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On Flows of Graphs

Rui Xu

ABSTRACT

Tutte’s 3-flow Conjecture, 4-flow Conjecture, and 5-flow Conjecture are among the most

fascinating problems in graph theory. In this dissertation, we mainly focus on the nowhere-

zero integer flow of graphs, the circular flow of graphs and the bidirected flow of graphs.

We confirm Tutte’s 3-flow Conjecture for the family of squares of graphs and the family of

triangularly connected graphs. In fact, we obtain much stronger results on this conjecture

in terms of group connectivity and get the complete characterization of such graphs in

those families which do not admit nowhere-zero 3-flows. For the circular flows of graphs,

we establish some sufficient conditions for a graph to have circular flow index less than 4,

which generalize a new known result to a large family of graphs. For the Bidirected Flow

Conjecture, we prove it to be true for 6-edge connected graphs.
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Chapter 1

Introduction

The map coloring problem is considered one of the major catalysts of the tremendous devel-

opment of graph theory in its 260-year history. It is, thus, not surprising that graph theory

coloring and its related problems have always been in the main line of graph theory research.

It was observed by Tutte that the problem of the face-coloring of an embedded (planar)

graph can be formulated in terms of integer flows in the graph. Since then, the topic of

integer flow has been one of the most attractive in graph theory.

Tutte had three famous fascinating flow conjectures: 3-flow conjecture, 4-flow conjecture

and 5-flow conjecture. There are a lot of partial results for these three conjectures (see the

survey papers by Jackson [22], Jaeger [25] and Younger [52] and the book by Zhang [53]).

All three of these conjectures are still open.

The concept of circular flow, introduced by Goddyn, Tarsi and Zhang in [16], is a

generalization of integer flows. With the introduction of circular flow, the concept of integer

flow was successfully extended to real values. By the relation between the circular flow

index and the flow index, circular flows can be considered as a refinement of integer flows.

Therefore, for each integer flow conjecture, there is a corresponding circular flow conjecture.

1



Chapter I. Introduction 2

The concept of bidirected flow, introduced by Bouchet [7], is another generalization of

integer flows. It is also motivated by the relation between the flow and the tension. For a

graph drawn on an orientable surface of higher genus, flows are not dual to colorings, but

to local-tensions. By Seymour’s theorem, every graph on an orientable surface without the

obvious obstruction has a nowhere-zero 6-local-tension. Bouchet conjectured that the same

holds true on non-orientable surfaces and conjectured that every bidirected graph without

the obvious obstruction should have a nowhere-zero bidirected 6-flow. This is known as the

bidirected 6-flow conjecture.

In this dissertation, we mainly focus on the 3-flow conjecture, the circular flow problem

and the bidirected flow conjecture.

In Chapter 2, we study the 3-flows of a family of graphs: squares of graphs. Squares of

graphs can be used to model atom-bond networks with bond-angle forces, which arise in the

study of glasses. Also, the problem of coloring squares of graphs has been studied recently

for its applications to frequency allocation. Many properties have been studied for the family

of squares of graphs by other authors, for example, the coloring number [1], the edge clique

cover number [27], the existence of factors [37, 2] and the Hamiltonian property [13, 40].

Here, we prove that the Tutte’s 3-flow conjecture is true for this family of graphs. In fact,

we give a complete characterization of those graphs in this family which admit nowhere-zero

3-flows.

In Chapter 3, we study another family of graphs: triangularly connected graphs. The

motivation of this work is the weak 3-flow conjecture, which states that the 3-flow conjecture

is true for graphs with each edge contained in a triangle. Note that these graphs can be

obtained by attaching together triangularly connected graphs. Therefore, if we can get the

structure result about nowhere-zero 3-flows of triangularly connected graphs, it will help to

completely solve this weak flow conjecture. Here, we prove that Tutte’s 3-flow conjecture is

true for this family of graphs. In fact, we give a complete characterization of those graphs

in this family which admit nowhere-zero 3-flows. Furthermore, we get more general results
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in terms of Z3-connectivity for this family of graphs.

In Chapter 4, we get some sufficient conditions for graphs with circular flow index less

than 4. As an immediate corollary, we give a simple proof of a result obtained recently by

Galluccio and Goddyn (Combinatorica, 2002), and obtain a larger family of such graphs.

In Chapter 5, we focus on the bidirected flows of graphs and prove that Bouchet’s

bidirected 6-flow conjecture is true for 6-edge connected graphs.



Chapter 2

Nowhere-zero 3-flows in squares of

graphs

It was conjectured by Tutte [6] that every 4-edge connected graph admits a nowhere-zero

3-flow. In this paper, we give a complete characterization of graphs whose squares admit

nowhere-zero 3-flows. As a corollary, we confirm Tutte’s 3-flow conjecture for the family of

squares of graphs.

2.1 Introduction

All graphs considered in this chapter are finite and simple. Let G = (V,E) be a graph with

vertex set V and edge set E. For any v ∈ V (G), we use dG(v), NG(v) to denote the degree

and the neighbor set of v in G, respectively. The minimal degree of a vertex of G is denoted

by δ(G). We use Km for a complete graph on m vertices, Pt for a path of length t and W4

for a graph obtained from a 4-circuit by adding a new vertex x and edges joining x to all the

vertices on the circuit. We call x the center of this W4 and each edge with x as one endpoint

is called a center edge. Let D be an orientation of G. Then the set of all edges with tails

4



Chapter II. Nowhere-zero 3-flows in squares of graphs 5

(or heads) at a vertex v is denoted by E+(v) (or E−(v)). If an edge uv is oriented from u

to v under D, then we say D(uv) = u → v. The square of G, denoted by G2, is the graph

obtained from G by adding all the edges that join distance 2 vertices in G. We refer the

reader to [6] for terminology not defined in this chapter.

Definition 2.1.1 Let D be an orientation of G and f be a function: E(G) 7→ Z. Then

(1). The ordered pair (D, f) is called a k-flow of G if −k + 1 ≤ f(e) ≤ k − 1 for every

edge e ∈ E(G) and
∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e) for every v ∈ V (G).

(2). The ordered pair (D, f) is called a Modular k-flow of G if for every v ∈ V (G),
∑

e∈E+(v) f(e) ≡
∑

e∈E−(v) f(e) ( mod k).

The support of a k-flow (modular k-flow) (D, f) of G is the set of edges of G with

f(e) 6= 0 (f(e) 6≡ 0 (mod k)), and is denoted by supp(f). A k-flow (D, f) (Modular k-flow)

of G is nowhere-zero if supp(f) = E(G).

Definition 2.1.2 Let Γ be an Abelian group ( an additive group with ”0” as the identity).

A Γ-flow of G is a flow (D, f) where f is a function: E(G) 7→ Γ.

For convenience, a nowhere-zero k-flow (Γ-flow) is abbreviated as a k-NZF (Γ-NZF).

The concept of integer-flow was introduced by Tutte([45, 46], also see [52, 25]) as a refine-

ment and generalization of face-coloring and edge-3-coloring problems. The following three

conjectures are the most well-known open problems in this subject.

The 5-flow Conjecture (Tutte [46]) Every 2-edge connected graph admits a 5-NZF.

The 4-flow Conjecture (Tutte [48]) Every 2-edge connected graph containing no subdivi-

sion of the Petersen graph admits a 4-NZF.

The 3-flow Conjecture (Tutte, unsolved problem 48 in [6]) Every 4-edge connected graph

admits a 3-NZF.
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There are many partial results on these three conjectures, but all of them are still open.

For the k-NZF and Γ-NZF, Tutte obtained the following result.

Theorem 2.1.3 (Tutte [46]) Let Γ be an Abelian group of order k. A graph G admits a

k-NZF if and only if G admits a Γ-NZF.

For the 5-flow conjecture, Jaeger and Kilpatrick obtained the following result indepen-

dently.

Theorem 2.1.4 (Jaeger [23], Kilpatrick [29]) Every 2-edge connected graph admits a 8-NZF.

The strongest partial result for the 5-flow conjecture is due to Seymour.

Theorem 2.1.5 (Seymour [41]) Every 2-edge connected graph admits a 6-NZF.

The 4-flow conjecture has been confirmed for planar graphs. The result is also known

as the Four Color Theorem.

Theorem 2.1.6 (Appel and Haken [3, 4, 5]) The 4-flow conjecture is true for planar graphs.

For the 3-flow conjecture, Jaeger obtained the best approach and Grötzsch proved it to

be true for planar graphs.

Theorem 2.1.7 (Jaeger [23]) Every 4-edge connected graph admits a 4-NZF.

Theorem 2.1.8 (Grötzsch [17]) Every 4-edge connected planar graph is face-3-colorable,

equivalently, admits a 3-NZF.
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Jaeger proposed the following weaker version of the 3-flow conjecture.

The Weak 3-flow Conjecture (Jaeger [25]) There is an integer k such that every k-edge

connected graph admits a 3-NZF.

The following is one approach to this conjecture.

Theorem 2.1.9 (Lai and Zhang [31]) Let G be a k-edge connected graph with t odd vertices.

If k ≥ 4dlogt
2e, then G admits a 3-NZF.

In this chapter, squares of graphs admitting 3-NZF’s will be characterized. The following

families of graphs are the exceptions in the main theorem.

Definition 2.1.10 T1,3 = {T | T is a tree and dT (v) = 1 or 3 for every v ∈ V (T )}

Definition 2.1.11 T̄1,3 = {T | T ∈ T1,3 or T is a 4-circuit or T can be obtained from some

T ′ ∈ T1,3 by adding some edges each of which joins a pair of distance 2 leaves of T ′}

The following is the main result of this chapter.

Theorem 2.1.12 Let G be a connected simple graph. Then G2 admits a 3-NZF if and only

if G /∈ T̄1,3.

An immediate corollary of Theorem 2.1.12 is the following partial result for Tutte’s

3-flow conjecture.

Corollary 2.1.13 Let G be a graph. If δ(G2) ≥ 4 then G2 admits a 3-NZF.

This research is motivated by the 3-flow conjecture and the following open problem:
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Conjecture 2.1.14 (Zhang [54]) If every edge of a 4-edge connected graph G is contained

in a 3-circuit, then G admits a 3-NZF.

Theorem 2.1.12 and the following early results are partial results for Conjecture 2.1.14.

Theorem 2.1.15 (Catlin [9]) If every edge of a graph G is contained in a circuit of length

at most 4, then G admits a 4-NZF.

Theorem 2.1.16 (Lai [32]) Every 2-edge connected, locally 3-edge connected graph admits

a 3-NZF.

Theorem 2.1.17 (Imrich and Skrekovski [20]) Let G and H be two graphs. Then G × H

admits a 3-NZF if both G and H are bipartite.

2.2 Splitting operation, flow extension and lemmas

Definition 2.2.1 (A special splitting operation) Let G be a graph and e = xy ∈ E(G). The

graph G∗e is obtained from G by deleting the edge e and adding two new vertices x′ and y′

and adding two new edges, ex and ey, joining x and y′, y and x′, respectively.

Definition 2.2.2 Let G be a graph, let (D, f) be a 3-flow of G and let F ⊆ E(G)\ supp(f).

A 3-flow (D′, f ′) of G is called an (F, f)-changer if F ∪ supp(f) ⊆ supp(f ′).

Lemma 2.2.3 ([45]) A graph G admits a k-flow (D, f1) if and only if G admits a Modular

k-flow (D, f2) such that f1(e) ≡ f2(e)( mod k) for each e ∈ E(G).

An orientation of a graph G is called a modular 3-orientation if |E+(v)| ≡ |E−(v)| (mod 3),

for every v ∈ V (G). The following result appears in [25, 43, 52], but by Lemma 2.2.3, we

can attribute it to Tutte.
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Lemma 2.2.4 ([45]) Let G be a graph. Then G admits a 3-NZF if and only if G has a

modular 3-orientation.

A partial 3-orientation D of G is an orientation of some edges of G satisfying |E+(v)| ≡

|E−(v)| (mod 3), for any v ∈ V (G). The support of D is the set of edges oriented under

D and is denoted by supp(D). Clearly the partial orientation obtained by reversing every

oriented edge of a partial 3-orientation is also a partial 3-orientation.

Let D be a partial 3-orientation of G and let C = v0v1 · · · vk−1v0 be a circuit of G. A

circuit-operation along C is defined as following: For 0 ≤ i ≤ k − 1, if D(vivi+1) = vi →

vi+1 (mod k), then reverse the direction of this edge; if (vivi+1) (mod k) is not oriented

under D, then orient it as vi → vi+1; if D(vivi+1) = vi+1 → vi (mod k) then vivi+1 loses it’s

orientation.

Lemma 2.2.5 Let G be a graph, (D, f) be a 3-flow of G and H be a subgraph of G

(1). If H ∼= W4 and e ∈ E(H) \ supp(f) is a center edge, then an ({e}, f)-changer

exists.

(2). If H is a circuit of length 3 with E(H) ∩ supp(f) = {e}, then an (E(H) \ {e}, f)-

changer exists.

Proof. (1). Since H ∼= W4, let x be the center of H and let u1u2u3u4u1 be the 4-circuit H\x.

Since G has a 3-flow (D, f), then G has a partial 3-orientation D∗ with supp(D∗) = supp(f).

We need only to find a partial 3-orientation D′ such that supp(D∗)∪ {e} ⊆ supp(D′). Since

e is a center edge, without loss of generality, assume that e = xu1.

First we assume E(H)\{e} ⊆ supp(D∗). Without loss of generality, assume D∗(u1u2) =

u1 → u2. Then D∗(u2x) = x → u2. Otherwise, we do a circuit-operation along u1u2xu1 and

then get a needed partial 3-orientation D′ of G. For the same reason, u4 must be the tail

(or head) of both u1u4 and xu4. By symmetry, we consider the following two cases.



Chapter II. Nowhere-zero 3-flows in squares of graphs 10

Case 1. D∗(u1u4) = u1 → u4 and D∗(xu4) = x → u4.

We may assume that u3 is the tail (or head) of all edges incident with it in H. Otherwise,

there exists a directed 2-path xu3ui (or uiu3x) for some i ∈ {2, 4}. Then we do circuit-

operations along xu3uix (or uiu3xui) and along u1uixu1. Therefore, we get a needed partial

3-orientation of D′ of G.

If all edges in H have u3 as a tail, then we do circuit-operations along xu1u4x, along

u4xu3u4, along xu3u2x and along u2xu1u2; If all edges in H have u3 as a head, then we

do circuit-operations along u1u2u3xu1 and along u3xu4u3. In both cases, we get a needed

partial 3-orientation D′ of G.

Case 2. D∗(u1u4) = u4 → u1 and D∗(xu4) = u4 → x.

Similar to Case 1, we may assume u3 be the tail (or head) of all edges incident with

it in H. If all edges in H have u3 as a tail, then we do circuit-operations along xu1u4x,

along u3u4u1u2u3 and along u3xu2u3; If all edges in H have u3 as a head, then we do circuit-

operations along u1xu2u1, along u4u1u2u3u4 and along u4xu3u4. In both cases, we get a

needed partial 3-orientation D′ of G.

If supp(D∗) misses some other edges of E(H), say e∗ = ab ∈ E(H) \ supp(D∗), then we

define D∗(ab) = a → b or b → a, by the proof of Case 1 and Case 2, we can find a needed

D′ of G.

(2). it is trivial.

Lemma 2.2.6 For each G ∈ T̄1,3 and each e0 ∈ E(G), the graph G2 admits a 3-flow (D, f)

such that supp(f) = E(G2) \ {e0}

Proof. Induction on |E(G)|. It is obviously true for graphs G with G2 = K4 (including

G = C4, the circuit of length 4). So, assume that |V (G)| ≥ 5 and let D be any fixed

orientation of G2.
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Let e = xy with dG(x) = dG(y) = 3. Then G∗e consists of two components, say G1 and

G2. Clearly, G1, G2 ∈ T̄1,3. Without loss of generality, let e0 ∈ E(G1). By induction, G2
1

admits a 3-flow (D, f1) such that supp(f1) = E(G2
1) \ {e0} and G2

2 admits a 3-flow (D, f2)

that supp(f2) = E(G2
2) \ {e}.

Then, identifying the split vertices and edges, back to G, (D, f1 + f2) is a 3-flow (D, f)

with supp(f) = E(G2) \ {e0}.

Lemma 2.2.7 (1). Let G be a k-path with k ≥ 2 or an m-circuit with m = 3 or m ≥ 5.

Then G2 admits a 3-NZF.

(2). Let G be a graph obtained from an r-circuit x0x1 · · · xr−1x0 by attaching an edge

xivi at each xi for 0 ≤ i ≤ r − 1, where vi 6= vj if i 6= j. Then G2 admits a 3-NZF.

(3). Let G be a graph obtained from an m-circuit x0x1 · · · xm−1x0 by attaching an edge

xm−1v at xm−1 alone, where m ≥ 5. Then G2 admits a 3-NZF.

Proof. (1). If G is an m-circuit with m = 3 or m ≥ 5, then G2 is a cycle (every vertex is

of even degree) and G2 admits 2-NZF. If G is a k-path with k ≥ 2, by induction on k and

using Lemma 2.2.5-(2), G2 admits a 3-NZF.

(2). For r ≥ 5 (or r = 3): let D be an orientation such that vi (0 ≤ i ≤ r−1) is the tail of

every edge of G2 incident with it and all the other edges are oriented as xi → xi+1, xi → xi+2

(mod r) (or xi → xi+1 (mod 3) only for r = 3). Obviously, D is a modular 3-orientation of

G2.

For r = 4: let D be the orientation such that v0 and v2 be the tail of every edge of

G2 incident with it, v1 and v3 be the head of every edge of G2 incident with it, x0x1x3x2x0

as a directed circuit and other edges are oriented as x3 → x0, x1 → x2. Obviously, D is a

modular 3-orientation of G2.
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(3). Orient all the edges as xi → xi+1, xi → xi+2 (mod m) for 0 ≤ i ≤ m − 1 and let v

be the tail of every edge of G2 incident with it. Then reverse the direction of the following

edges: x0xm−1, x0xm−2. Clearly, this orientation is a modular 3-orientation of G2.

2.3 Proof of the main theorem

Proof. =⇒ By contradiction. Suppose G ∈ T̄1,3. Let G be a counterexample with |V (G)|+

|E(G)| as small as possible. Clearly |V (G)| ≥ 5 and G contains no circuits. So G ∈ T1,3. Let

v ∈ V (G) be a degree 3 vertex such that NG(v) = {v1, v2, v3}, dG(v1) = dG(v2) = 1. Clearly,

G1 = G \ {v1, v2} ∈ T1,3. Since G2 has a modular 3-orientation D and both v1 and v2 are

degree 3 vertices in G2, then this orientation restricted to the edge set of G2
1 will generate a

modular 3-orientation of G2
1. Therefore, G2

1 admits a 3-NZF, a contradiction.

⇐= Let G be a counterexample to the theorem such that

(i). |E(G)| − |V (G)| is as small as possible,

(ii). subject to (i), |E(G)| is as small as possible.

Note that |E(G)| − |V (G)| + 1 is the rank of the cycle space of G.

Claim 1. Let e0 = xy ∈ E(G). If dG(x) ≥ 3 and dG(y) ≥ 2, then xy is not a cut edge of

G.

If e0 is a cut-edge, then at least one component of G∗e0
is not in T̄1,3, say, G1 is not,

while G2 might be. By induction, let (D, fi) be a 3-flow of G2
i for each i = 1, 2 such that

f1 is nowhere-zero, f2 might miss only one edge ex (that is a copy of e0). Without loss of

generality, assume that f1(ey) + f2(ex) 6≡ 0 (mod (3)). Then, identifying the split vertices

and edges, back to G, (D, f1 + f2) is a nowhere-zero Modular 3-flow of G2. By Lemma 2.2.3,

G2 admits a 3-NZF, a contradiction. 2



Chapter II. Nowhere-zero 3-flows in squares of graphs 13

Claim 2. dG(x) ≤ 3 for any x ∈ V (G).

Otherwise, assume that dG(x) ≥ 4 for some vertex x ∈ V (G). Clearly G 6∼= K1,m for

m ≥ 4 since K1,m is not a counterexample. So there exists e0 = xy ∈ E(G) with dG(y) ≥ 2.

By Claim 1, e0 is not a cut edge of G and G1 = G∗e0
/∈ T̄1,3. Then by (i), G2

1 admits a 3-NZF.

In G2
1, identify x and x′, y and y′, and use one edge to replace two parallel edges, by

Lemma 2.2.3, we will get G2 and a Modular 3-flow (D, f) of G2 such that E(G2)\supp(f) ⊆

{xv or yw | v ∈ NG(y), w ∈ NG(x)}. Let C(x) = G2[NG(x)∪{x}]. Then C(x) is a clique of

order at least 5. We are to adjust (D, f) so that the resulting Modular 3-flow (D, f ′) of G2

misses only edges of {uv | u, v ∈ V (C(x))}. For each edge xv which is missed by supp(f)

and xv 6∈ E(C(x)), xyvx must be a circuit of G2, so let (D, fxv) be a 3-flow of G2 with

supp(fxv) = {xy, yv, xv} and fxv(yv) + f(yv) 6≡ 0 (mod 3). Now (D, f + fxv) is a Modular

3-flow of G2 whose support contains xv, yv, but may miss xy. Repeat this adjustment and

do the similar adjustment for the edges yw not in the support until we get a Modular 3-flow

(D, f ′) of G2 such that E(G2) \ supp(f ′) ⊆ E(C(x)). Since each edge in C(x) is contained

in some K5 and thus is a center edge in some W4, by Lemma 2.2.3 and Lemma 2.2.5-(1), G2

admits a 3-NZF, a contradiction. 2

Claim 3. No degree 2 vertex is contained in a 3-circuit.

By contradiction. Assume xyzx is a circuit of G with dG(x) = 2. If dG(y) = 2, then we

must have dG(z) = 3. Therefore G1 = G \ {xy} /∈ T̄1,3 and G2
1 = G2, contradicting (ii). So

dG(y) = dG(z) = 3.

Let NG(y) = {x, y′, z} and NG(z) = {x, y, z′}. Let G1 = G−{x}. Since (NG(y)∩NG(z))\

{x} = ∅ (otherwise, let G2 = G \ {yz}, then G2
2 = G2, G2 /∈ T̄1,3, contradicting (ii)) and

dG1
(y) = 2, then G1 6∈ T̄1,3. So G2

1 admits a 3-NZF. Since E(G2)\E(G2
1) = {xy, xy′, xz, xz′},

by Lemma 2.2.5-(2), G2 admits a 3-NZF, a contradiction. 2
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Claim 4. No degree 2 vertex of G is contained in a 4-circuit.

Assume C = xu1u2u3x is a 4-circuit of G and dG(x) = 2. By Claim 3, u1u3 /∈ E(G).

Let u′
i be the adjacent vertex of ui which is not in V (C) if dG(ui) = 3 for some i ∈ {1, 2, 3}.

Let G1 = G \ {x}. We consider the following 3 cases.

Case 1. dG(u1) = dG(u3) = 2.

Then dG(u2) = 3 and dG(u′
2) ≥ 2 (if dG(u′

2) = 1, it’s easy to show G2 admits a 3-NZF).

Clearly, u2u
′
2 is a cut edge, contradicting Claim 1.

Case 2. Exactly one of u1, u3 has degree 3.

Assume dG(u1) = 3 and dG(u3) = 2. Since dG1
(u1) = 2, if dG1

(u′
1) = 2 then u′

1 is not

contained in a 3-circuit in G (by Claim 3), and so G1 /∈ T̄1,3. By induction, G2
1 admits a

3-NZF. Since E(G2)\E(G2
1) = {xu′

1, xu1, xu2, xu3} and G2[V (C)∪{u′
1}] contains a W4 with

x as its center, by Lemma 2.2.5-(1), G2 admits a 3-NZF, a contradiction.

Case 3. dG(u1) = dG(u3) = 3.

If u′
1 = u′

3, then u′
1u1u2u3 is a 3-path, otherwise u′

1u1u2u3u
′
3 is 4-path. In both cases G2

1

admits a 3-NZF. Since E(G2)\E(G2
1) = {xu′

1, xu1, xu2, xu3, xu′
3} and each edge xui or xu′

j is

contained in some W4 in G2 as a center edge for 1 ≤ i ≤ 3 and j = 1, 3, by Lemma 2.2.5-(1),

G2 admits a 3-NZF. a contradiction. 2

Claim 5. For any v ∈ V (G), dG(v) 6= 2.

Otherwise, if there exists v ∈ V (G) such that dG(v) = 2, then by Claim 3-4, v is not

contained in any circuits of length 3 or 4. By Lemma 2.2.7-(1), G cannot be a k-path with

k ≥ 2 or an m-circuit with m = 3 or m ≥ 5. Let us consider the following cases.

Case 1. There exists a path Pm = v1v2 · · · vm such that m ≥ 3, v = vt for some

2 ≤ t ≤ m − 1, dG(vk) = 2 for 2 ≤ k ≤ m − 1 and dG(v1) 6= 2, dG(vm) 6= 2.
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Clearly, at least one of v1, vm has degree 3. If dG(vi) = 3 for i = 1, or m, let NG(vi) \

V (Pm) = {v′
i, v

′′
i }. Clearly, G1 = G \ {v2, v3, . . . , vm−1} /∈ T̄1,3 (because by Claim 3, degree

2 vertices are not contained in any 3-circuits of G). By Claim 1, G1 is connected. So G2
1

admits a 3-NZF (D, f1). By Lemma 2.2.7-(1), P 2
m admits a 3-NZF (D, f2). Then G2 admits

a 3-flow (D, f) with supp(f) = supp(f1) ∪ supp(f2). By Claim 3-4, E(G2) \ supp(f) =

{v2v
′
1, v2v

′′
1 , vm−1v

′
m, vm−1v

′′
m}, then by Lemma 2.2.5-(2), G2 admits a 3-NZF, a contradiction.

Case 2. There exists a m-circuit C = v1v2 · · · vmv1 with m ≥ 5, dG(vi) = 2 for 1 ≤ i ≤

m − 1, dG(vm) = 3 and v = vt for some 1 ≤ t ≤ m − 1.

Suppose that v0 ∈ NG(vm) \ V (C). By Claim 1, dG(v0) = 1. So by Lemma 2.2.7-(3), G2

admits a 3-NZF, a contradiction. 2

Claim 6. Let e = xy ∈ E(G) with dG(x) = dG(y) = 3. Then e is contained in a circuit

of length 3 or 4.

By contradiction. Let G1 be the graph obtained from G by deleting the edge e and

adding a new vertex y′ and a new edge xy′. Since G contains no degree 2 vertices and

dG1
(y) = 2, then G1 /∈ T̄1,3. By Claim 1, e is not a cut edge of G, then by (i), G2

1 admits a

3-NZF (D, f1). Identify y and y′, the resulting 3-flow (D, f2) in G2 misses only two edges

y1x and y2x where N(y) = {y1, y2, x} (since xy is not contained a circuit of length 3 or 4).

By Lemma 2.2.5-(2), G2 admits a 3-NZF, a contradiction. 2

Claim 7. For each x ∈ V (G) with dG(x) = 3, |NG(x) ∩ V3| ≤ 2, where V3 is the set of

all the degree 3 vertices of G.

By contradiction. Assume that U = {u1, u2, u3} = NG(x) ∩ V3. Let G1 = G \ {x}. By

Claim 1, G1 is connected. Since G contains no degree 2 vertices, G1 /∈ T̄1,3 and G2
1 admits a

3-NZF (D, f). By Claim 6, each xui (1 ≤ i ≤ 3) is contained a circuit of length at most 4.

We consider the following 3 cases.
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Case 1. G[U ] contains at least 2 edges.

Suppose that u1u2, u2u3 ∈ E(G). Let u′
i ∈ NG(ui) \ U for i = 1, 3. If u′

1 = u′
3, then

G2[U ∪ {u′
1, x}]

∼= K5, by Lemma 2.2.5-(1), we can get a 3-NZF of G2, a contradiction. If

u′
1 6= u′

3, then G[u′
1u1u2u3u

′
3] is a 4-path, by Lemma 2.2.5-(1) (similar to Case 3 of Claim 4),

we can get a 3-NZF of G2, a contradiction.

Case 2. G[U ] contains exactly 1 edge.

Assume that u1u2 ∈ E(G). By Claim 6, each edge xui (i = 1, 2, 3) is contained in

a circuit of length 3 or 4. So we may assume z ∈ (NG(u2) ∩ NG(u3)) \ {x}. Clearly,

G∗ = G2[U∪{x, z}] ∼= K5. Let u′
i ∈ NG(ui)\(U∪{z}) for i = 1, 3. Clearly, E(G2)\supp(f) ⊆

E(G∗) ∪ {xu′
1, xu′

3}. Since xuju
′
jx(j = 1, 3) is a circuit of G2, we can get a 3-flow (D, f1)

such that E(G2) \ supp(f1) ⊆ E(G∗). By Lemma 2.2.5-(1), we can get a 3-NZF of G2, a

contradiction.

Case 3. G[U ] contains no edges.

Assume that z1 ∈ (NG(u1)∩NG(u2)) \ {x} and z2 ∈ (NG(u1)∩NG(u3)) \ {x}. Let G2 =

G\{xu1}, then G2 /∈ T̄1,3 and G2
2 admits a 3-NZF (D, f1). Clearly, E(G2)\supp(f1) = {xu1}.

Since xu1 is contained in a W4 which is contained in the graph induced by {u1, z1, u2, u3, x}

in G2 with x as center, by Lemma 2.2.5-(1), we can get a 3-NZF of G2, a contradiction. 2

Final Step. By Claim 2, Claim 5 and Claim 7, all vertices of G have degree 1 or 3 and

each degree 3 vertex is adjacent to at most 2 degree 3 vertices. So G[V3] is a path or a circuit,

hence G must be a graph obtained from an r-circuit x0x1 · · · xr−1x0 by attaching an edge

xivi at each xi for 0 ≤ i ≤ r− 1, where vi 6= vj if i 6= j, or a path x0x1 · · · xp by attaching an

edge vixi (1 ≤ i ≤ p− 1) at each xi, where vi 6= vj if i 6= j. Clearly the latter case is a graph

in T̄1,3. By Lemma 2.2.7-(2), G2 admits a 3-NZF, a contradiction.



Chapter 3

Group connectivity of triangularly

connected graphs

Tutte [6] conjectured that every 4-edge connected graph admits a nowhere-zero Z3-flow

and Jeager et al [26] conjectured that every 5-edge connected graph is Z3-connected. In

this paper, we characterize the triangularly connected graphs that are A-connected for any

Abelian group A with |A| ≥ 3. As a corollary, we also characterize the triangularly connected

graphs that admit nowhere-zero Z3-flows, confirming these two conjectures for triangularly

connected graphs.

3.1 Introduction

For a subset X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. Note that even when

G is simple, G/X may have multiple edges. For convenience, we write G/e for G/{e}, where

e ∈ E(G). If H is a subgraph of G, then G/H denotes G/E(H).

17
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We use Pk for a path of length k. A nontrivial 2-regular connected graph is called a

circuit and a circuit with k edges is called a k-circuit. A wheel Wk is a graph obtained from

a k-circuit by adding a new vertex v and then joining this new vertex to all the vertices on

the circuit. This new vertex v is called the center of Wk. A wheel Wk is an even wheel if k

is even and an odd wheel otherwise. We use 〈Wodd〉 to denote the set of all odd wheels.

A graph G is called a Fan-graph, if it can be obtained from a path Pk = v1v2 · · · vk

(k ≥ 2) by adding a new vertex v and joining v to all the vertices on the path. v is called

the center of G, vv1, vvk are called the end edges of G and v1, vk are called the end points of

G. The set of Fan-graphs are denoted by 〈F 〉.

Let G be a graph with u′v′ ∈ E(G) and H be a graph with uv ∈ E(H). We use G ⊕ H

to denote a new graph obtained from the disjoint union of G − {u′v′} and H by identifying

u′ and u and identifying v′ and v. This operation is called attaching G on H over the edge

uv and the resulting graph is denoted by G ⊕ H.

We define 〈WF 〉 = {H|H = H1⊕H2⊕· · ·⊕Hk, where Hi ∈ 〈F 〉∪〈Wodd〉 for 1 ≤ i ≤ k}.

We call Hi (1 ≤ i ≤ k) is a WF-component of H. An end-WF-component of H is a

WF-component Hi such that Hi shares at most one edge with the union of all the other

WF-components of H.

Let G be a digraph, A be a nontrivial additive Abelian group and A∗ be the set of

nonzero elements in A. We define

F (G,A) = {f | f : E(G) 7→ A} and F ∗(G,A) = {f | f : E(G) 7→ A∗}.

For each f ∈ F (G,A), the boundary of f is a function ∂f : V (G) 7→ A defined by

∂f =
∑

e∈E+(v) f(e) −
∑

e∈E−(v) f(e), where ”
∑

” refers to the addition in A. We define

Z(G,A) = {b | b : V (G) 7→ A with
∑

v∈V (G) b(v) = 0}.

An undirected graph G is A-connected, if G has an orientation G′ such that for every

function b ∈ Z(G,A), there is a function f ∈ F ∗(G′, A) such that ∂f = b. For an Abelian
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group A, let 〈A〉 denote the family of graphs that are A-connected. It has been observed in

[26] that G ∈ 〈A〉 is independent of the orientation of G.

Clearly, an A-nowhere-zero-flow (abbreviated as A-NZF) in a digraph G is a function

f ∈ F ∗(G,A) such that ∂f = 0.

The concept of A-connectivity was introduced by Jaeger et al in [26], which is a gener-

alization to the A-NZF.

Jaeger proposed several conjectures on group connectivity of graphs.

Conjecture 3.1.1 (Jaeger et al [26]) Every 3-edge connected graph is Z5-connected.

Conjecture 3.1.2 (Jaeger et al [26]) Every 5-edge connected graph is Z3-connected.

A weaker version of the Conjecture 3.1.2 was also proposed:

Conjecture 3.1.3 (Jaeger et al [26]) There is an integer k such that every k-edge connected

graph is Z3-connected.

Note that Conjecture 3.1.1 is stronger than the 5-flow conjecture, Conjecture 3.1.2 is

stronger than the 3-flow conjecture and Conjecture 3.1.3 is equivalent to the weak 3-flow

conjecture (see [26]). For these conjectures, Jaeger got some partial results.

Theorem 3.1.4 (Jaeger et al [26]) Every graph which contains 2 edge-disjoint spanning

trees (in particular, every 4-edge connected graph) is A-connected for every Abelian group A

with |A| ≥ 4.

Theorem 3.1.5 (Jaeger et al [26]) Every 3-edge connected graph is A-connected for every

Abelian group A with |A| ≥ 6.
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Theorem 3.1.4 and Theorem 3.1.5 are generalizations to Theorem 2.1.7 and Theo-

rem 2.1.5, respectively.

A connected graph G is locally connected if G[N(v)] is connected for every v ∈ V (G).

A graph G is triangularly connected if for every e1, e2 ∈ E(G), there exists a sequence of

circuits C1, C2, . . . , Ck such that e1 ∈ E(C1), e2 ∈ E(Ck), |E(Ci)| ≤ 3 for 1 ≤ i ≤ k, and

such that E(Cj) ∩ E(Cj+1) 6= ∅ for 1 ≤ j ≤ k − 1. Note that every locally connected graph

on at least three vertices is also triangularly connected.

Motivated by the 3-flow conjecture and the conjecture above for Z3-connectivity, we

study the family of triangularly connected graphs and confirm these two conjectures for this

family of graphs.

The following are the main results of this chapter.

Theorem 3.1.6 Let G be a triangularly connected graph. Then G ∈ 〈A〉 for all additive

Abelian group A with |A| ≥ 3 if and only if G /∈ 〈WF 〉.

As the corollary of Theorem 3.1.6, we get the following result.

Theorem 3.1.7 Let G be a triangularly connected graph. Then G admits a Z3-NZF if and

only if G 6= G1 ⊕ G2 ⊕ · · · ⊕ Gk such that Gi ∈ 〈Wodd〉.

Theorem 3.1.7 is a generalization of Theorem 2.1.16.

Corollary 3.1.8 The 3-flow conjecture is true for the family of triangularly connected graphs.

Proof. By the structure of forbidden graphs in Theorem 3.1.7, every such graph has at

least one small degree (less than 4) vertex. Therefore, it is not 4-edge connected. Then by

Theorem 3.1.7, the 3-flow conjecture is true for the family of triangularly connected graphs.
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3.2 Lemmas

Lemma 3.2.1 (Chen et al [11]) (1) Let H be a subgraph of G and H ∈ 〈Z3〉, then G/H ∈

〈Z3〉 if and only if G ∈ 〈Z3〉.

(2) If G ∈ 〈Z3〉, then for any e ∈ E(Gc), G + e ∈ 〈Z3〉, where Gc is the complement of

G.

Lemma 3.2.2 (Lai [32]) (1) Let Cn be a n-circuit with n ≥ 2 and let A be an Abelian group.

Then, Cn ∈ 〈A〉 if and only if |A| ≥ n + 1.

(2) Let T be a connected spanning subgraph of G. If for each edge e ∈ E(T ), G has a

subgraph He ∈ 〈A〉 with e ∈ He, then G ∈ 〈A〉.

Lemma 3.2.3 Let G ∼= Wn for some integer n ≥ 3. Then G admit a Z3-NZF if n is even

and G admits no Z3-NZF if n is odd.

Proof. By Lemma 2.2.4, we need only to show that any even wheel has a modular 3-

orientation while any odd wheel does not.

Suppose that G is an even wheel with circuit v1, v2, · · · v2kv1 and center v0. Since it is

an even wheel, we orient the edges of G such that vi is the head of all the edges incident

with it for i is odd. And then orient remaining edges such that v0 is the head. It is clear,

the resulting orientation is a modular 3-orientation of G.

Now suppose that G is an odd wheel with circuit v1, v2, · · · v2k+1v1 and center v0. Since

dG(v1) = dG(v2) = · · · = dG(v2k+1) = 3, if there is a modular 3-orientation of G, then each

vertex vi (1 ≤ i ≤ 2k + 1) is either the head of all the 3 edges incident with it or the tail of

the 3 edges incident with it. But it is impossible because v1, v2, · · · v2k+1v1 is a circuit with

odd number of vertices. Therefore, G admits no Z3-NZF.
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Lemma 3.2.4 (1). Let G ∼= W2n for some integer n ≥ 1. Then G ∈ 〈Z3〉.

(2). Let G ∼= W2n+1 be a digraph and b ∈ Z(G,Z3). Then there exists an f ∈ F ∗(G,Z3)

with ∂f = b if and only if b 6= 0̄.

Proof. We prove (1) and (2) at the same time by induction on n. If n = 1, then W2n can be

obtained from a 3-circuit by adding a parallel edge. By Lemma 3.2.2-(1) and Lemma 3.2.1-

(1), it is Z3-connected.

For the sake of convenience, let v1, v2 · · · , vmv1 be the circuit of Wm and v0 be its center.

Edges are oriented so that v1v2 · · · vmv1 is a directed circuit and all the other edges with v0

as the head.

By induction hypothesis, we may assume that Lemma 3.2.4 holds for Wk with k ≤ 2n.

(I). Let us consider G ∼= W2n+1 first.

=⇒ By contradiction. Suppose that b = 0. There exists an f ∈ F ∗(G,Z3) with ∂f =

b = 0. This means G ∼= W2n+1 admits a Z3-NZF, which is impossible by Lemma 3.2.3. So

b 6= 0.

⇐= Suppose that b 6= 0. Without loss of generality, we may assume b(v2n+1) 6= 0. Then

let G′ = G \ {v0v2n+1} and define

b′(v) =



























b(v) if v /∈ {v0, v2n+1},

b(v) + b(v2n+1) if v = v0,

0 if v = v2n+1.

Let G′′ = G′ \ {v1v2n+1, v2n+1v2n} ∪ {v1v2n} and orient the edge v1v2n as v2n → v1. Let

b′′ be the restriction of b′ to V (G′′). Clearly, b′′ ∈ Z(G′′, Z3) and G′′ ∼= W2n. By induction

hypothesis, there exists an f ′′ ∈ F ∗(G′′, Z3) with ∂f ′′ = b′′. Now let us define

f ′(e) =











f ′′(e) if e 6= v1v2n,

f ′′(v1v2n) if e ∈ {v2nv2n+1, v2n+1v1}.
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By the relation between G′′ and G′, we have f ′ ∈ F ∗(G′, Z3) and ∂f ′ = b′. Clearly this

f ′ can be extended to an f ∈ F ∗(G,Z3) with ∂f = b by defining

f(e) =











f ′(e) if e 6= v0v2n+1,

b(v2n+1) if e = v0v2n+1.

(II). Now let us consider G ∼= W2n+2. Let b ∈ Z(G,Z3).

Case 1. b = 0.

By Lemma 3.2.3, W2n+2 admits a Z3-NZF, then there exists an f ∈ F ∗(G,Z3) with

∂f = 0.

Case 2. Exactly one of b(vi) (1 ≤ i ≤ 2n + 2) is not 0.

Suppose that b(v1) = i 6= 0, then b(v0) = −i and b(vj) = 0 for 2 ≤ j ≤ 2n + 2. Let

us first reorient the edges to get a digraph G′ as follows: Orient v0v1 as v0 → v1 and let vk

be the tail of all the other edges incident with it if k is odd, let vk be the head of all the

edges incident with it if k is even and not zero. Define f ′ : E(G′) 7→ Z3 as f(e) = i for

each e ∈ E(G′). It is easy to verify that f ′ ∈ F ∗(G′, Z3) with ∂f ′ = b. Now, we can get an

f ∈ F ∗(G,Z3) with ∂f = b by defining

f(e) =











f ′(e) if e has the same orientation in G as in G′,

−f ′(e) otherwise.

Case 3. At least two of b(vi) (1 ≤ i ≤ 2n + 2) are not 0.

Without loss of generality, we may assume b(v2n+2) 6= 0. Then let G′ = G \ {v0v2n+2}

and define

b′(v) =



























b(v) if v /∈ {v0, v2n+2},

b(v) + b(v2n+2) if v = v0,

0 if v = v2n+2.

Let G′′ = G′\{v1v2n+2, v2n+2v2n+1}∪{v1v2n+1} and orient the edge v1v2n+1 as v2n+1 → v1.

Let b′′ be the restriction of b′ to V (G′′). Then b′′ ∈ Z(G′′, Z3), G′′ ∼= W2n+1 and b′′ 6= 0. By
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(I) there exists an f ′′ ∈ F ∗(G′′, Z3) with ∂f ′′ = b′′. Similar to the proof in (I), we can get an

f ∈ F ∗(G,Z3) with ∂f = b.

Lemma 3.2.5 Let G be a triangularly connected graph. If H is a non-trivial subgraph of G

and H ∈ 〈Z3〉, then G ∈ 〈Z3〉.

Proof. Let H ′ be a subgraph of G with E(H) ⊆ E(H ′) such that H ′ ∈ 〈Z3〉 and |E(H ′)|

as large as possible. We are to show that H ′ = G. Assume not, let e ∈ E(G) \ E(H ′) and

e′ ∈ E(H ′). Let C1, C2, · · ·Ck be a triangle chain joining e′ and e in G with e′ ∈ C1 and

e ∈ Ck. Let i be the smallest subscribe such that Ci 6⊆ E(H ′). Note that Ci shares at least

one edge with H ′. Therefore , if we let H ′′ = H ′∪Ci, then H ′′/H ′ is a 2-circuit a loop which

is Z3-connected. Then by Lemma 3.2.1-(1), H ′′ ∈ 〈Z3〉, contrary to the choice of H ′.

Lemma 3.2.6 Let G be a graph. Then G ∈ 〈Z3〉 if and only if G ⊕ W2n+1 ∈ 〈Z3〉 for any

integer n ≥ 1.

Proof. If G ∈ 〈Z3〉, then G ⊕ W2n+1/G is a triangularly connected graph containing a 2-

circuit. By Lemma 3.2.5, G⊕W2n+1/G ∈ 〈Z3〉. Therefore by Lemma 3.2.1-(1), G⊕W2n+1 ∈

〈Z3〉.

Conversely, for any b ∈ Z(G,Z3), let us define b∗ ∈ Z(G ⊕ W2n+1, Z3) as follows:

b∗(v) =











b(v) if v ∈ V (G),

0 otherwise

Since G ⊕ W2n+1 ∈ 〈Z3〉, then there exists f ∗ ∈ F ∗(G ⊕ W2n+1, Z3) such that ∂f ∗ = b∗.

Let f be the restriction of f ∗ to E(G). We will show that f ∈ F ∗(G,Z3) and ∂f = b.

Let v0 be the center of W2n+1 and v1v2 ∈ E(G) ∩E(W2n+1). Without loss of generality,

let v0v2, v1v2, v3v2 be oriented so that v2 is the head of these three edges.
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If f ∗(v0v2)+f ∗(v1v2)+f ∗(v3v2) = α ∈ Z3\{0} then change f(v1v2) to be α. It is easy to

see that f ∈ F ∗(G,Z3) and ∂f = b. So assume that α = 0 ∈ Z3. In this case, it is also easy

to see that the restriction of f ∗ on W2n+1 is a 3-NZF which contradicts Lemma 3.2.4-(2).

Therefore G ∈ 〈Z3〉.

Lemma 3.2.7 (Devos et al [12]) Let G1, G2 be graphs and let H = G1 ⊕ G2. If neither G1

or G2 is Z3-connected, then H is not Z3-connected.

Lemma 3.2.8 Let H ∈ 〈F 〉. Then H /∈ 〈Z3〉.

Proof. Since H ∈ 〈F 〉, H is a nontrivial subgraph of W2n+1 for some integer n. By

Lemma 3.2.4-(2), W2n+1 /∈ 〈Z3〉. Then by Lemma 3.2.5, H /∈ 〈Z3〉.

Lemma 3.2.9 Let G = G1 ∪ G2 be a graph so that G1 and G2 are two distinct wheels. If

|E(G1) ∩ E(G2)| ≥ 2, then G ∈ 〈Z3〉.

Proof. Clearly, G is a triangularly connected. If one of Gi is an even wheel, then by

Lemma 3.2.4-(1) and Lemma 3.2.5, G ∈ 〈Z3〉.

So we may assume both G1 and G2 are odd wheels. Since |E(G1) ∩ E(G2)| ≥ 2, let

e1 = u1u2, e2 = w1w2 be two edges in E(G1) ∩ E(G2). If the edge induced graph G[{e1, e2}]

has a degree one vertex which is not the center of neither G1 nor G2, then let v be that

vertex; Otherwise, e1, e2 must share one vertex, say u2 = w2, and u1, w1 are centers of G1

and G2 respectively. Then u1w1 ∈ E(G1) ∩ E(G2). For this case, let v = u2. Thus for all

these two cases, G1 \ v and G2 \ v still share at least one edge. Clearly, both G1 \ v and

G2 \ v are triangularly connected. Therefore G \ v is triangularly connected.

Clearly, dG(v) ≥ 4. Let NG(v) = {v1, v2, · · · , vk} with k ≥ 4. Since G is triangularly

connected, v must be contained in some triangle, say vv1v2v. Let G∗ be a new graph obtained
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from G by deleting v and adding a parallel edge v1v2. Because G\v is triangularly connected,

G∗ remains triangularly connected and contains a 2-circuit. By Lemma 3.2.5, G∗ ∈ 〈Z3〉.

By Lemma 3.2.2-(1) and Lemma 3.2.1-(1), G∗ ∪ {vv3, vv4, · · · , vvk} ∈ 〈Z3〉. Then it follows

G ∈ 〈Z3〉.

3.3 Proof of the theorem

Proof of Theorem 3.1.6. Note that since G is a triangularly connected graph, each edge

of G is contained in at least one circuit C with |E(C)| ≤ 3, then by Lemma 3.2.2-(1) and

(2), G ∈ 〈A〉 for any Abelian group A with |A| ≥ 4. So we need only to prove the theorem

for A = Z3.

=⇒ By contradiction. Suppose that G ∈ 〈WF 〉. By Lemma 3.2.8, for any H ∈ 〈F 〉, we

have H /∈ 〈Z3〉 and by Lemma 3.2.4-(2), we have W2n+1 /∈ 〈Z3〉. Therefore by Lemma 3.2.7,

G /∈ 〈Z3〉, a contradiction.

⇐= By contradiction. Let G be a graph such that

(1) G is a counterexample to Theorem 3.1.6, i.e. G is triangularly connected, G /∈ 〈WF 〉

and G /∈ 〈Z3〉.

(2) Subjected to (1), |E(G)| is minimized.

Claim 1. The girth of G is 3 and δ(G) ≥ 3.

Clearly, G 6∼= K3. It is easy to see that G contains no 2-circuits. Otherwise, if G contains

a 2-circuit C, then by Lemma 3.2.2-(1) and Lemma 3.2.5, G ∈ 〈Z3〉, contrary to (1).

If there exists v ∈ V (G) such that dG(v) = 2, then let C = vxyv be a triangle containing

the vertex v. Since G contains no 2-circuits, C is the only triangle containing vx (and vy as

well). Therefore G \ v remains triangularly connected.
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If G \ v ∈ 〈Z3〉, then it follows G ∈ 〈Z3〉, contrary to (1); If G \ v /∈ 〈Z3〉, then either

G \ v ∈ 〈WF 〉 or it is contrary to (2). Suppose that G \ v ∈ 〈WF 〉. Then G = (G \ v) ⊕ C,

that is, G ∈ 〈WF 〉, contrary to (1). So δ(G) ≥ 3. 2

Claim 2. Let H be a maximal triangularly connected subgraph of G such that |E(H)| <

|E(G)|. Then |E(G)| − |E(H)| = 1 and V (G) = V (H).

A proper subgraph of G that is triangularly connected exists since any triangle of G is

a subgraph of this kind.

If |E(G)|−|E(H)| has more than two edges, then there is an edge e ∈ H that is contained

in a triangle C such that E(C) \ E(H) 6= ∅ since G is triangularly connected.

So, adding E(C) \ E(H) 6= ∅, which consists of at most two edges, into H. Repeat this

procedure, we are able to obtain the maximal one H. Clearly, |E(G)| − |E(H)| ≤ 2.

If |E(G)| − |E(H)| = 2, the two edges in E(G) \ E(H) must share one vertex, we may

assume these two edges are vx, vy. Clearly, xy ∈ E(H). If v ∈ V (G)\V (H), then dG(v) = 2,

contrary to Claim 1. So V (H) = V (G). Clearly, dG(v) ≥ 4. Delete vx, vy from G and add

a parallel edge to xy, the resulting graph, call it H∗, is triangularly connected and contains

a 2-circuit. Then by Lemma 3.2.2-(1) and Lemma 3.2.5, H∗ ∈ 〈Z3〉. Therefore G ∈ 〈Z3〉,

contrary to (1).

Then |E(G)| − |E(H)| = 1. By Claim 1, δ(G) ≥ 3, then clearly V (G) = V (H). 2

The last one edge of E(G) \ E(H) will add the last triangle (say, C = xyzx) into H.

For convenience, we may assume that e = xz ∈ E(G) \ E(H).

Claim 3. H ∈ 〈WF 〉.

Otherwise, by the choice of G, H ∈ 〈Z3〉. Then G/H is a loop which is Z3-connected.

By Lemma 3.2.1-(1), G ∈ 〈Z3〉, contrary to the choice of G. Therefore H ∈ 〈WF 〉. 2

Claim 4. H contains exactly two end-WF-components and one end-WF-component con-
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tains yx, the other one contains yz.

If H contains exactly one WF-component, then H is either a Fan-graph or an odd wheel.

Suppose that H is a Fan-graph. Since δ(G) ≥ 3, then x and z will be the end points of H,

therefore G will be a wheel, contrary to (1). If G is an odd wheel, then G = H ∪ e contains

an even wheel. By Lemma 3.2.4-(1) and Lemma 3.2.5, G ∈ 〈Z3〉, contrary to (1).

Then we will show that H contains exactly two end-WF-components. Otherwise, since

E(G)\E(H) = {xz}, yx, yz ∈ E(H) and δ(G) ≥ 3, then there exists an end-WF-component

H ′ ∈ 〈Wodd〉 such that H = H∗ ⊕H ′ with H∗ ∈ 〈WF 〉 and {x, y, z} ∩ (V (H ′) \ V (H∗)) = ∅.

Therefore G = (H∗ ∪ e) ⊕ H ′. Since G /∈ 〈WF 〉, H∗ ∪ e /∈ 〈WF 〉. Since {x, y, z} ⊆ V (H∗)

and H∗ ∈ 〈WF 〉, then H∗∪ e is triangularly connected. By Lemma 3.2.6, H∗∪ e is a smaller

counterexample, contrary to (2).

The WF-component of H containing yx must be an end-WF-component. Otherwise,

since there are two end-WF-components of H, then at least one of them, say H1, has the

similar property as H ′ mentioned above. By the same argument, we can get a contradiction.

Similarly, the WF-component of H containing yz is the other end-WF-component. 2

Final Step. By Claim 4, let H1, H2 be the two end-WF-components of H. We may

assume that yx ∈ E(H1), yz ∈ E(H2). Clearly, H1 will not share yx with other WF-

components of H. Otherwise, H1 would have the similar property as H ′ in Claim 4. Similarly,

H2 will not share yz with other WF-components of H.

Since H1, H2 are the only two end-WF-components of H, both containing vertex y. Then

every other WF-component of H must contain y, too. Clearly, no edges are contained in

more than two WF-components of H (otherwise, H would have more than two end-WF-

components) and if an edge is contained in two WF-components of H, then it must have y

as one end.

Since δ(G) ≥ 3, then each WF-component which belongs to 〈F 〉 must have y as its

center.
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By the structure of H, there is a path in NH(y) connecting x and z, say, P = xu1u2 · · · ukz,

such that P contains at least one edge of each WF-component of H. Then H[V (P ) ∪ {y}]

contains a subgraph H4 ∈ 〈F 〉 with y as its center and yx, yz as its end edges. Therefore,

H5 = H4 ∪ {xz} is a wheel. Clearly H5 contains at least two edges of each WF-component

of H because P contains at least one edge of each WF-component.

We claim that H contains at least one odd wheel, say H6, as its WF-component. Other-

wise, each WF-component belongs to 〈F 〉 and y is the center of each WF-component. Then

H ∈ 〈F 〉 with y as it center and H has only one WF-component, a contradiction.

Clearly H5 and H6 are two distinct wheels sharing at least two edges, by Lemma 3.2.9,

H5 ∪H6 ∈ 〈Z3〉. By Lemma 3.2.5, G ∈ 〈Z3〉, contrary to (1). And this ends the proof of the

Theorem 3.1.6.

Proof of Theorem 3.1.7. Similarly to the proof of Lemma 3.2.6, we can get the following

result:

A graph H admits a Z3-NZF if and only if H ⊕W2k+1 admits a Z3-NZF for any integer

k ≥ 1.

Also it is easy to see that for any H ∈ 〈F 〉, H admits a Z3-NZF, therefore this theorem

is a corollary of Theorem 3.1.6.



Chapter 4

On circular flows of graphs

In this chapter, we obtain some sufficient conditions for graphs with circular flow index less

than 4. As an immediate corollary, we give a simple proof of a result obtained recently by

Galluccio and Goddyn (Combinatorica, 2002), and obtain a larger family of such graphs.

4.1 Introduction

The concept of circular flow, a dual version of circular coloring , was introduced by Goddyn

et. al. [16]. (Note that the circular flow problem is not a fractional version of the integer

flow problem since it is a real line extension instead of a linear programming relaxation).

Definition 4.1.1 Let G = (V,E) be a finite 2-edge connected graph. The circular flow index

φc(G) of G is defined by

φc(G) = min
D

max
∅6=X⊂V

|δX|

|δ+X|

where D ranges over the strong orientations of G, δ+X denotes the set of arcs from X to

V − X and δX = δ+X ∪ δ+(V − X).

30
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The smallest integer k such that G admits a k-NZF is called the flow index of G,

denoted by φ(G). Note that φ(G) = dφc(G)e (see [16]). Therefore, circular flow index can

be considered as a refinement of flow index and all the flow conjectures can be restated as

follows:

The 5-flow Conjecture (Tutte [46]) Let G be a 2-edge connected graph, then φc(G) ≤ 5.

The 4-flow Conjecture (Tutte [48]) Let G be a 2-edge connected graph containing no

subdivision of the Petersen graph, then φc(G) ≤ 4.

The 3-flow Conjecture (Tutte, unsolved problem 48 in [6]) Let G be a 4-edge-connected

graph, then φc(G) ≤ 3.

Recently, Galluccio and Goddyn ([15]) proved the following result which is a new ap-

proach to the 3-flow conjecture in the direction of circular flows.

Theorem 4.1.2 (Galluccio and Goddyn [15]) Let G be a 6-edge connected graph. Then

φC(G) < 4.

Linear programming methods were applied in the original proof of Theorem 4.1.2 ([15]).

In this chapter, we will prove some sufficient conditions for graphs with φC(G) < 4. These

results (Theorem 4.3.1 and 4.3.2) are to be proved in purely combinatorial/structural meth-

ods and Theorem 4.1.2 will follow immediately. The proof of Theorem 4.1.2 that we will

provide here is simpler than the original one in [15].

Now let us introduce some notations and terminology for this chapter. Let G be a graph

and H be a subgraph of G. For a vertex v ∈ V (G), the number of edges of H incident with

v is denoted by dH(v).

A cycle C is a subgraph G such that dC(v) ≡ 0 (mod 2). A parity subgraph P of G is a

subgraph of G such that dP (v) ≡ dG(v) (mod 2) for every vertex v of G. A decomposition of a

graph G is called a parity subgraph decomposition provided each member of the decomposition
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is a parity subgraph of G. A parity subgraph decomposition of G is called trivial if it has

only one member (the graph G itself).

Let T ⊆ V (G). A T -join in G is a subset J ⊆ E(G) such that T is the set of all

odd-degree vertices in the induced subgraph G[J ].

A graph H is collapsible if and only if, for every T with |T | ≡ 0 (mod 2), H contains a

connected and spanning T -join J in H.

We refer readers to [6] or [53] for terminology and notation not defined in this chapter.

4.2 Lemmas

Lemma 4.2.1 (Hoffman [19]) Let G be a 2-edge connected graph, D be an orientation of G

and a, b be two positive integers (a ≤ b). The following two statements are equivalent.

(1)
a

b
≤

|δ+X|

|δ+(V (G) − X)|
≤

b

a

for each ∅ ⊂ X ⊂ V (G);

(2) G admits a nowhere-zero integer flow (D, f) such that a ≤ f(e) ≤ b for each e ∈

E(G).

Lemma 4.2.2 (Nash-Williams [35], Tutte [47], or see [18], [30], [39]) Every 2k-edge con-

nected graph contains k edge-disjoint spanning trees.

Lemma 4.2.3 (Itai and Rodeh [21]) Every spanning tree contains a parity subgraph.
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4.3 Main results

The following are the main results of this chapter. With these results, we will give a combi-

natorial, simple proof of Theorem 4.1.2 and find a large family of graphs with circular flow

index less than 4.

Theorem 4.3.1 Let G be a graph and (D, f) be a nowhere-zero 4-flow of G. Let Ef=i =

{e ∈ E(G) : f(e) = i} for i = ±1,±2,±3. If δ(X)∩Ef=±2 6= ∅ for every X : ∅ ⊂ X ⊂ V (G)

with |δ(X)| ≡ 0 (mod 4), then φc(G) < 4.

Proof. It is sufficient to consider only positive flow since a positive flow can be obtained from

a nowhere-zero flow by reversing orientations of some edges and changing the corresponding

function value signs. For a positive 4-flow (D, f) of G, it is easy to verify that D is a

strong orientation, that is, each edge is contained in a directed circuit. For each nonempty

X ⊂ V (G), since (D, f) is a positive 4-flow, by Lemma 4.2.1, we have δ(X)/δ+(X) ≤ 4.

Suppose there exists X ⊆ V (G) such that δ(X)/δ+(X) = 4. Consider the distribution ratio

of δ+(X) ∩ Ef=i and δ+(V − X) ∩ Ef=i, for each i ∈ {1, 2, 3} by applying the equation

∑

e∈δ+(X)

f(e) =
∑

e∈δ+(V −X)

f(e),

then we must have that δ+(X) ⊆ Ef=3, δ+(V − X) ⊆ Ef=1 and |δ(X)| ≡ 0 (mod 4). This

contradicts with the fact δ(X) ∩ Ef=±2 6= ∅ (for i = 1, 2). Hence, for each X ⊆ V (G),

δ(X)/δ+(X) < 4 which implies φc(G) < 4.

Clearly, similar result can be obtained for φc(G) < k for any integer k > 3.

Theorem 4.3.2 Let G be a graph. If G has a nontrivial parity subgraph decomposition such

that at least one of its members is connected and spanning, then φc(G) < 4.

Proof. Let {P1, P2, P3, . . .} be a non-trivial parity subgraph decomposition of G with P3

connected and spanning. Let C1 = P1 ∪ P2, C2 = G \ E(P1). Clearly, both C1 and C2 are
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cycles with E(C1)∪E(C2) = E(G). Let (D, fi) be a 2-flow of G with supp(fi) = E(Ci). Then

(D, f) = (D, f1 + 2f2) is a nowhere-zero 4-flow of G. For each subset X: ∅ ⊂ X ⊂ V (G),

δ(X) \E(C1) 6= ∅ since the spanning connected subgraph P3 is contained in C2 −C1. Hence,

δ(X) ∩ Ef=±2 6= ∅. By Theorem 4.3.1, we have that φc(G) < 4.

Proof of Theorem 4.1.2. Since G is 6-edge connected, by Lemma 4.2.2, let T1, T2, T3 be

three edge disjoint spanning trees of G. By Lemma 4.2.3, we can let Pi be a parity subgraph

of Ti (for i = 1, 2 only). Then we have a parity subgraph decomposition {P1, P2, G\(P1∪P2)}

described in Theorem 4.3.2, where G \ (P1 ∪ P2) ⊇ T3 is connected and spanning.

The concept of collapsible graphs and its corresponding reduction methods were in-

troduced by Catlin ([8]). Note that collapsible graphs contain spanning, connected T -joins

(including parity subgraphs). Many families of collapsible graphs have been discovered. For

example (see [8], [10]),

(1). Graphs containing two edge-disjoint spanning trees,

(2). 2-edge connected graphs containing two edge-disjoint spanning forests F1 and F2

such that F1 is a tree and |E(F2)| ≥ |V (G)| − 2,

(3). 2-edge connected graphs containing two edge-disjoint spanning forests F1 and F2

such that |E(F1)|+ |E(F2)| ≥ 2(|V (G)|−2) and G is not contractible to K2,t for some t ≥ 3,

(4). Graphs in which every edge is contained in a triangle.

The family of graphs described in the following corollary is bigger than that in Theo-

rem 4.1.2.

Corollary 4.3.3 If a graph contains two edge-disjoint subgraphs P and H such that P is a

parity subgraph and H is a connected, spanning collapsible subgraph of G, then φC(G) < 4.

Proof. Let H ′ = G − E(P ). Here H ′ (⊇ H) is a cycle and remains connected, spanning

and collapsible in G. Let P ′ be a connected, spanning parity subgraph of G contained in H ′.
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Then we obtain a parity subgraph decomposition {H ′−P ′, P, P ′} described in Theorem 4.3.2.



Chapter 5

On flows of bidirected graphs

Bouchet [7] conjectured that every bidirected graph which admits a nowhere-zero bidirected

flow also admits a nowhere-zero bidirected 6-flow. He proved that it is true with 6 replaced

by 216. Zyka [56] proved in his Ph.D dissertation that this conjecture is true with 6 replaced

by 30. Khelladi [28] proved it is true with 6 replaced by 18 for 4-connected graph. In this

chapter, we prove that Bouchet’s conjecture is true for 6-edge connected bidirected graphs.

5.1 Introduction

A bidirected graph G is a graph with vertex set V (G) and edge set E(G) such that each

edge is oriented as one of the four possibilities: - -s s, � �s s, - �s s, �-s s.

An edge with orientation - �s s (resp. �-s s) is called an in-edge (resp. out-edge).

Edges with other orientations are called ordinary edges. The set of in(out)-edges is denoted

by Ei(G) (Eo(G), respectively). We define O(G) = |Ei(G)| + |Eo(G)|.

For an ordinary edge e, reversing the orientation of e means the natural way to change

its orientation. For any non-ordinary edge e ∈ E(G), reversing the orientation of e means

36
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changing e from an in(out)-edge to an out(in)-edge. Note that after reversing the orientation

of an edge of G, O(G) remains the same.

Let G be a bidirected graph, for any v ∈ V (G), the set of all edges with tails (or heads)

at v is denoted by E+(v) (or E−(v)) and we define E(v) = E+(v) ∪ E−(v) (For general

graph G, we use E(v) to denote the set of edges which are incident with v in G). Readers

are referred to [6] for terminology not defined in this chapter.

Definition 5.1.1 Let G be a bidirected graph and f be a function: E(G) 7→ Z. Then

(1) f is called a bidirected k-flow of G if −k + 1 ≤ f(e) ≤ k − 1 for every edge

e ∈ E(G) and
∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e) for every v ∈ V (G);

(2) f is called a bidirected modular k-flow of G if 0 ≤ f(e) ≤ k − 1 for every edge

e ∈ E(G) and
∑

e∈E+(v) f(e) ≡
∑

e∈E−(v) f(e) (mod k) for every v ∈ V (G);

(3) The support of a bidirected k-flow (resp. modular k-flow) f of G is the set of edges

of G with f(e) 6= 0 (resp. f(e) 6≡ 0 (mod k)), and is denoted by supp(f). A bidirected k-flow

(modular k-flow) of G is nowhere-zero if supp(f) = E(G).

For nowhere-zero bidirected integer flows, Bouchet [7] proposed the following conjecture

(see also Toft and Jensen’s book [44]).

Conjecture 5.1.2 Every bidirected graph which admits a nowhere-zero bidirected flow also

admits a nowhere-zero bidirected 6-flow.

Note that the value 6 in Conjecture 5.1.2 is best possible: see [7] for details. The

following is a list of some partial results for Conjecture 5.1.2.

Theorem 5.1.3 Let G be a bidirected graph admitting a nowhere-zero bidirected flow. Then

(1) (Bouchet [7]) G admits a nowhere-zero bidirected 216-flow;
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(2) (Zyka [56], or see [28]) G admits a nowhere-zero bidirected 30-flow;

(3) (Khelladi [28]) G admits a nowhere-zero bidirected 18-flow if G is 4-connected.

Bidirected flow is a generalization of the concept of integer flow. This is because a

directed graph G can be considered as a bidirected graph G∗ with O(G∗) = 0. However,

bidirected flows and integer flows can be quite different due to the existence of those in-edges

and out-edges. Some results for integer flows can be generalized to bidirected flows while some

other results cannot. The following observation for bidirected 2-flows is a generalization of

Tutte’s 2-flow characterization. Though the proof for integer 2-flows is very straightforward,

the corresponding result for bidirected 2-flow does need a few more steps in the proof.

Proposition 5.1.4 Let G be a connected bidirected graph. Then G admits a nowhere-zero

bidirected 2-flow if and only if G is an eulerian graph and O(G) is even.

Integer flows and modular flows are proved to be equivalent for general graphs (see

[45, 46] or [53]). However, for bidirected graphs, they are not equivalent to each other

in many cases. The followings are some examples that a nowhere-zero modular 2-flow in

Example 1 and a nowhere-zero modular 3-flow in Example 2 cannot be converted to a

nowhere-zero bidirected 2-flow (or 3-flow). For nowhere-zero bidirected modular 3-flows, we

are able to establish their equivalent relation for 2-edge connected bidirected graphs.
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The following is one of our main results in this chapter which provides a major step in

the proof of Theorem 5.1.6.
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Theorem 5.1.5 Let G be a 2-edge connected bidirected graph. Then G admits a nowhere-

zero bidirected 3-flow if and only if G admits a nowhere-zero modular bidirected 3-flow.

By applying Theorem 5.1.5, we are able to verify Conjecture 5.1.2 for 6-edge connected

bidirected graphs.

Theorem 5.1.6 Let G be a 6-edge connected bidirected graph. If G admits a nowhere-zero

bidirected flow, then it admits a nowhere-zero bidirected 6-flow.

5.2 Proof of Proposition 5.1.4 and its applications

A circuit is a connected 2-regular graph and a cycle is a graph such that every vertex is of

even degree. Let G be a bidirected graph. A circuit C of G is said to be balanced provided

that O(C) is even and unbalanced otherwise. A cycle P of G is said to be balanced provided

that for each of its component P ′, O(P ′) is even. A collection of cycles F = {P1, P2, . . . Pr}

of G is called a proper r-cycle cover of G if every Pi is balanced and
r
⋃

i=1
E(Pi) = E(G).

Proof of Proposition 5.1.4.

“=⇒”. Note that if f is a nowhere-zero bidirected 2-flow of G and we reverse the

orientation of some edge e1, then the resulting graph G1 admits a nowhere-zero bidirected

2-flow f1 such that f1(e) = f(e) for any e 6= e1 and f1(e1) = −f(e1). Also, O(G) = O(G1).

So we may assume that G admits a nowhere-zero bidirected 2-flow f such that f(e) = 1

for every edge e ∈ E(G). Therefore, for any v ∈ V (G), N+(v) = N−(v) which implies G is

an eulerian graph. Since
∑

v∈V (G)
N+(v) =

∑

v∈V (G)
N−(v) and each ordinary edge contributes

1 to both
∑

v∈V (G)
N+(v) and

∑

v∈V (G)
N−(v), the total contribution of non-ordinary edges to

∑

v∈V (G)
N+(v) must be the same as that to

∑

v∈V (G)
N−(v). Therefore, we get |Ei(G)| = |Eo(G)|

and consequently, O(G) is even.
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“⇐=”. Since G is an eulerian graph, let F = {C1, C2, . . . , Ck} be a circuit decomposition

of E(G). We will prove it by induction on k.

If k = 1, clearly, it is true. For k ≥ 2, since G is connected, then there exists Ci such

that the induced subgraph G∗ = G[E(G) \ E(Ci)] is connected. Note that O(Ci) is even if

and only if O(G∗) is even.

Assume that O(Ci) is even. By induction hypothesis, both Ci and G∗ admits nowhere-

zero bidirected 2-flows, therefore G admits a nowhere-zero bidirected 2-flow. So, we may

assume that O(Ci) is odd (O(G∗) is odd as well). Let v be any vertex in V (Ci) ∩ V (G∗).

Suppose v ∈ Cj for some j 6= i. Let C ′
i be the new circuit obtained from Ci by splitting an

edge ei = vvi away from v (becomes ei = v′
ivi, where v′

i is a new vertex) and adding a new

in-edge between v and v′
i (this operation is called “expending v in Ci to an in-edge ei = vv′

i).

Similarly, we get a new graph G′ from G∗ by expending v only in Cj to an out-edge ej = vv′
j.

Clearly, both O(C ′
i) and O(G′) are even. By induction hypothesis, C ′

i admits a nowhere-zero

bidirected 2-flow f1 and G′ admits a nowhere-zero bidirected 2-flow f2. Note that −f1 is also

a nowhere-zero bidirected 2-flow of C ′
i. So, we can assume f1(ei) = f2(ej) (otherwise since

−f1(ei) = f2(ej) we will use −f1 instead of f1). Therefore let us define

f(e) =











f1(e) if e ∈ E(Ci),

f2(e) if e ∈ E(G) \ E(Ci)

Clearly, f is a nowhere-zero bidirected 2-flow of G.

The following result is a generalization of a theorem about integer flows.

Proposition 5.2.1 Let G be a bidirected graph. If G has a proper r-cycle cover, then G

admits a nowhere-zero bidirected 2r-flow.

Proof. Let F = {P1, P2, . . . Pr} be a proper r-cycle cover of G. By Proposition 5.1.4,

each Pi admits a nowhere-zero bidirected 2-flow fi. It is easy to verify that
r
∑

i=1
2r−1fi is a

nowhere-zero bidirected 2r-flow.
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5.3 Proof of Theorem 5.1.5

Let us first introduce a useful lemma whose proof is very straightforward.

Lemma 5.3.1 Let G be a bidirected graph, E0 be a subset of E and GE0
be the bidirected

graph obtained from G by reversing the orientation of each edge in E0. Then we have

(1) G admits a bidirected k-flow if and only if GE0
admits a bidirected k-flow with the

same support.

(2) G admits a bidirected modular k-flow if and only if GE0
admits a bidirected modular

k-flow with the same support.

Proof. (1) Suppose that f is a bidirected k-flow of G. Let

f ′(e) =











f(e) if e /∈ E0,

−f(e) if e ∈ E0

Clearly f ′ is a bidirected k-flow of GE0
with the same support.

(2) Suppose that f is a bidirected modular k-flow of G. Let

f ′(e) =











k − f(e) if e ∈ E0 and f(e) 6= 0

f(e) otherwise

Clearly f ′ is a bidirected modular k-flow of GE0
with the same support.

Lemma 5.3.2 Let G be a bidirected cubic graph. Then G admits a nowhere-zero bidirected

3-flow if and only if G admits a nowhere-zero bidirected modular 3-flow and G has a perfect

matching.

Proof. “=⇒”. Let f be a nowhere-zero bidirected 3-flow of G and E0 = {e|f(e) = −1 or −

2}. By the proof of Lemma 5.3.1-(1), GE0
admits a positive bidirected 3-flow f ′. Clearly, f ′



Chapter V. On flows of bidirected graphs 42

is also a nowhere-zero bidirected modular 3-flow of GE0
. By Lemma 5.3.1-(2), G admits a

nowhere-zero bidirected modular 3-flow. Because for every vertex v ∈ V (G), there is exactly

one incident edge e such that f ′(e) = 2, then E ′ = {e|f ′(e) = 2} is a perfect matching of G.

“⇐=”. Let f be a nowhere-zero bidirected modular 3-flow of G and E0 = {e|f(e) = 2}.

By Lemma 5.3.1-(2), G∗ = GE0
admits a nowhere-zero bidirected modular 3-flow f ′ such

that f ′(e) = 1 for each edge e. Since G∗ is a cubic graph, then for any vertex v either

E(v) = E+(v) or E(v) = E−(v). Let M be a perfect matching of G∗. Then reverse the

direction of each edge e of M and change the value f ′(e) to be 2. The resulting nowhere-zero

bidirected modular 3-flow is also a nowhere-zero bidirected 3-flow of G∗
M . By Lemma 5.3.1-

(1), G∗, and therefore G admit nowhere-zero bidirected 3-flows.

Definition 5.3.3 Let G be a graph and v be a vertex of G. Suppose that F ⊂ E(v), then

G[v;F ] is the graph obtained from G by splitting the edges of F away from v, that is, adding

a new vertex v′ and change the end v of the edges in F to be v′.

Lemma 5.3.4 (Nash-Williams [36]) Let k be an even integer and G be a k-edge connected

graph and v ∈ V (G). Let a be an integer such that k ≤ a and k ≤ dG(v) − a. Then there is

an edge set F ⊂ E(v) such that |F | = a and G[v;F ] is k-edge connected.

Lemma 5.3.5 (Fleischner [14]) Let G be a 2-edge connected graph. Suppose that v is a

vertex of G with dG(v) ≥ 4 and let e0, e1, e2 ∈ E(v). Then either G[v;{e0,e1}] or G[v;{e0,e2}] is

2-edge connected or G[v;{e0,e1,e2}] has more components than G.

Lemma 5.3.6 Let G be a 2-edge connected graph. Suppose that v is vertex of G with dG(v) ≥

4 and let e0, e1, e2, e3 ∈ E(v). Then

(1) at least one of G[v;{e0,ei}] (i = 1, 2, 3) is 2-edge connected;

(2) in the case of dG(v) = 4, at least one of G[v;{e0,ei}] (i = 1, 2) is 2-edge connected.
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Proof. By Lemma 5.3.5, it suffices to show that at least one of G[v;{e0,e1,e2}] and G[v;{e0,e1,e3}]

is connected. For convenience, let ei = vvi (i = 0, 1, 2, 3). If dG(v) = 4, then G[v;{e0,e1,e2}] is

connected. Otherwise e3 will be an edge cut of G which is impossible. So, we may assume

that dG(v) ≥ 5. Suppose that G[v;{e0,e1,e2}] is disconnected. Since G is 2-edge connected

then there is a path P in G[v;{e0,e1,e2}] which connects v2 to v0 without using e2. Therefore

G[v;{e0,e1,e3}] is connected.

Now we are ready to prove Theorem 5.1.5.

Proof of Theorem 5.1.5.

“=⇒”. Suppose that G admits a nowhere-zero bidirected 3-flow. Similar to the proof of

the first part of Lemma 5.3.2, we can get a nowhere-zero bidirected modular 3-flow of G.

“⇐=”. Prove by contradiction. Let G be a smallest counterexample with respect to

|E(G)|. By Lemma 5.3.1, we may assume that G admits a nowhere-zero bidirected modular

3-flow f such that f(e) = 1 for each edge e. Then for any vertex v with dG(v) = 3 we have

either E(v) = E+(v) or E(v) = E−(v).

Claim 1. δ(G) ≥ 3.

Otherwise, suppose that there exists v ∈ V (G) such that NG(v) = {v1, v2}. Since f

is a nowhere-zero bidirected modular 3-flow of G and f(v1v) = f(vv2) = 1, we can delete

the edges v1v, vv2 from G and add a new edge v1v2 (or a parallel edge if v1v2 exists). If

v1v ∈ E+(v1) (E−(v1)), then orient this new edge such that this v1v2 ∈ E+(v1) (E−(v1)); If

v2v ∈ E+(v2) (E−(v2)), then orient this new edge such that this v1v2 ∈ E+(v2) (E−(v2)).

The resulting bidirected graph is denoted by G0. Then G0 is 2-edge connected and admits

a nowhere-zero bidirected modular 3-flow with |E(G0)| < |E(G)|. By the choice of G, G0

admits a nowhere-zero bidirected 3-flow. Clearly, from this flow we can easily get a nowhere-

zero bidirected 3-flow of G, a contradiction. 2

Claim 2. There is no v ∈ V (G) such that E(v) ∩ E+(v) 6= ∅ and E(v) ∩ E−(v) 6= ∅.
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Assume that there exists a vertex v ∈ V (G) such that E(v) ∩ E+(v) 6= ∅ and E(v) ∩

E−(v) 6= ∅. Then dG(v) ≥ 4 since, for any degree 3 vertex, either E(v) = E+(v) or

E(v) = E−(v).

If |E−(v)| or |E+(v)| ≥ 3, then we may apply Lemma 5.3.6-(1) to split two edges e′, e′′

away from the vertex v where e′ ∈ E+(v) and e′′ ∈ E−(v), and the resulting graph is still

2-edge connected and f remains as a nowhere-zero bidirected modular 3-flow. Clearly, this

new graph has a degree two vertex and if this graph admits a nowhere-zero 3-flow, then so

does G. Similar to the proof of Claim 1, we can get a contradiction.

If 0 < |E−(v)|, |E+(v)| ≤ 2, then dG(v) = 4 since |E+(v)| ≡ |E−(v)| (mod (3)). By

Lemma 5.3.6-(2) and with the same argument as Case 1, we get a contradiction as well. 2

By Claim 1 and Claim 2, we have either E(v) = E+(v) or E(v) = E−(v) for any v ∈

V (G). Therefore, dG(v) ≡ 0 (mod 3) for any v ∈ V (G). For any v with dG(v) ≥ 6, we may

apply Lemma 5.3.4 to split this vertex into several degree 3 vertices and the resulting graph

is still 2-edge connected and f remains as a nowhere-zero bidirected modular 3-flow. Also

if the resulting graph admits a nowhere-zero bidirected 3-flow, then so does G. Recursively

splitting high degree vertices, we obtain a 2-edge connected cubic graph G∗ which admits a

nowhere-zero bidirected modular 3-flow.

By Petersen Theorem [38], the 2-connected, cubic graph G∗ has a perfect matching.

Then by Lemma 5.3.2, G∗ admits a nowhere-zero bidirected 3-flow. So, from this flow of G∗,

we can get a nowhere-zero bidirected 3-flow of G, a contradiction.

5.4 Proof of Theorem 5.1.6

Product of flows is a method used in the proof of the theorems of 8-flow [23], 4-flow [24] and

6-flow [41]. The following lemma generalizes this method for bidirected flows of graphs and

is to be used in the proof of Theorem 5.1.6.
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Lemma 5.4.1 Let G be a bidirected graph. If G admits a bidirected k1-flow f1 and a bidi-

rected k2-flow f2 such that supp(f1) ∪ supp(f2) = E(G), then G admits a nowhere-zero

bidirected k1k2-flow.

Proof. Let f(e) = f1(e) + k1f2(e) for every e ∈ E(G), then it is easy to verify that f is a

nowhere-zero bidirected k1k2-flow.

Let G be a bidirected graph. A subgraph C of G is called a bidirected circuit of G

provided that either C is a balanced circuit of G or C is the union of two unbalanced circuits

sharing exactly one vertex or C is the union of two vertex-disjoint unbalanced circuits and

a simple path meeting each of the two circuits at exactly one of its end points.

We extend Seymour’s closure operation [41] to bidirected graphs as follows:

For a positive integer k, if X is a subgraph of G, then the k-closure of X in G, denoted

by 〈X〉k, is the (unique) maximal subgraph of G of the form X ∪ C1∪, . . . ∪ Cn, where for

every i, 1 ≤ i ≤ n, Ci is a bidirected circuit of G and |E(Ci) \ E(X ∪ C1∪, . . . ∪ Ci−1)| ≤ k.

By the Theorem 4.3 in [28], we have the following:

Lemma 5.4.2 Let G be a connected bidirected graph which admits a nowhere-zero bidirected

flow. Let E ′ be a subset of E(G) such that the induced graph G[E ′] is connected and spanning.

Then 〈E ′〉2 = E(G).

By the Proposition 2.2 in [28], we have the following:

Lemma 5.4.3 Let G be a bidirected graph and k ≥ 3 be a prime integer. Let E ′ be a subset

of E(G) such that 〈E ′〉k−1 = E(G). Then G admits a bidirected integer flow f such that

f(e) 6≡ 0 (mod k) for every element e of E(G) \ E ′.

The bidirected flow f obtained in Lemma 5.4.3 can be considered as a bidirected modular

k-flow with the same support though the value of f can be very large.
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Definition 5.4.4 Let H1 and H2 be two subgraphs of a graph G. The symmetric differ-

ence of H1 and H2, denoted by H1 4 H2, is the subgraph of G induced by the set of edges

[E(H1) ∪ E(H2)] \ [E(H1) ∩ E(H2)]. The symmetric difference of finitely many subgraphs

{H1, · · · , Ht} of G is defined recursively as

41≤i≤tHi = H1 4 · · · 4 Ht−1 4 Ht = [H1 4 · · · 4 Ht−1] 4 Ht.

The following is a well-known fact:

Lemma 5.4.5 Let {H1, · · · , Ht} be a family of subgraphs of G. Let S = H1 4 · · · 4 Ht.

Then

(1) S is the subgraph of G induced by the edges contained in an odd number of H ′
is;

(2) If H1, · · · , Ht are all cycles of G, then S is also a cycle.

Now we are ready to prove Theorem 5.1.6.

Proof of Theorem 5.1.6.

Since G is 6-edge connected, by Lemma 4.2.2, G has three edge-disjoint spanning trees

T1, T2 and T3. Because G admits a nowhere-zero bidirected flow, by Lemma 5.4.2, 〈Ti〉2 =

E(G) for 1 ≤ i ≤ 3.

For 1 ≤ i ≤ 3, let k = 3 , E ′ = E(Ti) and apply Lemma 5.4.3, we get a bidirected

integer flow fi of G such that fi(e) 6≡ 0 (mod 3) for every element e of E(G) \ E(Ti).

Clearly supp(f1) ⊇ E(G) \ E(T1). Since G[supp(f1)] contains two edge-disjoint spanning

trees T2 and T3, the subgraph G[supp(f1)] is 2-edge connected and spanning. Similarly,

supp(f2) ⊇ E(G)\E(T2), supp(f3) ⊇ E(G)\E(T3) and both G[supp(f2)] and G[suppt(f3)] are

2-edge connected and spanning. From each fi (1 ≤ i ≤ 3), we can get a bidirected modular

3-flow f ′
i such that supp(fi) = supp(f ′

i). Then, by Theorem 5.1.5, we get a bidirected 3-flow

f ′′
i such that supp(f ′′

i ) = supp(fi) for i = 1, 2, 3.
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Let Ti, Tj be two edge-disjoint spanning trees. For each e ∈ Tj, there is a unique

circuit Ce of G contained in Ti ∪ {e}. By Lemma 5.4.5-(2), Cj
i = 4e∈E(Tj)Ce is eulerian. By

Lemma 5.4.5-(1), (E(Ti)∪E(Tj)) ⊇ E(Cj
i ) ⊇ E(Tj), then Cj

i is also connected and spanning.

Let us consider the following two cases.

Case 1. There exists one Cj
i such that O(Cj

i ) is even.

Without loss of generality, we may assume that O(C2
1 ) is even. Since C2

1 is eulerian and

connected, by Proposition 5.1.4, C2
1 admits a nowhere-zero bidirected 2-flow. Therefore, G

admits a bidirected 2-flow f1,2 such that supp(f1,2) ⊇ E(T2). Also f ′′
2 is bidirected 3-flow

such that supp(f ′′
2 ) ⊇ E(G) \ E(T2). By Lemma 5.4.1, we get a nowhere-zero bidirected

6-flow of G.

Case 2. All O(Cj
i )’s are odd for 1 ≤ i 6= j ≤ 3.

Since O(C3
1 ) is odd, the eulerian subgraph C3

1 contains an unbalanced circuit c3
1. Clearly,

E(c3
1) ⊆ (E(T1)∪E(T3)). Because O(C2

1) is odd and E(T2) ⊆ E(C2
1) ⊆ E(T1)∪E(T2), then

C∗ = C2
1 4 c3

1 is an eulerian, connected and spanning subgraph of G with O(C∗) even.

Clearly, E(T2) ⊆ E(C∗). By Proposition 5.1.4, C∗ admits a nowhere-zero bidirected 2-flow

f ∗ with supp(f ∗) ⊇ E(T2). Similar to Case 1, by Lemma 5.4.1, we can get a nowhere-zero

bidirected 6-flow of G.
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[43] R. Steinberg and D. H. Younger, Grötzsch’s theorem for the projective plane, Ars

Combinatoria, 28, (1989), 15-31.



Bibliography 52

[44] B. Toft, T. R. Jensen, Graph coloring problems, John Wiley & Sons, Inc., New York

(1995).

[45] W. T. Tutte, On the embedding of linear graphs in surfaces, Proc. London Math.

Soc., Ser. 2, 51 (1949), 474-483.

[46] W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. Journal

of Math., 6 (1954), 80-91.

[47] W. T. Tutte, On the problem of decompositing a graph into n connected factors,

Journal of London Math. Soc., 36 (1961), 221-230.

[48] W. T. Tutte, On the algebraic theory of graph colourings, Journal of Combin. Theory,

1 (1966), 15-50.

[49] R. Xu, Note on acyclic colorings of graphs, Ars Combinatoria, accepted September

2002.

[50] R. Xu, C-Q Zhang, Nowhere-zero 3-flows in squares of graphs. Electronic Journal of

Combinatorics, 10 (2003), R5.

[51] R. Xu, C-Q Zhang, On flows of bidirected graphs, submitted to Discrete Math., 2003.

[52] D. H. Younger, Interger flows, Journal of Graph Theory, 7 (1983), 349-357.

[53] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York

(1997).

[54] C. Q. Zhang, Integer flows and cycle covers, plenary lecture at graph theory workshop,

Nanjing Normal University, April, 1998.

[55] C.-Q. Zhang, Circular flows of nearly eulerian graphs and vertex-splitting, Journal of

Graph Theory, 40 (2002), 147–161.



Bibliography 53

[56] O. Zyka, Nowhere-zero 30-flow on bidirected graphs, Thesis, Charles University, Praha

(1987); KAM-DIMATIA Series 87-26.


	On flows of graphs
	Recommended Citation

	Diss.dvi

		2004-04-30T16:29:10-0400
	John H. Hagen
	I am approving this document




