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Introduction

Soft robotics is an emerging field which promises 
to create robots that are radically different from 
conventional robots found today. Where conventional 
robots comprise rigid materials and often perform 
tasks in controlled environments while isolated from 
humans, soft robots may operate in close proximity to 
humans due to the inherent safety provided by their 
ability to readily deform. The ability of soft robots to 
deform (by design) in response to external forces may 
enable some robots to finally become common in 
domestic settings, may enable greater search and rescue 
devices, may help create better wearable devices and 
prostheses, or may improve the utility of manipulators 
in confined spaces.

Described as ‘open and free of dogmatic restrictions 
to any constrained set of methods, principles, or applica­
tion domains’ [1], the freedom provided by this new 
field of robotics is reflected in the diversity of robots 
built by researchers and hobbyists. However, this 
freedom presents challenges. Numerous attempts 
to define this diverse family of robots has resulted in 
a labyrinth of descriptions in the literature. Despite a 
single term distinguishing this branch of robotics from 
others, soft is difficult to define as it has many possible 
interpretations. Is soft only used as an intuitive term to 
separate this class of robots from conventional robots? 
Is softness related to material compliance, structural 
compliance or both? In each of these cases, how does  

hardness or soft matter fit in? The authors aim to resolve 
this ambiguity by examining a selection of concepts 
emerging from descriptions of soft robotics in the lit­
erature and clarifying exactly what is meant by soft.

A clear description of soft may clarify the bound­
ary between soft robotics and conventional robotics. 
However, within this burgeoning field, a large number 
of soft robots have been built in a variety of uncon­
ventional and seemingly unrelated forms for a range 
of different applications. This paper also aims to initi­
ate the categorisation of existing soft robotics so that 
this field may become more structured. This categori­
sation is not intended to restrict the opportunity for 
creativity found in soft robotics but rather, to provide 
a structure so that an understanding of this complex 
field becomes more accessible.

Finally, in the course of the following discussion, 
a common description of existing soft robots is intro­
duced: compliance. Young’s modulus, a quantitative 
measure of this property, is scrutinised. Ranges of 
values for this property have been used to select mat­
erials safe for physical interaction with humans [1] and 
in a definition of soft robots [2]. However, proposed 
ranges of values for this criterion differ by orders of 
magnitude. The final objective of this paper is to clarify 
how this discrepancy may have arisen. Additionally, 
the suitability of this criterion to some classes of soft 
robots is also discussed.

The purpose of these three objectives is to strive 
towards a unified understanding of the breadth and 
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complexity of soft robotics for researchers active in this 
domain. This paper aims to begin this process by defin­
ing the boundary of soft robotics through an invest­
igation into the term soft, identifying a relationship 
between existing soft robots, and clarifying the use of 
Young’s modulus for robots in this field.

What is soft?

A good starting point is to begin with the physical 
forms soft robots have taken rather than with their 
descriptions, especially if these descriptions are to be 
under scrutiny. Figure 1 shows a selection of robots 
described by their creators as ‘soft’ in the literature, 
grouped into tiers according to their similarities. Small 
differences separate neighboring devices in figure  1 
but the differences between devices at the extremities 
of this spectrum are substantial. It could be argued 
that some devices in this figure, especially those in Tier 
1, do not belong in a discussion about soft robotics. 
Many of the descriptions provided in the following 
section  exclude these types of robot because their 
compliance is achieved not through the use of soft 
materials but by pairing active (H) and passive (I) 
structural compliance with rigid materials. However, 
both of these approaches are considered by some to be 
soft [10, 12–14]. Figure 1 is intended as a tool to display 
the variety of ‘soft’ robots in the literature but it is 
by no means exhaustive. Row-bot [15], for example, 
is not included. This robot employs soft materials in 
its microbial fuel cell, in its fuel intake ‘mouth’, and 
for locomotion. However, it is not identified as a 
‘soft’ robot by its creators. Row-bot is a biomimetic 
autonomous rigid robot that requires soft materials to 
function. Figure 1 is intended as an aid to understand 
the breadth of robots that are distinguished as ‘soft’ 
in the literature; this and similar robots have not been 
included.

Compliance
Despite their differences, all of the robots in figure 1 
share a common trait: compliance. This term has been 
used frequently in the literature to describe soft robots 
and their supporting technologies [1, 2, 4, 7, 16–26]. 
Soft robots have sometimes been described exclusively 
in terms of the compliance of their comprising 
materials [1, 2, 4, 17, 21, 24, 26] while others attribute 
a robot’s softness to both structural and material 
compliance [16, 17, 24]. In both cases, compliance 
is often referred to without explicitly describing its 
meaning. For the purpose of determining a clear 
meaning for soft, compliance will be discussed briefly 
with the aim of determining whether material and/or 
structural compliance is applicable to soft robots.

Stiffness, the inverse of compliance [27], represents 
the resistance of an object to non-permanent (elastic) 
deformation when under stress. As an extensive prop­
erty, i.e. one that depends upon the amount of mat­
erial present, the elastic modulus of a material and its  

geometry affect a material’s stiffness. Geometry 
describes the dimensions of the material and a mat­
erial’s elastic modulus is an intensive characteristic 
of the material; representing the relationship between 
an applied stress and the resultant elastic deformation 
of a test specimen of standardized geometry. Figure 2 
shows two solid bars of different cross-section fixed 
to an anchor. Assuming that both bars are made from 
the same material, one may surmise the effect of geom­
etry on a body’s stiffness. Formally, in this specific case 
deflection δ due to force F is given by [28]:

δ = 4F
1

E

l3

bh3

where E is the Young’s modulus of the material and 
l3

bh3 relates to the geometry of each of the two bars as 

annotated by figure  2. In a structure, compliance 
depends upon the stiffness of each member element as 
well as the location and arrangement of these elements 
in the structure. An example of this is a tower crane, 
where both the stiffness of the individual steel bars 
and their arrangement into a truss affect the crane’s 
stiffness.

If a robot is considered soft based on a measure of 
its materials’ compliance alone—using the Young’s 
modulus of its constituent materials for example [2]—
one should consider how appropriate this description 
is to soft robots. Material compliance describes only 
how easily a material elastically deforms under stress. 
Soft robots typically comprise a number of materials 
of differing compliance arranged into a structure. The 
compliance of the assembled robot not only depends 
upon the elastic modulus, but the geometry and struc­
ture of the device; both material and structural com­
pliance should be considered. However, a robot’s 
compliance can be more complex: the deformation of 
an assembled robot under stress may depend upon its 
orientation to that stress i.e. it may be anisotropic. This 
may arise due to asymmetrical geometry, the orienta­
tion of embedded materials like glass fibres, grains in 
materials like woods or metals, or the specific arrange­
ment of elements forming a structure. Soft robots may 
comprise parts that differ in composition and geom­
etry, each requiring a matrix of terms to describe the 
local compliance in each direction. Furthermore, 
many devices in figure 1 could be considered compli­
ant in some directions while stiff in others. Although 
considered soft robots, these robots may not act as a 
soft robot in all directions. A detailed description of 
how a soft robot achieves compliance and in which 
direction it is compliant is required to determine when 
it will interact softly with its target and when it will 
not. Additionally, soft robots are never passive devices. 
Soft robots such as (A)–(C) and (E)–(G) in figure 1 
employ fluid-chamber actuators. When the pressure in 
a chamber changes, the compliance of the robot also 
changes. Soft robots can also modify their stiffness 
by employing materials that undergo phase changes  
[29, 30], using particle jamming [6], increasing ten­

Bioinspir. Biomim. 14 (2019) 063001
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sion on tendons [31], or controlling the impedance of 
joints [10].

If a soft robot is compliant, one should consider 
how specifically it achieves compliance. The soft­
ness of these devices should not be vaguely attrib­

uted to material or structural compliance and defined 
by incomplete criteria for these characteristics. In a 
type of robotics with safe physical human interac­
tion in the crosshairs, an incomplete understanding 
of a soft robot’s compliance may result in unsuitable  

Figure 1.  Octobot (A) is an untethered robot comprising only soft components [3]. Marchese and Rus’s soft spatial manipulator (B), 
the multigait soft robot (C) (a precursor to (G)), and the spherical jamming mobile robot (D) comprise only soft materials but require 
external supplies [4–6]. The lightweight soft robotic arm (E) moves using pneumatic actuators that also provide a compliant covering 
[7]. OctArm (F) uses pneumatic actuators to create a continuum manipulator but requires rigid plates to separate each section of the 
manipulator [8]. The resilient untethered soft robot (G) moves using pneumatically powered actuators but relies on hard batteries, 
compressors, and micro-controllers [9]. DLR Robotics’ LWR-III (H) [10] achieves softness through lightweight materials, sensor 
redundancy, and active compliance control. Variable impedance actuators (I) incorporate compliance into a rigid robot, creating a ‘ 
soft’ robot, by exploiting passive or actively controlled elastic elements [11]. (Credits: (A) Lori K Sanders, Michael Wehner, and Ryan 
L Truby, Harvard University; (B) reproduced from [4] with permission, Copyright 2016, SAGE Publications; (C) Robert F Shepherd; 
(D) used with permission by the authors; (E) Yong-Lae Park, Carnegie Mellon University; (F) reproduced from [8] with permission, 
Copyright 2006, IEEE; (G) reproduced from [9] with permission, Copyright 2014, Mary Ann Liebert, Inc.; (H) reproduced from [10] 
with permission, Copyright 2008, IEEE; (I) reproduced from [11] with permission, Copyright 2009, IEEE.)

Figure 2.  Stiffness of cantilever beams.

Bioinspir. Biomim. 14 (2019) 063001
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interaction with humans. As soft robotics creates inter­
est in people from many varied fields, the literature 
describing soft robots should become accurate and 
complete when describing compliance. Literature ena­
bling readers to fully understand compliance may nur­
ture the creation of more diverse forms of soft robots. 
Conversely, literature describing the compliance of 
soft robots without a comprehensive description of 
this term may create unnecessary confusion and so 
hinder the field’s development. Soft robots cannot be 
accurately described according to the compliance of 
materials alone; this is a simplification. Many existing 
soft robots comprise materials assembled into struc­
tures that change in compliance during actuation.

Soft robotics provides ample opportunity for the 
creation of radically new forms of robots for many var­
ied applications. Highlighting the complex mechanical 
properties of soft robots may reveal new opportunities 
to gain further control over a soft robot’s deformation. 
When first considering these mechanical character­
istics, it is possible to perceive rigidity as an undesir­
able property in soft robots. However, in our view, it 
is beneficial to view rigidity as an adjustable property 
which may enable a soft robot to deform appropri­
ately. Similar to (I) in figure 1 [11], soft robots may be 
constructed, with what may be considered quite stiff 
materials, if a compliant structure enables a robot to 
deform. Structures may be useful to modify the com­
pliance of a soft robot but also to reorient the direction 
in which a robot may deform under stress. This aniso­
tropic deformation may be useful to direct and con­
trol how a robot deforms. For example, by introducing 
organised structures and/or stiff materials into a soft 
material, deformation may be directed to create actua­
tors [32], control the locomotion of mobile robots 
[9] or may reduce the computational load required to 
determine a soft robot’s kinematics [33]. Origami and 
kirigami, the art of folding paper and the art of cutting 
paper, respectively, have been identified as means of 
simplifying the fabrication of compliant and reconfig­
urable structures [34]. Described as having the proper­
ties of both soft and hard robots, origami and kirigami 
robots have been described as a distinct class of robot 
which self-assemble from a flat sheet [34]. However, 
origami, kirigami, and mechanical metamaterials may 
be used to introduce passive compliant structures into 
soft robots; to enable relatively complex locomotion 
from simple actuation [35–37] or to modify the bulk 
mechanical properties of materials [38–40] for exam­
ple. Additionally, rigid components may be used in 
tandem with soft materials to create soft robots which 
benefit from the advantages of both materials [7]. Also 
drawing inspiration from the art world, tensegrity 
structures consist of a combination of cables under 
tension and separated rigid elements under compres­
sion. These structures have been identified as having a 
number of properties which are useful for cobots and 
soft robots [41] and have been used to fabricate a num­
ber of mobile soft robots [42–44].

Softness
An obvious question at this point in the discussion is: 
if soft robots are compliant, where does softness fit in? 
In order to answer this question one should consider 
the origin and development of soft robots as well as 
the potential meanings of soft. The words ‘soft robot’ 
were originally used to describe a rigid hand device 
employing McKibben pneumatic actuators [45]. ‘Soft 
robotics’ was later used to describe the active structural 
compliance programmed into rigid robots such as 
LWR-III [46]. Many current ‘soft’ robots employ 
compliant materials and structures to achieve softness. 
A branch of soft robotics known as soft matter robotics 
[47] (also named soft material robotics [48] despite a 
distinction between matter and material being made 
by Kastor et  al [49]) exclusively employs a specific 
class of matter to become ‘soft’ [47]. The meaning 
of ‘soft’ changes between each of these contexts. Its 
original use in [45] may have been as an intuitive term 
to distinguish this device from conventional robots. 
Intuitively, one may describe something soft in a range 
of ways: pleasing to touch, gentle, and easily moulded 
or deformed. Currently, compliance is the prevalent 
characteristic distinguishing soft robots from 
conventional robots. Just as compliance is the inverse 
of stiffness, softness can be interpreted as the inverse 
of hardness; a property describing the resistance of a 
material to local permanent (plastic) deformation 
when under stress. In the literature relating to soft 
robotics, the property of hardness has not, to the 
best of the authors’ knowledge, been used to define 
robots in that class. Rather, plastic deformation has 
been used to describe phase change materials, such 
as shape memory alloys [50], contained fluids in soft 
fingers [51], and when using of hot melt adhesives 
and contained granular media in grippers [52]. In 
one definition of soft materials, both the elastic and 
plastic deformation of a material are considered [49]. 
However, save for shore hardness when selecting 
elastomers (e.g. [53]), hardness does not feature in the 
description of soft robots. Soft matter robots are ‘soft’ 
because of their relatively large non-linear response to 
relatively small forces [54, pp 1–7]. Although initially 
seeming inaccessible, examples of soft matter include 
foams, milk, elastomers, and ferrofluids; belonging to 
foams, colloids, polymers, and surfactants, respectively. 
Each of these descriptions of ‘soft’ may be valid for 
a number of robots but not one can cover all of the 
example ‘soft’ robots provided in figure  1. Due to 
the immaturity of soft robotics, descriptions of ‘soft’ 
change readily. The meaning of ‘soft’ not only changes 
with the advances in this field but also changes with the 
researcher’s area of interest. As Wang and Iida aptly put 
it, most reviews of soft robotics collected ‘ case studies 
that fell into ambiguous classifications of softness based 
on the authors’ individual experiences and research 
topics’ [47].

In order to answer the title question, and in so 
doing encourage debate on this topic, one may look 

Bioinspir. Biomim. 14 (2019) 063001
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towards possible future developments in soft robots. 
The authors choose the potential provided by soft 
matter for this purpose. Currently soft matter robots 
frequently comprise polymers while robots com­
prising colloids or smart fluids are largely undevel­
oped [47]. Soft robots in the near future may further 
explore and aim to control these relatively unused 
materials. In soft matter, the rheological properties of 
the matter are of concern [54, p 165]; where rheology 
refers to the flow and deformation of matter under 
stress [55]. Soft matter describes materials exhibit­
ing soft mechanical properties on a macroscopic scale 
[56]. Future soft robots constructed from swarms of 
hard, stiff robots at the mesoscopic scale, 1–1000 nm 
[56], may also exhibit soft characteristics at a macro­
scopic scale. Majidi suggests that as soft robots are fur­
ther miniaturized the complex behavior of soft matter 
robots will be described by the elasticity and rheology 
of soft matter [1].

What is soft? A descriptive answer must be given 
as one quantitative criterion cannot be used to define 
each distinct approach towards achieving softness. Soft 
relating to soft robots is a characteristic describing the 
intentional deformation of robots when under certain 
stress or stresses. The stress or stresses in response to 
which a soft robot may deform is specific to the desired 
application of a soft robot; for example, a soft robotic 
manipulator may be required to bear certain loads 
but deform under impacts and conform to irregularly 

shaped objects. Deformation may be either elastic or 
plastic, where many currently developed soft robots 
deform elastically. In this case, compliance is the defin­
ing characteristic of soft robots. Soft matter robots are 
considered a class of soft robots where soft matter is 
employed as the deforming component of a soft robot. 
Soft matter comprises a large diverse group of mat­
erials from viscous liquids, to gels, to viscoelastic solids. 
Currently, many soft matter robots use elastomers but 
many more materials may be exploited in the future. 
Softness is currently achieved in many ways, from the 
control of joint impedances creating an actively con­
trolled compliant structure [10] to robots partially [9] 
or fully [3] comprising soft matter. With advances in 
the control of soft matter, or perhaps with the creation 
of smart soft matter using swarms of tiny robots, the 
rheological properties of these devices will become 
prominent.

Figure 3 is a diagram displaying a categorisation 
of existing soft robots. Each branch on this diagram 
represents a distinct type of soft robot. The first class, 
where a robot’s characteristic softness is primar­
ily achieved through the compliance of its structure, 
is split into two branches: active and passive struc­
tural compliance. Active structural compliance stems 
from the control of a robot’s actuation; DLR Robot­
ics’ LWR-III [10] for example, employs this control 
scheme. Passive structural compliance emerges from 
the mechanical properties of structures such as springs 

Figure 3.  A categorisation of existing soft robots. Each branch in this diagram represents a distinct approach towards achieving the 
characteristic intentional deformation of soft robots. Each colored section represents the principal characteristic of the contained 
branches, where branches in each successive section may possess the traits of the preceding sections. Examples in each branch are: 
DLR Robotics’ LWR-III (A) [10], fluid driven origami-inspired artificial muscles (B) [32], resilient untethered soft robot (C) [9], 
and Octobot (D) [3]. *Materials of varying compliance may be used in the construction of passively compliant structures. However, 
it is possible to create a passively compliant structure without relying on material elasticity. If the magnetic field of a permanent 
magnet restores a structure to its original configuration, the deformation of this structure may resemble that of a passively compliant 
structure. (Credits: (A) reproduced from [10] with permission, Copyright 2008, IEEE; (B) Wyss Institute at Harvard University;  
(C) reproduced from [9] with permission, Copyright 2014, Mary Ann Liebert, Inc.; (D) Lori K. Sanders, Michael Wehner, and  
Ryan L. Truby, Harvard University.)

Bioinspir. Biomim. 14 (2019) 063001
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[11], tensegrity structures [43, 44], origami [32], kiri­
gami [57], and other mechanical metamaterials [37]. 
The materials used in these structures may vary in 
compliance from the relatively rigid spring steels and 
compression members used in [11] and [44], respec­
tively, to the fabrics, plastics, and cardboard used in 
origami [32] and kirigami [57]. Compliant struc­
tures, active and passive, are not solely found within 
these classes of soft robots. Active compliance control 
[29, 58], origami [59], kirigami [36], and mechanical 
metamaterials [60] have been used in robots employ­
ing soft matter. A number of systems in the ‘Employs 
Soft Matter’ category, particularly mobile soft robots, 
rely on rigid components to function; for example  
[5, 6, 9, 30, 61]. Being a relatively new field, many sup­
porting technologies which are soft lack the perfor­
mance of their rigid counterparts [7, 62, 63]. Some 
existing ‘entirely soft robots’ (e.g. [5]) may not even 
be considered robots unless the tethered rigid comp­
onents which grant them autonomy are included 
[64]. As a consequence, the development of a practi­
cally useful and entirely soft mobile robot remains a 
grand challenge of soft robotics. Until technologies 
supporting the development of soft robots—power 
generation, computation, and actuation mature—the 
capabilities, autonomy, and mobility of an entirely soft 
robot are likely to be limited (e.g. [3]).

Soft robots have been identified as having the 
potential to outperform their rigid counterparts in 
uncontrolled environments [65], when operating 
closely with humans and when mimicking biologi­
cal systems [66]. When soft robotics finally provides 
practical platforms for these applications, the degree 
of autonomy in these robots may be questioned. Cur­
rently, achieving autonomy in an entirely soft mobile 
robot poses a challenge [63]. However, when such 
obstacles are overcome, soft robots of the future may 
have unprecedented access to humans or other natu­
ral systems. Although potentially safe, soft robots have 
the capability to act dangerously. How a soft robot 
may make appropriate decisions while total informa­
tion about their state may not be observable [65] raises 
concerns over how predictable a soft robot’s actions 
may be. Concerns have also been raised surrounding 
the degree of allowable autonomy in robots designed 
for physical human-robot interaction [67]. The 
advent of soft robotics adds a new dimension to this 
discussion. With such diversity in soft robotics, a soft 
robot’s degree of softness (or potential for harm) may 
affect how much autonomy may be allowed in a given 
environment. The definition of soft robots proposed 
in this paper depends upon a soft robot’s deformation 
being fit for its intended application. If all scenarios 
within which a soft robot may operate cannot be antic­
ipated or if a soft robot relies upon rigid components, 
limitations on a soft robot’s autonomy may be pur­
posefully imposed to ensure its safe operation.

Young’s modulus

Compliance is used to describe many soft robots but 
both compliance and its inverse, stiffness, are relative 
terms. In order to design a compliant soft robot for 
a specific application or to operate within a specific 
environment, these terms should have an appropriate 
reference frame. The aim of this section  is to 
scrutinize a quantitative measure provided frequently 
in the literature for this purpose: Young’s modulus  
[1–3, 68, 69].

Young’s modulus is the constant of proportion­
ality between the stress and strain of a linearly elastic 
material undergoing elastic deformation. An object’s 
stiffness is proportional to the constituent material’s 
Young’s modulus; where the object’s geometry also 
influences its stiffness [27, 70]. As Young’s modulus 
is an intensive characteristic, i.e. independent of the 
amount of the material present, it is a useful measure 
to compare linearly elastic materials’ resistance to 
elastic deformation. Majidi used a range of Young’s 
moduli for selecting materials suitable for soft robots 
that are designed for safe physical human-robot inter­
action [1]. Majidi suggests that soft robots designed 
for this purpose should match their constituent mat­
erials’ Young’s moduli to that of soft biological mat­
erial. Majidi supports this by proposing that ‘contact­
ing materials should share similar mechanical rigidity 
in order to evenly distribute internal load and minimize 
interfacial stress concentrations’. Majidi provides a 
range of Young’s moduli between 102–106 Pa as this 
reference. In their seminal paper, Rus and Tolley follow 
Majidi’s compliance matching principle but define all 
soft robots as ‘systems that are capable of autonomous 
behavior, and that are primarily composed of mat­
erials with moduli in the range of that of soft biological 
materials’; providing a different range of 104–109 Pa 
[2]. The limitations of Young’s modulus as a defin­
ing characteristic of soft robots and soft matter are 
acknowledged by both Majidi [1] and Rus and Tolley 
[2]. However, scrutiny is still required. Firstly, these 
reference frames, based on the same principle, differ 
by orders of magnitude. McKee et al may provide an 
explanation for such a large difference between these 
ranges, hypothesizing that bulk and local character­
istics of heterogeneous biological tissue are captured 
differently by indentation and tensile methods [71]. 
Figure 4 displays data provided by Majidi [1], Rus and 
Tolley [2], and McKee et al [71]. Young’s modulus is 
tested using homogeneous, uniform cross-section bars 
that are subject to axial loading and small deforma­
tions to ensure elastic deformation [1]. The mechani­
cal properties of soft biological material differs from 
those of the test specimens. Skin, for example, behaves 
as a non-homogeneous, anisotropic, and non-linear 
viscoelastic material [72]. Majidi suggests matching a 
candidate material’s mechanical rigidity with that of 
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soft biological material in order to create a soft robot 
that may interact safely with a human, but rigidity 
alone is not sufficient when such complex behavior is 
exhibited by soft biological material; Young’s modulus 
should not be used in isolation. Furthermore, defin­
ing an entire class of robots—independent of their 
purpose—by this criterion not only excludes many 
soft robots that are achieving their desired compliance 
through alternative means (see figure 1) but does not 
take into account the wide variety of contexts in which 
each robot operates.

It is useful at this point to align the discussion of 
Young’s modulus to the previous discussion on com­
pliance. Compliance is the inverse of stiffness, a prop­
erty dependent on both a material’s Young’s modulus 
and its geometry. Young’s modulus is a useful prop­
erty to compare the reaction of these materials to an 
applied tensile stress or stress arising from indenta­
tion however it does not fully describe an assembled 
robot’s stiffness. The elastic modulus and geometry 
of each member material, the arrangement of these 
members into the assembled structure, and a robot’s 
actuation should be considered in an assembled robot. 
If an assembled robot comprises materials that are not 
linearly elastic and homogeneous, additional proper­
ties may be required. If the safe use of a robot is jus­
tified based on its compliance, then the test method 
should be stated.

Conclusions

Soft robotics is a developing field that is still maturing. 
The meaning of soft has changed as the field has 
advanced. In many existing soft robots, compliance is 
the definitive characteristic. However for a soft robot, 
compliance cannot be attributed to intensive material 
characteristics alone: material, structural, passive 
and active characteristics should be considered. With 
greater inclusion of soft matter in soft robotics, the 

rheological properties of soft robots will become 
prominent. A categorisation of soft robots according 
to their principal mechanical property, material 
composition, and their principal means of achieving 
softness is presented in this paper. For soft robots 
based on material compliance, the authors encourage 
precision in the use of Young’s modulus. The authors 
suggest that the method of testing Young’s modulus 
should be explicit and justified when selecting 
compliant materials for safe human-robot physical 
interaction.
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