1,592 research outputs found

    Rigidity theorems for submetries in positive curvature

    No full text
    a

    Polynomial approximation, local polynomial convexity, and degenerate CR singularities

    Get PDF
    We begin with the following question: given a closed disc Dˉ\bar{D} in the complex plane and a complex-valued function F in C(Dˉ)C(\bar{D}), is the uniform algebra on Dˉ\bar{D} generated by z and F equal to C(Dˉ)C(\bar{D}) ? When F is in C1(Dˉ)C^1(\bar{D}), this question is complicated by the presence of points in the surface S:=graph(F) that have complex tangents. Such points are called CR singularities. Let pSp\in S be a CR singularity at which the order of contact of the tangent plane with S is greater than 2; i.e. a degenerate CR singularity. We provide sufficient conditions for S to be locally polynomially convex at the degenerate singularity p. This is useful because it is essential to know whether S is locally polynomially convex at a CR singularity in order to answer the initial question. To this end, we also present a general theorem on the uniform algebra generated by z and F, which we use in our investigations. This result may be of independent interest because it is applicable even to non-smooth, complex-valued F.Comment: 17 pages; final version; restated Thm.1.2 using slightly clearer notation, corrected minor typo

    Diszkrét és kombinatórikus geometriai kutatások = Topics in discrete and combinatorial geometry

    Get PDF
    A most lezárult OTKA grant, 8 résztvevő diszkrét geometriai kutatását támogatta. Itt a témák ilusztrálására kiemelünk néhányat az elért 72 publikációból. 1. Jelentős eredmények születtek (8 cikk) gráfok síkba rajzolhatóságáról, például az úgynevezett metszési számról. 2. Többek között sikerült igazolni Katchalski és Lewis 20 éves sejtését, mely szerint diszjunkt egységkörökből álló rendszereknél ha bármely három körnek van közös metsző egyenese akkor van olyan egyenes, amely legfeljebb 2 kör kivételével valamennyit metsz. 3. Littlewood (1964) problémájaként ismert volt az a kérdés, hogy hány henger érintheti kölcsönösen egymást? Viszonylag alacsony felső korlátot találtunk és egy régóta ismert elhelyzés valótlanságát igazoltuk. 4. Többszörös fedések egyszerű fedésekre való szétbontását vizsgáltuk és értünk el lényeges előrelépést. 5. A Borsuk-féle darabolási problémanak azt a variánsát vizsgáltuk, amelyben a darabolást u. n. hengeres darabolásra korlátozták. 6. Bebizonyítottuk, hogy ''nem nagyon elnyúlt'' ellipszisek esetében a sík legritkább fedésének meghatározásánál el lehet tekinteni az u.n. nem-keresztezési feltételtől. 7. A sejtetthez nagyon közeli korlátot találtunk arra a problémára, hogy az n-dimenziós térben legfeljebb hány homotetikus konvex test helyezhető el úgy, hogy bármely kettő érintse egymást. | Discrete geometry in Hungary flourished since the sixties as a result of the work of László Fejes Tóth. The supported research of 8 participant also belongs to this area. Here we illustrate the achieved 72 publications by mentioning a few results. 1. Important theorems (8 papers) were proved concerning graph drawing. 2. Among others, a 20 year old problem of Katchalsky was proved, stating that in a packing of congruent circles, if any three has a common transversal, then there is a line, which avoids at most two of the circles. 3. Concerning a conjecture of Littlewood we found a small upper bound for the number of infinite cylinders which mutually touch each other. 4. We studied decomposability of multiple coverings into single coverings. 5. We studied that variant of the famous Borsuk problem where the partitions are restricted to cylindrical partitions. 6. We proved that in case of ellipses which are not ''too long'' at determining the thinnest covering one can omit the usually needed noncrossing condition. 7. A bound close to the conjectured bound was found concerning the number of n-dimensional homothetic convex solids which mutually touch each other

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    09111 Abstracts Collection -- Computational Geometry

    Get PDF
    From March 8 to March 13, 2009, the Dagstuhl Seminar 09111 ``Computational Geometry \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Coloring intersection graphs of arc-connected sets in the plane

    Get PDF
    A family of sets in the plane is simple if the intersection of its any subfamily is arc-connected, and it is pierced by a line LL if the intersection of its any member with LL is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their clique number.Comment: Minor changes + some additional references not included in the journal versio
    corecore