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Abstract

Soft spherical tensegrity robots are novel steerable mobile robotic platforms that are compliant, lightweight, and
robust. The geometry of these robots is suitable for rolling locomotion, and they achieve this motion by properly
deforming their structures using carefully chosen actuation strategies. The objective of this work is to con-
solidate and add to our research to date on methods for realizing rolling locomotion of spherical tensegrity
robots. To predict the deformation of tensegrity structures when their member forces are varied, we introduce a
modified version of the dynamic relaxation technique and apply it to our tensegrity robots. In addition, we
present two techniques to find desirable deformations and actuation strategies that would result in robust rolling
locomotion of the robots. The first one relies on the greedy search that can quickly find solutions, and the second
one uses a multigeneration Monte Carlo method that can find suboptimal solutions with a higher quality. The
methods are illustrated and validated both in simulation and with our hardware robots, which show that our
methods are viable means of realizing robust and steerable rolling locomotion of spherical tensegrity robots.

Keywords: tensegrity robots, dynamic relaxation, greedy search, multigeneration Monte Carlo

Introduction

The term tensegrity was first coined by Fuller1 as a
portmanteau of tensional integrity. The name comes

from the unique design principle that tensegrity structures
follow: structures are constructed with isolated rigid rods
connected by a net of elastic cables providing tension to hold
the structures. When an ideal tensegrity structure is loaded,
both types of members bear loads only in axial directions;
rods undergo pure compressive forces and cables pure tensile
forces. By delicately balancing the cable tension forces and
rod compression forces, the structure is able to maintain its
shape without collapsing. The overall shape of the structure
is determined by the distribution of internal forces across its
members.

Tensegrity structures have several unique features that
distinguish themselves from other structures.2,3 First, tenseg-
rity structures are in general lightweight as they have minimal

mass distribution in terms of load bearing since most of its
internal volume is empty and the material is placed only on its
load paths. This allows efficient use of material and results in
a reduced weight of the structure for a given stiffness. Their
structural level flexibility enables packing into small volumes
for efficient transportation and on-site deployment by ex-
panding back to their full volume with proper control of cable
tensions. In addition, tensegrity structures can remain intact
when overloaded or absorb impact shocks by exploiting their
innate structural level compliance. The aforementioned prop-
erties of tensegrity structures are advantageous as a robotic
platform, and the efforts have been made in the literature to
transform different tensegrity structures into robots. These ten-
segrity robots constitute examples of soft robots that are char-
acterized by elastic deformability attributable to the extensive
use of deformable matter with little or no rigid material.4

Two of the earliest tensegrity robots introduced in the lit-
erature were based on tensegrity prisms with three or four
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rods, and it was shown that the robots can produce gaits using
controllers developed with evolutionary algorithms.5,6 In
addition, dynamic equations of motion of a similar three-rod
tensegrity prism-based robot were developed and used to
control the robot to follow simple geometric paths in a sim-
ulation environment.7 Since then, tensegrity robots were in-
troduced in various forms. For instance, spine-like tensegrity
robots were introduced with Central Pattern Generator-based
controllers to realize crawling or snake-like motions,8–11 and
legs were added to such robots later for legged locomo-
tion.12,13 Yet other tensegrity robots based on multimodule
tensegrity prisms were developed for duct exploration and
maintenance tasks, and two prototypes were constructed for
this purpose.14,15 Moreover, bioinspired tensegrity manipu-
lators mimicking a human shoulder and elbow were devel-
oped16,17 by building upon the fact that tensegrity structures
can effectively describe anatomical structures of the human
body.18,19

Among the tensegrity robots that are being developed in
various shapes, a special attention has been paid to spherical
tensegrity robots as mobile robotic platforms.20–24 The term
spherical tensegrity indicates tensegrity structures whose
outer shapes are similar to a sphere and that are capable of
rolling locomotion. While a spherical tensegrity structure
with a small number of rods may seem to be a crude ap-
proximation of a sphere, its outer shape becomes a lot closer
to a sphere when more rods are used to construct the struc-
ture (Fig. 1). A six-rod tensegrity structure that resembles an
icosahedron is the simplest three-dimensional (3D) spherical
tensegrity structure, and several robots have been introduced
in the literature based on this structure.20,21,23–30

Some research on these robots developed locomotion
strategies from trial-and-error hardware experiments,25,26,31,32

which can be time consuming and are not scalable to the
robots with a larger number of members. To overcome this
difficulty, other researchers developed locomotion strate-
gies first in simulation, usually in conjunction with learning
algorithms, to manage the inherent structural complexity of
tensegrities, and then validated them with hardware ro-
bots.28,33–38 Most of the work taking this approach, however,
relied on the outcome of the simulator and does not clearly
reveal the underlying physics of how tensegrity robots lo-
comote using structural deformation. Therefore, any unmod-

eled dynamics or interaction with environments that are not
captured in simulation can possibly lead to a performance
degradation of the developed strategies when they are im-
plemented on the physical robots.

Recently, another mode of locomotion for a six-rod ten-
segrity robot driven by vibration was introduced, where high
speed locomotion was achieved by properly tuning motor
speeds to excite the robot structure at a maximum reso-
nance.39 This approach, however, has a potential to fail on
uneven or irregular terrains and has difficulties in precisely
following desired paths or making turns, which would
have been possible with rolling locomotion using structural
deformation.

Relatively less work has been reported on sensing and state
estimation of tensegrity robots. For example, a state estima-
tion method using the Unscented Kalman Filter for fusing
inertial measurement readings with radio time-of-flight range
measurements was developed for a six-rod tensegrity robot.40

Another approach used liquid metal-embedded hyperelastic
strain sensors41 to measure cable lengths of a tensegrity ro-
bot.42,43 Because the sensors were elastic, they also served as
tension members of the robot and made extra cables unnec-
essary. This shows well the redundancy of tensegrity struc-
tures: members of tensegrity structures can simultaneously
function as actuators or sensors in addition to being load-
carrying members.2,3 Tensegrity structures were also pro-
posed as sensors measuring forces and torques.44,45

Our contribution

In this work, we present systematical ways of developing
actuation strategies enabling rolling locomotion of spherical
tensegrity robots and demonstrate them in simulation and
with our hardware robots. By means of this work, we aim to
consolidate and add to our research to date.46–49

We first revisit some of the concepts and techniques pre-
sented in our previous work. We start by breaking down the
rolling motion of spherical tensegrity robots into a series of
piecewise continuous motions, or steps, and classify them
based on the geometry of the robots. The steps are realized by
means of structural deformation, and therefore, we present in
detail a tool to compute tensegrity deformations. At the core
of our approach is the formulation of the dynamic relaxation,

FIG. 1. Rapidly prototyped tensegrity robots at the Berkeley Emergent Space Tensegrities lab, UC Berkeley. The first two
robots (a, b) are based on a six-rod tensegrity structure, and the last one (c) is based on a twelve-rod tensegrity structure.48
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which is a numerical technique to efficiently solve for the
deformation of tensegrity structures when actuation signals
are given. We provide a set of equations that are used to
numerically propagate system states and are singularity free.
Hence, the formulation does not depend on a specific simu-
lation environment and is applicable to other spherical ten-
segrity robots beyond the ones introduced in this work. The
properties and implications of the dynamic relaxation are
also discussed in detail, which were not presented in our pre-
vious work.

In addition, we reconsider two heuristic-based methods
that find a set of desirable deformations leading to different
types of steps: (1) a greedy search method that can quickly
find solutions and (2) a multigeneration Monte Carlo
(MGMC) based learning method that finds a set of subopti-
mal solutions for more reliable steps. By means of these
methods, we obtain actuation policies that encode what ac-
tuation commands should be given to the robots to arrive at
desirable deformations for making steps.

Our results are demonstrated and validated using the two
different kinds of hardware spherical tensegrity robots we
constructed: (1) six-rod tensegrity robots whose outer shapes
are similar to the Jessen’s orthogonal icosahedron50 and (2) a
twelve-rod tensegrity robot whose outer shape is similar to a
rhombicuboctahedron. To the best of authors’ knowledge, the
twelve-rod tensegrity robot was the first one of its kind in-
troduced in the literature by the authors.48,49 In addition to the
actuation policies for the six-rod tensegrity robots presented
in our earlier work, the actuation policies for the twelve-rod
tensegrity robot are newly presented in this work, which
shows that our methods can work on different tensegrity sys-
tems. Furthermore, we newly provide a detailed compari-
son study of the greedy search and MGMC policies based on
three criteria, namely, computation cost, robustness of steps,
and required actuation energy.

Notations

The notations used in this article are as follows. R is the set
of real numbers. Rn is the set of n-dimensional real vectors.
Scalars are written in plain letters, vectors in small-bold
letters, and matrices in capital-bold letters. vi is the i-th ele-
ment of a vector v. 0 is a column vector of zeros with an
appropriate dimension.

Materials and Methods

Geometries of spherical tensegrity robots

In this section, we introduce two different types of spher-
ical tensegrity robots that are used as our test bed in this work.
The first type of tensegrity robot consists of six rods and 24
cables and its geometry resembles the Jessen’s orthogonal
icosahedron (Fig. 1a, b). Each rod end, or node, of this ten-
segrity robot is connected to four neighbor nodes by cables,
resulting in a structure with 8 equilateral and 12 isosceles
triangles on the outer surface. Since there does not exist a
cable connecting the edges between each pair of parallel rod
ends, a total of six edges are missing cables. As a conse-
quence, isosceles triangles also present themselves as open
triangles that have cables only on two out of three edges. In
contrast, every equilateral triangle is a closed triangle that
has cables on all three edges. When the robot is standing on

the ground, we assume only one triangle is in contact with the
ground and call it as a base triangle.

A six-rod tensegrity structure is the simplest 3D tensegrity
structure that is suitable for rolling locomotion. Although we
show in the later sections that the robot based on this ten-
segrity structure can perform rolling, it does so in a zigzag
way, not in a straight line, because its outer surface consists of
triangles only. This behavior is acceptable for slow speed
rolling, but it is not desirable for high speed rolling since the
robot should change its moving direction after each and every
step (i.e., a piecewise continuous motion between the ex-
change of two consecutive base triangles), which can cause
loss of momentum from the robot.

To avoid the zigzag motion and to make straight rolling
possible, another tensegrity robot whose outer surface mostly
consists of rectangles is developed based on a twelve-rod
tensegrity structure whose outer shape is similar to a rhom-
bicuboctahedron. This is the simplest spherical tenseg-
rity structure that has the desired outer surface property for
straight rolling (Fig. 1c). Furthermore, the geometry is sym-
metric about three mutually-orthogonal planes when there is
no deformation, and we exploit this feature in later sections
when we obtain actuation strategies for the twelve-rod ten-
segrity robot. If the tensegrity deforms in a way that the sym-
metry about one of these planes is maintained, then the
motion of the robot can be expressed on the two-dimensional
plane by projecting its members onto that plane of symmetry,
instead of describing the robot’s motion in a 3D space as is
the case of the six-rod robot. This allows reduction of the
dimensions of state space and control inputs, which can be
useful in designing controllers.

The outer surface of a twelve-rod robot consists of two
types of rectangles and eight equilateral triangles. There are
six perpendicular rectangles each of which is formed by
nodes of four parallel rods and is perpendicular to the
rods, and 12 diagonal rectangles each of which is formed by
nodes of two orthogonal pairs of two parallel rods and is at
an angle to the rods. As before, a base rectangle refers to a
rectangle that is in contact with the ground. In general, we
will use the term base polygon to indicate a polygon in
ground contact.

Hardware tensegrity robots

The hardware spherical tensegrity robots constructed based
on the aforementioned geometries are shown in Figure 1. The
first two robots consist of six rods and 24 edges, and the last
robot is constructed with twelve rods with 48 edges. All rods
and edges within each robot are identical. To minimize the
weight of the robots, lightweight balsa wood or fiber glass
rods are used for the six-rod robots, and hollow aluminum
tubes are used for the twelve-rod robot. The total weights of
the six- and twelve-rod robots are 2.7 and 1.8 kg, respectively.
The rod lengths of the six- and twelve-rod robots are 65 and
45 cm, respectively, and all robots have the overall diameters
of *1 m. All of our robots are cable driven meaning that the
edge lengths are controlled for shape deformation while the
rods do not have actuation and their lengths are constant.
However, the edges of the robots are designed differently.
Each edge of the six-rod robots is made up of two elastic cords
and a linear actuator that are serially connected (Fig. 2a, b). In
contrast, each edge of the twelve-rod robot consists of a
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nonstretching string that is connected to an extension spring.
The other side of the string is connected to an actuated spool
that controls the edge length and tension by winding or un-
winding the string (Fig. 2c, d).

Definition and classification of steps

Precision rolling of tensegrity robots is realized by a se-
quence of steps. A step of the spherical tensegrity robots is
composed of five different stages as follows (Fig. 3):

1. At rest: The robot is not deformed and is at a neutral
pose.

2. Deformation: The robot deforms by actuating some or
all of its members in such a way that the ground pro-
jection of the center of mass (GCoM) escapes the
current base polygon.

3. Rotation: The robot rotates about one edge of the base
polygon.

4. Strike: The robot lands on the next base polygon.
5. Recovery: The robot recovers back to its neutral pose

and prepares for the next step.

Strictly speaking, rolling is not a precise term to describe
the motion of a spherical tensegrity robot because the motion
is discontinuous with repeated impact events involved
between the robot’s rods and the ground. Moreover, the
rods that are in ground contact are pivoted, and the contact
points do not change during the piecewise continuous motion
of the robot between impacts, whereas the ground contacting
material point of a rolling rigid body continuously changes
as the body rolls. For this reason, other terminologies were
introduced in the literature to describe the motion, such as
tipping over or tumbling. However, we continue to use the
term rolling to describe the motion of spherical tensegrity
robots for two reasons: (1) it is generally used and accepted in
the field of tensegrity robotics, and (2) the motion becomes
close to rolling as the number of rods constituting a spherical
tensegrity structure grows. Sometimes the motion of spheri-
cal tensegrity robots is referred to as punctuated rolling to
emphasize the discontinuous nature of the motion.

Using high symmetry of spherical tensegrity structures,
their motion possibilities can be categorized into different
types of steps based on the outer surface polygons involved
during the steps. For instance, each closed triangle of the six-

FIG. 2. (a, b) Each edge of the six-rod robot consists of serial connections of two elastic cords and a linear actuator that
controls the length and tension of the edge.46 (c, d) Each edge of the twelve-rod robot consists of an extension spring and a
nonstretching string that is spooled in and out by a motor to control the edge length and tension.48

FIG. 3. A two-dimensional conceptual diagram of different stages of a step. The robot deforms its structure using cable
actuation and manipulates GCoM to leave the current base polygon to make a step. GCoM, ground projection of the center of mass.
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rod tensegrity robot is surrounded by three open triangles,
and each open triangle is surrounded by two closed triangles
and one open triangle. Because of this, the robot has to land
on one of the three neighbor open triangles after a single step
initiated from a closed base triangle. In contrast, the robot can
land on either of the two neighbor closed triangles or on the
neighbor open triangle after a single step initiated from an
open base triangle. In summary, three different types of steps
are possible:

� CO-step: Start from a closed base triangle and land on
an adjacent open base triangle.

� OC-step: Start from an open base triangle and land on
an adjacent closed base triangle.

� OO-step: Start from an open base triangle and land on
an adjacent open base triangle.

A similar classification of steps is possible for the twelve-
rod tensegrity robot. Recall that there are two types of base
rectangles that the robot can stand on, namely, perpendicular
and diagonal rectangles. We do not consider the case where
the robot is standing on a triangle because this pose is not part
of straight rolling. Then the following definitions of steps are
possible from the robot:

� PD-step: Start from a perpendicular base rectangle and
land on an adjacent diagonal base rectangle.

� DP-step: Start from a diagonal base rectangle and land
on an adjacent perpendicular base rectangle.

Form-finding of tensegrity robots

A compliant tensegrity robot makes a step by shifting its
center of mass through structural deformation using actu-
ation. To control the center of mass in a desired manner, a
tool is necessary that can predict how tensegrity robots will
deform as a response to the given actuation signals. Such
a problem is called a form-finding problem of tensegrity
structures.

Analytical modeling of tensegrity deformation is usually
complicated due to complex interactions between highly
interconnected members and is often limited to simple ten-
segrity structures with only a few members.51–53 To over-
come this difficulty, the NASA Tensegrity Robotics Toolkit
(NTRT)54 has been developed to provide the core methods
to model, simulate, and control broad types of tensegrity
robots. This open-source software package has been widely
used in the field especially for the simulation of dynamic
behavior of tensegrity robots, and its performance has been
verified in the previous works of tensegrity robots.11,13,14,28,37

Since the form-finding problem is concerned about statics
of tensegrities, we develop another tool based on the dynamic
relaxation technique to solve the problem, which is grounded
on Newton’s law and numerically computes an equilibrium
shape of a tensegrity robot for a given set of actuation com-
mands. This approach admits explicit analytical expres-
sions, and therefore, it does not rely on a specific simulation
environment. In addition, the method is applicable to other
tensegrity structures beyond the ones introduced in this work
for computing their deformations.

In what follows, we formally establish the method in de-
tail. The formulation assumes cable-actuated tensegrity ro-
bots whose edges change lengths for structural deformation
while rigid rods have constant lengths.

Dynamic relaxation with kinetic damping

Given a cable net structure whose initial configuration has
nodes with unbalanced forces applied, the dynamic relaxa-
tion aims to find an equilibrium configuration at a minimum
energy state in an iterative way.55,56 The technique uses ei-
ther viscous or kinetic damping, and we choose to use the
latter in this work considering that this type of damping is
known to be convergent and stable for systems with large
local disturbances55 as is the case with tensegrity robots.

The formulation of dynamic relaxation with kinetic damp-
ing starts from Newton’s second law. First, each rod is mod-
eled as two point masses located at the ends, and the masses
are assumed to have a rigid and massless connection be-
tween them. Suppose a force Fi(t) is applied to the i-th node
whose mass is mi, where t denotes a time step. According to
Newton’s second law, the motion of the node is governed by:

Fi(t)¼miai(t), (1)

where ai(t) is the acceleration of the node. The acceleration
can be approximated using the centered finite difference form
of the velocity as follows:

ai(t)¼ _vi(t) �
vi(tþDt=2)� vi(t�Dt=2)

Dt
, (2)

where vi(t) is the velocity of the node and Dt is the time
difference between the two consecutive updates. Combining
Eqs. (1) and (2) results in an iterative form of the velocity
update:

vi(tþDt=2)¼ vi(t�Dt=2)þ Dt

mi

Fi(t): (3)

Note that a fictitious value can be assigned to mi, which may or
may not be taken from an actual physical system. Usually, mi

and Dt are tuned for good convergence of the solution and
numerical stability of the simulation.55 This way of choosing
the figures may seem unreasonable at first sight; however, it is
acceptable for the dynamic relaxation since the goal is to find
the final shape of a tensegrity structure and the method is not
concerned with the shape evolution between the initial and
final shapes. As a result, the intermediate shape evolution
obtained from the dynamic relaxation does not necessarily
represent the actual dynamic behavior of the system.

From Eq. (3), the node velocity is updated for the fol-
lowing time step using the total node force Fi(t) whose ex-
pression is provided in the following section. The node
position ri(t) is updated using the updated velocity:

ri(tþDt)¼ ri(t)þ vi(tþDt=2)Dt: (4)

The dynamic relaxation attempts to find an equilibrium of
the structure from an arbitrary initial configuration whose
initial node positions ri(0) for all i satisfy the rod length
constraint. The initial node velocities are set to zero, that is,
vi(0)¼ 0,8i. Because the centered finite difference form is
used for the velocity, the first velocity update is slightly
modified from Eq. (3):

vi(Dt=2)¼ Dt

2mi

Fi(0): (5)
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In summary, the positions, velocities, and accelerations
of all nodes can be computed for all future time steps start-
ing from a given initial configuration if the node forces are
tracked over time. This process is iterative because the node
forces in turn are functions of node positions and velocities as
will be shown later.

The kinetic energy of the system is another quantity of in-
terest in using the dynamic relaxation with kinetic damping:

KE(t)¼ +
nn

i¼ 1

1

2
mivi(t) � vi(t), (6)

where nn represents the total number of nodes. Unless the
given initial configuration is already at an equilibrium state,
some or all of the nodes experience unbalanced forces ap-
plied by the elastic tension members, and they start to move
according to Eqs. (1)–(5), increasing the system’s kinetic
energy over time.

When we run the dynamic relaxation in our work, we as-
sume that the actuation signals (i.e., lengths of rigid elements
of the edges, namely, linear actuators of the six-rod robots
and nonstretching strings of the twelve-rod robot) are given
as some constants from either of the higher level greedy
search or MGMC algorithms and assume there is no external
forces applied to the system. Therefore, the only source of the
incremental kinetic energy is the decrement of potential en-
ergy. The kinetic energy, however, does not monotonically
increase over time because the system is a closed net structure
and, after certain deformation, the nodes move in such a way
that they decelerate and the kinetic energy starts to decrease
as it transforms back to the potential energy. Hence, there
exists a kinetic energy peak.

To bring the system to a minimum energy state, the kinetic
energy is removed from the system at the peak by artificially
setting all of the node velocities to zero. By doing so, the mo-
tion is instantaneously brought to a stop, and the system
moves toward a minimum energy state, or an equilibrium, by
dissipating the energy from the system. This interruption
occurs at the peak to maximally remove the energy from the
system and to minimize the number of such incidents. Then
the above process restarts from the beginning with the new
initial configuration defined as the last configuration at the
energy peak. This iteration is repeated until the potential
energy does not transform into kinetic energy anymore and
the kinetic energy converges to zero, at which point we
consider the system has reached its minimum energy state
and we take the final shape as an equilibrium associated with
the given actuation signals.

Notice that suddenly forcing the velocities to zero requires
infinite accelerations and it cannot happen in real physical
systems. Indeed, this is the reason why the intermediate de-
formation from the dynamic relaxation does not represent
the real dynamic behavior of the system and only the final
equilibrium configuration is physically meaningful. How-
ever, the removal of the kinetic energy allows one to quickly
find a desired solution.

Node forces

The node force Fi(t) is a sum of two different types of
forces: (1) Fs

i (t), a sum of tensile forces applied by the elastic
edges connected to the node, and (2) Fr

i (t), a constraint force

applied by the rigid rod connection to satisfy the constant rod
length constraint. The total node force Fi(t) is then:

Fi(t)¼Fs
i (t)þFr

i (t): (7)

Let N i¼fi1, � � � , ipi
g be a set of neighbor nodes con-

nected to the i-th node by edges, where pi is the total number
of neighbor nodes of i. At each time step t, Fs

i (t) is computed
as the sum of individual edge forces:

Fs
i (t)¼ +

8j2N i

Fs
ij(t): (8)

In Eq. (8), Fs
ij(t) denotes the force exerted on node i at time t

by the tension member located on the edge connecting nodes i
and j. The description of this force depends on specific edge
configurations. Two possible edge configurations are shown
in Figure 2, which are used in our tensegrity robots. The first
edge configuration has two identical springs (instantiated as
elastic cords) at each end of the edge, and the two springs
change the same in lengths when stretched by a linear actuator
located at the middle of the edge. The second edge configu-
ration connects a spring and a nonstretching string in series.
The edge length is controlled by a motor placed at a node
that winds or unwinds the string with a spool from the node.

In each of our robots, we used identical linear extension
springs whose stiffness and rest length are denoted as k and l0,
respectively. For the first edge configuration, we denote the
stretched length of the spring as lij and the controlled actuator
length as dij. Then Fs

ij(t) is computed as:

Fs
ij(t)¼

k(lij(t)� l0)
rj(t)� ri(t)

krj(t)� ri(t)k if lij(t) > l0

0 if lij(t) � l0

(
, (9)

lij(t)¼
1

2
(k rj(t)� ri(t)k� dij): (10)

Note that the edge tension is set to zero in Eq. (9) when the
extension spring becomes shorter than its rest length. Phy-
sically, this implies that the edge is slack.

For the second edge configuration, we denote the stretched
spring length and the controlled string length as lij(t) and dij,
respectively. The tension on this edge is computed from
Eq. (9) with lij(t) defined as

lij(t)¼ k rj(t)� ri(t) k � dij: (11)

Notice that the actuation signal dij is independent of time
and is a constant in Eqs. (10) and (11). The value of dij is
either selected by the greedy search algorithm or randomly
sampled from MGMC as described in the later sections, and
it is treated as a constant while running the dynamic relax-
ation to seek an equilibrium configuration for a given set of
actuation signals. In other words, the set of actuation signals
dij for all edges is considered as the source of structural
deformation, and it serves as a constant input to the dynamic
relaxation.

The rod constraint force Fr
i (t) uniquely appears in tenseg-

rity structures unlike Fs
i (t), which also appears in pure tensile

structures. The correct description of this force is necessary to
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ensure the constant distance between the two end nodes of a
rigid rod and to guarantee the integrity of the whole structure.

We use the following coordinate systems to develop the
constraint force expression. The position of the first rod end
node is defined as ri(t) using the Cartesian coordinate system
in the inertial frame. The position of the other node is defined
relative to the first one as rk(t)¼ ri(t)þR0eRik

(t) using a
spherical coordinate system with a set of right-handed or-
thonormal basis vectors feRik

, e/ik
, ehik
g, where R0 represents

the constrained rod length. The constraint forces acting on the
rod end nodes i and k are:

Fr
i (t)¼ �Fr

ik(t)eRik
(t), Fr

k(t)¼Fr
ik(t)eRik

(t), (12)

Fr
ik(t)¼ mai(t)�Fs

k(t)
� �

� eRik
(t)�mR� 1

0 kvk(t)� vi(t)k2
2 ,

(13)

eRik
(t)¼ rk(t)� ri(t)

krk(t)� ri(t)k
: (14)

In Eq. (13), we assume that the node masses are equal (i.e.,
mi¼mk¼m) due to the symmetry. This equation is obtained
from Lagrange’s equations of motion with the consideration
of the rod constraint. Note that Eq. (13) is easily computed
using r, v, and a that are obtained from Eq. (2) to (4). It is also
singularity free since ri 6¼ rk for i 6¼ k and is numerically
stable. As a result, the rod constraint forces Fr

i (t) and Fr
k(t)

can be updated over time using Eqs. (12)–(14).

Actuation policies

If different actuator signals are provided as inputs to the
dynamic relaxation, the resulting equilibrium configurations
would also be different. Clearly, not all equilibrium con-
figurations would allow the robots to make a step, and the
actuator signals have to be chosen carefully to realize a
successful step. Hence, we want to find actuation policies that
will deform the tensegrity robots in a favorable way for re-
alizing steps. Precisely, we define an actuation policy as a set
of actuation commands that should be given to the actuators
controlling the edge lengths to realize steps. We present
two methods for obtaining valid actuation policies: a greedy
search algorithm and a MGMC based learning algorithm.
Both algorithms use the heuristic derived from a physical
consideration, which makes them a valid approach for the
development of actuation policies for general spherical ten-
segrity robots.

Greedy search method

The greedy search can find solutions, even for problems of
high complexity, in a reasonable amount of time when good
heuristics are used.57 The method can quickly find actuation
policies, and thus, it is suitable for checking the feasibility of
steps or obtaining actuation policies that can serve as an
initial solution to a more sophisticated optimization-based
approach. Furthermore, this method is less computation-
ally intense than MGMC, and it can be implemented on a
resource-constrained on-board computer to (re-)compute
actuation policies of the robots when the previous actuation
policies become not valid anymore; such a case may arise, for
instance, when the hardware experienced major changes such
as cable breakage after deployment. The solutions found with
this method are not optimal, but they turn out to be successful
actuation policies for our robots.

The greedy search algorithm is implemented as follows.
First, we define our heuristic function as the distance between
the robot’s GCoM and one of the base polygon’s edges
serving as the rotation axis about which a step will be made
(Fig. 4). The heuristic is defined in this way from the physical
observation that the robot will become unstable and perform
a step when its GCoM is placed outside of the base polygon.
We let the heuristic be positive (or negative) if GCoM is
inside (or outside) of the base polygon after deformation.
When GCoM is right on the edge, the heuristic becomes zero
and the robot initiates the rotation stage of a step, from which
point further deformation would lead to a successful com-
pletion of the step.

The search process begins with the initial robot state being
neutral without any deformation. The base polygon and ro-
tation axis are automatically selected by the algorithm once
the final deformation is computed from the dynamic relaxa-
tion such that the resulting heuristic is minimum among all
possible projections of the center of mass to outer surface
polygons. Because our tensegrity robots, regardless of the
choice of the base polygons and rotation axes, place their
GCoM within their base polygons when not deformed, the
search starts from a positive heuristic value. The leaf nodes4

of the search tree are expanded by changing the edge lengths
one at a time by a prespecified amount. For the sake of
simplicity and speeding up the search process, we only con-
sider binary states, namely, maximum and minimum edge

FIG. 4. Definition of the
heuristic distances used for the
greedy search and MGMC.
(a) Six-rod robot, (b) twelve-
rod robot. MGMC, Multi-
generation Monte Carlo.

4Here, the term node is used in the context of a search algorithm.
Each node can be thought as an abstraction of an actuation policy.
Note that the term was also defined as a rod end in the previous
sections, but its usage should be clear from the context.
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lengths. Although the assumption is seemingly restrictive, we
were able to find successful actuation policies for all types of
steps for our six- and twelve-rod tensegrity robots. Note that
higher resolution actuation policies are always obtainable by
allowing finer edge length changes at the cost of increased
computation.

From the initially neutral robot, the first expansion of the
search tree is done by fully retracting each one of na edges
and generating na leaf nodes, where na represents the total
number of actuated edges. The robot’s deformations under
these actuation signals are computed using the dynamic re-
laxation, and each obtained deformation is evaluated using
the heuristic. Then the leaf node with the smallest heuristic
value after the first expansion is identified, and the second
expansion is done from the node by fully retracting each one
of the remaining na� 1 edges in addition to the retraction of
the first edge that the node already included. The newly
generated leaf nodes are then evaluated, and the next round of
expansion happens from the node that has the least heuristic
value among all the nodes generated so far. Again, the ex-
pansion is done by fully retracting each one of the remaining
edges in addition to the edges that the current node already
included. This procedure is repeated until the leaf node with
its heuristic value less than or equal to zero is found, and the
goal node is taken as our actuation policy for the step. The
search is run independently for different types of steps to
develop their respective actuation policies.

MGMC-based learning method

Although the greedy search method is effective and effi-
cient in developing actuation policies, it has a couple of
limitations. The first is that the method returns only one so-
lution per run, and therefore, it is not possible to examine
the quality of the solution or reliability of the step occurring
from this solution. Another downside is that the search space
becomes extremely large when we attempt to increase the
actuation resolution from binary to a larger number. To
overcome these barriers, we propose an evolutionary ap-
proach based on Monte Carlo sampling, with the goal of
finding suboptimal equilibrium configurations that result in
the most negative heuristic values possible. We prefer to have
large negative heuristic values as they imply more instability
of the deformed robot, which in turn imply more reliable
steps. The solutions are suboptimal in the sense that the me-
thod is not guaranteed to find an equilibrium configuration
with the absolute minimum heuristic value, but its solutions
are optimal within the sample set. Indeed, it turns out that
these solutions are of higher quality than the deformations
found in the greedy approach. In our formulation, the sample
corresponds to actuation signals, and we use the dynamic
relaxation technique to solve for the resultant equilibrium
shape. The evaluation of each sample is done using the same
heuristic as before (Fig. 4). Furthermore, sampling in the
current generation is done in the neighborhood of the best
sample from the previous generation, with the expectation of
getting higher quality samples as the generation evolves.

Sampling of equilibrium configurations

Let d¼ [d1, � � � , dna
]T 2 Rna be a vector of the lengths of

edge linear actuators or actuated edge strings as in Figure 2,
where di is the target length of the i-th actuator or string and

na is the total number of actuated edges in the robot. To find
desirable equilibrium configurations, a number of instances
of the vector d are sampled by sampling each component di

independently from a uniform distribution within a physi-
cally acceptable range. For each sampled d, the dynamic
relaxation is run from a neutral initial configuration, and the
resulting equilibrium configuration is found and evaluated
using the heuristic. To maximize the utility of the samples
and minimize the number of samples collected, we do not
specify which outer surface polygon acts as the base polygon
and which one of its edges serves as a rotation axis of the step
for the found equilibrium configuration. Instead, the center of
mass is projected as a candidate GCoM onto outer surface
polygons that are the same type as the base polygon of the
step for which the policy is sought, and for all projections,
the distances between the projected points and the edges of
the projection polygons are checked. The minimum of these
values is assigned as the final heuristic value of that config-
uration. This process is repeated over a large number of
samples, and the one with the minimum heuristic among the
set of samples is identified as the best configuration of the set.

Because of the high dimension na of the sampled vectors d
and the wide interval of the sampling space, it is unlikely
that a single run of Monte Carlo will find a desired solution.
In the multigeneration scheme, the best performing sample
from the previous generation is saved, and new samples are
generated from a close neighborhood of this sample. As the
generation progresses, we expect that the majority of our
new samples will be sampled from high performing regions
of the sampling space.

For the samples of the first generation, elements of the vec-
tor d1, whose subscript denotes its generation, are all indepen-
dently sampled from a uniform distribution of [dmin, dmax],
where dmin and dmax represent minimum and maximum
lengths, respectively. After obtaining all of the first genera-
tion samples and evaluating them with the heuristic, the
best configuration C�1 with the minimum heuristic value and
the sampled actuation signal vector d�1 that produced this
configuration are identified. For the subsequent generations
j¼ 2, 3, � � � , dj is sampled around the best sample from the
previous generation, d�j� 1. Specifically, a number of sam-
ples dj are drawn from a uniform distribution of [d�j� 1� dd,
d�j� 1þ dd], where dd¼ [dd, � � � , dd]T 2 Rna is a constant
vector defining a neighbor region. Once a desired number of
samples are obtained and evaluated at the j-th generation, the
configuration with the minimum heuristic C�j and the sample
vector d�j producing this configuration are identified. In the
(jþ 1)-th generation, djþ 1 is sampled around d�j in a similar
manner, and the process is repeated until termination con-
ditions are met or the predefined maximum number of gen-
erations or samples is reached.

Results

In this section, we use the methods presented in the
Materials and Methods section to compute actuation policies
for our tensegrity robots. First, we apply the greedy search
method to the six-rod and twelve-rod tensegrity robots to
obtain their actuation policies for all possible types of steps.
We also develop the actuation policies for the same robots
using MGMC and compare them against the ones computed
by the greedy search. To prove the efficacy of our methods,
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the actuation policies for the six-rod tensegrity robot are
implemented and validated on the hardware robots, and the
results are presented.

Actuation policy for six-rod tensegrity robot using
greedy search

When the six-rod tensegrity robot is standing on one of its
closed triangles, it can make a CO-step in three different
directions and each step uses one of the base triangle’s edges
as a rotation axis. Because of the threefold symmetry of the
six-rod tensegrity robot, actuation policies for the three CO-
steps are also symmetric, and therefore, it suffices to find an
actuation policy for only one of the three CO-steps. Indeed,
the actuation policies for all other CO-steps of the robot can
easily be inferred from this result by exploiting the structural
symmetry.

The six-rod tensegrity robot is balanced better when its
base triangle is a closed triangle than the case of an open
triangle. This happens because open triangles have narrower
widths and smaller areas than those of closed triangles due to
the missing edges, and the heuristic value is smaller for open
base triangles than closed base triangles. For this reason, the

six-rod tensegrity robot lands on a closed base triangle in
most cases during rolling locomotion, but there are situations
when the robot lands on an open base triangle due to in-
stabilities or interaction with the ground. Two different types
of steps are available from this pose: OC- and OO-steps. As in
the case of CO-steps, it suffices to obtain one representative
actuation policy per OC- and OO-steps, and the actuation
policies for all other steps of these kinds can be obtained from
the structural symmetry. Therefore, we seek one actuation
policy for each type of steps.

The greedy search algorithm was implemented in MATLAB
using the parameters measured from our hardware robots.
Initially, the lengths of all linear actuators were set to 30 cm,
and the ones chosen by the algorithm when expanding the
leaf nodes were retracted to 20 cm. The rod length was 65 cm,
spring rest length was 3.8 cm, and spring stiffness was
1193 N/m. The obtained actuation policies for CO-, OC-, and
OO-steps are reported in Table 1 and Figure 5. When the CO-
step actuation policy was forward simulated in NTRT, a CO-
step was automatically followed by an OC-step, and the
simulated robot arrived at the next closed base triangle. In
other words, the actuation policy resulted in a closed to open
to closed base triangle step or a COC-step and skipped the

Table 1. Actuation Policies Found with the Greedy Search

Type of step Starting polygon Landing polygon Actuation policy

CO-step (0,8,9) (6,9,11) (0,9), (5,6), (6,11), (10,11)
OC-step (8,9,11) (0,8,9) (6,9), (8,10)
OO-step (8,9,11) (8,10,11) (8,9), (9,11), (7,10), (1,10), (6,11), (0,8), (0,3)
PD-step (2,4,6,8) (2,8,21,23) (4,24), (6,22), (1,17), (7,19)
DP-step (2,8,21,23) (2,4,6,8) (2,23), (8,21), (2,11), (8,12), (13,24), (14,22)

Numbers represent node numbers, see Figure 5.
Two-tuples represent actuated edges defined by their two end nodes.
Three-tuples represent triangles formed by the three vertex nodes.
Four-tuples represent rectangles formed by the four vertex nodes.
For the definitions of types of the steps, see Materials and Methods section.

FIG. 5. Actuation policies
found with the greedy search
algorithm, (a) CO-step, (b)
OC-step, (c) OO-step, (d) PD-
step, and (e) DP- step. Hashed
polygons are base polygons,
and thick red edges are actu-
ated cables. Node numbers
used in Table 1 are also
shown.

ROLLING LOCOMOTION OF SPHERICAL TENSEGRITY ROBOTS 9



recovery stage of the CO-step. The COC-step was possible
because the deformation by the CO-step policy allowed
GCoM to cross the narrow width of the intermediate open
triangle and enabled an OC-step without further deformation.
In addition, the momentum of the robot gained from the CO-
step was also providing some assistance.

Note that the number of actuators included in the OC-step
policy is less compared with the CO-step policy, which im-
plies that less actuation effort is required to make an OC-step
compared to a CO-step. This agrees with our previous ob-

servation: the open triangles provide less static balance
compared to the closed triangles, and less deformation is
sufficient to make an OC-step. However, the OO-step policy
includes seven actuators and is more challenging and energy
inefficient compared to CO- and OC-steps. Therefore, it is
better to avoid this step whenever possible.

To physically demonstrate and validate the obtained
actuation policies, we implemented and tested them on our
six-rod tensegrity robot. We attempted to realize all possi-
ble CO-steps (three from each of the eight closed triangles)

FIG. 6. Still images of the six-rod tensegrity robot performing one COC-step. The robot starts with a CO-step, and the
following OC-step is automatically performed.46 (a) Initially at rest, (b) deformation, (c) rotation and strike, (d) recovery.

FIG. 7. GCoM trajectories tracked with a motion capture system during the robot locomotion.46 Markers represent
positions of GCoM for every 0.1 s, (a) move forward, (b) turn left, (c) turn right.
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and OC-steps (two from each of the twelve open triangles)
using the respective actuation policies, and each step was per-
formed thrice for a consistency check. We observed from our
experiments that all of the steps were successful and all of the
CO-steps resulted in COC-steps as predicted in the simula-
tion. Figure 6 shows the robot performing one COC-step.

More generalized motions of the robot, such as moving
forward or turning left or right, can be performed by linking
together appropriate COC-steps as shown in Figure 7, where
the GCoM trajectories tracked by a motion capture system are

shown. In Figure 7a, the robot starts from the origin and moves
forward in a zigzag manner by making five COC-steps. In
Figure 7b and c, the robot starts from the origin, moves forward
by taking three COC-steps, and then changes its heading di-
rection at the fourth step, which shows that the robot is steer-
able. These basic motions could serve as motion primitives
of the robot and may be combined together to create more
complex paths. Finally, we note that the motions required only
CO- and OC-steps and no OO-steps were needed; hence,
omitting OO-steps does not restrict general motion of the robot.

FIG. 8. (a) Evolution of average and minimum heuristic values over 30 generations. Error bars represent standard
deviations. The existence of the samples with negative heuristic values proves that MGMC found higher quality actuation
policies than the greedy search whose best deformation had minimum heuristic equal to zero. (b) Trajectories of base
triangle nodes and GCoM when the six-rod robot is deformed with the actuation policy provided in Table 2. Black circles
are node trajectories, and blue stars are GCoM trajectories. Thick red lines are rotation axes. Triangles are base triangles
that the robot crossed over while performing the step. (c) Node numbers.

FIG. 9. The best shape with the minimum heuristic value out of all samples obtained by MGMC, (a) perspective, (b) side,
and (c) top. The figures on the top row are simulation results, and the figures on the bottom row show deformation of our
physical robot. In the simulation figures, thick black lines are rods, thin dashed lines are edges, blue stars are centers of
mass, and gray triangles are base triangles, respectively.47

ROLLING LOCOMOTION OF SPHERICAL TENSEGRITY ROBOTS 11



Actuation policy for six-rod tensegrity robot
using MGMC

In this section, we seek an actuation policy for a CO-step of
the six-rod tensegrity robot using the MGMC method im-
plemented in MATLAB. For this, 30 generations were run
with 500 samples per generation, and the simulation used
parameters from the physical robot. Specifically, na¼ 24
because all of the robot edges have actuation, and the ele-
ments of the vector dj 2 R24 were uniformly sampled from
[dmin, dmax] with dmin¼ 20 cm, dmax¼ 30 cm, and dd¼ 1 cm.

The evolution of minimum and average heuristic values
over generations is plotted in Figure 8a. For the first few
generations, all of the sampled configurations had positive
heuristic values, but the number of samples with negative
heuristic increased as the generations progressed. Moreover,
both the minimum and average values decreased as the gen-
erations evolved, and they converged after generation 20.
The best configuration of all the samples was found in gen-
eration 29, and its heuristic value was -0.031 meaning that
GCoM was placed 3.1 cm away from the base triangle. This
configuration is shown in different perspectives in Figure 9.
The sampled actuation signal vector that resulted in this
configuration is taken as our actuation policy and is provided
in Table 2.

The obtained actuation policy was tested on the hardware
robot. The comparison of the deformation between the sim-
ulation and hardware is presented in Table 3, which shows
that the actual deformation of our physical robot closely
followed what was predicted in the simulation with a maxi-
mum of 5.25% error in final edge lengths. The robot was able
to perform a COC-step with this actuation policy, and the
GCoM trajectory of a single COC-step tracked with a motion
capture system is shown in Figure 8b.

Actuation policy for twelve-rod tensegrity robot
using greedy search

The twelve-rod tensegrity robot has an outer shape similar
to a rhombicuboctahedron that is symmetric about three
mutually-orthogonal planes (Fig. 1c). Two of these planes are
also perpendicular to the ground, and the robot can make
steps in a direction that is contained in either of the planes.
We choose one of the two planes and define it as a sagittal
plane of the robot in which the desired step direction is
contained. Then we develop actuation policies that are sym-
metric about this sagittal plane, that is, a pair of cables that are
mirrored about this plane are actuated in the same way. Note
that the search space (or the sampling space in the case of
MGMC) is greatly reduced by taking this approach. This is
the advantage of the symmetry of the twelve-rod tensegrity

robot that we discussed earlier in the Geometries of Spherical
Tensegrity Robots section.

When the twelve-rod tensegrity robot is standing on one of
its perpendicular rectangles, it can make a PD-step in four
different directions. In contrast, it can make a DP-step in two
opposite directions when starting from one of its diagonal
rectangles. Similar to the six-rod tensegrity robot case, a
single PD- or DP-step actuation policy can be extended to all
other PD- and DP-step policies with the help of the structural
symmetry of the robot, and therefore, we seek one repre-
sentative actuation policy per step.

The greedy search algorithm was run in MATLAB. The
rod length was 45 cm, and the edge string lengths were set to
16 cm initially and pulled to 8 cm if they were chosen by the
algorithm for expanding the leaf nodes. The spring rest length
was 3.8 cm, and the spring stiffness was 770.6 N/m. The
obtained actuation policies for PD- and DP-steps are reported
in Table 1 and Figure 5. Note that the number of actuators
included in the DP-step policy is greater compared with the

Table 2. Actuation Policy for a CO-Step Obtained with Multigeneration Monte Carlo

Actuated edge (1,5) (1,6) (1,9) (1,11) (2,7) (2,8) (2,9) (2,11)
Actuator length (cm) 29.1 30.0 29.6 20.7 20.0 20.1 29.4 29.8
Actuated edge (3,5) (3,6) (3,10) (3,12) (4,7) (4,8) (4,10) (4,12)
Actuator length (cm) 26.1 25.1 29.7 21.4 25.1 20.4 20.4 29.1
Actuated edge (5,9) (5,10) (6,11) (6,12) (7,9) (7,10) (8,11) (8,12)
Actuator length (cm) 20.5 29.3 28.5 25.9 29.4 29.9 24.3 20.3

Two-tuples represent actuated edges defined by their two end nodes.
Node numbers follow Figure 8c.

Table 3. Comparison of Edge Lengths Between

Simulation and Hardware Experiment

Edge
Simulated lengths

(cm)
Measured lengths

(cm)
Error
(%)

(1,5) 43.1 43.2 0.232
(1,6) 43.3 44.6 3.002
(1,9) 42.5 42.1 0.941
(1,11) 34.2 34.5 0.877
(2,7) 34.0 33.5 1.471
(2,8) 36.6 35.3 3.552
(2,9) 43.2 44.1 2.083
(2,11) 44.3 44.9 1.354
(3,5) 41.7 40.4 3.118
(3,6) 38.1 40.1 5.249
(3,10) 43.4 43.3 0.230
(3,12) 36.3 36.3 0
(4,7) 39.8 40.1 0.754
(4,8) 36.4 35.4 2.747
(4,10) 33.5 34.8 3.881
(4,12) 43.6 43.4 0.459
(5,9) 33.6 34.2 1.786
(5,10) 43.4 44.3 2.074
(6,11) 42.3 41.8 1.182
(6,12) 39.9 40.3 1.003
(7,9) 43.3 43.9 1.386
(7,10) 43.7 43.7 0
(8,11) 39.7 39.2 1.259
(8,12) 34.6 35.2 1.734

Two-tuples represent edges defined by their two end nodes.
Node numbers follow Figure 8c.
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PD-step policy. This implies that the diagonal base rectangles
provide better static balance than the perpendicular rectan-
gles, and hence, DP-steps require more actuation effort.

Actuation policy for twelve-rod tensegrity
robot using MGMC

Next, we compute PD- and DP-step actuation policies
using the MGMC method. Since there exist a total of 20
edges on each side of the sagittal plane, the dimension of
each sampled vector dj is also na¼ 20, assuming that all of
them are independently actuated.

The MGMC algorithm was run twice to separately obtain
PD- and DP-step actuation policies using the physical pa-
rameters measured from our hardware robot. Initially, the
structure was set to neutral with no deformation, and all of the
edge string lengths were set to 12 cm. The motors installed on
the robot can spool in (resp. out) the strings to the minimum
(resp. maximum) length of dmin¼ 8 cm (resp. dmax¼ 16 cm)
without significantly loading themselves, and these numbers
are used in the simulation. For the first generation samples,
the elements of d1 2 R20 were sampled from a uniform
distribution of [dmin, dmax]. Then dd was set to 1 cm for all
later generations such that the sampling is done within a close
neighborhood of the best sample from the previous genera-
tion. A total of 25 generations were run, and 100 samples
were obtained per generation.

The evolution of average and minimum heuristic values
over generations for PD- and DP-step simulations is pre-
sented in Figure 10. In both cases, the heuristic values con-
verged toward the end of the simulation, and successful
actuation policies were found after a sufficient number of
generations. A comparison of the minimum heuristic values
of the PD- and DP-step policies reveals that PD-steps are

more reliable and easier to perform than DP-steps. From each
simulation, the best sample with the minimum heuristic
among all the samples is taken as the actuation policy shown
in Table 4, and the resulting deformations are depicted in
Figure 10.

Comparison of actuation policies by greedy search
and MGMC

We compare the actuation policies obtained by the two
methods from the following three aspects: (1) computation
cost, (2) robustness of steps, and (3) required actuation energy.

In our greedy search simulations, the total numbers of
evaluated configurations were as follows: 72 for CO-policy,
34 for OC-policy, 145 for OO-policy, 24 for PD-policy, and
45 for DP-policy. These numbers are significantly smaller than
the total numbers of evaluated samples by the MGMC method:
15,000 for CO-policy and 2500 for PD- and DP-policies.
Hence, the greedy search method was able to find feasible
solutions much faster than MGMC as discussed earlier.

The heuristic values of the actuation policies found by
the greedy search were: 0 for CO-policy, -0.004 for PD-
policy, and -0.015 for DP-policy. In contrast, the heuristic
values of the actuation policies from MGMC were: -0.031
for CO-policy, -0.085 for PD-policy, and -0.024 for DP-
policy. In all cases, the quality of the MGMC policies is
better than the greedy search counterparts, and the steps
made with the former would be more reliable than those
made with the latter.

Finally, we compare how much actuation energy is re-
quired to perform each type of steps with the obtained actu-
ation policies. For this, let us define the total potential energy
of the robot at equilibrium as the sum of all potential energies
of elastic members:

FIG. 10. (a) PD-step policy simulation. (b) DP-step policy simulation. The top row figures are evolution of average and
minimum heuristic values over 25 generations with 100 samples per generation. Error bars represent standard deviations.
The best equilibrium configurations of the twelve-rod robot are shown in the bottom row from perspective (left) and top
(right) views. In both cases, GCoM (blue star) is located outside of the gray base rectangle, and the robot is able to make
steps with these deformations.
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PE¼ +
ne

i¼ 1

1

2
k(li� l0)2, (15)

where ne is the total number of elastic members, and k, li, and
l0 are the stiffness, stretched length, and rest length of the i-th
elastic member. In all of our simulations, no elastic mem-
ber was slack and li > l0, 8i. When the robots are deformed
according to the actuation policies, actuators supply energy to
the robots for the deformations to happen. Based on this
observation, the actuation energy required by the actuation
policies is computed as the potential energy difference before
and after the deformation. From our simulation results, the
energies required by the greedy search policies were 26.44 J
for CO-policy, 19.22 J for PD-policy, and 36.50 J for DP-
policy and by the MGMC policies were 17.07 J for CO-
policy, 11.53 J for PD-policy, and 20.23 J for DP-policy. Note
that the MGMC policies require less actuation energy than
the greedy search counterparts, and hence, the former is more
energy efficient. In addition, the DP-policies from both
methods require more energy than the PD-policies, which
confirms our earlier result that DP-steps are harder to make
than PD-steps.

In conclusion, when there exists a sufficient amount of
time and computational resources to compute actuation pol-
icies, it is better to run the MGMC method as it provides
actuation policies that would result in more reliable steps with
less actuation energy. However, the greedy search method is
better when there is a need to rapidly compute actuation
policies with limited computational resources.

Conclusion

The goal of this article is to realize rolling locomotion of
compliant spherical tensegrity robots through their struc-
tural deformation. For this, we first introduced the concept
of a step as a segment of rolling locomotion and classified
it into different categories based on the geometry of the
spherical tensegrity robots considered in this work. We also
provided in detail the method to predict the deformations
of spherical tensegrity robots given actuation commands
based on the dynamic relaxation technique with kinetic
damping.

Clearly, not all deformations would allow the tensegrity
robots to make a step from one base polygon to another, and
hence, some deformations are preferred to others for making
a step. We defined actuation policies as the set of actuation

commands that would result in these favorable deforma-
tions that can realize steps and precision rolling of tensegrity
robots.

Two methods have shown to be successful in developing
actuation policies enabling different types of steps. Both
methods utilize the same heuristic that is defined based on a
physical observation that the robot performs a step when it
becomes unstable by placing its ground projection of the
center of mass (GCoM) outside of its base polygon. To be
precise, the heuristic is defined as the distance between
GCoM and an edge of a base polygon serving as a rotation
axis of a step. Since this physical condition for making a
step is common to general spherical tensegrity robots, the
developed methods are applicable to the robots beyond the
ones introduced in this work.

The first method uses a greedy search algorithm, which we
implemented in MATLAB to find actuation policies for dif-
ferent types of steps of the six- and twelve-rod tensegrity
robots. This approach quickly finds actuation policies, and
thus, it is suitable for checking the feasibility of steps or
obtaining actuation policies that can serve as an initial solu-
tion to a more sophisticated optimization-based approach.
Furthermore, this method is less computationally intense than
MGMC, and it can be implemented on a resource-constrained
on-board computer to (re-)compute actuation policies of the
robots when the previous actuation policies become not valid
anymore. We tested the obtained actuation policies on our
hardware six-rod tensegrity robot and showed that the robot
was successful in making desired steps from all base triangles
in all directions.

The second method is based on a MGMC sampling. The
method aims to find actuation policies that would improve
the robustness of steps, and it achieves this goal by sampling
a set of actuation commands and evaluating the resultant de-
formations over multiple generations to find suboptimal ac-
tuation policies and deformations that minimize the heuristic
value. To demonstrate the method, we computed actuation
policies for a CO-step of the six-rod robot and PD- and DP-
steps of the twelve-rod robot with this approach. We then
implemented the CO-step actuation policy on the physical
robot and verified that the policy is indeed valid.

The comparison of the actuation policies by the greedy
search and MGMC reveals that the latter would result in more
reliable steps with less actuation energy. However, the greedy
search policies are computed much faster with less compu-
tational burden.

Table 4. Actuation Policies for PD- and DP-Steps Obtained with Multigeneration Monte Carlo

Actuated edge (1,3), (5,7) (3,18), (5,20) (18,24), (20,22) (4,24), (6,22) (2,4), (6,8)
PD string length (cm) 16.0 15.1 13.8 8.1 8.3
DP string length (cm) 15.6 10.8 15.6 8.7 8.3
Actuated edge (2,23), (8,21) (17,23), (19,21) (1,17), (7,19) (1,9), (7,10) (15,18), (16,20)
PD string length (cm) 16.0 13.6 8.0 15.3 9.1
DP string length (cm) 8.4 16.0 15.9 15.7 14.0
Actuated edge (4,13), (6,14) (11,23), (12,21) (3,15), (5,16) (2,11), (8,12) (13,24), (14,22)
PD string length (cm) 15.2 8.7 8.2 12.0 16.0
DP string length (cm) 10.0 15.3 12.8 8.5 8.1
Actuated edge (9,17), (10,19) (9,11), (10,12) (11,13), (12,14) (13,15), (14,16) (9,15), (10,16)
PD string length (cm) 8.3 9.4 12.5 13.5 10.1
DP string length (cm) 12.8 15.3 12.2 10.8 9.9

Two-tuples represent actuated edges defined by their two end nodes.
Node numbers follow Figure 5d for PD-policy and Figure 5e for DP-policy.
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Finally, we note that our methods are also applicable to a
general class of spherical tensegrity robots beyond the robots
introduced in this work. They can also be useful as a design
tool. For example, if the degree of deformation is specified
from a certain objective, then the number of actuators or the
amount of actuation required can be computed using the
presented methods. Moreover, the methods can be used to
estimate the maximum ground inclination the robots can
manage or to compute actuation policies to overcome a certain
inclination, which is an ongoing research topic in the field.58

Author Disclosure Statement

No competing financial interests exist.

Funding Information

The authors are grateful for funding support from NASA’s
Early Stage Innovation grant NNX15AD74G. The first au-
thor was supported, in part, by Samsung Scholarship from the
Samsung Foundation of Culture and UARC STI Graduate
Student Summer Internship.

References

1. Fuller RB. Tensile-integrity structures. 1962, US Patent
3063521A.

2. Skelton RE, Adhikari R, Pinaud J, et al. An introduction
to the mechanics of tensegrity structures. In: Proceedings
of the 40th IEEE Conference on Decision and Control,
Orlando, FL, 2001, pp. 4254–4259.

3. Juan SH, Tur JMM. Tensegrity frameworks: static analysis
review. Mech Mach Theory 2008;43:859–881.

4. Majidi C. Soft robotics: a perspectivecurrent trends and
prospects for the future. Soft Robot 2014;1:5–11.

5. Paul C, Roberts JW, Lipson H, et al. Gait production in a
tensegrity based robot. In: Proceedings of the 12th Inter-
national Conference on Advanced Robotics, Seattle, WA,
2005, pp. 216–222.

6. Paul C, Valero-Cuevas FJ, Lipson H. Design and control
of tensegrity robots for locomotion. IEEE Transactions on
Robotics 2006;22:944–957.

7. Rovira AG, Tur JMM. Control and simulation of a
tensegrity-based mobile robot. Rob Auton Syst 2009;57:
526–535.

8. Mirletz BT, Quinn RD, SunSpiral V. CPGs for adaptive
control of spine-like tensegrity structures. In: 2015 Inter-
national Conference on Robotics and Automation Work-
shop on Central Pattern Generators for Locomotion Control:
Pros, Cons & Alternatives, Seattle, WA, 2015.

9. Mirletz BT, Park IW, Flemons TE, et al. Design and
control of modular spine-like tensegrity structures. In:
Proceedings of the 6th World Conference of the Interna-
tional Association for Structural Control and Monitoring,
Barcelona, Spain, 2014.

10. Tietz BR, Carnahan RW, Bachmann RJ, et al. Tetraspine:
robust terrain handling on a tensegrity robot using central
pattern generators. In: Proceedings of the 2013 IEEE/
ASME International Conference on Advanced Intelligent
Mechatronics, Wollongong, Australia, 2013, pp. 261–267.

11. Mirletz BT, Bhandal P, Adams RD, et al. Goal-directed
CPG-based control for tensegrity spines with many degrees
of freedom traversing irregular terrain. Soft Robot 2015;2:
165–176.

12. Sabelhaus AP, Ji H, Hylton P, et al. Mechanism design
and simulation of the ULTRA Spine: a tensegrity robot. In:
Proceedings of ASME 2015 International Design Eng-
ineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, Boston, MA, 2015,
pp. V05AT08A059; 1–12.

13. Hustig-Schultz D, SunSpiral V, Teodorescu M. Mor-
phological design for controlled tensegrity quadruped lo-
comotion. In: Proceedings of the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, Daejeon, South Korea, 2016, pp. 4714–4719.

14. Friesen J, Pogue A, Bewley T, et al. DuCTT: a tensegrity
robot for exploring duct systems. In: Proceedings of the
2014 IEEE International Conference on Robotics and Au-
tomation, Hong Kong, China, 2014, pp. 4222–4228.

15. Friesen JM, Glick P, Fanton M, et al. The second genera-
tion prototype of a duct climbing tensegrity robot,
DuCTTv2. In: Proceedings of the 2016 IEEE International
Conference on Robotics and Automation, Stockholm,
Sweden, 2016, pp. 2123–2128.

16. Lessard S, Castro D, Asper W, et al. A bio-inspired ten-
segrity manipulator with multi-DOF, structurally compliant
joints. In: Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Daejeon,
South Korea, 2016, pp. 5515–5520.

17. Baltaxe-Admony LB, Robbins A, Jung E, et al. Simulating
the human shoulder through active tensegrity structures. In:
Proceedings of the ASME 2016 International Design Engi-
neering Technical Conferences & Computers and Infor-
mation in Engineering Conference, Charlotte, NC, 2016,
pp. V006T09A027; 1–6.

18. Flemons T. Intension designs biotensegrity models. http://
intensiondesigns.ca/. (accessed March 21, 2019).

19. Scarr G. A consideration of the elbow as a tensegrity
structure. Int J Osteopath Med 2012;15:53–65.

20. Sabelhaus AP, Bruce J, Caluwaerts K, et al. System design
and locomotion of SUPERball, an untethered tensegrity
robot. In: Proceedings of the 2015 IEEE International
Conference on Robotics and Automation, Seattle, WA,
2015, pp. 2867–2873.

21. Bruce J, Caluwaerts K, Iscen A, et al. Design and evolu-
tion of a modular tensegrity robot platform. In: Pro-
ceedings of the 2014 IEEE International Conference on
Robotics and Automation, Hong Kong, China, 2014, pp.
3483–3489.

22. Shibata M, Hirai S. Rolling locomotion of deformable
tensegrity structure. In: Proceedings of the 12th Interna-
tional Conference on Climbing and Walking Robots and
the Support Technologies for Mobile Machines, Istanbul,
Turkey, 2009.

23. Sabelhaus AP, Bruce J, Caluwaerts K, et al. Hardware
design and testing of SUPERball, a modular tensegrity
robot. In: Proceedings of the 6th World Conference of
the International Association for Structural Control and
Monitoring, Barcelona, Spain, 2014.

24. Bruce J, Sabelhaus AP, Chen Y, et al. SUPERball: ex-
ploring tensegrities for planetary probes. In: Proceedings of
the 12th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Montreal, Canada,
2014.

25. Shibata M, Saijyo F, Hirai S. Crawling by body deforma-
tion of tensegrity structure robots. In: Proceedings of the
2009 IEEE International Conference on Robotics and Au-
tomation, Kobe, Japan, 2009, pp. 4375–4380.

ROLLING LOCOMOTION OF SPHERICAL TENSEGRITY ROBOTS 15



26. Koizumi Y, Shibata M, Hirai S. Rolling tensegrity driven
by pneumatic soft actuators. In: Proceedings of the 2012
IEEE International Conference on Robotics and Automa-
tion, Saint Paul, MN, 2012, pp. 1988–1993.

27. Caluwaerts K. Design and computational aspects of com-
pliant tensegrity robots. Ph.D. dissertation. Ghent, Bel-
gium: Ghent University, 2014.

28. Caluwaerts K, Despraz J, Ien A, et al. Design and con-
trol of compliant tensegrity robots through simulation
and hardware validation. J R Soc Interface 2014;11:
20140520.

29. Agogino AK, SunSpiral V, Atkinson D. Super Ball Bot—
structures for planetary landing and exploration. NASA
Innovative Advanced Concepts (NIAC) Program, Phase 1,
Final Report. 2013.

30. SunSpiral V, Agogino AK, Atkinson D. Super Ball Bot—
structures for planetary landing and exploration. NASA
Innovative Advanced Concepts (NIAC) Program, Phase 2,
Final Report. 2015.

31. Hirai S, Koizumi Y, Shibata M, et al. Active shaping of a
tensegrity robot via pre-pressure. In: Proceedings of the
2013 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Wollongong, Australia, 2013,
pp. 19–25.

32. Khazanov M, Jocque J, Rieffel J. Evolution of locomo-
tion on a physical tensegrity robot. In: ALIFE 14: The
Fourteenth International Conference on the Synthesis and
Simulation of Living Systems, New York, NY, 2014,
pp. 232–238.

33. Du W, Ma S, Li B, et al. Dynamic simulation for 6-strut
tensegrity robots. In: Proceedings of the 2014 IEEE Inter-
national Conference on Information and Automation, Hai-
lar, China, 2014, pp. 870–875.

34. Hirai S, Imuta R. Dynamic simulation of six-strut ten-
segrity robot rolling. In: Proceedings of the 2012 IEEE
International Conference on Robotics and Biomimetics,
Guangzhou, China, 2012, pp. 198–204.

35. Iscen A, Agogino A, SunSpiral V, et al. Controlling ten-
segrity robots through evolution. In: Proceedings of the
15th Annual Conference on Genetic and Evolutionary
Computation, Amsterdam, The Netherlands, 2013, pp.
1293–1300.

36. Iscen A, Agogino A, SunSpiral V, et al. Robust distributed
control of rolling tensegrity robot. In: The Autonomous Ro-
bots and Multirobot Systems Workshop at AAMAS, Saint
Paul, MN, 2013.

37. Iscen A, Agogino A, SunSpiral V, et al. Flop and roll:
learning robust goal-directed locomotion for a tensegrity
robot. In: Proceedings of the 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago,
IL, 2014, pp. 2236–2243.

38. Zhang M, Geng X, Bruce J, et al. Deep reinforcement
learning for tensegrity robot locomotion. In: Proceedings of
the 2017 IEEE International Conference on Robotics and
Automation, Singapore, 2017, pp. 634–641.

39. Rieffel J, Mouret JB. Adaptive and resilient soft tensegrity
robots. Soft Robot 2018;5:318–329.

40. Caluwaerts K, Bruce J, Friesen JM, et al. State estimation
for tensegrity robots. In: Proceedings of the 2016 IEEE
International Conference on Robotics and Automation,
Stockholm, Sweden, 2016, pp. 1860–1865.

41. Yuen MC, Kramer RK. Fabricating microchannels in elas-
tomer substrates for stretchable electronics. In: Proceedings
of the ASME 2016 11th International Manufacturing Sci-

ence and Engineering Conference, Blacksburg, VA, 2016,
pp. V002T01A014; 1–9.

42. Chen LH, Keegan P, Yuen M, et al. Soft robots using
compliant tensegrity structures and soft sensors. In: Soft
Robotics Workshop, IEEE International Conference on
Robotics and Automation, Seattle, WA, 2015.

43. Chen LH. Soft spherical tensegrity robot design using rod-
centered actuation and control. Ph.D. dissertation. Berke-
ley, CA: University of California, Berkeley, 2016.

44. Sultan C, Skelton RE. Force and torque smart tensegrity sen-
sor. In: Proceedings of the 5th Annual International Sympo-
sium on Smart Structures and Materials, San Diego, CA, 1998,
pp. 357–368.

45. Sultan C, Skelton RE. A force and torque tensegrity sensor.
Sens Actuators A Phys 2004;112:220–231.

46. Kim K, Agogino AK, Moon D, et al. Rapid prototyping
design and control of tensegrity soft robot for locomotion.
In: Proceedings of the 2014 IEEE International Conference
on Robotics and Biomimetics, Bali, Indonesia, 2014,
pp. 7–14.

47. Kim K, Agogino AK, Toghyan A, et al. Robust learning
of tensegrity robot control for locomotion through
form-finding. In: Proceedings of the 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
Hamburg, Germany, 2015, pp. 5824–5831.

48. Kim K, Moon D, Bin JY, et al. Design of a spherical ten-
segrity robot for dynamic locomotion. In: Proceedings of
the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vancouver, Canada, 2017, pp. 450–455.

49. Kim K. On the locomotion of spherical tensegrity robots.
Ph.D. dissertation. Berkeley, CA: University of California,
Berkeley, 2016.

50. Jessen B. Orthogonal icosahedra. Normat 1967;15:90–96.
51. Arsenault M, Gosselin CM. Kinematic, static and dynamic

analysis of a planar 2-DOF tensegrity mechanism. Mech
Mach Theory 2006;41:1072–1089.

52. Abadi BNR, Shekarforoush SM, Mahzoon M, et al. Kine-
matic, stiffness, and dynamic analyses of a compliant ten-
segrity mechanism. J Mech Robot 2014;6:041001.

53. Crane CD, Duffy J, Correa JC. Static analysis of tensegrity
structures. J Mech Des 2005;127:257–268.

54. NASA Tensegrity Robotics Toolkit. http://irg.arc.nasa.gov/
tensegrity/NTRT/. (accessed March 21, 2019).

55. Barnes MR. Form finding and analysis of tension structures
by dynamic relaxation. Int J Space Struct 1999;14:89–104.

56. Zhang L, Maurin B, Motro R. Form-finding of nonregular
tensegrity systems. J Struct Eng 2006;132:1435–1440.

57. Russell SJ, Norvig P, Canny JF, et al. Artificial In-
telligence: A Modern Approach, volume 2. Upper Saddle
River, NJ: Prentice Hall,, 2003.

58. Chen LH, Cera B, Zhu EL, et al. Inclined surface loco-
motion strategies for spherical tensegrity robots. In: Pro-
ceedings of the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Vancouver, Canada,
2017, pp. 4976–4981.

Address correspondence to:
Kyunam Kim

Department of Aerospace
California Institute of Technology

1200 E California Blvd, MC 105-50
Pasadena, CA 91125-0002

E-mail: knkim@caltech.edu

16 KIM ET AL.

http://irg.arc.nasa.gov/tensegrity/NTRT/
http://irg.arc.nasa.gov/tensegrity/NTRT/

