 

model parameters. The results are covered and discussed in section 6. Finally, section 7 

concludes the paper and outlines possible future research in this area. 
 

BACKGROUND 
 

One of the most commonly used data mining approaches in credit scoring research is NNs. 

Khashman (2009) uses NNs on an Australian dataset and finds that single-hidden layer NN 

outperforms double-hidden layer NN, and that a training to validation ratio of 43.5:56.5 percent 

is the best training scheme on the data. Baesens, Van Gestel et al.(2005) use NNs and LR on a 
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dataset from a UK financial institution and find that the NN approach does not significantly 

outperform the estimated proportional hazards models. West (2000) tests five NN architectures 

(multilayer perceptron (MLP), mixture-of-experts (MOE), RBFNN, learning vector quantization 

(LVQ), and fuzzy adaptive resonance (FAR) against LDA, LR, kNN, kernel density estimation 

(KDE), and DTs on credit datasets from the University of Hamburg (Germany) and Australia 

using 10-fold cross-validation. The study finds that among neural architectures the ‘mixture-of-

experts’ and RBFNN perform the best, whereas among the traditional methods LR analysis is the 

most accurate.  

 

The application of SVMs in credit scoring models is more recent (Belloti & Crook, 2009). Li, 

Shiue, and Huang (2006) use SVM on a real world dataset from Taiwan and compares it to NN. 

They find that SVM surpasses traditional NN models in generalization performance and 

visualization. Bellotti and Crook (2009)  use  SVM, LR, LDA and kNN on a very large dataset 

(25000 records) from a financial institution and find that SVM is comparatively successful in 

classifying credit card debtors who do default, but unlike other similar models, a large number of 

support vectors are required to achieve the best performance. 

 

Some researchers have used hybrid methods, and ensemble methods. Lee and Chen (2005) use a 

hybrid NN and multivariate adaptive regression splines (Standifird & Marshall) model and 

compare it to LDA, LR, NN, and MARS models on a real world housing loan dataset from a 

bank in China and find that hybrid NN outperforms LDA, LR, NN, and MARS. Lee and Chen 

(2009) use hybrid SVM, classification and regression tree (CART), MARS and grid search on a 

credit card dataset from a bank in China and find that the hybrid SVM has the best classification 

rate and the lowest Type II error in comparison with CART, MARS. Paleologo, Elisseeff and 

Antonini (2010) employ subbagged versions of kernel SVM, kNN, DTs and Adaboost on a real 

world dataset of IBM’s Italian customers and find that subbagging, an ensemble classification 

technique for unbalanced datasets, improves the performance of the base classifier, and that 

subbagged DTs result in the best-performing classifier. Yu, Wang and Lai (2009) use individual 

and ensemble methods for MLR, LR, NN, RBFNN, and SVM. Their ensemble models’ decisions 

are based on fuzzy voting and averaging, and group decision making. Three datasets are used in 

the study including a modified version of the Australian dataset (without missing values) and the 

German dataset described later in this paper. Yu, Wang and Lai (2009) find that a fuzzy group 

decision making (GDM) model outperforms other models on all 3 datasets. Chrzanowska, Alfaro 

and Witkowska (2009) use classification trees with boosting and bagging on a real world dataset 

from a commercial bank in Poland. They find the best performer to be an ensemble classifier 

using boosting with respect to accuracy and the identification of non-creditworthy borrowers. 

Two comparative studies (Zurada, 2007, 2010) use LR, NN, DT, memory-based reasoning 

(MBR), and an ensemble model using the German and SAS-1 datasets described later in this 

paper. Both studies find that for some cut-off points and conditions DTs perform well with 

respect to classification accuracy and that DTs are attractive tools for decision makers because 

they can generate easy to interpret if-then rules. Finally, in their preliminary computer simulation 

conducted on all five datasets (Tables 2-3), Zurada and Kunene (2010, 2011) describe initial 

findings with respect to the six methods and five datasets used in their study.    

 

Other studies have compared expert systems and genetic programming methods. Ben-David and 

Frank (2009) benchmark an expert system against NN, LR, Bayes, DT, kNN, SVM, CT, and 

RBFNN using a dataset from an Israeli financial institution. They find that when a problem is 

treated as a regression, some machine learning models can outperform the expert systems with 

statistical significance, but most models do not. When the same problem is treated as a 

classification problem, however, no machine learning model outperforms the expert systems. 

Chen and Huang  (2003) use an NN and genetic algorithm on data from the University of 

California Irvine (UCI) machine learning repository and report that using a Genetic Algorithm 

(GA)-based inverse classification allows creditors to suggest conditional acceptance and further 

explain the conditions used for rejection. Lee, Chiu, Chou and Lu (2006) use CART, MARS, 

LDA, LR, SVM on a real world bank credit card dataset from China and find that CART and 

MARS outperform traditional DA, LR, NN, and SVM with respect to accuracy on that dataset. 

Table 1 summarizes the previous studies on credit worthiness. 

 

Table 1.  Relevant studies on credit worthiness. 

Author(s), 

Year 

Technique(s) 

Used 

Dataset(s) 

Used 

Performance 

Measures 

Findings of the Study 

Hendley kNN  Large mail Minimization of Adjusted Euclidean 
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and Hand 

(1996) 

benchmarks: 

LR, DT, 

regression, 

decision graphs 

order  

company 

dataset 

bad risk rate among 

those accepted 

distance kNN 

outperforms other 

models on an unbalanced 

dataset 

West 

(2000) 

LR, LDA, KNN 

Kernel Density 

(KD), RT, 5 NN 

models. (MOE, 

RBF, MLP, 

LVQ, FAR) 

 

 

Australian,  

German  

Classification 

Accuracy, Cost of 

Error. 

0.5 = cut off point 

 

Australian 

Best Models: MOE, 

RBF, MLP, LR, LDA, 

KNN. Worst Models: 

LVQ, FAR, KD, RT. 

German 

Best Models: 

MOE, RBF, MLP, LR. 

Worst Models: LVQ, 

FAR, LDA, KNN, KD, 

RT. 

Nonparametric models 

maybe better suited for 

large datasets 

Chen and 

Huang  

(2003) 

NNs with 

Genetic 

Algorithms 

(GAs) for 

inverse 

classification. 

Benchmarks: 

LDA, CART 

 

Australian Classification 

Accuracy. 

0.5 = cut off point 

 

LDA and CART models 

more accurate at 

classifying good loans; 

NN more accurate 

classifying bad loans 

Lee, Chiu, 

Chou and 

Lu (2006) 

CART, MARS. 

Benchmarks: 

LDA, LR, NN, 

SVM 

One dataset 

from a Taipei 

bank  

Average 

classification rate 

Type I Error 

Type II Error 

CART and MARS 

outperform LDA, LR, 

NN, and SVM  

Baesens, 

Van Gestel 

et al.(2005) 

Survival 

Analysis: NN, 

Proportional 

Hazards.  

Benchmarks: 

LR 

One dataset 

from a UK 

financial 

institution 

Classification 

accuracy, uses 

confusion matrix 

 

 

 

NN did not significantly 

outperform proportional 

hazards models. 

Khashman 

(2009) 

NNs compares 

single hidden 

layer (SHNN) 

vs. double 

hidden layer 

NN (DHNN) 

Australian Accuracy The SHNN outperforms 

the DHNN 

Li, Shiue, 

and Huang 

(2006) 

 

SVM. 

Benchmarks: 

MLP NN. 

A dataset 

from Taiwan 

bank 

Classification 

accuracy 

Type I error 

Type II error 

SVM outperforms MLP 

Lee and 

Chen 

(2005) 

 

Two-stage 

hybrid 

MARS/NN 

model 

Benchmarks: 

LDA, LR, BPN, 

MARS 

A dataset 

from a 

Taiwan bank  

Classification 

accuracy  

Type I and Type II 

Errors, Expected 

Misclassification 

Costs 

Hybrid model 

outperforms LDA, LR, 

MARS and BPN with 

respect to (wrt.) expected 

misclassification costs. 

Paleologo, 

Elisseeff 

and 

Antonini 

(2010) 

Subbagging 

(ensemble) 

classification 

techniques 

applied to:  

Linear SVM, 

Poly SVM, NN, 

J48 DT, RBF, 

SVM 

Dataset from 

IBM’s Global 

Finance 

Italian clients 

AUC. 

Probability of a 

customer default 

using posterior 

probabilities, also 

used to identify 

cutoffs 

Subbagging on DTs, 

linear SVM and RBF are 

by far the best. 

Yu, Wang 

and Lai 

(2009) 

Intelligent-

agent-based 

fuzzy group 

decision making 

(GDM) model 

using NN and 

SVM agents. 

Benchmarks: 

RA, LR 

England 

dataset 

(Thomas, 

2002), UCI 

Japanese 

Credit card 

Data, UCI 

German. 

Accuracy 

Type I Error, 

Type II Error 

AUC (specificity, 

sensitivity) 

Fuzzy GDM outperforms 

Individual (LRA, RA, 

NN, SVMR), Ensemble 

(SVMR, NN) 

Bellotti and 

Crook 

SVM.  

Benchmarks: 

A credit card 

dataset from 

AUC  SVMs comparatively 

successful. SVM can 
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(2009) LRA, LR, kNN an 

unidentified 

“major 

financial 

institution” 

also be used for feature 

selection. 

(Zurada, 

2007) 

DT (entropy, 

chi-squared, 

Gini) 

Unidentified Classification 

Accuracy; cutoffs 

at 0.3; 0.5; 0.7 

Differences insignificant, 

but chi-squared and 

entropy generate the 

simpler trees. 

(Zurada, 

2010) 

LR, NN, 

RBFNN, SVM 

CBR, DTs.  

UCI German  Accuracy 

AUC. 

DT models classify 

better than other models  

Ben-David 

and Frank 

(2009) 

A ‘‘mind 

crafted” credit 

scoring 

expert system 

(ES)  is 

compared with 

dozens of 

machine 

learning models 

(MLM). 

A dataset 

from a 

leading 

Israeli 

financial 

institution 

Accuracy (hit ratio, 

Cohen’s Kappa, 

mean absolute 

error -regression) 

Classification 

experiment: no MLM 

had statistically 

significant advantage 

over ES wrt. hit ratio, 

Kappa statistic. 7 MLMs 

had such advantage in 

regression case 

(Chrzanows

ka et al., 

2009) 

Classification 

Trees, with 

Adaboost, 

Bagging 

A dataset 

from a Polish 

financial 

institution 

Specificity 

Sensitivity 

Average 

misclassification 

rate 

Ensemble classifier 

constructed using 

boosting method, D1 – 

single classification tree 

based on QUEST 

algorithm best models 

This Study LR, NN, 

RBFNN, SVM, 

kNN, DT 

Australian 

(UCI) 

German 

(UCI) 

SAS-1 

SAS-2 

Farmer 

Classification 

Accuracy at 0.5 

cutoff 

AUC  0.5 cutoff 

AUC Global 

German: SVM best at 

0.5 cutoff overall 

classification.  

 

Observations about 

Datasets: Database size 

(largeness) does not 

necessarily improve 

performance. Having 

only real numeric 

attributes decreases 

dataset performance. 

 

SVM better candidate on 

balanced datasets (global 

performance)  

 

NN, DT better 

candidates on 

unbalanced datasets with 

missing data, but kNN 

does better on 

unbalanced dataset if 

there’s no missing data 

 

DTs better candidates for 

predicting bad loan at 0.5 

cutoff 

 

Financial attributes like 

the debt-ratio more 

important than 

demographic, social, 

personal attributes like 

employment status 
 

Although relatively few articles have been published in Journal of International Technology and 

Information Management on credit worthiness, there are a few studies on data mining/knowledge 

discovery techniques in both similar and different domains. For example, Krishnamurthi (2007) 

applied an unsupervised learning hierarchical clustering technique to find patterns in a small 

credit card database which contained data about 45 individuals only. The author segmented the 

customers into three clusters and found delinquency patterns in each cluster. Cluster one was the 

safest segment as it reflected low risk. It showed that matured adults with high levels of 

education, longer job tenure, and who paid their balances in full were less likely to default and be 

delinquent. Clusters two and three had episodes of delinquency and contained risky customers. 

http://www.questia.com/library/p408821/journal-of-international-technology-and-information
http://www.questia.com/library/p408821/journal-of-international-technology-and-information
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In another study Kumar et al. (2011) used hybrid machine learning techniques based on GA and 

time series analysis (TSA) to investigate data for 259 days trading values for two companies 

from the Indian stock market. The authors achieved about 99% accuracy in predicting the next 

day stock market values.  

 

This paper evaluates the performance of six methods on five different datasets to offer more 

contextualized understanding of the compatibility of methods and datasets. Though the methods 

considered in this study have been applied to credit-scoring models in the prior studies, our study 

offers a richer and contextualized interpretation of the application of these methods by evaluating 

all six models on five different real world data sets whose characteristics vary with respect to: the 

type and number of variables, the distribution of bad credit and good credit samples in the data, 

the extent of missing values, the number of samples, and country of data collection (Tables 2 and 

3). The datasets used in this study are chosen because many of them are publicly available and 

have been used in other studies so the results of this study may be compared with past and 

hopefully future results of the same or similar datasets. Except the benchmarking model LR, 

most of the models in this study have been found to show promise in a credit worthiness context 

(Belloti & Crook, 2009; Henley & Hand, 1996; West, 2000). 
 

DESCRIPTION OF SELECTED MODELS USED IN THE STUDY 
 

This study uses six computational intelligence models. These are logistic regression (LR), neural 

networks (NN), decision trees (DT), radial basis function neural networks (RBFNN), support 

vector machines (SVM), and k-nearest neighbor (k-NN). The first three models are very well-

known and have been successfully used for classification problems in many existing studies 

(Yuan, Li, Guan, & Xu, 2010). Examples include a standard feed-forward NN with back-

propagation and a landmark C4.5 algorithm with entropy reduction for DTs (Mitchell, 1997; 

Quinlan, 1987, 1993). NNs encode knowledge they learn in weights linking neurons, whereas 

DTs store knowledge in easy to understand if-then rules. NNs have proven to be very effective 

classifiers in many domains as they use all input variables together to build nonlinear boundaries 

to separate data. However, it may be difficult to extract if-then rules from their weights. On the 

other hand, DTs generate easy to interpret rules, but create linear partitions to separate data using 

one variable at a time. Consequently, we only provide the fundamental properties of the three 

remaining models used in our study. These are RBFNN, SVM, and k-NN. 

Radial Basis Function Neural Network 

An RBFNN consists of two layers, a hidden layer and an output layer. It differs from a feed-

forward NN with back-propagation in the way the neurons in the hidden layer perform 

computations (Mitchell, 1997). Each neuron in a hidden layer represents a point in input space 

and its output for a given training pattern depends on the distance between its point and the 

pattern. The closer these two points are, the stronger the activation. The RFBNN uses Gaussian 

activation functions uj whose width may be different for each neuron. The output uj of the jth 

hidden neuron is given by












 


22

)()(
exp

j

j
T

j

ju


 xx
, where j = 1, 2, …., m, and m is the number 

of hidden neurons, x is the input pattern vector, μj is its input weight vector (the center of the 

Gaussian for node j), and 2
j is the normalization parameter, such that 10  ju  (the closer the 

input to the center of the Gaussian, the larger the response of the neuron). 

 

The output layer forms a linear combination from the outputs of neurons in the hidden layer of 

the form uw
T

jjy  , j = 1, 2, …, l, where l is the number of neurons in the output layer, jy  is the 

output from the jth neuron in the output layer, jw is the weight vector for this layer, and u  is the 

vector of outputs from the hidden layer.  

 

A network learns two sets of parameters. First, it learns the centers and width of the Gaussian 

functions by employing the c-means clustering algorithm and then it uses the least mean square 

error algorithm to learn the weights used to form the linear combination of the outputs obtained 

from the hidden layer. As the first set of parameters can be obtained independently of the second 

set, RFBNN learns almost instantly if the number of hidden units is much smaller than the 

number of training patterns. Unlike a feed-forward NN with back-propagation, the RBFNN, 

however, cannot be trained to disregard irrelevant variables because it gives them the same 

weight in distance calculations.  
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Support Vector Machines 

SVM, originally developed by Vapnik (1998), is a method that represents a blend of linear 

modeling and instance-based learning to implement nonlinear class boundaries. This method 

chooses several critical boundary patterns, called support vectors, for each class (bad loan and 

good loan of the output variable) and creates a linear discriminant function that separates them as 

widely as possible by applying a linear, quadratic, cubic or higher-order polynomial term 

decision boundaries. A hyperplane that gives the greatest separation between the classes is called 

the maximum margin hyperplane in the form of   n
ii iybx )a)(a(  where i is support 

vector, iy is the class value of training pattern )(ia , b and i are parameters that represent the 

hyperplane and are determined by the learning algorithm. The vectors a  and )(ia represent a test 

pattern and support vectors, respectively.  ni ))(( aa  , which computes the dot product of the test 

pattern with one of the support vectors and raises the result to the power n , is called a 

polynomial kernel. One approach to determine the optimal value for n is to start with a linear 

model (n=1) and then increment it by a small value until the estimated error stops to decrease. 

Other two common kernel functions could also be used to implement a different nonlinear 

mapping. These are the radial basis function kernel and the sigmoid kernel. Which kernel 

function generates the best results is often determined by experimentation and depends on the 

application at hand as well. Constrained quadratic optimization is applied to find support vectors 

for the pattern sets as well as parameters b and i . Compared with DTs, for example, SVMs are 

slow but often yield more accurate classifiers because they create subtle and complex decision 

boundaries.  

The k-Nearest Neighbor Method 

In classifying a new case, the k-NN approach retrieves the cases it deems sufficiently similar and 

uses these cases as a basis for the new case (Mitchell, 1997). The k-NN algorithm takes a dataset 

of existing cases Dy ),(x  and a new case, ),( yz  x  to be classified, where each existing case in 

the dataset is composed of a set of variables and the new case has one value for each variable. 

The normalized Euclidean distance or Hamming distance zD , between each existing case and the 

new case (to be classified) is computed. The k existing cases that have the smallest distances to 

the new case are the k-nearest neighbors to that case. Based on the target values of the k-nearest 

neighbors, each of the k-nearest neighbors votes on the target value for the new case. The votes 

are the posterior probabilities for the class dependent variable.   

 

The new case is classified based on the majority class of its nearest neighbors. Majority voting is 

defined as follows:  


zii Dyx i
v

yvIy
),(

)(argmax

 
 where v is a class label, yi is the class label for 

one of the nearest neighbors, and )(I is an indicator function that returns the value 1 if its 

argument is true and 0 otherwise.  

 

In the majority voting approach every neighbor has the same impact on the classification. This 

makes the algorithm more sensitive to the choice of k. To reduce the influence of k one can 

weigh the impact of each nearest neighbor ix according to its distance: 2),(/1 ii dw xx   

As a result, training patterns that are located far away from z will have a smaller influence on the 

classification compared to those that are located closer to z. Using the distance-weighted voting 

scheme, the class label of the new case can be determined as follows:  

Distance-Weighted Voting:  


zii Dyx ii
v

yvIwy
),(

)(argmax  

There are two critical choices in the k-NN method, namely, the distance function and the 

cardinality k of the neighborhood. 

DATASETS USED IN THIS STUDY 

We have chosen five datasets from different financial contexts. In some cases, the datasets also 

describe family, social as well as personal characteristics of the loan applicants. In one of the five 

datasets the names of attributes are concealed for confidentiality reasons. The five datasets differ 

in the following ways:  number of cases, types of attributes, ratio of good to bad loans, and 

country of origin (three different countries). However all datasets were produced to determine 

the credit worthiness of customers. In nearly all five cases the datasets contain information about 

loan applicants that the (data collecting) financial institutions deemed to be creditworthy 

individuals to extend a loan to. Note: the nature of the problem is such that there would have 
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been other applicants who did not qualify for a loan at the time of application and are therefore 

not included in the datasets.  Although this situation does not impact the validity of our analysis, 

we should bear in mind that we cannot know if the excluded applicants would have paid off or 

defaulted on a potential loan.  We are interested in assessing the amenability of the datasets to 

the credit-scoring task. For simplicity, we refer to this amenability as the “quality” of the 

datasets. 

 

The use of multiple datasets is important in the context of our paper because the existing studies 

show mixed results but it is difficult to compare their results as datasets in different studies tend 

to be different. Our study brings the different datasets under the same simulation conditions thus 

allowing us to observe the effect of their idiosyncrasies. 

 

The general features of each dataset are described below. The German and Australian datasets 

are publicly available at the UCI Machine Learning Repository at 

http://www.ics.uci.edu/~mlearn/databases/, and SAS-1 and SAS-2 datasets are derived from the 

HMEQ dataset. The latter resides on the SAMPSIO library which can be accessed from within 

SAS and SAS Enterprise Miner. Depending on the method, the values of the numeric attributes 

were normalized to the [-1, 1] range or to a zero mean and a unit variance. Variable and value 

reduction techniques are separately discussed at the end of the section on results.  Below is a 

description of each of the datasets. 

 

Table 2.  General characteristics of the five datasets used in the study. 

Dataset Characteristics 

 Cases Attributes Categorical Numeric Target variable: 

B = bad loans 

G = good loans 

Australian 690 15 9 6 B: 383 

G: 307 

SAS-1 5960 12 2 10 B: 1189 

G: 4771 

SAS-2 3364 12 2 10 B: 300 

G: 3064 

German 1000 20 12 8 B: 300 

G: 700 

Farmer 244 15 1 14 B:  65 

G: 176 

 

 

Table 3.  General description of the datasets. 

Dataset Description 

Australian The dataset describes financial attributes of Japanese credit card customers. It is 

available at the UCI Machine Learning Repository. The attributes names are not 

revealed. Though not large in size, it is well balanced with bad loans slightly 

overrepresented (55% and 45% of bad loans and good loans, respectively). The 

dataset contains a mixture of continuous variables and nominal variables and there 

are some missing values. Two nominal variables take a large number of distinct 

values (9 and 14) and six remaining variables have only 2 or 3 distinct values. The 

dataset has been used in more than a dozen of studies, which include for example,  

Quinlan (1987, 1993) who tested improvements to the DT algorithms he had 

proposed as well as other researchers (Boros et al., 2000; Eggermont, Kok, & 

Kosters, 2004; C. L. Huang, Chen, & Wang, 2007; Luo et al., 2009).   

SAS-1 The dataset describes a financial data of home improvement and debt consolidation 

loans. The dataset contains attributes that are continuous, and nominal (with a small 

number of distinct values) that describe financial, and some personal characteristics 

of the loan applicants like type of employment. It is an unbalanced dataset where bad 

loans are underrepresented by a ratio of about 1:4. The dataset contains a large 

number of missing values which are replaced using imputation techniques. The 

dataset is available from the SAS Institute, including the description of attributes. 

This dataset has been used in a few studies, for example (Zurada, 2007, 2010). 

SAS-2 The dataset describes financial data of home improvement and debt consolidation 

loans. It contains attributes that are continuous, and nominal (with a small number of 

distinct values) that describe financial, and personal characteristics of loan applicants. 

It is a very unbalanced dataset with bad loans significantly underrepresented by a 

ratio of approximately 1:10. It is obtained from the SAS-1 dataset by removing all 

missing values. Though the dataset has the same variables as the SAS-1 dataset and 

approximately 50% of the same cases, we consider it a different dataset as the ratio of 

http://www.ics.uci.edu/~mlearn/databases/


Cases from the Loan Credit Scoring Domain  J. Zurada, N. Kunene & J. Guan 

© International Information Management Association, Inc.  2014 65          ISSN:  1543-5962-Printed Copy       ISSN:  1941-6679-On-line Copy 

bad loans to good loans has changed dramatically. This dataset has been used in a few 

studies, for example (Zurada, 2007, 2010). 

German The dataset is obtained from a German financial institution for various loan types. It 

describes financial, personal, and familial information about the applicants. The 

dataset is unbalanced as bad loans are underrepresented (30% of bad loans and 70% 

of good loans). It is available at the UCI Machine Learning Repository. It contains 

eight numeric attributes, twelve categorical attributes, and there are no missing 

values. One of the nominal attributes has 10 unique values and the remaining 

attributes have between 2 and 5 distinct values. The names of the attributes are 

available. The dataset seems richer than the rest because it contains personal and 

demographic data that is not captured in the other datasets. The dataset has been used 

extensively in a number of studies, for example (Huang, Chen, Wang, 2007; Luo, 

Cheng, Hsieh, 2009). 

Farmer The dataset is the smallest of the five datasets and is an unbalanced dataset where bad 

loans are underrepresented (27% of bad loans and 73% of good loans) and the names 

of the attributes are available. The dataset includes one nominal variable and the rest 

are continuous variables that include financial ratios that describe each farm 

borrower’s financial profile. There are no missing values. The dataset was collected 

from Farm Service Agency (FSA) loan officers and has been used in several studies 

(Barney, Graves, & Johnson, 1999; Foster, Zurada, & Barney, 2010). 

MODEL PARAMETER SETTINGS AND PERFORMANCE METRICS 

Weka 3.7 (www.cs.waikato.ac.nz/ml/weka/) is used in this study to perform all the computer 

simulations. There are multiple approaches to parameter optimization (Belloti & Crook, 2009; 

Kecman, 2001). In this study, for LR and DT models we used standard/default Weka settings. 

However, the parameters for the NN, RBFNN, SVM, and kNN models were tuned for the best 

performance on each corresponding dataset using the Weka CVParameterSelection meta-

classifier, which implements a grid search. After finding the best possible setup, the meta-

classifier then trains an instance of the base classifier with these parameters and uses it for 

subsequent predictions on the test sets. 

 

More specifically: 

 

 The LR used a quasi-Newton Method with a ridge estimator for parameter optimization 

(le Cessie & van Houwelingen, 1992).  

 

 The DT generated a pruned C4.5 decision tree (Quinlan, 1987). The confidence factor 

that determines the amount of pruning was set to 0.2. Smaller values assigned to the 

confidence factor would incur more pruning. 

 

 The standard 2-layer feed-forward NN with back-propagation was used. Momentum was 

set to 0.2, and the learning rate was initially set to 0.3. A decay parameter, which causes 

the learning rate to decrease, was enabled. This may help to stop the network from 

diverging from the target output as well as improve general performance. Depending on 

the dataset, the number of neurons in a single hidden layer varied from 9 to 23 and was 

computed as a=(number of attributes including dummy attributes)/2+1.  

 

 The RBFNN implemented a normalized Gaussian radial basis function network. It used 

the k-means clustering algorithm to provide the basis functions and learn a logistic 

regression on top of that. Symmetric multivariate Gaussians were fit to the data from 

each cluster. The minimum standard deviation for the clusters varied between 0.4 and 

1.6, and the number of clusters varied from 4 to 14 for the five datasets. 

 

 The SVM implemented Platt's sequential minimal optimization (SMO) algorithm for 

training a support vector classifier (Keerthi, Shevade, Bhattacharyya, & Murthy, 2001; 

Platt, 1998). Depending on the dataset, the complexity parameter C and the power of the 

polynomial kernel was set to n=1 or n=2. Also, RBF kernel was used with γ=0.01. The 

grid method was used to find the optimal parameters for C, n, and γ.  

    

 The kNN implemented a k-nearest neighbor classifier (k=10) according to the algorithm 

presented by Aha and Kibler (1991). The Euclidean distance measure is used to 

determine the similarity between the samples. The inverse normalized distance 

weighting method and the brute force linear search algorithm were used to search for the 

nearest neighbors. For each dataset, we performed several experiments for different 

http://www.cs.waikato.ac.nz/ml/weka/
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values of k and used the normalized Euclidean distance for numeric variables and the 

Hamming distance for nominal variables to calculate the similarity between cases. The 

numeric attributes were normalized to ensure that features with larger values do not 

overweight features with lower values. Furthermore, to minimize the influence of k, we 

used the voting approach with weighted-distance.  

 

Ten-fold cross-validation was applied to each of the six methods and five dataset pairings 

investigated in this study using a methodology as described in Witten and Frank (2005). To 

obtain reliable and unbiased error estimates each experiment was repeated 10 times. The 

performance measures of the methods and datasets were then averaged across these 10 folds and 

10 runs, and a two-tailed paired t-test (at α=.05 and α=.01) was used to verify whether the 

classification performances across the models and datasets  were significantly different from the 

baseline (LR) method and the baseline (Australian) dataset. In other words, we state hypotheses 

in an implicit way. For example, using LR as the benchmark one can state the following 

hypothesis and perform a two-tailed t-test: The overall rate generated by a model (for example, 

NN) is significantly better/worse than the rate generated by LR. 

 

The LR method was used as the baseline because this traditional technique has been successfully 

applied to classification problems going back many years, before computational intelligence 

techniques emerged.  The Australian dataset was chosen as the baseline as it appears to have the 

“best” attributes and other data characteristics and all the past models built on it consistently 

exhibited the highest classification performance. The parameters for the models on each dataset 

were optimized for the best performance. 

 

We use the overall correct classification accuracy rates as well as the classification accuracy 

rates for good and bad loans (at a standard 0.5 cutoff point) to evaluate the performance of the 

six methods across the five datasets and the five datasets across the six methods. In other words 

if the target event is “detecting bad loans” and the model generates a loan default probability ≥ 

0.5, the individual should not be granted a loan. We should point out that though the choice of 

this 0.5 cutoff point is found in a majority of existing studies, it is not always appropriate as it 

assumes that the costs of misclassifying a good loan is the same as that of misclassifying a bad 

loan. In practice this is not always the case. Thus financial institutions may choose any cutoff 

point within the [0, 1] range to approve or deny a loan. For instance, if the target event is 

“detecting bad loans” and the cost of classifying a bad loan as a good loan is 2.33 times greater 

than the cost of classifying a good loan as bad loan, a 0.3 cutoff point should be used. This 

cutoff point may be applicable in situations where banks do not require security or collateral for 

smaller loans. Consequently, if a model produces a probability of loan default ≥ 0.3, the 

customer will be denied a loan. If, however, financial institutions secure larger loans by holding 

collateral such as the customer’s home, a more lenient cutoff point of, say, 0.7 could be applied. 

Therefore in practice, ROC chart(s) and the area(s) under the curve(s) are useful analytics tools, 

because they capture the global performance of the methods and datasets at all operating points 

within the range [0,1] as well as the performance of the methods and datasets at specific cutoff 

points.   

 

A ROC chart plots a true positive rate (TPR) vs. a false positive rate (FPR) for all cutoff points 

within the [0,1] range. Each point on a curve represents a cutoff probability. However, the exact 

locations of the cutoff probabilities are difficult to pinpoint on every chart because they depend 

on the method and the dataset, i.e., they vary from method to method and from dataset to dataset. 

Points in the lower left corner and in the upper right corner represent high and low cutoff 

probabilities, respectively. The extreme points (1,1) and (Lenat) represent no-data rules where all 

cases are classified into bad or good loans, respectively. The area under the curve gives a 

quantitative measure of performance: the higher the classification accuracy, the further the ROC 

curve pushes upward and to the left. The area under the curve ranges from 50% for a worthless 

model, to 100% for a perfect classifier.  

 

Tables 4 to 6 present the overall, bad loans, and good loans classification accuracy rates with 

their respective standard deviations at a single 0.5 probability cutoff point. The areas under the 

ROC curves and standard deviations are shown in Table 7. With the LR method as the baseline 

method we compare the six methods’ rates on each of the five datasets (across the table rows). 

We suffix the performance rate with the superscripts 
b,bb 

and
 w,ww 

to indicate whether each one of 

the five other methods performs significantly better or worse (at α=0.05 and α=0.01 respectively) 

than the baseline method LR. The LR method is chosen as the baseline because it was very often 
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used as the primary and the only method in early studies on creditworthiness and bankruptcy 

predictions. Down the table columns, we compare the performance of the five datasets for each 

of the six methods with the Australian dataset as the baseline. We prefix the rate with subscripts 

b,bb and w,ww
 
to indicate whether each dataset is significantly better or worse (at α=0.05 and 

α=0.01, respectively) than the Australian (i.e. baseline) dataset in terms of classification 

performance. The Australian dataset is used as the baseline as it exhibits the best classification 

performance on all six methods compared to other datasets. Furthermore, we average the 

classification accuracy rates in the rows and columns by data method and by dataset, to obtain a 

more general insight into the performance characteristics of the methods and datasets. We also 

rank the methods (last row) and datasets (last column) of Tables 4-7 using the average scores. 

 

The ROC curves in Figures 1-5 compare the global performance of the six methods for each of 

the five datasets, while the ROC curves in Figures 6-11 compare the five datasets for each of the 

six methods. All the presented ROC charts capture the performance of the methods and datasets 

for bad loans, i.e., each method’s correctly classified loan defaults divided by the total number of 

loan defaults are plotted on the Y-axis (sensitivity). The X-axis plots good loans incorrectly 

classified as bad loans divided by the total number of good loans (1-specificity). We assume the 

detection of bad loans is more important than the detection of good loans for credit granting 

institutions, thus even though it would be easy to show corresponding charts for good loans, we 

do not do so for this study. 

RESULTS AND DISCUSSION 

In this section we present the results of the experiments and provide an in-depth discussion of 

these results. First the overall classification rates are examined and compared across the different 

models and the different datasets. This is followed by a more detailed look where the models and 

the datasets are evaluated for their classification accuracy for bad loans or good loans. Then an 

analysis of the areas under the curves in ROC charts is provided. Finally, we present feature 

reduction techniques applied to the 5 datasets and discuss their effect on the performance of the 

models as well as list the relevant features which were retained in each dataset. 

Overall classification: the models 

In this section we report on the results of applying the methods to the data. We refer here to LR, 

SVM, DT, RBFNN, NN and kNN as models rather than methods (Hevner et al., 2004; March & 

Smith, 1995) 

 

Table 4 shows that, with respect to the overall classification accuracy rates, the NN (85.8%), 

RBFNN (86.2%), and kNN (86.3%) models significantly outperform the baseline LR (85.2%) 

model on the better balanced Australian dataset where bad loans are slightly overrepresented
1
. 

There is not, however, a significant difference between the performance of LR versus SVM 

(85.6%) and DT (85.6%). The average standard deviations (spreads) of the classification 

accuracy rates seem relatively small and amount to just 3.9%. For the unbalanced SAS-1 dataset 

the NN, RBFNN, SVM, and DT models classify cases significantly better than LR, whereas kNN 

is the only model which performs significantly worse than LR. For the SAS-2 dataset, SVM 

(93.4%) and DT (94.4%) perform significantly better than LR (92.5%), whereas the remaining 

three models classify cases significantly worse. The high overall classification accuracy rates on 

the SAS-2 dataset are due to the fact that this dataset is heavily overrepresented by good loans. 

For the SAS-1 and SAS-2 datasets the average spreads in the rates are very small and equal to 

1.1% and 0.8%, respectively. For the German dataset LR and SVM seem to significantly 

outperform the four remaining models. For the small Farmer dataset only the kNN model appears 

to outperform LR, whereas SVM classifies cases significantly worse than the baseline model, 

and the other three remaining models are no better than the baseline. One can also see that the 

average spreads in the rates are quite significant (6.8%). This could be attributed to the small size 

of this dataset. These results are consistent with those reported by Huang, Chen and Wang 

                                                           
1
 Note that even if the difference between the two rates (85.8% - 85.2% = 0.6%) for the two models (NN and LR) 

appear to be tiny, the t-test will still show the statistically significant difference between the classification 

performance of the two models. In other words, if one model generates a consistently smaller rate that than another 

model (even by a small amount), it is likely that the t-test will show the statistically significant difference. Also note 

that in a formula (not shown here) for computing the t-value includes the variances of the rates normalized by the 

number of samples. The above observation applies to the results presented in Tables 4-7.  
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(2007) with respect to the overall classification accuracy rates at the 0.5 cutoff point for the NN, 

DT, and SVM models when applied to the Australian and German datasets. 

 

The above analysis offers some mixed results. At the 0.5 cutoff point there is not a clear and 

sustained pattern in terms of the superiority of one model over another that could be generalized 

and tied to particular features of the datasets with perhaps one exception. DTs perform 

significantly better than the other models on SAS-1 and SAS-2 datasets. These datasets grossly 

underrepresent the number of bad loans. The last row on Table 4 shows the averages of the 

overall classification accuracy rates for each model across the five datasets and suggests that the 

differences between the models are small. NN (83.7%) seems to perform best followed by DT 

(83.6%), RBFNN (83.1%), SVM (83.0%), LR (82.9), and kNN (82.5%). From a practitioner 

point of view, this may be encouraging because it suggests in this case that a choice to use DTs 

for their utility as a readily interpretable model isn’t necessarily at the expense of foregoing large 

degrees of classification accuracy relative to alternative models. 

Overall classification: the datasets 

The analysis down the columns (of Table 4) enables us to assess the quality of each dataset used 

to build the models. The SAS-2 dataset appears to have the most favorable characteristics, as the 

six models built on it have the highest mean overall classification accuracy rate (92.8%). This 

may be largely due to the fact that this dataset is heavily predominated by good loans, i.e., at a 

ratio of 10:1, and they classify good loans almost perfectly well. For the Australian, SAS-1, 

Farmer, and German datasets the six models exhibit the average classification rates of 85.8%, 

84.7%, 77.5%, and 74.9%. 

Table 4.  The average overall correct classification accuracy rates [%] and standard 

deviations at a 0.5 probability cutpoint. 
 

 LR NN RBFNN SVM kNN DT Avg AvgRank 

Australian 85.2 

4.0 

85.8
b 

3.8 

86.2
bb 

4.1 

85.6 

3.7 

86.3
bb 

3.8 

85.6 

3.7 

85.8 

3.9 

2 

SAS-1 ww83.6 

1.0 
bb86.9

bb 

1.3 
ww84.6

bb 

1.1 
w84.8

bb 

1.0 
ww79.1

ww 

1.3 
bb88.9

bb 

1.0 

84.7 

1.1 

3 

SAS-2 bb92.5 

0.7 
bb92.1

ww 

0.6 
bb92.2

ww 

1.1 
bb93.4

bb 

0.7 
bb92.4

w 

0.5 
bb94.4

bb 

1.0 

92.8 

0.8 

1 

German ww75.8 

3.8 
ww75.4

w 

3.8 
ww75.0

w 

3.9 
ww75.9 

3.6 
ww74.6

ww 

3.4 
ww72.9

ww 

4.0 

74.9 

3.8 

5 

Farmer ww77.2 

7.1 
ww78.3 

6.0 
ww77.6 

6.0 
ww75.2

ww 

8.3 
ww80.2

bb 

6.5 
ww76.2 

7.1 

77.5 

6.8 

4 

Average 82.9 

3.3 

83.7 

3.1 

83.1 

3.2 

83.0 

3.5 

82.5 

3.1 

83.6 

3.4 

  

AvgRank 5 1 3 4 6 2   

Classification of bad loans: the models and datasets 

Similar analyses can be undertaken for the classification accuracy rates for bad loans (Table 5) 

and good loans (Table 6) from the six models on each of the five datasets at a 0.5 cutoff point. 

For bad loans, Table 5 shows that all but one model, the SVM (80.0%), outperform LR (84.3%), 

with the RBFNN and DT models classifying bad loans the best with 89.0% and 87.3% 

classification rates on the Australian dataset. For the SAS-1 dataset all five models are better 

than the LR model (30.4%), with NN (59.0%) and DT (54.8%) as the best two. With respect to 

the SAS-2 dataset DT (47.3%), SVM (30.5%), and RBFNN (30.5%) appear to do better than the 

LR model (22.7%). On the remaining datasets, namely, German and Farmer datasets, NN and 

SVM obtain much better classification rates than the other four models. Ranking the six models 

with respect to the average classification rates of bad loans on the five datasets, one finds that DT 

(54.9%) stands out, followed by NN, SVM, RBFNN, LR, and kNN (44.8%) in this order. Table 5 

also shows that the NN (14.2%), kNN (14.5%), and LR (22.7%) models built on the very 

unbalanced SAS-2 dataset classify bad loans very poorly. 
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Table 5.  The average correct classification accuracy rates [%] and standard deviations at a 

0.5 probability cutpoint: bad loans. 
 

 LR NN RBFNN SVM kNN DT Avg AvgRan

k 

Australian 84.3 

5.4 

86.8
bb 

5.0 

89.0
bb 

4.5 

80.0
ww 

5.3 

88.3
bb 

4.6 

87.3
bb

 

5.2 

86.0 

5.0 

1 

SAS-1 ww30.4 

4.0 
ww59.0

bb 

4.8 
ww34.2

bb 

4.4 
ww34.6

bb 

4.3 
ww33.4

bb 

4.6 
ww54.8

bb 

4.5 

41.1 

4.4 

4 

SAS-2 ww22.7 

6.3 
ww14.2

ww 

6.2 
ww30.5

bb 

8.3 
ww30.5

bb 

7.4 
ww14.5

ww 

5.9 
ww47.3

bb 

9.5 

26.6 

7.3 

5 

German ww48.3 

8.2 
ww49.7

bb 

8.3 
ww46.1

w 

8.9 
ww47.2

w 

8.1 
ww41.5

ww 

7.9 
ww44.2

w

w 

9.4 

46.2 

8.5 

2 

Farmer ww44.9 

18.5 
ww34.7

ww 

17.1 
ww38.1

ww 

19.4 
ww48.5

b 

18.7 
ww46.4

 

17.7 
ww40.9

 

19.5 

42.3 

18.5 

3 

Average 46.1 

8.5 

48.9 

8.3 

47.6 

9.1 

48.2 

8.8 

44.8 

8.1 

54.9 

9.6 

  

AvgRank 6 2 5 4 3 1   

 

Rankings of the datasets with respect to the average classification rates of bad loans show the 

balanced Australian dataset stands out (86.0%) followed by a very distant German dataset 

(46.2%). The SAS-2 (26.6%) dataset is the worst. It appears that as the proportion of bad loans 

decreases, so follows the average classification accuracy of bad loans. 

Classification of good loans:  the models and datasets  

Table 6 depicts the classification rates for good loans. The differences between the classification 

accuracy rates for the six models are tiny across all five datasets. For good loans SVM seems to 

perform the best (92.6%), followed by LR (92.0%), NN (91.9), RBFNN (91.7), kNN (91.3%), 

and DT (91.0%). And, as expected, the datasets dominated by good loans exhibit an excellent 

capacity to correctly classify good loans: SAS-2 (99.3%), SAS-1 (95.5%), and Farmer (91.1%). 

The relatively better balanced German and Australian datasets fair worse at 87.2% and 85.6% 

respectively. We leave the rest of the analysis to the interested readers.   

 

When one looks at the performance of the six methods on one dataset at a time as shown in 

Tables 4 to 6, it is clear that it is difficult to categorically conclude or to determine which model 

is best and to generalize the results obtained at a standard operating cutoff point of 0.5. No one 

model clearly dominates the others. The quality of the models depends very much on the 

characteristics of the dataset such as the ratio of good loans to bad loans, the number of samples, 

the number and type of attributes, as described in Section 4. On the other hand ROC curves can 

testify to the global efficiency of a model at all operating points. Table 7 below shows a 

comparison of the six models for each of the five datasets using the areas under the ROC curves. 

Table 7 can also be analyzed in conjunction with the ROC charts presented in Figures 1-11. 

Table 6.  The average correct classification accuracy rates [%] and standard deviations at a 

0.5 probability cutpoint: good loans. 
 

 LR NN RBFNN SVM kNN DT Avg AvgRank 

Australian 86.4 

5.6 

84.5
ww 

5.8 

82.9
ww 

6.9 

92.5
bb 

4.2 

83.9
ww 

6.4 

83.5
ww 

5.8 

85.6 

5.8 

5 

SAS-1 bb96.9 

0.8 
bb93.8

ww 

1.1 
bb97.1

bb 

0.8 
bb97.3

bb 

0.8 
bb90.5

ww 

1.4 
bb97.4

bb 

0.8 

95.5 

1.0 

2 

SAS-2 bb99.4 

0.5 
bb99.7

bb 

0.4 
bb98.2

ww 

0.9 
bb99.6

bb 

0.4 
bb100.0

bb 

0.0 
bb99.0

ww 

0.7 

99.3 

0.5 

1 

German b87.5 

4.3 
bb86.4

ww 

4.2 
bb87.3 

4.1 
ww88.2

bb 

4.0 
bb88.7

bb 

3.8 
bb85.1

ww 

4.7 

87.2 

4.2 

4 

Farmer bb89.7 

7.8 
bb95.2

bb 

5.2 
bb92.9

bb 

6.2 
ww85.6

ww 

8.7 
bb93.3

bb 

5.9 
bb89.9 

7.1 

91.1 

6.8 

3 

Average 92.0 

3.8 

91.9 

3.3 

91.7 

3.8 

92.6 

3.6 

91.3 

3.5 

91.0 

3.8 

  

AvgRank 1 3 4 2 5 6   

ROC charts: the models 

Table 7, constructed similarly to Table 4 or 6 with the six the models (across the rows) and five 

datasets (down the columns) shows the average areas under the ROC as a percentage and their 

respective standard deviations.  For the Australian dataset the range in the plotted areas under the 
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ROC curves is between 88.2% and 92.1%, with the SVM model performs significantly better 

(92.1%) and the DT model significantly worse (88.2%) than the benchmark LR model (91.1%), 

whereas the performance of the other three models is comparable to the LR model. Figure 1 

confirms the fact that the global classification accuracy rates of all the six models are excellent 

and that the differences in the models’ performances are slight on the balanced Australian 

dataset. For the SAS-1 dataset all five models outperform the LR model (79.4%) and the range of 

areas under the ROC curves is [79.4%, 86.3%]. The NN, DT, and kNN models, in this order, 

exhibit the best overall performance, whereas the SVM, LR and RBFNN models appear to be the 

worst. Figure 2 provides more insight into the performance differences between the models (on 

the SAS-1 dataset); that is, while NN and DT appear to do better at higher operating points, kNN 

outperforms all other methods at lower cutoffs. For the highly unbalanced SAS-2 dataset the 

differences between the models’ performances are also substantial with the range of areas under 

ROC curves between 75.7% (DT) and 94.2% (kNN). The kNN model and RBFNN (80.5%) 

perform significantly better than LR (78.7%), whereas DT is significantly worse than LR (Figure 

3). However, DT and SVM tend to perform better than other models at higher operating points. 

For the richer German dataset only SVM (79.4%) significantly outperforms LR (79.1%) at 

α=0.05, whereas RBFNN (77.5%), kNN (75.9%), and DT (65.1%) are significantly worse at 

α=0.01. For the Farmer dataset, which is smaller, unbalanced, and contains mainly continuous 

(real) attributes, DT (59.6%) and RBFNN (71.8%) are significantly worse than LR (73.5%), 

while the other three models are comparable to LR. This is also evident from Figure 5. The last 

row in Table 7 shows the averages areas under ROC curves for each model on each of the five 

datasets. Compared to other models, the kNN models (83.2%) stand out somewhat mainly due to 

their excellent performance on the SAS-2 dataset, whereas DTs are noticeably inferior. The 

nuances evident from this analysis can contribute in guiding practitioners, faced with the realities 

of their own data quality, in their selection of the method most likely to perform best. 

Table 7.  The average areas under ROC charts [%] and standard deviations. 
 

 LR NN RBFNN SVM kNN DT Avg AvgRank 

Australian 91.1 

3.6 

91.4 

3.2 

91.4 

3.6 

92.1
bb 

3.2 

91.2 

3.4 

88.2
ww 

4.4 

90.9 

3.6 

1 

SAS-1 ww79.4 

2.4 
ww86.3

bb 

2.0 
ww80.0

bb 

2.4 
ww81.0

bb 

2.3 
ww82.6

bb 

1.8 
ww84.4

bb 

2.5 

82.3 

2.2 

2 

SAS-2 ww78.7 

4.6 
ww78.0 

4.2 
ww80.5

bb 

4.4 
ww78.0

 

4.9 
bb94.2

bb 

1.6 
ww75.7

ww 

5.9 

80.9 

4.3 

3 

German ww79.1 

4.6 
ww79.1 

4.3 
ww77.5

ww 

4.7 
ww79.4

b 

4.3 
ww75.9

ww 

4.7 
ww65.1

ww 

6.3 

76.0 

4.8 

4 

Farmer ww73.5 

11.7 
ww74.0 

11.8 
ww71.8

w 

11.2 
ww74.3 

11.5 
ww72.0 

11.4 
ww59.6

ww 

13.7 

70.9 

11.9 

5 

Average 80.4 

5.4 

81.8 

5.1 

80.2 

5.3 

81.0 

5.2 

83.2 

4.6 

74.6 

6.6 

  

AvgRank 4 2 5 3 1 6   

 

Figure 1.  The ROC curves for the Australian dataset for the 6 methods. 
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Figure 2.  The ROC curves for the SAS-1 dataset for the 6 methods 

 

 

 

 

Figure 3.  The ROC curves for the SAS-2 dataset for the 6 methods 

 

Figure 4.  The ROC curves for the German dataset for the 6 methods. 
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Figure 5.  The ROC curves for the Farmer dataset for the 6 methods. 
 

 

ROC charts: the datasets 

With Table 7 and Figures 6-11 one can draw conclusions about the global quality of the datasets 

on which the models were built. When one analyzes the rates down the columns of Table 7, it is 

evident that the LR, NN, RBFNN, SVM, and DT models built on the Australian dataset perform 

significantly better than the models constructed on the four remaining datasets with the only 

exception being the kNN model built on the SAS-2 dataset. It is also evident that all the six 

models constructed on the Farmer dataset, the smallest dataset in our study, perform much worse 

than the models built on SAS-1, SAS-2, and German datasets. For the latter three datasets no 

consistent pattern of the models’ performances is evident. For example, the LR, RBFNN, and 

SVM models built on the three datasets have roughly the same performance, whereas NN does 

very well on the SAS-1 dataset. For DTs, their performance depends very much on the quality of 

the datasets, i.e. performance gradually declines with each of the ranked datasets in our study.  

 

The last column on Table 7 shows an ordered ranking of the datasets with respect to their 

quality: Australian (90.9%), SAS-1 (82.3), SAS-2 (80.9%), German (76.0%), and Farmer 

(70.9%). Figures 6-11 generally confirm these observations, even though as the curves intersect 

they can be more difficult to interpret. Figures 6 through 9 show that the LR, NN, RBFNN, and 

SVM models created on the balanced Australian dataset are generally the best models, whereas 

when built on the smaller, less balanced and the continuous attribute dominated Farmer dataset 

the same models are the worst. On the other hand, the differences between these same models 

when built on the three remaining datasets are less striking. Similar analysis of Figures 10 and 

11, however, shows that the differences in global performances of the kNN and DT models are 

very big across all five datasets; the DT model is especially poor on the (Farmer) dataset 

containing real values. Finally, the last column in Table 7 displays the average rates over the six 

models for each dataset (from best to worst): Australian (90.9%), SAS-1 (82.3%), SAS-2 

(80.9%), German (76.0%), and Farmer (70.9%). 

Attribute reduction issues  

Attribute reduction and variable worth sheds some insight on the domain variables most 

pertinent to predictive accuracy of the generated models. To ascertain the worth of variables we 

conducted attribute reduction in all five datasets. We selected two common variable reduction 

techniques from Weka. The first technique, CfsSubsetEval with BestFirst search method, 

evaluates the worth of a subset of attributes by considering the individual predictive ability of 

each feature along with the degree of redundancy between them. Subsets of features that are 

highly correlated with the class while having low inter-correlation are preferred. The BestFirst 

method searches the space of attribute subsets by greedy hill climbing augmented with a 

backtracking facility (Hall, 1998). The second technique, InfoGainAttributeEval with the Ranker 

search method evaluates the worth of an attribute by measuring the information gain with respect 

to the class. The Ranker method ranks attributes by their individual evaluations. For attribute 
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reduction we used the same technique as for the models’ building and testing, i.e., 10-fold cross-

validation and repeated it 10 times. The attributes which occurred most often in the folds were 

selected and labeled as very significant, and the attributes which occurred less often were labeled 

as significant. Both the CfsSubsetEval and InfoGainAttributeEval techniques were in agreement 

and consistently identified the same relevant set of the attributes. These relevant attributes are 

shown in Table 8. 

 

In general the attribute reduction had mixed effects on improving the overall classification 

accuracy rates, the rates for bad loans and good loans, as well as the global performances of the 

models (areas under ROC curves) in the 6 models and 5 datasets. We will first comment on the 

average overall rates. The rates for the LR, NN, and RBFNN models improved by about 0.5%, 

the rates for SVM and DTs were approximately the same, while the rates for kNN declined by 

2%. The rates for the Australian, SAS-2 datasets remained approximately the same, while the 

rates for SAS-1 dataset decreased by 1% and the average rates for the German dataset improved 

by about 0.5%. We observed some improvements in the AUC for some models and some 

datasets, but these happened due to the improvements in the classification rates of good loans. 

However, the detection rates for bad loans did not improve, except in a few isolated cases. As 

detecting bad loans is more important, we decided to present the results from computer 

simulation for the datasets with the full set of attributes. 

 

Variable reduction sheds some interesting insight on variable retention issues in the credit 

scoring domain. It appears that for the four datasets (one has hidden attributes) the financial 

characteristics describing customers are much more relevant than the personal, social, or 

employment ones (Table 8). These findings may be important for future data collection efforts 

by both researchers and practitioners. 
 

Table 8.  The description of the relevant and irrelevant input variables in the 4 datasets. 

The Australian data set in not shown as it has hidden attributes. 
 

 Relevance of attributes 

Datasets Very significant Significant Insignificant 

German  Checking account balance 

 Length of loan [in months] 

 Credit history 

 Savings account balance 

 Reason for loan request 

 Credit amount 

 Time at present employment 

 Marital status & gender 

 Collateral property for loan 

 Age of applicant [in years] 

 Other installment loans 

 Rent/own a house 

 Foreign worker 

 Debt as % of disposable 

income 

 Co-applicant or guarantor 

for a loan? 

 Years at current address 

 Number of accounts at this 

bank 

 Employment status 

 Number of dependents 

 Has a telephone? 
SAS-1  Amount of the loan 

requested 

 Number of major 

derogatory credit reports 

 Number of delinquent 

payments 

 Age (in months) of oldest 

trade line 

 Debt-to-income ratio 

 Years at present job 

 Value of current property 

 Number of recent credit 

inquires 

 Number of trade (credit) 

lines 

 Amount due on existing 

mortgage 

 Reason for loan: debt 

consolidation or home 

improvement 

 Six occupational categories 

SAS-2  Value of current property 

 Number of major 

derogatory credit reports 

 Number of delinquent 

payments 

 Age (in months) of oldest 

trade line 

 Number of trade (credit) 

lines 

 Debt-to-income ratio 

 Amount of the loan 

requested 

 Years at present job 

 Number of recent credit 

inquires 

 Amount due on existing 

mortgage 

 Reason for loan: debt 

consolidation or home 

improvement 

 Six occupational categories 

Farmer  Missed/delinquent 

payment(s) 2 years before 

default resulted in debt 

restructuring 

 Missed/delinquent 

payment(s) 1 year before 

  Debt-to-equity = Total 

debts/(Total assets - Total 

debt) 

 Return on farm assets = 

(Total cash farm income 

from operations - Operating 
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default resulted in debt 

restructuring 

 Debt-to-income ratio 

expenses - Family living 

expenses)/Beginning total 

farm assets 

 Return on equity = (Total 

cash farm income - 

operating expenses - 

interest expense - family 

living expenses)/(Total 

assets - Total debt) 

 Operating profit margin  = 

(Total farm income - actual 

operating expenses - family 

living expenses)/Total farm 

income 

 Projected debt repayment  = 

(Total debt and interest 

payments due/(Projected 

total cash farm income + 

Non-farm income) 
 Debt repayment ratio =  

Total debt and interest 

payments due/(Total cash 

farm income + Non-farm 

income) 

 Asset turnover = Total cash 

farm income/Beginning 

total farm assets 

 Operating expense =  Total 

operating expenses/Total 

farm income 
 Interest expense = Total 

actual interest expense 

paid/Total farm income 

 

 

Figure 6.  The ROC curves for LR for the 5 datasets. 
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Figure 7. The ROC curves for NN for the 5 datasets 
 

 

 

 

Figure 8.  The ROC curves for RBFNN for the 5 datasets. 
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Figure 9.  The ROC curves for SVM for the 5 datasets. 

 

 

Figure 10. The ROC curves for kNN for the 5 datasets. 
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Figure 11.  The ROC curves for DT for the 5 datasets 

 

CONCLUSION AND IMPLICATIONS 
 

Accuracy in the detection of loan defaults is crucial to the financial health of loan granting 

institutions. While the building of reliable credit scoring models has received a great deal of 

attention from researchers and practitioners in the last few decades, the recent turmoil in the 

credit lending industry and the consequences on the broader economy have seen credit lending 

institutions becoming extremely risk averse and reluctant to extend credit, therefore making such 

modeling even more relevant. In this study we assessed the performances of six known models 

on five real world datasets that were obtained from different financial settings. We also assessed 

the quality of the datasets on which the models were constructed. Specifically, in the analysis we 

first examined the models’ classification abilities at a standard 0.5 operating cutoff point with 

respect to the overall correct classification accuracy rates of bad loans and good loans. We also 

considered the areas under the ROC charts because they show the overall discriminating ability 

of the models. In addition we examined the charts themselves as the they can shed some insight 

into the specific performance of the models at lower or higher cutoff points, a quality that has 

more utility in practice and thus likely to be used by financial institutions because loan granting 

institutions do not necessarily use models which perform best at a cutoff point equal to 0.5. 

There are several important implications from our study. We found that there are differences 

between the global performances of the models on each individual dataset. For example, NN and 

DT do very well when built on the SAS-1 dataset, whereas kNN does well for the SAS-2 dataset 

(Table 7). The SAS datasets are three to five times larger than the next largest dataset in our 

experiments, the German dataset, and heavily predominated by the good loans. SVM performs 

the best on the Australian and German datasets. These datasets are medium sized and relatively 

more balanced. If one looks at the areas under the curves for all the six models, averaged over 

the five datasets, there are only small differences in the performances between the models. kNN 

(83.2%), NN (81.8%), and SVM (81.0%) slightly outperform LR (80.4) and RBFNN (80.2), but 

DT (74.6%) lags significantly. However, we recognize that even slight improvements in 

accuracy of predicting creditworthiness can generate substantial revenues or losses for financial 

institutions. The poor overall performance of DTs, as per ROC curves, is interesting as these are 

the models that are easiest to interpret. Moreover, if a financial institution is obliged by law to 

provide a clear explanation to borrower applicants why a loan is denied, as is required in 

provisions of the Equal Credit Opportunity Act (ECOA, 1975), the DTs’ interpretability and 

readily understood if-then rules may pose a choice dilemma for practitioners.  At the same time, 

DTs turned out to be good at detecting bad loans at higher operating points. Thus DTs may be a 

suitable model when a lending institution has high collateral requirements and applies a high or 

generous cutoff point, even though in this simulation they performed poorly on average when 

measured with the more global/overall metric of areas under ROC curves. It is also important to 

note that, for datasets predominated by good loans,  DT’s performance at the standard 0.5 cutoff 

point in bad loan classification was better in some cases than those of the other models and it was 
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not significantly worse in the rest of the cases. This is important because many of the datasets in 

this domain will be gathered from healthy financial institutions where it is more likely that the 

dataset will contain mostly good loans.  

 

With respect to the data quality, we found that the Australian dataset, which has been used in 

only a dozen of studies, has the best quality and most ideal characteristics in general. The models 

constructed on this dataset consistently exhibit the highest classification accuracy rates with the 

average area under the ROC curves equal to 90.9%, the only (higher) exception is the kNN 

model that is built on the SAS-2 dataset (94.2%). In general, models built on SAS-1, SAS-2, and 

the German datasets perform gradually worse: 82.3%, 80.9%, and 76.0%, respectively, with a 

few exceptions: The NN and DT models built on the unbalanced SAS-1 dataset stand out, 

whereas the models built on the Farmer dataset provided by FSA containing financial attributes 

of the farmers appear to be the worst (70.9%). If one, however, looks at the overall correct 

classification accuracy rates at a standard 0.5 cutoff point, the SAS-2 dataset (92.8%) appears to 

have the most favorable qualities. This is not surprising as it is due to excellent classification 

rates for good loans. The German dataset (74.9%) somewhat surprisingly appears to be the worst 

(Table 4), worse than the smaller and less balanced Farmer (77.5%) dataset using the areas under 

the ROC curves. It may be due to the fact that the German dataset, though balanced and well-

sized, contains many categorical variables taking distinct levels, and each level is represented by 

a dummy variable in the models.  On the other hand, when the goal is to detect bad loans at the 

standard 0.5 cutoff point, it is clear that a balanced dataset is important to performance, because 

when bad loans are underrepresented all these models perform rather poorly.  

 

Data quality: when looked at from a technical, algorithmic performance point of view, we can 

conclude that the German dataset is a poor quality dataset, that is, the data attributes aren’t good 

predictors of the classes (i.e. the state of default), in spite of the fact that the dataset is richer than 

competing datasets in the study and therefore that, contextually, may in fact capture more 

important socio-economic and/or demographic data that are not necessarily good descriptors of 

credit default but nevertheless important in practice. However, the models built on the German 

dataset have too many input variables, including dummy variables, and this may be the reason 

for the poor performance.  

From our results, it is also evident that large size of the dataset is not alone an unqualified 

positive characteristic. After all, the best dataset, the Australian, is actually the fourth largest 

dataset out of five. The German dataset, a large dataset (Fayyad & Irani, 1992) performs very 

poorly. The types of attributes also do not seem to have a definitive impact in the quality of the 

dataset as both the German and Australian datasets have an equal mix of nominal and numeric 

attributes and yet the German dataset is much poorer; and the SAS data and the Farmer datasets 

both contain predominantly numeric data and yet perform very differently. The Farmer dataset 

has almost exclusively continuous variables; it would however appear that a dataset with 

exclusively financial ratios as its attributes is not ideal for credit default classifications, as 

qualitative information about loan applicants is also needed. On the other hand, the ratio between 

good loans and bad loans seems a good predictor of data quality. When datasets are 

predominated by good loans, as they likely will be in reality, the more susceptible they are at 

describing credit defaults poorly.  

Analysis of variable importance or worth sheds more light into the relevance of variables in the 

credit scoring domain. Our study shows that in general, financial attributes of customers are 

more important than personal, social and employment ones for the prediction task. However this 

does not suggest practitioners should go out and collect exclusively financial data. We note that 

the exclusive use of continuous variable data is not well-suited to DTs, which we found are 

generally better at predicting bad loans. 

The models used in this study are well-known and have been used widely and in many contexts 

and application areas including credit scoring. To the best of our knowledge, however, no credit 

scoring study has undertaken an in-depth comparative examination of these models within the 

context of different data settings. The contribution of our study is that it offers a more nuanced 

and contextualized understanding of the application of these models within different data settings 

at the standard 0.5 operating cutoff point as well as overall global metrics. This is a contribution, 

because our analysis yields results that are prescriptively more useful for the practitioner.  For 

example, a finding that NN are better classifiers of bad loans (Chen & Huang, 2003) is 

incomplete and not practically useful where such a finding is grounded on an “ideal” data set. 

We believe practitioners are better served by model performance prescriptions that show that 
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model performance is contingent on the nature of the dataset because the ideal dataset, a well-

balanced dataset, is improbable in reality. For example NNs are better classifiers of bad loans on 

well-balanced datasets, at the 0.5 cutoff point. However, DTs are better classifiers of bad loans 

on unbalanced data sets with or without missing values. See Table 9 for a summary of the major 

findings of this study.  
 

Table 9.  The summary of the major findings from this study. 
 

Data Set 0.5 Cutoff 

Better Models  

Lower cutoffs 

Better models 

Higher cutoffs 

Better models 

Bad Loan  

avg. 

classification 

(Better models) 

Australian 

(medium sized, 

balanced) 

SVM Model 

differences 

indistinguishable 

Model 

differences 

indistinguishable 

RBFNN, DT 

SAS-1 (largest, 

unbalanced, 

missing values) 

NN, DT, kNN kNN NN, DT NN, DT 

SAS-2 (larger, 

unbalanced, no 

missing values) 

kNN and 

RBFNN 

kNN DT, SVM, kNN DT 

German (large, 

more balanced, 

more attributes) 

SVM SVM SVM NN, SVM 

Farmer (smallest, 

unbalanced, real 

values only) 

NN, SVM, kNN 

comparable to 

LR 

kNN Model 

differences 

indistinguishable 

NN, SVM 

 

In reality, the contingencies are multiple. This paper only begins to scratch the surface. Future 

studies can explore additional data contingencies. Our findings also suggest a need for more 

evidence for how these models perform at cutoff points other than the custom 0.5. Future 

research could examine performance at 0.1, 0.2, 0.3 cutoff points etc. Such evidence would 

better serve practitioners who may desire to use different measures to assess the attendant risks 

within their given data contexts. Future research can also extract if-then rules from ensuing 

models to improve their direct utility in the loan granting decision process.   
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