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Abstract

ZONGLIANG (JERRY) JI Exploring the Behavior Repertoire of a Wireless Vibrationally Actuated

Tensegrity Robot. Department of Computer Science, March, 2019.

ADVISOR: John Rieffel

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured,

rugged, and dynamic environments. However, the properties that make soft robots compelling also make

them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity

robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our

tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty

search algorithm.
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1 Introduction

Imagine a robot on a rescue mission right after a disastrous earthquake. The robot carries both injured

people and precious cargo worth millions of dollars. Suddenly, a small wave of aftershocks covers the

robot with rocks and dust. However, since the robot is resilient to shape changes, it protects the people and

the cargo inside and continues moving towards its designated location.

The robot we are describing is not a traditional type of robot with limbs, arms, or wheels. It is a type

of soft robot called a “tensegrity”, that is inspired by natural biology. “Tensegrity” is a word that combines

“tensile” and “integrity”. It was first coined in the late 1900s by Buckminster Fuller to describe sculptures

created by the sculptor Kenneth Snelson [11]. Since then, tensegrity structures became famous in art, archi-

tecture, and science. A tensegrity structure is a self-supporting structure consisting of a set of disjoint rigid

elements (known as rods or struts) whose endpoints are connected by a set of continuous tensile elements

(known as strings, cables, or springs).

Due to the balance between the tensile and compression forces in the structure, a tensegrity structure is

able to maintain its shape by reaching an equilibrium state [41]. The compressive and tensile elements in

the structure need not resist significant bending or shear forces. This means that a tensegrity structure has

a tendency to return to its original stable configuration after any moderate and temporary external forces

are applied [8]. Because of their useful properties, tensegrity structures have been widely adopted in civil

engineering as the basis of extremely light weight, yet strong mechanical structures using little material. In

architecture, tensegrity structures are used in bridges and geodesic domes [12].

The property of handling external forces applied from different directions also suggests that tensegrity

structures are well suited to operating in dynamic environments where contact forces are not easy to predict.

Frequently, researchers find tensegrity structures in biology, such as the muscular-skeletal system [22], the

animal cell’s cytoskeleton [13], and the mechanical system of human body [25]. The field of soft robotics

has brought tensegrity structures into its genus of biologically-inspired robot morphologies.

NASA is one of the few organizations that is invested in tensegrity research. The main reason for

NASA’s interest is the potential of tensegrity robots in space exploration programs; NASA hopes to use

tensegrity robotics as planetary rovers. The high strength-to-weight ratio of tensegrity robots is attractive

because it reduces launch mission expenses. Due to the high resilience and natural form-finding properties

of tensegrity structures, large tensegrity robots are deployable from compact configurations, enabling them

to fit into space-constrained spacecraft. While these qualities have inspired studies of deployable antennae,

other large tensegrity robots have only recently been investigated for planetary exploration [39].

One key goal of NASA’s work is to develop a tensegrity probe with an actively controlled tensile net-
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work, enabling compact stowage for launch, followed by deployment for landing. Tensegrity probes can

safely absorb significant impact forces, enabling high-speed entry, descent and landing scenarios, where the

probe acts like an airbag. However, unlike rovers that are deployed inside airbags that are discarded after

a single use, tensegrity robots can be launched without airbags and also provide rolling mobility. This en-

ables compact and lightweight planetary exploration missions with the capabilities of traditional wheeled

rovers, but with mass and cost similar to a stationary probe. The dual use of the structure reduces mission

cost and enables new forms of surface exploration using the tensegrity’s natural impact tolerance [39].

However, these excellent qualities of tensegrities also carry complex nonlinear dynamics with them. Ac-

tively controlling a tensegrity robot is a difficult task yet effective locomotion is the most crucial element of

robotics. In this research, I will explore the diverse behavior of a wireless vibrationally actuated tensegrity

robot that is designed and built at Union College to reach the goal of controlling the robot.

In Union College’s Evolutionary Robotics lab, we have been developing our own tensegrity robots un-

der the guidance of Professor John Rieffel. Previous iterations of our tensegrity robots achieved effective

locomotion by vibrating rigid struts on the robot. However, the old design of our tensegrity robot used

magnetic wires connected to each strut which made it hard to conduct experiments outside the lab area.

For the last two years, we have been working on designing and implementing a new wireless iteration of

our vibrationally actuated limbless tensegrity robot known as VVValtr. With on-board circuitry and wire-

less RFduino chip communication, we now have a new wireless tensegrity robot in our lab. My hope is to

explore the new wireless robot and enable the robot to achieve effective locomotion, to conduct more inter-

esting research with a fully functional tensegrity robot. Eventually, we want to enable the tensegrity robot

to conduct rescue missions. The goal of my research is to effectively explore the behavior of tensegrity robot

by combining rotations and translations. I will also compare different solutions of moving our tensegrity

and analyze their performance using metrics like time efficiency and energy consumption.

2 Background

A tensegrity structure is a mechanical structure based on a subtle interplay between compressive and tensile

forces [36]. A general definition by Pugh et al. is that: A tensegrity structure is a structure that maintains a stable

volume in space through the use of discontinuous compressive elements (struts) connected to a continuous network of

tensile elements (cables) [27].

Recently, apart from conventional design methodology, comprised of a series of rigid links connected

by prismatic joints, researchers have started to explore a new paradigm in the mechanical design of robots,

based on tensegrity structures [26]. They define this new type of robot as: Tensegrity robots are interlocked
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sets of disjoint rigid struts and tensional connections such as springs or cables [26].

As there are no lever arms like classical hard robots, forces are not applied directly on joints or other

common areas. Instead, external forces are distributed through out the structure via multiple load paths.

This helps tensegrity robots create mechanical robustness and tolerance to forces applied from any direc-

tion.

There are various designs of tensegrity robots, each with their own control mechanisms. Normally, the

control of a tensegrity robot requires a control architecture and an optimization algorithm to find the opti-

mal way to move the tensegrity robot effectively. Researchers have conducted experiments on tensegrity

robots in virtual simulations as well as in the physical world. Based on the different designs of the robots,

the type of control can either be a closed-loop or open-loop control.

Almost all work in locomotion research and tensegrity robotics designs starts with simulations. The

two frequently used simulation tools are Open Dynamic Engine (ODE) library used by Paul et al. [26] and

Rieffel et al. [33] and the Bullet Physics engine used by NASA [5] [39].

After achieving promising results in simulation, researchers then design and implement the physical

tensegrity to test their control architecture and optimization algorithms.

Following the work done by Paul et al. [26], there are three ways tensegrity robots move:

• Crawling is the earliest way of moving proposed by Paul et al [26]. In Rieffel et al.’s morphological

communication [33], the robots also move by crawling in the simulated world. Hirai et al. also

researched tensegrities that crawl [35].

• Rolling locomotion is mostly supported by the NASA research team [4] [34]. It was also studied by

Hirai et al. in 2012 [21].

• The vibrational moving strategy was a novel idea proposed by Rieffel et al. [17] and Bohm et al. [3].

The idea is to vibrate the rigid bars of the tensegrity robots to achieve locomotion.

There are three main categories of controllers used by researchers.

• The first category is based mostly on the design of the tensegrity robots. For instance, Paul et al. used

servomotors as the controller of the robot by compressing the length of the cables [26]. Rieffel et al.

used motors installed on the rigid struts to vibrate the struts given the motor frequency commands

[18].

• The second is the Spiking Neural Network architecture that Rieffel et al. presented in the morpholog-

ical communication work [33].
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• The third is the Central Pattern Generator (CPG) proposed by Bliss et al. [1] which is currently imple-

mented by NASA [4].

One of the crucial features for achieving locomotion in robotics is the type of loop the robot uses to

move. There are two types of control:

1. Open-loop control means that the robot is not sensing the environment while it is moving. For exam-

ple, this is like driving a car at a constant speed without looking at the speedometer.

2. Closed-loop control means that the robot can change its behavior using feedback from environmental

sensors. This is like driving a car by checking for other cars on the road, traffic lights, and the road

surface, and then adjusting the speed of the car accordingly.

The simpler the design of the robot and the fewer the sensors, the more likely the control strategy is

open-loop. For instance, the tensegrity robots implemented by Paul et al. use an open-loop design to

achieve locomotion [26].

Closed-loop designs are mostly implemented and tested in the simulated environments similar to the

morphological communication architecture [33] and CPG architecture [1]. So far, only two groups have

tested their physical robots using closed-loop control. Bliss et al. [1] tested the closed-loop CPG on a more

restricted physical design of a tensegrity robot. NASA’s team tested CPG and hybrid CPG methods on both

of their ReCTeR and the SUPERball tensegrity robots [5] [34].

In addition, there are several categories of optimization algorithms used to gain effective and optimal

gait of various tensegrity robots. The first category, most commonly used, utilizes different variations of

evolutionary algorithms [1] [4] [26] [33]. The second category uses a various of machine learning algorithms

such as Bayesian Optimization proposed by Rieffel et al. [31] and deep reinforcement learning by Zhang et

al [43].

2.1 Related Work

The dynamic properties of tensegrity robots have been relatively unexplored until recent years. Early exam-

ples of kinematic motion include the work at EPFL’s IMAC laboratory [10]. Skelton and Sultan introduced

algorithms for the positioning of tensegrity-based telescopes and the dynamic control of a tensegrity flight

simulator platform [38]. Although there were some early efforts at MIT’s CSAIL lab, it wasn’t until the

work of Paul et al. at Cornell University made the concept of tensegrity robotics became widespread [26].

In their paper, they introduced robots based on tensegrity structures, which demonstrated that the dynamic

of such structures can be utilized for locomotion [26]. Paul et al. designed two tensegrity robots, TR3, a
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three-strut tensegrity and TR4, a four-strut tensegrity. The experiment was conducted by running evolu-

tionary optimizations to obtain controllers for both of the robots in an ODE simulation environment. Both

robots received effective locomotion in the simulation environment. This is the first time tensegrity struc-

tures were used in developing robots, and gained effective locomotion. Here, the researchers used a genetic

algorithm to find the most effective gait for the robot. Their study demonstrated that tensegrity structures

can provide the basis for lightweight, strong, and fault-tolerant robots, with a potential for a variety of

locomotor gaits.

In 2009, Rieffel et al. published a paper that uses morphological communication inspired by biology

to design the tensegrity robot controller [33]. In this paper, the architecture that was introduced used

time-sensitive spiking neural networks to enable “morphological communication.” This introduces a new

paradigm for decentralized control of large, coupled, modular systems. Rieffel et al.’s study involved meth-

ods of controlling both large tensegrity structures [6] and minimal structures [26]. The results of exploring

different gaits in simulation demonstrated how coupled dynamic properties of tensegrity structures can be

exploited to benefit movement. This study first brought up the use of morphology of robots to perform

computation and communication.

Other work published in 2012 by Bliss et al [1] proposed an architecture for tensegrity robot control

called Central Pattern Generator (CPG). Central pattern generators are neuronal circuits that, when ac-

tivated, can produce rhythmic motor patterns such as walking, breathing, flying, and swimming in the

absence of sensory or descending inputs that carry specific timing information. Its use is widely observed

in the animal world. In their paper, they conducted experiments to validate synthesized CPG control of

tensegrity structures. The reason CPGs are used is that the pre-stressed cables in the tensegrity structure

provide a method of simultaneous actuation and sensing, which is similar to the biological motor control

mechanism of regulating muscle stiffness through motoneuron activation and sensing.

From 2013, NASA has shown interest in tensegrity structures and tensegrity robots suggested by the

prior work done by Skleton et al. [37] and Paul et al. [26]. Their goal is to utilize static and dynamic

properties of tensegrities to land on planets like rovers in an airbag and also traverse on planets with simi-

lar capabilities to traditional wheeled rovers. Researchers from NASA first explored the learning methods

for a tensegrity to move in a simulation environment. The work published by Iscen et al. in 2013 uses

multiagent learning to learn how to control a ball-shaped tensegrity with 6 rods and 24 cables [14]. Their

simulation results show that multiagent learning can be used to learn an efficient rolling behavior. In 2014,

researchers built the first physical tensegrity robot for NASA and tested various control and optimization

algorithms on it [5]. In their work, they developed a new open source simulation environment, the NASA

Tensegrity Robotics Toolkit (NTRT) based on the discrete time Bullet Physics engine. They also designed
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and implemented a hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tenseg-

rity Robot (ReCTeR).

SUPERball is a second generation prototype, evolving from the tensegrity robot ReCTeR, which is also

a modular, lightweight, highly compliant 6-strut tensegrity robot that NASA used to validate their NTRT

simulator. In 2015, the first phase of building and testing SUPERball was finished [34]. SUPERball is the first

full prototype of this tensegrity robot platform, and is eventually destined for space exploration missions.

Currently, SUPERball is fully built and under experiment for more complex locomotion testing. NASA has

also explored several optimization algorithms from evolutionary algorithms to deep reinforcement learning

[43].

At Union College, John Rieffel and his team are developing tensegrity robots that move by vibrating

the struts on the tensegrity robots. Between 2013 and 2015, his group developed a wired tensegrity robot

that only uses resonant motor frequencies to move forward [17] [18]. The first few gaits of the tensegrity

were found by trial-and-error. In Rieffel et al.’s work in 2014, they implemented hill climber to move the

robot using hands-off automation of the evolutionary process [18]. In their most recent work, Rieffel et

al. propose Bayesian Optimization, a machine learning algorithm, to optimize the gait of their vibrational

tensegrity robots [31].

2.2 Bayesian Optimization

Bayesian optimization is, as the name suggests, an optimization algorithm. That is, Bayesian optimiza-

tion attempts to find the optimal input for some function, which is often the input which maximizes or

minimizes the output value of the function. Bayesian optimization is specifically used for determining the

optimal input to an unknown function which can be tested but not directly known. In other words, given

some unknown function f(x) : X → y where X is the set of possible inputs and y is a measurable output,

Bayesian optimization can find an input x which produces a close-to-optimal output y.

Bayesian optimization utilizes this as a means of estimating the shape of the unknown function it is op-

timizing. Starting with some prior knowledge, either given to the algorithm a priori or discovered through

experimentation, Bayesian optimization generates a Gaussian process which fits the prior knowledge. Then

Bayesian optimization refines its model by choosing an input based on its probability distribution using an

acquisition function, which examines the Gaussian process and selects the most promising candidate based

on criteria which vary between acquisition functions. It then gives this input to the function, measures the

output, and fits its Gaussian process to this new datum. That is, it experiments based on probability-based

hypotheses and refines its model based on the new empirical evidence it generates. Note that it is assumed
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Figure 1: A pseudocode description of the MAP-Elites algorithm [24]

that the unknown function is smooth, so that knowledge of the results of some inputs can be used to make

judgments about the probability distributions of other inputs. As the algorithm generates more data points

and refines its model, it has a better idea of which inputs are likely to be fruitful, and can thus hone in on

an optimal solution.

2.3 Map-Elites Algorithm

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is a search algorithm designed by Mouret et

al. [24]. It creates a map of high-performing solutions at each point in a search space defined by dimensions

of variation that a user gets to choose. MAP-Elites algorithm illuminates search spaces, allowing researchers

to understand how interesting attributes combine to affect performance. For example, a drug company

may wish to understand how performance changes as the size of molecules and their production cost vary.

MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can

be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more

of the search space, it also tends to find a better overall solution than other state-of-the-art search algorithms

[24]. Figure 1 describes the basic design of the MAP-Elites algorithm. It first starts with random selection

which randomly generate solutions in the solution space, then after a certain number of iterations, it starts

to exploit the random variation of the random solutions found in the random selection phase.

2.4 Research Question

As mentioned in the introduction section, the main goal of this research is to enable Union College’s new

tensegrity robot (the Wireless Vibrationally Actuated Limbless Tensegrity Robot - VVValtr) to move in di-

verse ways.
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Figure 2: A completely untethered soft tensegrity robot (VVValtr). The robot is resilient enough to be easily
compressed by hand.

Figure 2 shows Union College’s six-bar tensegrity robot VVValtr. This canonical icosahedron shape con-

sists of six struts (3 active and 3 passive) connected by 24 springs. By using a bluetooth RFduino installed on

each active strut, we are able to vibrate the on-board motors according to a resonant frequency command.

Hence, for this robot, a movement command is a combination of three numbers, one frequency for each

motor. We are able to control the time of vibration on the computer by sending a stop command. Since the

frequency is not changed during one control period, the control type of the robot is open-loop. The task of

achieving effective and interesting locomotion is to find the frequency combinations that achieve the best

rotation and translation. With this task in hand, the question this research seeks to address is to what extent

can we efficiently explore the behavior space of our tensegrity robot to achieve more efficient and more

diverse locomotion?

3 Generate gaits with longest translation using Bayesian Optimization

My goal is to learn how to exploit the mechanics of tensegrity robots to make them move in multiple di-

rections, but we do not know what is the best optimization algorithm in order to generate an optimal gait

for the newly designed wireless tensegrity robot. With this research, I am trying to learn and implement

different control and optimization methods to help our wireless tensegrity robot (VVValtr) gain effective

locomotion. Specifically, I will explore how Bayesian Optimization and MAP-Elites could affect the lo-

comotion of VVValtr. I will analyze the performance by considering the time and energy each solution

take relative to solutions that achieve similar locomotion results to ultimately determine which movement

strategy is the best based on different features.

As in a previous student’s thesis [2] and also in prior work of ours [31] Bayesian Optimization was

employed to optimize locomotion on a tethered tensegrity robot. Here we extend those results on a fully
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autonomous and tether-free robot, using the off-the-shelf BO package pyGPGO [15]. The goal of this par-

ticular experiment is to optimize the choice of frequency combinations to find gaits that enable the robot to

translate in the longest distance.

3.1 Tensegrity Robot Tracking

We control VVValtr by sending frequency speeds to the motors mounted on the rigid struts via the on-

board RFduino. Since we only care the scalar measurement of the distance traveled of the tensegrity, we

measure the distance in each iteration of experiment by subtracting the starting and ending locations of the

robot obtained from a camera mounted above the testing table. However, this method cannot measure the

rotation of each locomotion. In my research, we first use the OpenCV library and build a tracking system

based on finding the contour of the robot and then find the central point. By doing this, we are able to know

the position of the robot on the testing table at any time.

3.2 Comparing Random Search and Bayesian Optimization

Since my research is trying to explore different ways to achieve diverse open-loop control of our tensegrity

robot, I implemented the original hill-climber search algorithm which uses random values to find gaits for

VVValtr. By doing this, we will be able to get basic benchmarks of translations.

Bayesian Optimization (BO), as introduced, fits a probabilistic model (in this case a Gaussian process

[28]) that maps motor speeds to locomotion distance.

We used the suggested setup by Boggs [2]. In his research, he showed promising result on his exper-

iment setup. However, with limited time and resources, he didn’t fully test his experiment setup with

sufficient iterations of the experiment.

In his setup, the testing arena consists of a level surface on which the tensegrity could move, and a

USB camera located above it in order to track the movement of the tensegrity using OpenCV. After each

iteration, trial motor frequencies chosen by the optimizer running on a control computer were sent to the

robot, which would then be allowed to run for 30 seconds, after which our motion capture system reported

the distance the tensegrity traveled back to the optimizer computer. This information in turn was used by

the optimizer to produce new sample frequencies.

3.3 Experiment Details & Results

We ran experiments with the aim of maximizing linear displacement of the robot over a 30 second trial

period. Only the radial distance was used for evaluation, regardless of the actual path traveled.
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Search Protocol # trials/run # runs
BO, β=0.5 60 10
BO, β=1.0 60 10
BO, β=1.5 60 10
BO, β=2.0 60 10
BO, β=2.5 60 10

Table 1: Details of the β searching trials ran in order to determine the most effective β value [20]

Search Protocol # trials/run # runs
BO with priors 60 30
Random Search 60 30
BO without priors 60 30

Table 2: Details of the searching trials ran in order to determine and compare the effectiveness of search
policies [20]

.

As shown in Table 1 and 2, I worked collaboratively with Jonathan Kimber in the 2018 Fall [20]. We first

conducted some initial beta value searching. In this beta searching period, we had 60 consecutive learning

trials for a single run, at which point we felt we had suitably optimized the gaits for our robot. Each run

took approximately 1 hour. We conducted 10 independent runs for each beta value, and found that β = 2.0

(shown in Figure 3) provided the best balance between exploration and exploitation in order to efficiently

find effective gaits.

We then run experiments to compare different search policies: Bayesian Optimization (with priors bi-

ased in favor of high motor speeds), cold-start Bayesian Optimization (without priors), and completely

random search. For each of these treatments, we ran each optimization for 60 evaluations (each 30 seconds)

per trial. We then repeated each experiment across 30 trials in order to gather a representative sample.

The results, as shown in Figure 4, are somewhat equivocal in regards to Bayesian Optimization, al-

though with several points. Figure 5 shows the progress over the 60 trials of each search policy. In each

case, search policies were able to find motor frequency sets that produced significant linear motion (as

measured by displacement). Among the three methods, BO produced some of the quantitatively fastest

gaits (3+ body lengths), although a statistical comparison suggests that it does not significantly outperform

the other search methods. This is because the valid frequency range is relatively small for BO process to

explore. Thus, only conducting open-loop control with BO will not significantly improve the searching [20].
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Figure 3: Shows β=2.0 is the most effective for movement.

4 Exploring the Behavior Repertoire using MAP-Elites algorithm

4.1 Qualisys Tracking System

Thanks to the new NSF grant in the CROCHET lab, during the 2018 Winter break, the lab was installed

with a new 3D motion capture system called Qualisys. It uses the advanced tracking cameras mounted on

the roof of the crochet lab to provide motion data with sub-millimeter accuracy. It has a built-in Qualisys

Software Development Kit (SDK) that could allow us to live stream position data of rigid body that we

defined with Infrared Reflected (IR) markers.

After connecting with the Qualisys tracking system, we first attached IR markers to various struts of

our tensegrity robot. Then, by defining the rigid body of these struts, we are able to get the position data

(center of mass) and rotation matrices of each strut relative to the global frame. Figure 5 is a how VVValtr

is presented in the tracking system.

We then use these live streamed data to calculate the center of mass of the entire robot and the Euler

angle with respect to the z-axis of the global frame to enable tracking of the Valtr with both translation and

rotation information.
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Figure 4: The line plot on the left shows the value of the best-so-far evaluation of each search policy, across
60 evaluation steps (30 independent trials apiece), with shaded quartile intervals. The box plot on the right
shows the final distribution of the best distance after 60 evaluations [20]

.

4.2 MAP-Elites experiment

The main reason that we are trying to implement this MAP-Elites algorithm on our tensegrity is that re-

searchers have implemented it on the legged robots and successfully found effective locomotion [9]. We

believe MAP-Elites can also help VVValtr to explore its behavior space.

4.2.1 Behavior of Valtr in the Behavior Space

Figure 6 is a simple example of how to implement a single iteration of MAP-Elites on VVValtr. By giv-

ing a solution which is a combination of three motor frequencies, we then send this set of frequencies to

the VVValtr via the on-board RFduino. With our updated tracking method, we will be able to effectively

identify the change in translation and rotation of VVValtr.

MAP-Elites algorithm is a kind of Quality Diversity (QD) algorithm which finds a mapping between the

parameter space (frequency commands) and behavior space (robot positions and orientations) based on the

quality metric (time efficiency or energy efficiency).

We first define the behavior space of VVValtr like Figure 7 as the translation coordinates on the x − y

plane and then the rotation with respect to its own orientation. Each point on the behavior space describes,

under a certain frequency combinations, after certain time t, the robot moves to a point on x− y plane with

its original placement as origin of the behavior space. As the behaviors in the behavior space are described

12



Figure 5: A figure shows VVValtr in the color camera and the Qualisys SDK with three struts defined as
rigid bodies and their center of mass shown as small x-y-z axis.

Figure 6: A figure by Rieffel [30] that illustrates how the quality diversity algorithm works on VVValtr by
tracking translation and rotation behaviors over different time periods.

in a continuous manner, in order to describe or categorize each behavior, we discretize the behavior space

into small grids. In other words, we define rotating 45 degrees as same as rotating 45.5 degrees. We define

moving to position (10, 10) as same as moving to position (10.5, 10.5).

4.2.2 Behavior Repertoire of Valtr

Since each solution (frequency combination) would generate a behavior in behavior space at certain time

t, then different solutions would generate various behaviors at various times. The Behavior Repertoire of

our robot would be the diverse behaviors that are generated by different solutions at different times t.

The MAP-Elites algorithm, in our problem context, maps a set of frequency combinations to a variety

of locomotion abilities of our tensegrity robot. In the context of the introduction of MAP-Elites in the back-
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Figure 7: Leftmost picture is a 3D behavior space that has translation in the x-y plane as the 2D component
and the rotation of robot with respect to it starting orientation as the third dimension. The picture in the
middle is a behavior of robot with only translation with no rotations. The picture on the right is a behavior
of robot that only rotates but does not translate.

ground section, a solution to the problem is a combination of motor frequencies. The features that we are

interested in are rotations and translations. The performance measurement of the solution is how much time

and energy it takes for the solution to achieve such a translation or rotation. In our case, shorter time means

better performance; when the time ties, the solution using the least energy means better performance.

In other words, as we are able to use different solutions to filled up VVValtr’s behavior space to yield a

Behavior Repertoire, however, there will be lots of overlaps of points in our Behavior Repertoire since lots

of frequency solutions will yield similar behaviors. Here, MAP-Elites algorithms could help us to find the

best solution (frequency combination) among these overlaps according to our metric which in this case, the

time and energy for VVValtr to achieve this behavior under this solution.

In short, imagine solution a = (f1, f2, f3) and solution b = (f ′1, f
′
2, f

′
3) both move Valtr to point (x, y, z)

in behavior space. If a takes less time to do this than b, then a is better; the Behavior Repertoire will have a

as the solution that could achieve this behavior. However, if a takes the same amount time as b, but b takes

less energy (the square sum of the three frequencies, e.g. (f1)2 + (f2)
2 + (f3)

2 > (f ′1)
2 + (f ′2)

2 + (f ′3)
2), then

the Behavior Repertoire will keep b as the solution to this behavior. This is also how MAP-Elties updates

the “better” solutions on the behavior space with user defined performance metric.

With the updated policy and the basic setup of every element described in the MAP-Elites algorithm,

we will be able to fill the behavior space by conducting the experiments. Then based on the plot we get

after multiple iterations of search and update, we will have solutions (frequency combination) that moves

tensegrity in desired motion in a short amount of time.
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Figure 8: This is a simple illustration on how MAP-Elites solving the problem in our context. It maps
a solution which is a combination of three motor frequencies to the behavior space which describes the
locomotion of the robot.

4.2.3 Experiment details

We did 360 iterations of MAP-Elites algorithm. Among these 360 iterations, 200 iterations are random

sampling of random frequency combination solutions. The other 160 iterations are random variation of 200

tested solutions.

In each iterations, we allow VVValtr to run 30s and track the 7 points with 5 seconds interval. Thus,

we know the position of VVValtr at t = 0, 5, 10, 15, 20, 25, 30. We then describe the t = 0, as (0, 0, 0) in

the behavior space and describe the behavior of t > 0, as the positions and Euler angles subtract from the

position and Euler angle from t = 0.

After 360 iterations, we generated 360 ∗ 7 = 2520 points in the behavior space. Then, we categorized

these points into grids and chose the solution with the least time and energy consumption to form our

Behavior Repertoire.

4.3 Results & Data Visualization

After these 360 iterations with 200 random sampling and 160 random variations, we observed lots of inter-

esting behaviors with in these 30s trials.

Figure 9 to Figure 12 shows the various motions from these 360 iterations of Behavior Repertoire explo-

ration.
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Figure 9: A 2D illustration of not moving solution and linear movement solution.

Figure 10: A 2D illustration of circular movement solution and arc movement solution.

Figure 11: A 3D illustration of linear movement solution.
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Figure 12: A 3D illustration of rotation movement solution.

Figure 13: Final Solutions space and its Behavior Repertoire after 360 iterations.
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We discretized the behavior space into 53428 total grids (38 * 38 * 39). Among the 2520(360 ∗ 7) points

generated by this experiment, the 200 random sampling iterations with 1400 points illuminated 618 grids,

generated similar behavior 582 times. The 160 random variation iterations with 1120 points illuminated 375

grids, generated similar behavior 745 times.

Thus, the total number of points in the Behavior Repertoire is 993. Thus, after 360 iterations of this

MAP-Elites experiment, we illuminated 993 out of 53428 total grids (1.8 %).

Since the total number of data taken by the time of generating these figures were only 360, it could

not show any effectiveness of the MAP-Elites methods on finding more diverse behaviors of tensegrity or

showing a comprehensive version of the Behavior Repertoire.

However, as we could tell from these figures, especially from the single iteration figures, our MAP-Elites

experiment caught lots of interesting and diverse behaviors of our tensegrity robot. We also see promising

results on how much the behavior space is being filled up after only 360 iterations. It is worth noticing that

the behavior space grid that we define is a grid with high precision, that is why the Behavior Repertoire

that we generated seems to be cluttered in the center of the behavior space.

In conclusion, with the newly installed Qualisys Tracking System in our lab environment, we developed

the way to track our wireless tensegrity robot Valtr in the global frame of our lab. Then based on the sug-

gestions from the previous Bayesian Optimization gait generation work [20], I developed and implemented

the MAP-Elites [24] experiment for our tensegrity robot incorporating the new Qualisys tracking system.

Then with few initial search in our behavior space, we found lots of interesting and diverse behaviors of our

tensegrity including, rotation, linear, arc, and circular movements. We also built-up a preliminary version

of Behavior Repertoire of our own wireless tensegrity robot for future control and reference.
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5 Contributions

I joined the Union College tensegrity group during my sophomore year and started to assist different parts

on the tensegrity research. With the guidance from Professor John Rieffel and the help of other team mem-

bers. The contributions of this research project were significant to improve our tensegrity research. I first

used Hill-Climber algorithm to make our tensegrity move and recorded a few frequency combinations that

translate or rotate VVValtr as benchmarks. Then I used the Bayesian Optimization algorithm to find differ-

ent frequency solutions to move the tensegrity and set the goal of the optimization to move the robot the

longest distance. Recorded the frequency combinations that translate VVValtr the greatest distance. At the

end of the first phase of this research, I contributed to a peer reviewed paper that will be published in an

International Conference [20]. During Winter 2019, I created tracking methods for VVValtr with IR markers

using the Qualisys Tracking System. Then I Implemented the MAP-Elites algorithm on VVValtr and tried

to explore the behavior space which combines rotations and translations of VVValtr. Ran more trials to find

the optimal solution for each point in the behavior space. I also developed the data visualization tool for

the experimental results from MAP-Elites experiment.

6 Concerns and Future Work

Even though the testing setup and environment were significantly improved after the lab was equipped

with the Qualisys Tracking System, we are still seeing some unstable design in the testing system.

First, from the tracking of the tensegrity robot, since the experiment of MAP-Elites [24] in our context

requires us to track the robot positions in the global frame during the vibration movement of the robot, the

tracking system some times could not catch the rigid body defined by the struts when they vibrate violently

or if the system receives data with high uncertainties.

Secondly, the software on the on-board RFduino hasn’t been updated since the work done by Boggs

[2]. This code has a lot of system check up processes that were designed for the Bayesian Optimization

experiment; it sometimes would cause the re-run of the previous iteration’s frequency command. In the

MAP-Elites experiment, I caught these errors by if-then statements and pausing the experiment automat-

ically to re-test the desired frequency combination. The on-board Ardurino code should be updated with

more flexible design for different types of experiments.

The last concern from my research with VVValtr is the mechanical part. With different energy left in the

battery, the motor behavior on each strut seems inconsistent with respect to the same frequency command.

This is only a concern that is yielded by human observations. We need to have a more rigorous test on each
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strut to determine whether the circuitry of the strut needs to be improved or updated again.

All the above control strategies are open-loop control which do not change the action of the robot based

on the environment and current state of the robot. However, with the on board accelerometer and encoder,

we are able to sense the current state of the robot and enable it to act according to the surrounding envi-

ronment. Hence, by doing such sensing, we are able to install a controller like CPG [1] or Spiking Neural

Networks [33] on the tensegrity robot itself to achieve closed-loop control.

There are several refinements we look forward to implementing - specifically in regards to the type

of control algorithm and corresponding learning algorithms. While the open-loop controller used in the

results above was surprisingly effective, the dynamical complexity of the tensegrity robot, coupled with

the resonance-based locomotion scheme, imposes considerable variability on the performance of the robot.

Small differences in the composition of the surface, and of the initial phase of the motors, can have sig-

nificant effects upon behavior. As a consequence, we will next be exploring closed-loop control strategies

such as neural networks and CPGs to control the robot, with feedback coming in from both a high speed

3D motion capture system as well as on-board sensors such as shaft encoders and accelerometers. These,

coupled either with conventional reinforcement learning or with data-efficient black-box policy search al-

gorithms [7], should allow us to produce highly robust and dynamical gaits. We are trying to utilize a new

closed-loop implementation using a novel reinforcement learning algorithm called BLACK-DROPS [7].
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7 Conclusions

Although not conclusive, the research described here has paved the way for increasingly interesting and

varied investigations into the behavior diversity of tensegrity robots. First, we have developed a new, mod-

ular tensegrity robot equipped with data collection and wireless communications capabilities, a significant

advance from our previous tensegrity robot. We utilized these new capabilities and fully tested the work

suggested previously by research on tensegrity gait generation undertaken by Rieffel et el. [31] and Boggs

[2] that Bayesian optimization is a promising means of generating effective gaits on tensegrity robots and

generated publishable results [20]. The work [20] that we published suggested the necessity of exploring

more diverse behavior of tensegrity. Following this suggestion, we have a new advanced tracking system

to improve our testing environment. In particular, we have demonstrated a thorough experiment design

and implementation with some preliminary data that shows some beautiful and effective behavior of our

new wireless tensegrity robot, and specifically that some of the solutions could be used in the future to gen-

erate a desired control sequence like moving steadily forward. Equally important, through this research we

have discovered a number of flaws and failures in our new setup which must be addressed, and in doing

so paved the way for more effective research in the future.
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