4,379 research outputs found

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    Sociomaterial Quasi-objects: From Interface to Experience

    Get PDF
    In this paper, I examine design practices by contrasting the Cartesian view of separation with an ontological perspective and argue for a dynamic, multiple, and entangled world (namely, sociomateriality). In the digital era we live in, sociomateriality helps move design practices forward in order to embrace constant changes and re- configurations. The word interface manifests a worldview of separation. Researchers typically conceive an interface as belonging to an artifact; that is, the technology, the material. More so, [people] typically considers user interfaces as the layer that separates and connects the technology and the user, which enables interaction. I recognize the limitations of the well-established perspective of interface design and contrast two traditional HCI concepts (namely, usability and context) from a Cartesian versus a sociomaterial perspective. However, to embrace and capitalize on the emergent digital reality, we need a new vocabulary. I introduce helpful concepts that one can use when designing and talking about experiences, and I ground the concepts in a sociomaterial ontological perspective. The concepts and design approach presented in this paper invite and encourage researchers to focus on experiences as sociomaterial entanglements and re-configurations and not as separated social and material entities. By using Michel Serres’ (1980) term quasi-objects, I call attention to the complexity of sociomaterial entanglements that make up experiences and emphasize a holistic and inclusive design approach. In addition, introducing sociomaterial concepts, such as agential cuts and intra-actions, into the human-computer interaction domain invites researchers to think and act in new ways in the era of digitalized experiences. I examine the benefits of the sociomaterial design approach and present practical guidelines on how to approach experiential design with a sociomaterial take

    Designing for Collaborative Non-Driving-Related Activities in Future Cars:Fairness and Team Performance

    Get PDF
    With the gradual transition towards assisted and automated driving, the car will transform into a more social environment where passengers and drivers engage in Non-Driving-Related Activities (NDRA). To support collaboration among occupants in future vehicles, research suggests interactive systems controlled by several users at once. In this paper, we explore five concepts for the collaborative performance of NDRA with the use-case of music playlist creation. While prior work investigated the effect on social connectedness, we expand insights towards team performance and fairness. Results from a mixed-subject experiment (N=27) show that the concepts have major consequences on team performance and fairness. Certain concepts can promote or hinder coordination effectiveness and, in turn, impact intra-vehicular collaboration. Our observations also indicate that fairness is key to fostering social collaboration in AVs, while it does not naturally define a high team performance. Subsequently, we provide recommendations to guide future designs of collaborative NDRAs in vehicles.</p

    Accessible Autonomy: Exploring Inclusive Autonomous Vehicle Design and Interaction for People who are Blind and Visually Impaired

    Get PDF
    Autonomous vehicles are poised to revolutionize independent travel for millions of people experiencing transportation-limiting visual impairments worldwide. However, the current trajectory of automotive technology is rife with roadblocks to accessible interaction and inclusion for this demographic. Inaccessible (visually dependent) interfaces and lack of information access throughout the trip are surmountable, yet nevertheless critical barriers to this potentially lifechanging technology. To address these challenges, the programmatic dissertation research presented here includes ten studies, three published papers, and three submitted papers in high impact outlets that together address accessibility across the complete trip of transportation. The first paper began with a thorough review of the fully autonomous vehicle (FAV) and blind and visually impaired (BVI) literature, as well as the underlying policy landscape. Results guided prejourney ridesharing needs among BVI users, which were addressed in paper two via a survey with (n=90) transit service drivers, interviews with (n=12) BVI users, and prototype design evaluations with (n=6) users, all contributing to the Autonomous Vehicle Assistant: an award-winning and accessible ridesharing app. A subsequent study with (n=12) users, presented in paper three, focused on prejourney mapping to provide critical information access in future FAVs. Accessible in-vehicle interactions were explored in the fourth paper through a survey with (n=187) BVI users. Results prioritized nonvisual information about the trip and indicated the importance of situational awareness. This effort informed the design and evaluation of an ultrasonic haptic HMI intended to promote situational awareness with (n=14) participants (paper five), leading to a novel gestural-audio interface with (n=23) users (paper six). Strong support from users across these studies suggested positive outcomes in pursuit of actionable situational awareness and control. Cumulative results from this dissertation research program represent, to our knowledge, the single most comprehensive approach to FAV BVI accessibility to date. By considering both pre-journey and in-vehicle accessibility, results pave the way for autonomous driving experiences that enable meaningful interaction for BVI users across the complete trip of transportation. This new mode of accessible travel is predicted to transform independent travel for millions of people with visual impairment, leading to increased independence, mobility, and quality of life

    2018: Art & Mobilities Network Inaugural Symposium Instant Journal (Peter Scott Gallery)

    Get PDF
    "Mobilities has been gaining momentum through networks, conferences, books, special issues, exhibitions and in the practices of artists, writers and curators. In recognition of this activity we are forming an Art & Mobilities network through which to consolidate, celebrate and develop this work.Inspired by the recent foregrounding of Mobility and the Humanities (Pearce & Merriman, 2018) and drawing on last November's successful Mobile Utopia Exhibition amongst others, the Centre for Mobilities Research (CEMORE) at Lancaster University are pleased to hold a UK Art & Mobilities Network Inaugural Symposium 2018 on the 3rd of July 2018. The aim of the symposium is to bring together people in the UK who are active in the field of mobilities and art in order to discuss the distinctive contribution that art makes to mobilities research and vice versa. We would be delighted if you can join us for this one-day event to help shape the network, particularly in the context of a fast-changing world, not just socio-politically but in terms of the place of art in the academy and vice versa. There are nearly 30 key international artists and researchers gathered on this day both locally and via Skype. We invite all participants in the symposium to bring with them an artwork, artefact, written statement or quote that can be displayed as a ‘pop up’ exhibition. These artefacts will be used during the day to focus discussion around different facets of mobilities and art." (Jen Southern, Kai Syng Tan, Emma Rose, Linda O'Keeffe Editors

    Perceived Quality in the Automotive Industry

    Get PDF
    The supremacy of the automotive manufacturers in the modern world is no longer driven by them achieving a superior manufacturing quality but increasingly depends on the customer’s quality perception. The premium sector of the automotive industry is facing tough international competition. Studies within the automotive industry have identified that the perceived quality has become an important purchase decision factor. In practice, this means that the car manufacturers need to develop products that not only meet their customer’s expectations but also exceed them. It is necessary to close the gap between engineering and customer perceptions of the final product. Under such conditions, design process tasks are difficult in implementation because the evaluation of the perceived quality attributes is often subjective and intuitive rather than objective. The automotive industry demands methods and tools that allow the definition and validation of perceived quality related requirements.Developing methods for objective assessment of the perceived quality attributes is a task with a very high level of complexity. The vehicle itself is a very complex product. This fact leads to the information asymmetry because the actual quality of the product is not always visible to the customer. This thesis is a step towards closing the information asymmetry gap and bringing subjectively assessed perceived quality attributes to the objective side, supported by structured quantification methods. The author reviewed and structured product quality paradigms from the past, defined perceived quality attributes, described their properties regarding the premium automotive sector. The proposed comprehensive perceived quality framework is the major result of the thesis

    Exploration of smart infrastructure for drivers of autonomous vehicles

    Get PDF
    The connection between vehicles and infrastructure is an integral part of providing autonomous vehicles information about the environment. Autonomous vehicles need to be safe and users need to trust their driving decision. When smart infrastructure information is integrated into the vehicle, the driver needs to be informed in an understandable manner what the smart infrastructure detected. Nevertheless, interactions that benefit from smart infrastructure have not been the focus of research, leading to knowledge gaps in the integration of smart infrastructure information in the vehicle. For example, it is unclear, how the information from two complex systems can be presented, and if decisions are made, how these can be explained. Enriching the data of vehicles with information from the infrastructure opens unexplored opportunities. Smart infrastructure provides vehicles with information to predict traffic flow and traffic events. Additionally, it has information about traffic events in several kilometers distance and thus enables a look ahead on a traffic situation, which is not in the immediate view of drivers. We argue that this smart infrastructure information can be used to enhance the driving experience. To achieve this, we explore designing novel interactions, providing warnings and visualizations about information that is out of the view of the driver, and offering explanations for the cause of changed driving behavior of the vehicle. This thesis focuses on exploring the possibilities of smart infrastructure information with a focus on the highway. The first part establishes a design space for 3D in-car augmented reality applications that profit from smart infrastructure information. Through the input of two focus groups and a literature review, use cases are investigated that can be introduced in the vehicle's interaction interface which, among others, rely on environment information. From those, a design space that can be used to design novel in-car applications is derived. The second part explores out-of-view visualizations before and during take over requests to increase situation awareness. With three studies, different visualizations for out-of-view information are implemented in 2D, stereoscopic 3D, and augmented reality. Our results show that visualizations improve the situation awareness about critical events in larger distances during take over request situations. In the third part, explanations are designed for situations in which the vehicle drives unexpectedly due to unknown reasons. Since smart infrastructure could provide connected vehicles with out-of-view or cloud information, the driving maneuver of the vehicle might remain unclear to the driver. Therefore, we explore the needs of drivers in those situations and derive design recommendations for an interface which displays the cause for the unexpected driving behavior. This thesis answers questions about the integration of environment information in vehicles'. Three important aspects are explored, which are essential to consider when implementing use cases with smart infrastructure in mind. It enables to design novel interactions, provides insights on how out-of-view visualizations can improve the drivers' situation awareness and explores unexpected driving situations and the design of explanations for them. Overall, we have shown how infrastructure and connected vehicle information can be introduced in vehicles' user interface and how new technology such as augmented reality glasses can be used to improve the driver's perception of the environment.Autonome Fahrzeuge werden immer mehr in den alltĂ€glichen Verkehr integriert. Die Verbindung von Fahrzeugen mit der Infrastruktur ist ein wesentlicher Bestandteil der Bereitstellung von Umgebungsinformationen in autonome Fahrzeugen. Die Erweiterung der Fahrzeugdaten mit Informationen der Infrastruktur eröffnet ungeahnte Möglichkeiten. Intelligente Infrastruktur ĂŒbermittelt verbundenen Fahrzeugen Informationen ĂŒber den prĂ€dizierten Verkehrsfluss und Verkehrsereignisse. ZusĂ€tzlich können Verkehrsgeschehen in mehreren Kilometern Entfernung ĂŒbermittelt werden, wodurch ein Vorausblick auf einen Bereich ermöglicht wird, der fĂŒr den Fahrer nicht unmittelbar sichtbar ist. Mit dieser Dissertation wird gezeigt, dass Informationen der intelligenten Infrastruktur benutzt werden können, um das Fahrerlebnis zu verbessern. Dies kann erreicht werden, indem innovative Interaktionen gestaltet werden, Warnungen und Visualisierungen ĂŒber Geschehnisse außerhalb des Sichtfelds des Fahrers vermittelt werden und indem ErklĂ€rungen ĂŒber den Grund eines verĂ€nderten Fahrzeugverhaltens untersucht werden. Interaktionen, welche von intelligenter Infrastruktur profitieren, waren jedoch bisher nicht im Fokus der Forschung. Dies fĂŒhrt zu WissenslĂŒcken bezĂŒglich der Integration von intelligenter Infrastruktur in das Fahrzeug. Diese Dissertation exploriert die Möglichkeiten intelligenter Infrastruktur, mit einem Fokus auf die Autobahn. Der erste Teil erstellt einen Design Space fĂŒr Anwendungen von augmentierter RealitĂ€t (AR) in 3D innerhalb des Autos, die unter anderem von Informationen intelligenter Infrastruktur profitieren. Durch das Ergebnis mehrerer Studien werden AnwendungsfĂ€lle in einem Katalog gesammelt, welche in die Interaktionsschnittstelle des Autos einfließen können. Diese AnwendungsfĂ€lle bauen unter anderem auf Umgebungsinformationen. Aufgrund dieser Anwendungen wird der Design Space entwickelt, mit Hilfe dessen neuartige Anwendungen fĂŒr den Fahrzeuginnenraum entwickelt werden können. Der zweite Teil exploriert Visualisierungen fĂŒr Verkehrssituationen, die außerhalb des Sichtfelds des Fahrers sind. Es wird untersucht, ob durch diese Visualisierungen der Fahrer besser auf ein potentielles Übernahmeszenario vorbereitet wird. Durch mehrere Studien wurden verschiedene Visualisierungen in 2D, stereoskopisches 3D und augmentierter RealitĂ€t implementiert, die Szenen außerhalb des Sichtfelds des Fahrers darstellen. Diese Visualisierungen verbessern das Situationsbewusstsein ĂŒber kritische Szenarien in einiger Entfernung wĂ€hrend eines Übernahmeszenarios. Im dritten Teil werden ErklĂ€rungen fĂŒr Situationen gestaltet, in welchen das Fahrzeug ein unerwartetes Fahrmanöver ausfĂŒhrt. Der Grund des Fahrmanövers ist dem Fahrer dabei unbekannt. Mit intelligenter Infrastruktur verbundene Fahrzeuge erhalten Informationen, die außerhalb des Sichtfelds des Fahrers liegen oder von der Cloud bereit gestellt werden. Dadurch könnte der Grund fĂŒr das unerwartete Fahrverhalten unklar fĂŒr den Fahrer sein. Daher werden die BedĂŒrfnisse des Fahrers in diesen Situationen erforscht und Empfehlungen fĂŒr die Gestaltung einer Schnittstelle, die ErklĂ€rungen fĂŒr das unerwartete Fahrverhalten zur VerfĂŒgung stellt, abgeleitet. Zusammenfassend wird gezeigt wie Daten der Infrastruktur und Informationen von verbundenen Fahrzeugen in die Nutzerschnittstelle des Fahrzeugs implementiert werden können. Zudem wird aufgezeigt, wie innovative Technologien wie AR Brillen, die Wahrnehmung der Umgebung des Fahrers verbessern können. Durch diese Dissertation werden Fragen ĂŒber AnwendungsfĂ€lle fĂŒr die Integration von Umgebungsinformationen in Fahrzeugen beantwortet. Drei wichtige Themengebiete wurden untersucht, welche bei der Betrachtung von AnwendungsfĂ€llen der intelligenten Infrastruktur essentiell sind. Durch diese Arbeit wird die Gestaltung innovativer Interaktionen ermöglicht, Einblicke in Visualisierungen von Informationen außerhalb des Sichtfelds des Fahrers gegeben und es wird untersucht, wie ErklĂ€rungen fĂŒr unerwartete Fahrsituationen gestaltet werden können

    Human factors in developing automated vehicles: A requirements engineering perspective

    Get PDF
    Automated Vehicle (AV) technology has evolved significantly both in complexity and impact and is expected to ultimately change urban transportation. Due to this evolution, the development of AVs challenges the current state of automotive engineering practice, as automotive companies increasingly include agile ways of working in their plan-driven systems engineering—or even transition completely to scaled-agile approaches. However, it is unclear how knowledge about human factors (HF) and technological knowledge related to the development of AVs can be brought together in a way that effectively supports today\u27s rapid release cycles and agile development approaches. Based on semi-structured interviews with ten experts from industry and two experts from academia, this qualitative, exploratory case study investigates the relationship between HF and AV development. The study reveals relevant properties of agile system development and HF, as well as the implications of these properties for integrating agile work, HF, and requirements engineering. According to the findings, which were evaluated in a workshop with experts from academia and industry, a culture that values HF knowledge in engineering is key. These results promise to improve the integration of HF knowledge into agile development as well as to facilitate HF research impact and time to market

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • 

    corecore