83 research outputs found

    Bio-inspired Tensegrity Soft Modular Robots

    Get PDF
    In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity mod-ules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201

    Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    Get PDF
    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation

    Controlling Tensegrity Robots Through Evolution

    Get PDF
    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future

    Rolling Locomotion of Cable-Driven Soft Spherical Tensegrity Robots

    Get PDF
    Soft spherical tensegrity robots are novel steerable mobile robotic platforms that are compliant, lightweight, and robust. The geometry of these robots is suitable for rolling locomotion, and they achieve this motion by properly deforming their structures using carefully chosen actuation strategies. The objective of this work is to consolidate and add to our research to date on methods for realizing rolling locomotion of spherical tensegrity robots. To predict the deformation of tensegrity structures when their member forces are varied, we introduce a modified version of the dynamic relaxation technique and apply it to our tensegrity robots. In addition, we present two techniques to find desirable deformations and actuation strategies that would result in robust rolling locomotion of the robots. The first one relies on the greedy search that can quickly find solutions, and the second one uses a multigeneration Monte Carlo method that can find suboptimal solutions with a higher quality. The methods are illustrated and validated both in simulation and with our hardware robots, which show that our methods are viable means of realizing robust and steerable rolling locomotion of spherical tensegrity robots

    A Better Way to Construct Tensegrities: Planar Embeddings Inform Tensegrity Assembly

    Get PDF
    Although seemingly simple, tensegrity structures are complex in nature which makes them both ideal for use in robotics and difficult to construct. We work to develop a protocol for constructing tensegrities more easily. We consider attaching a tensegrity\u27s springs to the appropriate locations on some planar arrangement of attached struts. Once all of the elements of the structure are connected, we release the struts and allow the tensegrity to find its equilibrium position. This will allow for more rapid tensegrity construction. We develop a black-box that given some tensegrity returns a flat-pack, or the information needed to perform this physical construction

    Design and Evolution of a Modular Tensegrity Robot Platform

    Get PDF
    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters

    Exploring the Behavior Repertoire of a Wireless Vibrationally Actuated Tensegrity Robot

    Get PDF
    Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm

    Towards an ontology for soft robots: What is soft?

    Get PDF
    The advent of soft robotics represents a profound change in the forms robots will take in the future. However, this revolutionary change has already yielded such a diverse collection of robots that attempts at defining this group do not reflect many existing ‘soft’ robots. This paper aims to address this issue by scrutinising a number of descriptions of soft robots arising from a literature review with the intention of determining a coherent meaning for soft. We also present a classification of existing soft robots to initiate the development of a soft robotic ontology. Finally, discrepancies in prescribed ranges of Young’s modulus, a frequently used criterion for the selection of soft materials, are explained and discussed. A detailed visual comparison of these ranges and supporting data is also presented
    • …
    corecore