18 research outputs found

    Design and Evolution of a Modular Tensegrity Robot Platform

    Get PDF
    NASA Ames Research Center is developing a compliant modular tensegrity robotic platform for planetary exploration. In this paper we present the design and evolution of the platform's main hardware component, an untethered, robust tensegrity strut, with rich sensor feedback and cable actuation. Each strut is a complete robot, and multiple struts can be combined together to form a wide range of complex tensegrity robots. Our current goal for the tensegrity robotic platform is the development of SUPERball, a 6-strut icosahedron underactuated tensegrity robot aimed at dynamic locomotion for planetary exploration rovers and landers, but the aim is for the modular strut to enable a wide range of tensegrity morphologies. SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also a modular, lightweight, highly compliant 6-strut tensegrity robot that was used to validate our physics based NASA Tensegrity Robot Toolkit (NTRT) simulator. Many hardware design parameters of the SUPERball were driven by locomotion results obtained in our validated simulator. These evolutionary explorations helped constrain motor torque and speed parameters, along with strut and string stress. As construction of the hardware has finalized, we have also used the same evolutionary framework to evolve controllers that respect the built hardware parameters

    System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Get PDF
    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control

    A Better Way to Construct Tensegrities: Planar Embeddings Inform Tensegrity Assembly

    Get PDF
    Although seemingly simple, tensegrity structures are complex in nature which makes them both ideal for use in robotics and difficult to construct. We work to develop a protocol for constructing tensegrities more easily. We consider attaching a tensegrity\u27s springs to the appropriate locations on some planar arrangement of attached struts. Once all of the elements of the structure are connected, we release the struts and allow the tensegrity to find its equilibrium position. This will allow for more rapid tensegrity construction. We develop a black-box that given some tensegrity returns a flat-pack, or the information needed to perform this physical construction

    Estructura robótica Pre-Tensada para robot en tuberías petroleras

    Get PDF
    En este trabajo se presenta el desarrollo de un robot basado en la estructura Pre-Tensada con el fin de realizar tareas de inspección y mantenimiento en tuberías petroleras. Este tipo de estructura mecánica se caracteriza por su bajo peso y su alta capacidad de adaptación a los diferentes diámetros. La aplicación requiere que el dispositivo desarrollado se desplace verticalmente y a alta velocidad por las tuberías utilizadas en la extracción del petróleo. Cabe destacar que en dichas instalaciones se cuenta con Bombas Electro Sumergibles (BES) y Bombas de Cavidad Progresiva (BCP), ambas muy sensibles a las condiciones adversas del entorno; por lo tanto, la importancia de esta investigación radica en que el robot incorpora una red de sensores específicos para medir aquellas variables que puedan interferir en el funcionamiento normal de las bombas. Además, este robot permite automatizar la recuperación de objetos que pueden caer al pozo durante la instalación y mantenimiento del mismo, actualmente este proceso es manual. En este artículo se describen detalladamente las hipótesis de diseño realizadas y la metodología utilizada para el desarrollo del primer prototipo. Finalmente se presentan los resultados obtenidos de dicho desarrollo a través de los cuales se ha podido validar la potencialidad de la aplicación

    Controlling Tensegrity Robots Through Evolution

    Get PDF
    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future

    Generation of planar tensegrity structures through cellular multiplication

    Full text link
    Tensegrity structures are frameworks in a stable self-equilibrated prestress state that have been applied in various fields in science and engineering. Research into tensegrity structures has resulted in reliable techniques for their form finding and analysis. However, most techniques address topology and form separately. This paper presents a bio-inspired approach for the combined topology identification and form finding of planar tensegrity structures. Tensegrity structures are generated using tensegrity cells (elementary stable self-stressed units that have been proven to compose any tensegrity structure) according to two multiplication mechanisms: cellular adhesion and fusion. Changes in the dimension of the self-stress space of the structure are found to depend on the number of adhesion and fusion steps conducted as well as on the interaction among the cells composing the system. A methodology for defining a basis of the self-stress space is also provided. Through the definition of the equilibrium shape, the number of nodes and members as well as the number of self-stress states, the cellular multiplication method can integrate design considerations, providing great flexibility and control over the tensegrity structure designed and opening the door to the development of a whole new realm of planar tensegrity systems with controllable characteristics.Comment: 29 pages, 19 figures, to appear at Applied Mathematical Modelin

    Active shaping of a tensegrity robot via pre-pressure

    Full text link

    Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    Get PDF
    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation
    corecore