12 research outputs found

    Integer flows and cycle covers

    Get PDF
    AbstractResults related to integer flows and cycle covers are presented. A cycle cover of a graph G is a collection C of cycles of G which covers all edges of G; C is called a cycle m-cover of G if each edge of G is covered exactly m times by the members of C. By using Seymour's nowhere-zero 6-flow theorem, we prove that every bridgeless graph has a cycle 6-cover associated to covering of the edges by 10 even subgraphs (an even graph is one in which each vertex is of even degree). This result together with the cycle 4-cover theorem implies that every bridgeless graph has a cycle m-cover for any even number m ≥ 4. We also prove that every graph with a nowhere-zero 4-flow has a cycle cover C such that the sum of lengths of the cycles in C is at most |E(G)| + |V(G)| − 2, unless G belongs to a very special class of graphs

    Cycle Double Covers and Semi-Kotzig Frame

    Get PDF
    Let HH be a cubic graph admitting a 3-edge-coloring c:E(H)→Z3c: E(H)\to \mathbb Z_3 such that the edges colored by 0 and μ∈{1,2}\mu\in\{1,2\} induce a Hamilton circuit of HH and the edges colored by 1 and 2 induce a 2-factor FF. The graph HH is semi-Kotzig if switching colors of edges in any even subgraph of FF yields a new 3-edge-coloring of HH having the same property as cc. A spanning subgraph HH of a cubic graph GG is called a {\em semi-Kotzig frame} if the contracted graph G/HG/H is even and every non-circuit component of HH is a subdivision of a semi-Kotzig graph. In this paper, we show that a cubic graph GG has a circuit double cover if it has a semi-Kotzig frame with at most one non-circuit component. Our result generalizes some results of Goddyn (1988), and H\"{a}ggkvist and Markstr\"{o}m [J. Combin. Theory Ser. B (2006)]

    Optimal Short Cycle Decomposition in Almost Linear Time

    Get PDF

    Circuits, Perfect Matchings and Paths in Graphs

    Get PDF
    We primarily consider the problem of finding a family of circuits to cover a bidgeless graph (mainly on cubic graph) with respect to a given weight function defined on the edge set. The first chapter of this thesis is going to cover all basic concepts and notations will be used and a survey of this topic.;In Chapter two, we shall pay our attention to the Strong Circuit Double Cover Conjecture (SCDC Conjecture). This conjecture was verified for some graphs with special structure. As the complement of two factor in cubic graph, the Berge-Fulkersen Conjecture was introduced right after SCDC Conjecture. In Chapter three, we shall present a series of conjectures related to perfect matching covering and point out their relationship.;In last chapter, we shall introduce the saturation number, in contrast to extremal number (or known as Turan Number), and describe the edge spectrum of saturation number for small paths, where the spectrum was consisted of all possible integers between saturation number and Turan number

    Perfect Matching and Circuit Cover of Graphs

    Get PDF
    The research of my dissertation is motivated by the Circuit Double Cover Conjecture due to Szekeres and independently Seymour, that every bridgeless graph G has a family of circuits which covers every edge of G twice. By Fleischner\u27s Splitting Lemma, it suffices to verify the circuit double cover conjecture for bridgeless cubic graphs.;It is well known that every edge-3-colorable cubic graph has a circuit double cover. The structures of edge-3-colorable cubic graphs have strong connections with the circuit double cover conjecture. In chapter two, we consider the structure properties of a special class of edge-3-colorable cubic graphs, which has an edge contained by a unique perfect matching. In chapter three, we prove that if a cubic graph G containing a subdivision of a special class of edge-3-colorable cubic graphs, semi-Kotzig graphs, then G has a circuit double cover.;Circuit extension is an approach posted by Seymour to attack the circuit double cover conjecture. But Fleischer and Kochol found counterexamples to this approach. In chapter four, we post a modified approach, called circuit extension sequence. If a cubic graph G has a circuit extension sequence, then G has a circuit double cover. We verify that all Fleischner\u27s examples and Kochol\u27s examples have a circuit extension sequence, and hence not counterexamples to our approach. Further, we prove that a circuit C of a bridgeless cubic G is extendable if the attachments of all odd Tutte-bridges appear on C consequently.;In the last chapter, we consider the properties of minimum counterexamples to the strong circuit double cover. Applying these properties, we show that if a cubic graph G has a long circuit with at least | V(G)| - 7 vertices, then G has a circuit double cover

    On flows of graphs

    Get PDF
    Tutte\u27s 3-flow Conjecture, 4-flow Conjecture, and 5-flow Conjecture are among the most fascinating problems in graph theory. In this dissertation, we mainly focus on the nowhere-zero integer flow of graphs, the circular flow of graphs and the bidirected flow of graphs. We confirm Tutte\u27s 3-flow Conjecture for the family of squares of graphs and the family of triangularly connected graphs. In fact, we obtain much stronger results on this conjecture in terms of group connectivity and get the complete characterization of such graphs in those families which do not admit nowhere-zero 3-flows. For the circular flows of graphs, we establish some sufficient conditions for a graph to have circular flow index less than 4, which generalizes a new known result to a large family of graphs. For the Bidirected Flow Conjecture, we prove it to be true for 6-edge connected graphs

    Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Get PDF
    The work in Chapter 2 is motivated by Tutte and Jaeger\u27s pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {lcub}2, 3{rcub}, if (G, sigma) is (k -- 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015).;Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥.;Tutte\u27s 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.;The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with.;∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two
    corecore