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ABSTRACT

Integer Flows and Circuit Covers of Graphs and Signed Graphs

Jian Cheng

The work in Chapter 2 is motivated by Tutte and Jaeger’s pioneering work on convert-

ing modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, σ),

we first prove that for each k ∈ {2, 3}, if (G, σ) is (k − 1)-edge-connected and contains

an even number of negative edges when k = 2, then every modulo k-flow of (G, σ) can be

converted into an integer-valued (k + 1)-flow with a larger or the same support. We also

prove that if (G, σ) is odd-(2p+ 1)-edge-connected, then (G, σ) admits a modulo circular

(2 + 1
p
)-flows if and only if it admits an integer-valued circular (2 + 1

p
)-flows, which im-

proves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015),

and Zhu (JCTB2015).

Shortest circuit cover conjecture is one of the major open problems in graph theory.

It states that every bridgeless graph G contains a set of circuits F such that each edge

is contained in at least one member of F and the length of F is at most 7
5
|E(G)|. This

concept was recently generalized to signed graphs by Máčajová et al. (JGT2015). In

Chapter 3, we improve their upper bound from 11|E(G)| to 14
3
|E(G)|, and if G is 2-edge-

connected and has even negativeness, then it can be further reduced to 11
3
|E(G)|.

Tutte’s 3-flow conjecture has been studied by many graph theorists in the last several

decades. As a new approach to this conjecture, DeVos and Thomassen considered the

vectors as flow values and found that there is a close relation between vector S1-flows and

integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph

G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.

The concept of even factors is highly related to the famous Four Color Theorem. We

conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and

Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains

an even factor, then it contains an even factor H with |E(H)| ≥ 4
7
(|E(G)|+1)+ 1

7
|V2(G)|,

where V2(G) is the set of vertices of degree two.
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Chapter 1

Introduction

1.1 Notation and terminology

Graphs in this dissertation are undirected, finite, and may have multiple edges or loops.

Readers are referred to [4, 8, 50] for undefined terminology and notations. Let G be a

graph with vertex set V (G) and edge set E(G). For each vertex v ∈ V (G), the set of

vertices adjacent to v (known as the neighborhood of v) and the set of edges incident

with v are respectively denoted by N(v) and E(v), and the degree of v is deg(v) = |E(v)|.
A cycle is a connected subgraph of G in which each vertex has even degree, and a circuit

refers to a minimal cycle of G.

For each edge subset F ⊆ E(G), we use G−F to denote the subgraph of G obtained by

deleting all edges in F , and use G/F to denote the graph obtained from G by identifying

the two ends of each edge in F and then deleting the resulting loops.

For each vertex subset X ⊆ V (G), we use G[X] to denote the subgraph of G with

vertex set X and edge set {uv ∈ E(G) : u, v ∈ X}, and use G−X to denote the subgraph

of G by deleting the vertices in X together with the edges incident with at least one vertex

in X. For any two disjoint subsets A,B of V (G), we use E(A,B) to denote the set of

edges with one end in A and the other end in B, and e(A,B) to denote their number.

1
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A vertex v is a cut-vertex if G− {v} has more components than G. An edge set F

is a λ-edge cut if |F | = λ and G− F has more components than G. A graph G is odd-

λ-edge-connected if it contains no odd-(λ− 2)-edge cut. The odd-edge-connectivity

of G is the smallest integer λ for which G is odd-λ-edge-connected. If F = {e}, we simply

call e a bridge of G. A graph G is bridgeless if G contains no bridges.

For any two subgraphs H,K of G, we respectively use H ∪K and H ∩K to denote

the subgraphs of G induced by E(H) ∪ E(K) and E(H) ∩ E(K), and the symmetric

difference ofH andK, denotedH4K, is the subgraph ofG induced by (H∪K)−(H∩K).

1.2 Signed graphs

A signed graph is a graph G associated with a signature σ : E(G)→ {−1, 1}. An edge

e ∈ E(G) is positive if σ(e) = 1 and negative otherwise. The set of negative edges of

(G, σ) is denoted by EN(G, σ). For signed graphs (G, σ), every edge e ∈ E(G) consists of

two half-edges, each of which is incident with one end of e. For each vertex v ∈ V (G), we

use H(v) to denote the set of all half-edges incident with v. Let H(G) =
⋃
v∈V (G)H(v).

For each half-edge h ∈ H(G), we use eh to denote the parent edge containing h. An

orientation of (G, σ) is a mapping τ : H(G) → {−1, 1} such that τ(h1)τ(h2) = −σ(e)

for each edge e of G, where h1 and h2 are two half-edges contained in e.

A circuit of G is balanced if it contains an even number of negative edges and

unbalanced otherwise. To generalize the concept of shortest circuit covers to signed

graphs, we introduced the concept of signed circuits, which is defined as follows (see

Figure 1.1):

• either a balanced circuit,

• or the union of two edge-disjoint unbalanced circuits meeting at exactly one single

vertex (known as a short barbell),

• or the union of two disjoint unbalanced circuits together with a path that meets the

circuits only at its ends (known as a long barbell).
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A signed graph (G, σ) is s-bridgeless if each edge of G is contained in a signed circuit.

The length of a signed circuit C is the number of edges in C.

A balanced circuit A short barbell A long barbell

Figure 1.1: Three types of signed circuits

For a signed graph (G, σ), switching at a vertex v means changing the sign of each

edge incident to v such that in the resulting signed graph (G, σ) σ′(e) = −σ(e) for each

edge e ∈ E(v) and σ′(e) = σ(e) for all other edges. See Figure 1.2 for all illustration. Two

signatures are said to be equivalent if one can be obtained from the other by making a

sequence of switchings. Let X(G,σ) be the set of signatures (of G) equivalent to σ. The

negativeness of (G, σ) is defined as the smallest integer q for which G has a signature

σ′ ∈ X(G,σ) with exactly q negative edges, and is denoted by εN(G, σ).

v

(G, σ)

v

(G, σ′)

Figure 1.2: A switch at vertex v (bold edges are negative edges)

1.3 Integer-valued flows on signed graphs

In the flow theory, an integer-valued flow and a modulo flow are different by their

definitions. For graphs (equivalently, signed graph with all edges positive), Tutte [47]
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showed that a graph admits a nowhere-zero integer-valued k-flow if and only if it admits

a nowhere-zero modulo k-flow. We also notice that most landmark results were initially

proved for modulo flows (such as, the 8-flow theorem by Jaeger [20], the 6-flow theorem

by Seymour [42], the weak 3-flow theorem by Thomassen [44], etc.) and stated as an

integer-valued flow results due to the theorem by Tutte.

However, Tutte’s result [47] cannot be applied for signed graphs (see Figure 1.3). That

is, there is a big gap between modulo flows and integer-valued flows for signed graphs.

The first known result was proved by Bouchet [5] in his study of chain-group.

Theorem 1.3.1 ([5], Proposition 3.5). If a signed graph (G, σ) admits a modulo k-flow

f1, then it admits an integer-valued 2k-flow f2 with supp(f1) ⊆ supp(f2).

In this dissertation Theorem 1.3.1 is improved for some important cases: modulo

2-flows, modulo 3-flows, and modulo circular (2 + 1
p
)-flows.

1.3.1 Two analogs of Tutte’s flow theorem

Definition 1.3.2. Let (G, σ) be a signed graph associated with an orientation τ . Let k

be a positive integer and f be an integer-valued mapping defined on E(G) such that 0 ≤
|f(e)| ≤ (k−1). The boundary of f at a vertex v is defined as ∂f(v) =

∑
h∈H(v) f(eh)τ(h).

The mapping f is a modulo k-flow of (G, σ) if ∂f(v) ≡ 0 (mod k) for each vertex v of

G, and is an integer-valued k-flow of (G, σ) if ∂f(v) = 0 for each vertex v of G.

Let (G, σ) be a signed graph and f be a flow of (G, σ). The support of f , denoted by

supp(f), is the set of edges e with f(e) 6= 0. A flow f is nowhere-zero if supp(f) = E(G).

For convenience, we respectively shorten the notations of nowhere-zero flows into integer-

valued k-NZFs and modulo k-NZFs. A signed graph (G, σ) is said to be flow-admissible

if it admits an integer-valued k-NZF.

It is well-known that the admission of nowhere-zero flows is independent of its orien-

tation. For a signed graph (G, σ), for convenience, we can always assume its orientation

is τ without mentioning it.
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Figure 1.3: (G, σ) admits a modulo 3-NZF, but no integer-valued 3-NZF.

In 1949, Tutte made the following observation.

Theorem 1.3.3 (Tutte [47]). A graph G admits a modulo k-NZF if and only if it admits

an integer-valued k-NZF.

To verify Bouchet’s 6-flow conjecture [5] for 6-edge-connected signed graphs, Xu and

Zhang [51] proved the following two results, which generalize Tutte’s theorem to signed

graph with k = 2, 3.

Theorem 1.3.4 (Xu and Zhang [51]). If a signed graph (G, σ) admits a modulo 2-flow

f1 such that each component of supp(f1) contains an even number of negative edges, then

it also admits an integer-valued 2-flow f2 with supp(f1) = supp(f2).

Theorem 1.3.5 (Xu and Zhang [51]). If a signed graph (G, σ) admits a modulo 3-flow

f1 such that supp(f1) is bridgeless, then it also admits an integer-valued 3-flow f2 with

supp(f1) = supp(f2).

In this dissertation, under the weaker conditions, we prove the following two results

which are analogs of Theorem 1.3.1 and respectively improve Theorem 1.3.4 and 1.3.5.

Theorem 1.3.6. If a signed graph (G, σ) admits a modulo 2-flow f1 such that supp(f1)

contains an even number of negative edges, then it also admits an integer-valued 3-flow

f2 with supp(f1) = {e ∈ E(G) : f2(e) = ±1}.
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Theorem 1.3.7. If a signed graph (G, σ) is bridgeless and admits a modulo 3-flow f1, then

it also admits an integer-valued 4-flow f2 with supp(f1) ⊆ {e ∈ E(G) : f2(e) = ±1,±2}.

The concept of flows on signed graphs arises naturally as a dual of local tensions

on non-orientable surfaces. In 1983, Bouchet [5] proposed the following well-known

6-flow conjecture, which motivated most of the studies in this area.

Conjecture 1.3.8 (Bouchet [5], 6-flow conjecture). Every flow-admissible signed graph

admits an integer-valued 6-NZF.

This conjecture remains widely open and Bouchet [5] himself proved it is true with 6

replaced by 216. The best published result is 30-flow by Zýka [57]. Khelladi [27] showed

that for 4-edge-connected graphs, the upper bound can be reduced to 18 and was improved

to 4 by Raspaud and Zhu in [40]. Xu and Zhang [51] confirmed it for 6-edge-connected

signed graphs. Recently, DeVos [7] improved Zýka’s result to 12-flow, which is the best

approach until today. Readers are also referred to a recent survey by Kaiser et al. [26] for

more discussions.

As an application of Theorem 1.3.6 and 1.3.7, we further improve DeVos’ result to

integer-valued 11-NZFs for bridgeless signed graphs.

Corollary 1.3.9. Every bridgeless flow-admissible signed graph admits an integer-valued

11-NZF.

1.3.2 A generalization of Jaeger’s circular flow theorem

Definition 1.3.10. Let (G, σ) be a signed graph associated with an orientation τ .

• Let k and d be two positive integers. An integer-valued (respectively modulo)

circular k
d
-flow of (G, σ) is an integer-valued (respectively modulo) flow f such that

d ≤ |f(e)| ≤ k − d for each edge e ∈ E(G).

• Let p be a positive integer. The orientation τ is a modulo (2p+ 1)-orientation if∑
e∈H(v) τ(e) ≡ 0 (mod 2p+ 1) for each vertex v ∈ V (G).
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When k = 3, Tutte’s theorem [47] implies that a graph G admits a modulo circular

3-flow if and only if it admits an integer-valued circular 3-flow. This result was generalized

to integer-valued circular (2 + 1
p
)-flows by Jaeger [21] as follows.

Theorem 1.3.11 (Jaeger [21]). Let G be a graph and p be a positive integer. Then the

following statements are equivalent:

(A) G admits a modulo (2p+ 1)-orientation.

(B) G admits a modulo circular (2 + 1
p
)-flow.

(C) G admits an integer-valued circular (2 + 1
p
)-flow.

For signed graphs, using an identical proof in [21], we can prove that (A) and (B) are

still equivalent. However, similar to modulo flows, the equivalent relation between (B)

and (C) does not hold for signed graphs (see Firgure 1.3). For more details, readers are

referred to [25], [34], [40], [41], [51], [56], etc.

The following are some early results on the equivalent relation between (B) and (C)

for signed graphs.

Theorem 1.3.12 (Xu and Zhang [51]). If a signed graph (G, σ) is cubic and contains

a perfect matching, then it admits a modulo circular 3-flow if and only if it admits an

integer-valued circular 3-flow.

Theorem 1.3.13 (Schubert and Steffen [41]). If a signed graph (G, σ) is (2p+ 1)-regular

and contains a p-factor, then it admits a modulo circular (2 + 1
p
)-flow if and only if it

admits an integer-valued circular (2 + 1
p
)-flow.

Theorem 1.3.14 (Zhu [56]). If a signed graph (G, σ) is (12p − 1)-edge-connected with

negativeness even or at least 2p+ 1, then it admits a modulo circular (2 + 1
p
)-flow if and

only if it admits an integer-valued circular (2 + 1
p
)-flow.

In this dissertation, we generalize all results above as follows.

Theorem 1.3.15. If a signed graph (G, σ) is odd-(2p+1)-edge-connected, then it admits a

modulo circular (2+ 1
p
)-flow if and only if it admits an integer-valued circular (2+ 1

p
)-flow.
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1.4 Shortest circuit covers of signed graphs

A circuit cover of a bridgeless graph G is a family C of circuits such that each edge of

G belongs to at least one member of C. The length of C is the total length of circuits in

C and the minimum length of circuit covers of G is denoted by SCC(G).

For ordinary graphs (signed graphs with all edges positive), the subject of shortest

circuit cover is not only a discrete optimization problem [17], but also closely related to

some mainstream areas in graph theory, such as, Tutte’s integer flow theory [1, 3, 10, 18,

23, 37, 52], circuit double cover conjecture [24, 28], Fulkerson conjecture [11], snarks and

graph minors [2, 19].

In 1985, Alon and Tarsi [1] proposed the following conjecture that motivates the most

of the studies in this area.

Conjecture 1.4.1 (Alon and Tarsi [1]). Every bridgeless graph G has SCC(G) ≤ 7|E(G)|
5

.

The following are some early results related to Conjecture 1.4.1

Theorem 1.4.2 (Bermond, Jackson, and Jaeger [3]). Every graph G admitting an integer-

valued 4-NZF has SCC(G) ≤ 4|E(G)|
3

.

Theorem 1.4.3 (Alon and Tarsi [1], and Bermond, Jackson, and Jaeger [3]). Every

bridgeless graph G has SCC(G) ≤ 5|E(G)|
3

.

Theorem 1.4.4 (Jamshy and Tarsi [24]). Conjecture 1.4.1 implies the Circuit Double

Cover Conjecture.

Theorem 1.4.5 (Fan [12]). Every 2-edge-connected graph G has SCC(G) ≤ |E(G)| +
|V (G)| − 1.

The relations between SCC(G) and Fulkerson conjecture, Tutte’s 3-flow and 5-flow

conjectures were studied by Fan, Jamshy, Raspaud, and Tarsi in [11, 10, 23].

It is natural to generalize the concept of shortest circuit covers from bridgeless graphs

to s-bridgeless signed graphs. That is, let signed circuits in signed graphs play the role of
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circuits in graphs. It is obvious (see [40]) that the switching operation preserves signed

circuits and thus the existence and the length of a signed circuit cover of a signed graph

are two invariants under the switching operation. For the topic of signed circuit covers,

it is convenient to say that G is a signed graph without mentioning the signature and

SCC(G) denotes the minimum length of signed circuit covers of G. Recently, the following

upper bounds for SCC(G) were first estimated in [36].

Theorem 1.4.6 (E. Máčajová, A. Raspaud, E. Rollová, M. Škoviera [36]). Let G = (V,E)

be an s-bridgeless signed graph. Then SCC(G) ≤ 11|E|. Furthermore, if G is 2-edge-

connected, then SCC(G) ≤ 9|E|.

In this dissertation, we further improve Theorem 1.4.6 as follows.

Theorem 1.4.7. Let G = (V,E) be an s-bridgeless signed graph with negativeness εN > 0.

(1) In general, we have

SCC(G) ≤ |E|+ 3|V |+ min

{
2

3
|E|+ 4

3
εN − 7, |V |+ 2εN − 8

}
.

(2) If G is 2-edge-connected and εN is even, then

SCC(G) ≤ |E|+ 2|V |+ min

{
2

3
|E|+ 1

3
εN − 4, |V |+ εN − 5

}
.

Remark.

(a) Theorem 1.4.7 is an analog of Theorem 1.4.5 by Fan [12] that solves a long standing

open problem proposed by Itai and Rodeh [17].

(b) For a connected s-bridgeless signed graph G, G − EN(G) is a connected ordinary

graph (by Lemma 3.4.3) and therefore |E| ≥ εN + |V | − 1. Hence, if G is an

s-bridgeless signed graph with εN > 0, by Theorem 1.4.7-(1), then

SCC(G) ≤ 14

3
|E| − 5

3
εN − 4 <

14

3
|E|.

This is an analog of Theorem 1.4.3 by Alon and Tarsi [1] and by Bermond, Jackson,

and Jaeger [3].
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1.5 Vector flows on graphs

The concept of integer-valued flows on ordinary graphs (signed graphs with all edges pos-

itive) was introduced by Tutte as a dual of map coloring problem. One of the major open

problems in this area is Tutte’s 3-flow conjecture: every 4-edge-connected graph admits an

integer-valued 3-NZF. Extended from a recent breakthrough in [44], this conjecture has

been verified for all odd 7-edge-connected graphs [32].

Theorem 1.5.1 (Lovász, Thomassen, Wu, and Zhang [32]). Every odd-7-edge-connected

graph admits an integer-valued 3-NZF.

Definition 1.5.2. Let T be a subset of vectors in the Euclidian space Rn and G be a graph

with an orientation D. An ordered pair (D,Φ) is a vector T -flow of G if Φ : E(G)→ T

such that, for each vertex v of G,∑
e∈E+

D(v)

Φ(e) =
∑

e∈E−D(v)

Φ(e),

where E+
D(v) and E−D(v) are the sets of edges oriented away from and towards to v. See

Figure 1.4 for an illustration.

〈−1, 0,−1〉

〈0,−1,−1〉

〈1, 1, 0〉 〈1, 1, 0〉
〈−1, 1, 0〉

〈1, 0,−1〉

〈0,−1, 1〉

〈1, 0,−1〉

〈0,−1, 1〉

Figure 1.4: A vector S2-flow of a graph G

Let S1 denote the set of all vectors α in R2 with ‖α‖ = 1. The following conjecture

motivates most of our research in this area.
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Conjecture 1.5.3 (Jain [22], vector S1-flow conjecture). Every 4-edge-connected graph

admits a vector S1-flow.

DeVos [22] and Thomassen [45] proved that a graph admits a vector S1-flow if it

admits an integer-valued 3-NZF. Thomassen [45] pointed out that a graph admitting a

vector S1-flow may not necessarily admit an integer-valued 3-NZF and presented a family

of examples showing that the converse is not true.

In this dissertation, we follow [45] and study the relation between the two graphic

properties: integer-valued 3-NZFs and vector S1-flows.

I. A graph G admits an integer-valued 3-NZF.

II. A graph G admits a vector S1-flow.

III. A graph G admits a vector C3-flow where C3 consists of three complex roots of the

unit.

It was asked by DeVos [22] whether I and II are equivalent. The following theorem

responds to this question and unveils some relations between these two graphic properties.

Theorem 1.5.4 (Thomassen [45]).

(1) I and III are equivalent.

(2) I implies II, but not vise versa.

(3) I and II are equivalent for cubic graphs.

Recall that Thomassen [45] discovered a family of graphs that admit vector S1-flows

but no integer-valued 3-NZFs. See Section 4.2 for the detailed discussion. Due to the

existence of such counterexamples, it is natural to ask the following problem.

Problem 1.5.5. Characterize vector S1-flows for which II implies I. That is, if G admits

a vector S1-flow (not necessary a vector C3-flow) with certain properties, then G also

admits an integer-valued 3-NZF.
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The vector C3-flow (described in III) is one of such examples for which II implies I.

Problem 1.5.6. Characterize graphs for which II implies I. That is, if G is a graph

with certain properties and admits a vector S1-flow, then G also admits an integer-valued

3-NZF.

The following is one of our main theorems, which is a partial solution to Problem 1.5.5.

Theorem 1.5.7. If a graph G admits a vector S1-flow with rank at most two, then G

admits an integer-valued 3-NZF.

Note that all the vector C3-flows (in III) are vector S1-flows with rank one. Theo-

rem 1.5.7, in some sense, is an extension of Theorem 1.5.4-(1) and is the study of the

converse of Theorem 1.5.4-(2). Theorem 1.5.7 is sharp in the sense that there are graphs

that admit vector S1-flows with rank three, but no integer-valued 3-NZFs (discovered by

Thomassen [45], see Section 4.2). In fact, we prove a stronger result as follows.

Theorem 1.5.8. If a graph G admits a vector S1-flow with rank at most two, then either

G is eulerian and thus admits an integer-valued 2-NZF, or G admits an integer-valued

circular (2 + 1
p
)-flow for some positive integer p.

The following result is motivated by Problem 1.5.6 and extends Theorem 1.5.4-(3).

Theorem 1.5.9. Let G be a graph and V3 be the set of vertices of degree 3 in G. If G[V3]

is connected and G − V3 is acyclic, then I and II are equivalent (That is, G admits an

integer-valued 3-NZF if and only if G admits a vector S1-flow).

Remark. In one of Thomassen’s examples (see Figure 4.1-(a)), it is easy to see that

G[V3] has two components. Thus the condition that G[V3] is connected in Theorem 1.5.9

may not be dropped.

1.6 Even factors of graphs

An even factor of G is a spanning subgraph of G in which each vertex has a positive

even degree. If an even factor is 2-regular, then we call it a 2-factor of G. In the following
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context, a l-circuit (resp. (≥ l)-circuit) is a circuit whose length is l (resp. at least l).

Petersen’s theorem [39] says that every bridgeless cubic graph G has a 2-factor F .

In [16], Fleischner improved this result and showed that if G is a bridgeless graph with

minimum degree at least three, then G has an even factor.

By applying the Matching Polytope Theorem [9] and Splitting Lemma [14], the size

of a maximum even factor was first estimated by Lai and Chen [29].

Theorem 1.6.1 (Lai and Chen [29]). If G is a bridgeless graph with minimum degree at

least three, then G has an even factor F such that |E(F )| ≥ 2
3
|E(G)|.

Relaxing the requirements of bridgeless and minimum degree for graphs, Favaron and

Kouider [13] proved the following result.

Theorem 1.6.2 (Favaron and Kouider [13]). If a graph G has an even factor, then it has

an even factor F such that |E(F )| ≥ 9
16

(|E(G)|+ 1).

Chen and Fan [6] recently improved this ratio to 4
7
, which is the best possible. The

extremal graphs can be obtained from trees by blowing up each vertex with pairwise

disjoint K4 (complete graph of order 4).

Theorem 1.6.3 (Chen and Fan [6]). If a graph G has an even factor, then it has an even

factor F such that |E(F )| ≥ 4
7
(|E(G)|+ 1).

Our interest in this problem was motivated by the relation between V2(G) (the set of

vertices of degree two) and even factors. Let F be any maximum even factor of a graph

G and subdivide one edge of F . Note that F generates an even factor F ′ of the resulting

graph G′ and the numbers of edges of F and G both increase by 1. The inequality in

Theorem 1.6.3 still holds, but the gap between the left side and right side is larger with

the increase in |V2(G)|. Based on these observations, we conjecture that when |V2(G)|
increases, the size of a maximum even factor gets larger.

Conjecture 1.6.4. There exists a constant c > 0 such that every graph G having an even

factor F will have an even factor H such that |E(H)| ≥ 4
7
(|E(G)|+ 1) + c|V2(G)|.
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In [6], Chen and Fan introduced an optimized edge-coloring technique. In this disserta-

tion, we adopt this technique and further introduce the concept of Q-subgraphs. Using the

discharging method, we confirm aforementioned conjecture and strengthen Theorem 1.6.3

as follows.

Theorem 1.6.5. If a graph G has an even factor F , then it has an even factor H such

that |E(H)| ≥ 4
7
(|E(G)|+ 1) + 1

7
|V2(G)|.

Remark. The family of extremal graphs in Theorem 1.6.3 shows that the first part

of the lower bound in Equation (5.8) (that is, 4
7
(|E(G)| + 1)) cannot be improved any

more. We do not know whether the coefficient 1/7 of |V2(G)| is best possible or not, but

the example of Figure 1.5 shows that it cannot be larger than 2/7. Note that G∗ has a

maximum even factor H∗ consisting of 4-circuits and satisfying

|E(H∗)| = 4

7
(|E(G∗)|+ 1) +

2

7
|V2(G∗)|. (1.1)

Figure 1.5: G∗



Chapter 2

Flows on Signed Graphs

2.1 Proof of Theorem 1.3.6

Let (G, σ) together with a flow f1 be a counterexample to Theorem 1.3.6 such that |E(G)|
is minimized. Thus, G must be connected. In each of the following context, we are to

yield a contradiction by showing that (G, σ) actually admits an integer-valued 3-flow f2

satisfying Theorem 1.3.6. For convenience, let B = supp(f1).

Claim 1. B 6= E(G) and each edge of E(G)−B is a bridge.

Proof. If B = E(G), then G is an eulerian graph containing an even number of negative

edges. By Theorem 1.3.4, G admits an integer-valued 2-NZF, say f2. If e∗ ∈ E(G)−B is

not a bridge ofG, letG′ = G−{e∗}, then f1 is a modulo 2-flow ofG′ with |E(G′)| < |E(G)|.
Thus, (G′, σ) admits an integer-valued 3-flow f2 such that B = {e ∈ E(G′) : f2(e) = ±1}.
In both cases, f2 is an integer-valued 3-flow of G satisfying Theorem 1.3.6.

Claim 2. For an edge e ∈ E(G)− B, denote by Q1 and Q2 the components of G− {e}.
Then neither B ∩Q1 nor B ∩Q2 contains an even number of negative edges.

Proof. Since B contains an even number of negative edges, B∩Q1 and B∩Q2 contain the

same parity number of negative edges. Suppose to the contrary that each contains an even

15



CHAPTER 2. FLOWS ON SIGNED GRAPHS 16

number of negative edges. For i ∈ {1, 2}, it follows from |E(Qi)| < |E(G)| that (Qi, σ)

admits an integer-valued 3-flow gi such that B ∩ Qi = {e ∈ E(Qi) : gi(e) = ±1}. One

can verify that f2 = g1 + g2 is an integer-valued 3-flow of G satisfying Theorem 1.3.6.

Now we first choose an edge e∗ ∈ E(G) − B and denote its endpoints by x1 and x2,

respectively. Let Q1 and Q2 be the components of G − {e∗} such that x1 ∈ V (Q1) and

x2 ∈ V (Q2). For i ∈ {1, 2}, let (Hi, σi) be the resulting signed graph obtained from Qi

by adding a negative loop ei at xi. Denote Bi = (B ∩Qi) ∪ {ei}. It follows from Claim 2

that Bi contains an even number of negative edges. Assigning f1(ei) = 1 and thus f1

is a modulo 2-flow of (Hi, σi) with support Bi. Note that |E(Hi)| < |E(G)|. Thus,

(Hi, σi) admits an integer-valued 3-flow gi such that Bi = {e ∈ E(Hi) : gi(e) = ±1}.
Note that |∂gi(xi)| = 2 for each component Qi. We can without lose of generality assume

∂g2(x2) = −σ(e∗)∂g1(x1) since otherwise we can replace g1 by −g1. Now we define f2 by

assigning f2(e) = gi(e) if e ∈ E(Qi) and f2(e
∗) = 2 (or −2) (such that the boundaries

of f2 at x1 and x2 are both zero). Finally, f2 is an integer-valued 3-flow of G satisfying

Theorem 1.3.6.

2.2 Proof of Theorem 1.3.7

First let us recall the vertex-spliting operation and Splitting Lemma.

Definition 2.2.1 (Vertex Splitting). Let G be a graph and v be a vertex of G. Suppose

F ⊂ E(v), then we denote G(v;F ) to be the graph obtained from G by splitting the edges of

F away from v. That is, adding a new vertex v∗ and changing the common endpoint of

edges in F from v to v∗. See Figure 2.1 for an illustration.

Lemma 2.2.2 (Splitting Lemma [14], or see [15]). Let G be a bridgeless graph. If v is

a vertex with deg(v) ≥ 4 and e1, e2, e3 ∈ E(v) are chosen in a way that e1 and e3 are in

different blocks when v is a cut-vertex, then either G(v;{e1,e2}) or G(v;{e1,e3}) is bridgeless.

Furthermore, G(v;{e1,e3}) has this property if v is a cut-vertex.
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v

e1 e2

· · ·

G

v

v∗

e1 e2

· · ·

G(v;{e1,e2})

Figure 2.1: Splitting {e1, e2} away from v

Proof of Theorem 1.3.7. Let (G, σ) together with a flow f1 be a counterexample to

Theorem 1.3.7 such that

(1) | suppc(f1)| is minimized, where suppc(f1) = E(G)− supp(f1);

(2) subject to (1),
∑

v∈V (G) | deg(v)− 3| is minimized.

Thus, G must be connected. Similar to the proof of Theorem 1.3.6, we are to yield a

contradiction by finding an integer-valued 4-flow satisfying Theorem 1.3.7.

Claim 3. supp(f1) 6= ∅ and suppc(f1) 6= ∅.

Proof. If supp(f1) = ∅, then simply let f2(e) = 0 for each edge e of G. If suppc(f1) = ∅,
then supp(f1) = E(G) and thus f1 is a modulo 3-NZF of (G, σ). Since G is bridgeless,

Theorem 1.3.5 implies that (G, σ) admits an integer-valued 3-NZF f2. In both cases, f2

is an integer-valued 4-flow satisfying Theorem 1.3.7.

Claim 4. The maximum degree of graph G is at most 3.

Proof. Suppose that G has a vertex v with deg(v) ≥ 4. Since G is bridgeless, it follows

from Lemma 2.2.2 that we can split a pair of edges {e1, e2} from v such that the resulting

signed graph, say (G1, σ1), is still bridgeless. Denote by v∗ the common endpoint of e1

and e2. In G1, we have ∂f1(v
∗) ≡ −∂f1(v) (mod 3).
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Choose w ∈ {v, v∗}. If ∂f1(w) ≡ 0 (mod 3) and degG1
(w) = 2 (say EG1(w) =

{ew′ , ew′′}), then we further suppress the vertex w and denote the resulting edge by ew

(see Figure 2.2-(1)). Now we assign ew with value f1(ew′), signature σ1(ew′)σ1(ew′′), and

an orientation (based on its signature and value) such that both endpoints of ew have

zero boundary. If ∂f1(w) 6≡ 0 (mod 3), then we add a positive edge vv∗, which is oriented

from v to v∗ and assigned with value ∂f1(v
∗) (see Figure 2.2-(2)). In both cases, denote

the resulting signed graph and mapping by (G2, σ2) and g1, respectively.

w ⇒

ew′

ew′′

ew

(1) ∂f1(w) ≡ 0 (mod 3), degG1
(w) = 2

v∗ v ⇒ vv∗

(2) ∂f1(w) 6≡ 0 (mod 3)

Figure 2.2: Construction of signed graph (G2, σ2)

It is easy to see that g1 is a modulo 3-flow of (G2, σ2) and | suppc(g1)| ≤ | suppc(f1)|. It

follows from
∑

v∈V (G2)
| degG2

(v)−3| <
∑

v∈V (G) | deg(v)−3| that (G2, σ2) has an integer-

valued 4-flow g2 such that supp(g1) ⊆ {e ∈ E(G2) : g2(e) = ±1,±2}. It is trivial to

derive an integer-valued 4-flow f2 of (G, σ) from g2, which satisfies Theorem 1.3.7.

Combining the fact that G is connected and Claim 3, we know that G has a vertex

x such that E(x) ∩ supp(f1) 6= ∅ and E(x) ∩ suppc(f1) 6= ∅. Choose an edge e∗ ∈
E(x)∩ suppc(f1) and denote the other endpoint of e by y. Without lose of generality, we

can assume that e∗ is positive since otherwise we can make a switch at x, and that e∗ is

oriented from x to y. Furthermore, we contract e∗ and denote the resulting signed graph

by (G′, σ′). Thus, the restriction of f1 to E(G′), denoted f ′1, is a modulo 3-flow of (G′, σ′).

Note that supp(f ′1) = supp(f1) implies | suppc(f ′1)| < | suppc(f1)|. Hence, (G′, σ′) admits

an integer-valued 4-flow f ′2 such that supp(f ′1) ⊆ {e ∈ E(G′) : f ′2(e) = ±1,±2}.

Now we consider the mapping f ′2 on E(G). Each vertex (possibly except x and y)

has zero boundary and ∂f ′2(x) = −∂f ′2(y). If ∂f ′2(x) 6≡ 0 (mod 3), then we extend f ′2 to
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a new function h1 by assigning h1(e
∗) = −∂f ′2(x). Note that h1 is a modulo 3-flow of

G with supp(h1) ⊃ supp(f1). This implies | suppc(h1)| < | suppc(f1)|, which contradicts

the assumption (1). Thus, we can assume ∂f ′2(x) ≡ 0 (mod 3). In summary, x a vertex

of G satisfying d(x) ≤ 3, E(x) ∩ suppc(f1) 6= ∅, and 1 ≤ |f ′2(e)| ≤ 2 for each edge e in

E(x) ∩ supp(f1). Hence, 0 ≤ |∂f ′2(x)| ≤ 4 and furthermore |∂f ′2(x)| ∈ {0, 3}. Finally,

we can extend f ′2 to a new mapping f2 by assigning f2(e
∗) = −∂f ′2(x). Clearly, f2 is an

integer-valued 4-flow satisfying Theorem 1.3.7.

2.3 Proof of Corollary 1.3.9

Lemma 2.3.1 ([20] or [42]). Let G be an ordinary graph and k1, k2 be two integers. If G

admits an integer-valued k1-flow f1 and an integer-valued k2-flow f2 such that supp(f1)∪
supp(f2) = E(G), then both k2f1 + f2 and f1 + k1f2 are integer-valued k1k2-NZFs of G.

Remark. Lemma 2.3.1 can be naturally generalized to signed graphs.

Let (G, σ) be a signed graph and φ = f1 × g1 : E(G) → Z2 × Z3 be a flow of (G, σ),

where f1 and g1 respectively represent a modulo 2-flow and modulo 3-flow of (G, σ). The

flow φ is balanced if supp(f1) contains an even number of negative edges. The following

technical lemma was proved in the proof of 12-NZF by DeVos [7].

Lemma 2.3.2 ([7]). Every flow-admissible signed graph admits a balanced Z2×Z3-NZF.

Proof of Corollary 1.3.9. It follows from Lemma 2.3.2 that (G, σ) admits a balanced

Z2 × Z3-NZF φ = f1 × g1. Now we apply Theorem 1.3.6 to f1 and Theorem 1.3.7 to g1.

Then (G, σ) admits an integer-valued 3-flow f2 and an integer-valued 4-flow g2 such that

supp(f1) = {e ∈ E(G) : |f2(e)| = 1} (2.1)

supp(g1) ⊆ {e ∈ E(G) : |g2(e)| = 1, 2}. (2.2)

By Lemma 2.3.1, h = 4f2 + g2 is an integer-valued 12-NZF of (G, σ). Here, we claim that

|h(e)| 6= 11 for each edge e in G. Suppose |h(e)| = 11 for some edge e ∈ E(G). Since
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|f2(e)| ≤ 2, |g2(e)| ≤ 3, and h = 4f2 + g2, we have |f2(e)| = 2 and |g2(e)| = 3. But

supp(f1) ∪ supp(g1) = E(G), it follows from Equations (2.1) and (2.2) that,

{e ∈ E(G) : |g2(e)| = 3} ⊆ supp(f1)− supp(g1)

{e ∈ E(G) : |f2(e)| = 2} ⊆ supp(g1)− supp(f1).

Clearly, such an edge e does not exist and this completes the proof of Corollary 1.3.9.

2.4 Proof of Theorem 1.3.15

2.4.1 A new vertex splitting lemma

The vertex splitting method is one of the most useful techniques in graph theory (espe-

cially, in the studies of integer flow and cycle cover problems). In Section 2.2, we have

discussed Splitting Lemma introduced by Fleischner (see Lemma 2.2.2). Here are more

early results about vertex splitting.

Theorem 2.4.1 (Nash-Williams [38]). Let λ be an even integer and G be a λ-edge-

connected graph. Let v be a vertex of G and a be an integer such that λ ≤ a and λ ≤
deg(v)− a. Then there is an edge subset F ⊂ E(v) such that |F | = a and G(v;F ) remains

λ-edge-connected.

Theorem 2.4.2 (Mader [35]). Let G be a graph and v ∈ V (G) such that v is not a cut-

vertex of G. If deg(v) ≥ 4 and v is adjacent to at least two distinct vertices, then there

are two edges e1, e2 ∈ E(v) such that, for each pair of vertices {x, y} in V (G)− {v}, the

local edge-connectivity between x and y in the graph G(v;{e1,e2}) remains the same as in G.

Theorem 2.4.3 (Zhang [54]). Let G be a graph with odd-edge-connectivity at least λo and

v ∈ V (G) such that deg(v) 6= λo and E(v) = {e0, e1, . . . , edeg(v)−1}. Then there is a pair of

edges {ei, ei+1} in E(v) with indices taken modulo deg(v) such that the graph G(v;{ei,ei+1})

remains odd-λo-edge-connected.

Definition 2.4.4. Let G be a graph and v be a vertex of G. Suppose that S(v) is a subset of

{(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. The subset S(v) is sequentially connected if, for
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each pair of edges {e′, e′′} in E(v), there is a sequence (e0, e1), (e1, e2), . . . , (et−1, et) ∈ S(v)

(mod deg(v)) such that e′ = e0 and e′′ = et.

In Theorem 2.4.3, the subset S(v) is taken to be {(ei, ei+1) : i ∈ Zdeg(v)}. In this

dissertation, using an identical proof of Theorem 2.4.3 in [54], we prove the following

result which is expected to have many applications in graph theory. An alternative proof

of Theorem 2.4.3 can be also found in [43].

Theorem 2.4.5. Let G be a graph with odd-edge-connectivity at least λo and v ∈ V (G)

such that deg(v) 6= λo. Let S(v) be a subset of {(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. If

the subset S(v) is sequentially connected, then there is a pair (e′, e′′) ∈ S(v) such that the

graph G(v;{e′,e′′}) remains odd-λo-edge-connected.

Corollary 2.4.6 is an analog of Theorem 2.4.1 with respect to odd-edge-connectivity.

Corollary 2.4.6. Let G be a graph with odd-edge-connectivity at least λo and v ∈ V (G)

with deg(v) > λo. Let S(v) = {(ei, ej) : ei, ej ∈ E(v) and ei 6= ej}. Let a be an even

integer such that a ≤ deg(v) − λo. Then there is an edge subset F ⊂ E(v) of size a and

consisting of disjoint elements of S(v) such that G(v;F ) remains odd-λo-edge-connected.

Proof. Let a = 2b. Now we apply Theorem 2.4.5 to v repeatedly b times at v. Denote

by {v∗1, . . . , v∗b} the set of resulted new vertices of degree two. We further identify these b

new vertices as a new vertex v∗. Note that the resulting graph, denoted by G∗, remains

odd-λo-edge-connected. Thus, EG∗(v
∗) is a desired edge subset F of E(v).

2.4.2 Application of Tutte’s factor theorem

Theorem 1.3.15 will be proved by applying not only Theorem 2.4.5 but also some f -factor

lemmas (such as, Lemma 2.4.10) in this section.

Definition 2.4.7. Let G be a graph and f be an integer-valued function defined on V (G).

An f -factor of G is a subgraph H of G such that degH(v) = f(v) for each vertex v of G.

In particular, if the range of f is {1, 2}, we simply call H an {1, 2}-factor.
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In [48], Tutte gave an necessary and sufficient condition of the existence of f -factors.

Theorem 2.4.8 (Tutte [48]). A graph G has an f -factor if and only if for any two vertex

subsets S, T of V (G) with S ∩ T = ∅,∑
v∈S

f(v) ≥ |O(S, T )|+
∑
v∈T

(f(v)− degG−S(v)), (2.3)

where O(S, T ) is the set of components of G− S − T for which∑
v∈U

f(v) + e(U, T ) ≡ 1 (mod 2). (2.4)

Next we apply Tutte’s f -factor theorem to find an {1, 2}-factor for graphs given below.

Lemma 2.4.9. Let λo be an odd integer and G be an odd-λo-edge-connected graph. Let

{V1, V2} be a partition of V (G) such that degG(v) = λo if v ∈ V1 and degG(v) = 2λo if

v ∈ V2. If f is a function defined on V (G) such that f(v) = degG(v)/λo for each vertex

v of G, then G has an f -factor.

Proof. Let S and T be two disjoint vertex subsets of G and O = O(S, T ). Let

{Q1, Q2, Q3, Q4} be a partition of T , where for each t ∈ {1, 2}, Qt consists of the vertices

v ∈ T ∩ Vt such that dG−S(v) = 0, Q3 consists of the vertices v of T ∩ V2 such that

dG−S(v) = 1, and Q4 = T −Q1 −Q2 −Q3. The following claim directly follows from the

definitions.

Claim 5. (1) λof(v) = dG(v) and f(v) ≡ dG(v) (mod 2) for each vertex v.

(2)
∑

v∈U dG(v) + e(U, T ) ≡ 1 (mod 2) for each U ∈ O.

Now we partition O into O1 and O2, where O1 = {U ∈ O : e(U, T ) = 0} and

O2 = {U ∈ O : e(U, T ) 6= 0}

Claim 6. e(U, S) ≥ λo if U ∈ O1 and e(U, S) ≥ 1 if U ∈ O2. Therefore∑
U∈O

e(U, S) ≥ λo|O1|+ |O2|.
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Proof. Note that if U ∈ O1, then e(U, T ) = 0 and thus E(U, S) is an edge-cut. Since G is

odd-λo-edge-connected, it suffices to show that e(U, S) ≡ 1 (mod 2) for each U ∈ O.

For each U ∈ O, we have
∑

v∈U dG(v) ≡ e(U, T ) + e(U, S) (mod 2). Since a ≡ −a
(mod 2) for every integer a, it follows from Claim 5-(2) that e(U, S) ≡ 1 (mod 2).

Claim 7.

e(S, T ) =
∑
v∈T

[dG(v)− dG−S(v)] ≥ λo
∑
v∈T

[f(v)− dG−S(v)] + (λo − 1)|O2|.

Proof. Since dG−S(v) = 0 if v ∈ Q1 ∪Q2 and dG−S(v) = 1 if v ∈ Q3, we have∑
v∈Q1∪Q2∪Q3

[dG(v)−dG−S(v)] = λo
∑

v∈Q1∪Q2∪Q3

[f(v)−dG−S(v)]+(λo−1)
∑
v∈Q3

dG−S(v) (2.5)

Since λof(v) = dG(v) for each vertex v, we have∑
v∈Q4

[dG(v)− dG−S(v)] =
∑
v∈Q4

[λof(v)− dG−S(v)]

= λo
∑
v∈Q4

[f(v)− dG−S(v)] + (λo − 1)
∑
v∈Q4

dG−S(v).
(2.6)

Combining (2.5) and (2.6), we have∑
v∈T

[dG(v)− dG−S(v)] = λo
∑
v∈T

[f(v)− dG−S(v)] + (λo − 1)
∑

v∈Q3∪Q4

dG−S(v). (2.7)

Since each vertex v ∈ Q3 ∪Q4 is adjacent to at most dG−S(v) components in O2, we

have ∑
v∈Q3∪Q4

dG−S(v) ≥ |O2|. (2.8)

Combining (2.7) and (2.8), we have

e(S, T ) ≥ λo
∑
v∈T

[f(v)− dG−S(v)] + (λo − 1)|O2|.
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Denote Sc = V (G) − S. Now we are to estimate e(S, Sc) in two ways by finding a

lower bound and upper bound. Obviously,

e(S, Sc) ≤
∑
v∈S

dG(v) = λo
∑
v∈S

f(v). (2.9)

On the other hand,

e(S, Sc) ≥ e(S, T ) +
∑
U∈O

e(S, U). (2.10)

By (2.9) and (2.10) together with Claim 6 and 7, we have

λo
∑
v∈S

f(v) ≥ λo
∑
v∈T

[f(v)− dG−S(v)] + (λo − 1)|O2|+ λo|O1|+ |O2|

= λo
∑
v∈T

[f(v)− dG−S(v)] + λo(|O1|+ |O2|) (2.11)

= λo

(∑
v∈T

[f(v)− dG−S(v)] + |O|

)
.

By (2.11), we have ∑
v∈S

f(v) ≥ |O|+
∑
v∈T

[f(v)− dG−S(v)].

Therefore, by Theorem 2.4.8, G has an f -factor.

Lemma 2.4.10. Let G be a graph with odd-edge-connectivity at least (2p + 1). If there

is a mapping µ : V (G) → Z+ such that, for each vertex v of G, degG(v) = (2p + 1)µ(v),

then there is a spanning subgraph F of G such that degF (v) = pµ(v).

Proof. For each vertex v of G with degG(v) /∈ {2p + 1, 2(2p + 1)}, we first apply Corol-

lary 2.4.6 to v with a = 2(2p + 1) and λo = 2p + 1. Repeat this process until the degree

of every vertex is either (2p+ 1) or 2(2p+ 1). Let G′ be the resulting graph.

Now we apply Lemma 2.4.9 to G′ with λo = 2p + 1. Let F0 be a (1, 2)-factor of G′

such that for each vertex v of G′, degF0
(v) = 1 if degG′(v) = 2p + 1 and degF0

(v) = 2 if

degG′(v) = 2(2p+ 1).
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Let G′′ = G′−E(F0). Next we split each vertex v of G′′ with degG′′(v) = 4p into a pair

of degree 2p vertices (no need to preserve the odd-edge-connectivity here). Let G′′′ be the

resulting 2p-regular graph. By Petersen theorem, G′′′ has a 2-factorization {F1, . . . , Fp}.

When p is even, say p = 2s, the subgraph F of G induced by edges of F1, . . . , Fs is a

desired spanning subgraph. When p is odd, say p = 2s+ 1, the subgraph F of G induced

by edges of F0, F1, . . . , Fs is a desired spanning subgraph.

2.4.3 Completion of the Proof of Theorem 1.3.15

The proof of necessity is identical to that in [21]. Therefore, we only need to prove its

sufficiency. Assume that (G, σ) admits a modulo circular (2+ 1
p
)-flow. By the equivalency

between (B) and (C) in Theorem 1.3.11, we can further assume that τ itself is a modulo

(2p+ 1)-orientation of (G, σ).

For each vertex v ∈ V (G), let H+
τ (v) = {h ∈ H(v) : τ(h) = 1} and H−τ (v) =

{h ∈ H(v) : τ(h) = −1}, and denote deg+
τ (v) = |H+

τ (v)| and deg−τ (v) = |H−τ (v)|.
If deg+

τ (v), deg−τ (v) > 0 for some vertex v, then apply Theorem 2.4.5 with S(v) =

{(e1, e2) : e1 ∈ H+
τ (v) and e2 ∈ H−τ (v)} and one can split a pair of half-edges (one

from H+
τ (v) and the other from H−τ (v)) away from v. Let G′ be the new graph obtained

from G after all possible splittings. Thus, in G′, (2p+ 1) is a divisor of each degG′(v) and

either deg+
τ (v) = 0 or deg−τ (v) = 0 for each vertex v of G′, and, G′ remains odd-(2p+ 1)-

edge-connected.

Applying Lemma 2.4.10 to the graph G′, let F be the spanning subgraph of G′ such

that degF (v) = pµ(v) if degG′(v) = (2p+1)µ(v) where µ is a mapping of G′: V (G′)→ Z+.

Then f ∗ is an integer-valued circular (2 + 1
p
)-flow where

f ∗(e) =

{
p if e 6∈ F ;

−p− 1 if e ∈ F .



Chapter 3

Shortest Circuit Covers of Signed

Graphs

3.1 Notation and Terminology

Definition 3.1.1. Let F be a family of signed circuits of a signed graph G and K be a

set of some nonnegative integers.

(1) F is a signed circuit cover (resp. signed circuit K-cover) of G if each edge e

of G belongs to ke members of F such that ke ≥ 1 (resp. ke ∈ K). In particular, F
is a signed circuit double cover of G if K = {2}.

(2) The length of F , denoted `(F), is the total length of signed circuits in F .

(3) A signed circuit cover F is a shortest circuit cover of G if its length `(F) is

minimized. Furthermore, we denote by SCC(G) = `(F).

26
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3.2 Lemmas and outline of the proofs

Definition 3.2.1. Let b be a bridge of a connected signed graph G and Q1, Q2 be the

two components of G − {b}. The bridge b is an g-bridge of G if εN(Q1) ≡ εN(Q2) ≡ 0

(mod 2). A signed graph G is g-bridgeless if it contains no g-bridges.

Theorem 1.4.7-(2) can be revised as follows in a slightly stronger version.

Theorem 3.2.2. Let G be an s-bridgeless signed graph with negativeness εN > 0.

(1) In general, we have

SCC(G) ≤ |E|+ 3|V |+ min

{
2

3
|E|+ 4

3
εN − 7, |V |+ 2εN − 8

}
.

(2) If G is g-bridgeless and εN is even, then

SCC(G) ≤ |E|+ 2|V |+ min

{
2

3
|E|+ 1

3
εN − 4, |V |+ εN − 5

}
.

The following is the major lemma for the proof of Theorem 3.2.2.

Lemma 3.2.3. Let G be an s-bridgeless signed graph with |EN(G)| = εN(G). Then G

has a pair of subgraphs {G1, G2} such that

(1) E(G1) ∪ E(G2) = E(G),

(2) G1 contains no negative edge and is bridgeless, and

(3) G2 − EN(G) is acyclic and G2 has a signed circuit {1, 2, . . . , k}-cover, where k = 2

if G is g-bridgeless with an even negativeness, and k = 3 otherwise.

Lemma 3.2.3 will be proved in Section 3.4 after some preparations in Section 3.3. The

main result, Theorem 3.2.2, will be proved as a corollary of Lemma 3.2.3 in Section 3.5.

The following is the outline of the proof. By (1) of Lemma 3.2.3,

SCC(G) ≤ SCC(G1) + SCC(G2).

Lemma 3.2.3-(3) provides an estimation for SCC(G2). For the bridgeless unsigned sub-

graph G1, we use the classical results in Theorem 1.4.3 and 1.4.5.
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3.3 Signed circuit covers of generalized barbells

In this section, we study signed circuit covers of generalized barbells which play an im-

portant role in the proof of Lemma 3.2.3.

Recall that a graph is eulerian if it is connected and each vertex is of even degree.

A vertex v is a k-vertex of a graph G if v ∈ Vk(G).

Definition 3.3.1. A signed graph H is a generalized barbell if it contains a set of

vertex-disjoint eulerian subgraphs B = {B1, . . . , Bt} such that

(1) the contracted graph X = H/(∪ti=1Bi) is acyclic;

(2) for each vertex x of X, |EN(Bx)| ≡ |EH(V (Bx))| (mod 2), where Bx is the corre-

sponding eulerian subgraph of B if x is a contracted vertex and E(Bx) = ∅ otherwise.

We first study signed eulerian graphs with even number of negative edges which is a

special case of generalized barbells.

Let T be a closed eulerian trail of a signed eulerian graph. For any two vertices u and

v of T , we use uTv to denote the subsequence of T starting with u and ending with v in

the cyclic ordering induced by T .

Lemma 3.3.2. Every signed eulerian graph with even number of negative edges has a

signed circuit double cover.

Proof. Let B be a counterexample to Lemma 3.3.2 with |E(B)| minimum. Then the

maximum degree of B is at least 4 otherwise B is a balanced circuit. By the minimality

of B, B cannot be decomposed into two signed eulerian subgraphs, each of which contains

an even number of negative edges. Thus we have the following observation

Observation. For any eulerian trail T = u1e1u2e2 · · ·umemu1 of B where m = |E(G)|
and for any two integers i, j ∈ [1,m] with i < j and ui = uj, uiTuj is a signed eulerian

graph with odd number of negative edges.
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Pick an arbitrary eulerian trail T = u1e1u2e2 · · ·umemu1. We consider the following

two cases.

Case 1. For any two integers i 6= j ∈ [1,m], if ui = uj, then |j − i| ≡ 1 (mod m).

In this case, the resulting graph obtained from B by deleting all loops is either a single

vertex or a circuit. Since B has an even number of negative edges, one can check that B

has a signed circuit double cover, a contradiction.

Case 2. There are two integers i, j ∈ [1,m] such that 2 ≤ j − i ≤ m− 2 and ui = uj.

Let B1 = uiTuj and B2 = ujTui. Then, by Observation, both B1 and B2 are signed

eulerian subgraphs of B with B = B1 ∪ B2 such that |E(Bk)| ≥ 2 and |EN(Bk)| ≡ 1

(mod 2) for each k = 1, 2.

If V (B1) ∩ V (B2) = {ui}, then for each k = 1, 2, let B′k be the resulting graph

obtained from Bk by adding a negative loop e′k at ui. Clearly, B′k remains eulerian,

|E(B′k)| < |E(B)|, and |EN(B′k)| is even. By the minimality of B, B′k has a signed circuit

double cover Fk. Since e′k is a negative loop of B′k, it is covered by two barbells, say

C1
k and C2

k , in Fk. Let C` = ∪2k=1(C
`
k − e′k) for each ` = 1, 2. Since V (B1) ∩ V (B2) =

{ui}, both C1 and C2 are two barbells of B, and so B has a signed circuit double cover

∪2k=1(Fk − {C1
k , C

2
k}) ∪ {C1, C2}, a contradiction.

If V (B1) ∩ V (B2) 6= {ui}, then there are two integers s and t such that s ∈ [i, j],

t /∈ [i, j], and us = ut. By Observation, |EN(usTut)| ≡ 1 (mod 2). Let T ∗ be a new

closed eulerian trail of B obtained from T by reversing the subsequence uiTuj in T .

Then E(usT
∗ut) is the disjoint union of E(uiTus) and E(ujTut) and thus EN(usT

∗ut)

is the disjoint union of EN(uiTus) and EN(ujTut). Since |EN(uiTuj)| ≡ 1 (mod 2) and

|EN(usTut))| ≡ 1 (mod 2), we have |EN(uiTus)| ≡ |EN(ujTut)| (mod 2). Therefore

|EN(usT
∗ut)| ≡ 0 (mod 2), a contradiction to Observation. This completes the proof of

the lemma.

The following lemma is a generalization of Lemma 3.3.2.

Lemma 3.3.3. Every generalized barbell H has a signed circuit double cover.
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Proof. Let {B1, . . . , Bt} be a set of vertex-disjoint eulerian subgraphs of H and X =

H/(∪ti=1Bi) as described in Definition 3.3.1. We proceed the proof by induction on

|E(H)− ∪ti=1E(Bi)|.

If E(H)−∪ti=1E(Bi) = ∅, then by the definition of generalized barbell, each component

of H is a signed eulerian graph with an even number of negative edges. Thus H has a

signed circuit double cover by Lemma 3.3.2.

Now assume that E(H) − ∪ti=1E(Bi) 6= ∅. Let uv ∈ E(H) − ∪ti=1E(Bi) and H ′ be

the new signed graph obtained from H by deleting uv and adding negative loops eu and

ev at u and v, respectively. By the definition, H ′ remains as a generalized barbell. Since

X is acyclic, H ′ has more components than H, and thus by induction to each component

of H ′, H ′ has a signed circuit double cover F ′. Let {C1
u, C

2
u} and {C1

v , C
2
v} be the sets of

barbells in F ′ containing eu and ev, respectively. Since eu and ev belong to two distinct

components of H ′, Ci = (Ci
u − eu) ∪ (Ci

v − ev) + uv (i = 1, 2) is a barbell in H. Hence

(F ′ − {C1
u, C

2
u, C

1
v , C

2
v}) ∪ {C1, C2}

is a signed circuit double cover of H.

Lemma 3.3.4. Let H be a generalized barbell with a set of vertex-disjoint eulerian sub-

graphs B = {B1, . . . , Bt}, and assume that {B1, . . . , Bs} (2 ≤ s ≤ t) is the set of eulerian

subgraphs corresponding to the 1-vertices of the contracted graph X = H/(∪ti=1Bi). If

each Bi (1 ≤ i ≤ t) is a circuit, then there is a family of signed circuits F in H such that

each edge e of H belongs to

(a) exactly one member of F if e ∈ ∪si=1E(Bi),

(b) one or two members of F if e ∈ ∪ti=s+1E(Bt), and

(c) at most one member of F if e ∈ E(H)− ∪ti=1E(Bi).

Proof. Assume that H is embedded in the plane and let X∗ be a graph obtained from X

by first clockwise splitting each vertex x with even degree into 1
2
degX(x) 2-vertices, and

replacing each maximal subdivided edge with a single edge. Then each vertex of X∗ is of
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odd degree. By the definition of generalized barbell, X∗ is a forest and V (X∗) corresponds

to the set of unbalanced circuits of B. Thus X∗ has a spanning subgraph satisfying that

each component is a star graph with at least two vertices. Let K1,ri (i = 1, . . . , `) be all

such star subgraphs.

Note that V (X∗) = ∪`i=1V (K1,ri) corresponds to the set of unbalanced circuits of

B. For 1 ≤ i ≤ `, one can check that the subgraph of H corresponding to K1,ri has a

signed circuit cover Fi such that each edge of the unbalanced circuits corresponding to

1-vertices of K1,ri is covered by Fi exactly once and each edge of the unbalanced circuit

corresponding to the unique vertex of K1,ri with degree ri ≥ 2 is covered by Fi once or

twice. Therefore the union of ∪`i=1Fi together with the set of balanced circuits of B is a

desired family F of signed circuits of H.

The following result is stronger than Lemma 3.3.3 which states that a generalized

barbell has a signed circuit {1, 2}-cover with some edges covered only once.

Lemma 3.3.5. For each generalized barbell, it either

(1) can be decomposed into balanced circuits, or

(2) has a signed circuit {1, 2}-cover F such that there are two edge-disjoint unbalanced

circuits C1 and C2 whose edges are covered by F exactly once.

Proof. Let H be a counterexample to Lemma 3.3.5 with |E(H)| minimum. Thus H is

connected. Otherwise each component of H satisfies either (1) or (2). This implies that

H satisfies either (1) or (2), a contradiction to the choice of H.

Claim 8. H is eulerian and therefore contains an even number of negative edges.

Proof. By the definition of generalized barbell, it is sufficient to show that H is bridgeless.

Suppose to the contrary that H has a bridge. By Lemma 3.3.3, H has a signed circuit

double cover F ′. Since H has bridges, F ′ contains a barbell C with two unbalanced

circuits C1 and C2. Then F = F ′ − {C} is a signed circuit {1, 2}-cover of H and covers

C1 and C2 exactly once, a contradiction. This proves the claim.
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Since H is eulerian by Claim 8, H has a decomposition

C = {C1, . . . , Ch, Ch+1, . . . , Ch+m, Ch+m+1, . . . , Ch+m+n},

where h,m and n are three nonnegative integers, and each Ci is an unbalanced circuit if

1 ≤ i ≤ h, a short barbell if h + 1 ≤ i ≤ h + m, and a balanced circuit otherwise. We

choose such a decomposition that

(a) h+ 2m+ n is as large as possible,

(b) subject to (a), n is as large as possible, and

(c) subject to (a) and (b), m is as large as possible.

Claim 9. h ≥ 2 is an even integer and |V (Ci) ∩ V (Cj)| = 0 for 1 ≤ i < j ≤ h.

Proof. If h = 0, then C satisfies (1) if m = 0, and C − {C1} satisfies (2) otherwise. Thus

we can assume h > 0. Since |EN(H)| =
∑h+m+n

i=1 |EN(Ci)| is even and |EN(Ci)| is even

for h+ 1 ≤ i ≤ h+m+ n, we have that h ≥ 2 is even.

Let Ci and Cj be two circuits in C with 1 ≤ i < j ≤ h. If |V (Ci) ∩ V (Cj)| ≥ 3,

then Ci ∪ Cj can be decomposed into three or more circuits (balanced or unbalanced), a

contradiction to (a). Thus, |V (Ci)∩V (Cj)| ≤ 2. If |V (Ci)∩V (Cj)| = 2, then Ci∪Cj has

a decomposition into two balanced circuits since both Ci and Cj are unbalanced circuits,

which contradicts (b). If |V (Ci) ∩ V (Cj)| = 1, then Ci ∪ Cj is a short barbell, which

contradicts (c). Thus, the claim is true.

Let H ′ = H/(∪hi=1Ci) and for 1 ≤ i ≤ h, let ci be the vertex of H ′ corresponding to

Ci. Let T ′ be a spanning tree of H ′ since H is connected. By Claim 9, h ≥ 2 is even. Let

Pj (1 ≤ j ≤ h
2
) be a path in T ′ from c2j−1 to c2j and let

F ′ = T ′[∆
h
2
j=1E(Pj)]

Then F ′ is a forest and {c1, . . . , ch} is the set of vertices of F ′ with odd degree. By the

definition, the subgraph of H corresponding to F ′ is a generalized barbell satisfying the

conditions in Lemma 3.3.4, and thus, by Lemma 3.3.4, it has a family F∗ of signed circuits
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such that F = F∗ ∪ {Ch+1, . . . , Ch+m+n} is a signed circuit {1, 2}-cover of H and at least

two unbalanced circuits in {C1, . . . , Ch} are covered by F exactly once, a contradiction.

This completes the proof of Lemma 3.3.5.

3.4 Proof of Lemma 3.2.3

In this section, we complete the proof of Lemma 3.2.3. For a signed graph G, we use

B(G) to denote the set of bridges of G and for each e ∈ EN(G), define

SG(e) = {e} ∪ {f : {e, f} is a 2-edge-cut of G}.

Let Bg(G) be the subset of B(G) such that, for each b ∈ Bg(G), at least one component

of G−{b} contains an odd number of negative edges, and let Bs(G) be the subset of B(G)

such that, for each b ∈ Bs(G), each component of G − {b} contains negative edges. We

need the following lemmas.

Lemma 3.4.1. Let H be a signed graph satisfying that |EN(H)| ≥ 2 and H − EN(H) is

a spanning tree of H. If |EN(H)| is even, then H has a generalized barbell containing all

edges of Bg(H) ∪ (∪e∈EN (H)SH(e)).

Proof. Let T = H −EN(H). Then E(H) is the disjoint union of E(T ) and EN(H). For

each e ∈ EN(H), let Ce be the unique circuit of T + e.

Let H ′ = 4e∈EN (H)Ce and OH′ be the set of all components of H ′ containing an odd

number of negative edges. Since |EN(H)| is even, so is |OH′ |. Let {v1, v2, . . . , v2t−1, v2t} be

the set of vertices of the contracted graph H/H ′ corresponding to OH′ . For each 1 ≤ i ≤ t,

there is a shortest path Pi in H/H ′ from v2i−1 to v2i. Note that EN(H) ⊆ E(H ′) and

hence E(Pi) ⊆ E(H/H ′) ⊆ E(T ). Since T is a tree of H, H ′′ = H ′ ∪ (4t
i=1Pi) is a

generalized barbell.

For every bridge b ∈ Bg(H), each component of H − {b} contains an odd number of

negative edges since |EN(H)| is even, and thus contains an odd number of members of

OH′ . This fact implies that b must belong to an odd number of members of {P1, . . . , Pt}
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and thus b ∈ E(H ′′). Hence Bg(H) ⊆ E(H ′′). For every e ∈ EN(H), it is obvious that

SH(e) ⊆ E(Ce) and SH(e) ∩ E(Cf ) = ∅ for any f ∈ EN(G) − {e}, which implies that

SH(e) ⊆ E(H ′). Therefore, ∪e∈EN (H)SH(e) ⊆ E(H ′) ⊆ E(H ′′).

Lemma 3.4.2. Let H be a signed graph satisfying that |EN(H)| ≥ 2 and H − EN(H) is

a spanning tree of H. Then H has a signed circuit {0, 1, 2, 3}-cover such that each edge

of Bs(H) ∪ (∪e∈EN (H)SH(e)) is covered at least once and each negative loop (if any) is

covered precisely twice.

Proof. Let H be a counterexample with |E(H)| minimum.

Claim 10. B(H) = ∅.

Proof. Suppose to the contrary B(H) 6= ∅. Let b = u1u2 ∈ B(H) and Q1 and Q2 be the

two components of H − {b} such that ui ∈ Qi for i = 1, 2.

If b ∈ B(H)−Bs(H), then there is one member in {Q1, Q2}, without loss of generality,

say Q1, satisfying that Bs(Q1) = Bs(H) and EN(Q1) = EN(H). By the minimality of H,

Q1 (and thus H) has a desired signed circuit {0, 1, 2, 3}-cover, a contradiction.

If b ∈ Bs(H), then |EN(Q1)| ≥ 1 and |EN(Q2)| ≥ 1. For each i = 1, 2, let Q∗i
be the graph obtained from Qi by adding a negative loop ei at ui. It is easy to see

that Bs(Q
∗
1) ∪ Bs(Q

∗
2) = Bs(H) − {b} and ∪2i=1(EN(Q∗i ) − {ei}) = EN(H). By the

minimality of H, each Q∗i has a signed circuit {0, 1, 2, 3}-cover F∗i which covers each edge

of Bs(Q
∗
i ) ∪EN(Q∗i ) at least once and covers each negative loop of Q∗i exactly twice. Let

C1
i and C2

i be the two signed circuits in F∗i containing ei. Since ei is a negative loop, Cj
i

(j = 1, 2) is a barbell of Q∗i , and thus Cj = (Cj
1− e1)∪ (Cj

2− e2) + b is also a barbell of H.

Therefore, F = (F∗1 − {C1
1 , C

2
1}) ∪ (F∗2 − {C1

2 , C
2
2}) ∪ {C1, C2} is a desired signed circuit

{0, 1, 2, 3}-cover of H, a contradiction.

Claim 10 implies that H is 2-edge-connected. Thus, Lemma 3.4.2 follows from Lem-

mas 3.4.1 and 3.3.3 if |EN(H)| is even. Since |EN(H)| ≥ 2, in the following context, we

assume that |EN(H)| ≥ 3 is odd.
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Let T = H − EN(H). Note that T is a spanning tree of H and E(H) is the disjoint

union of E(T ) and EN(H). For each e ∈ EN(H), let Ce be the unique circuit of T + e.

Claim 11. For every e ∈ EN(H), H has a signed circuit containing all edges of SH(e).

Proof. Let e ∈ EN(H) and f ∈ EN(H)−{e}. Note that SH(e) ⊆ E(Ce), SH(f) ⊆ E(Cf )

and SH(e) ∩ SH(f) = ∅ (it can be checked easily since T = H − EN(H) is a spanning

tree of H). If |V (Ce)∩ V (Cf )| ≤ 1, then there is a shortest path P in T joining Ce to Cf

(note that P is a single vertex if |V (Ce)∩ V (Cf )| = 1), and thus Ce ∪Cf ∪ P is a desired

signed circuit. If |V (Ce) ∩ V (Cf )| ≥ 2, since T is a spanning tree of H, then Ce ∩Cf is a

path containing no edges of SH(e). Thus Ce∆Cf is a balanced circuit as desired.

Claim 12. Each edge e ∈ EN(H) is contained in a 2-edge-cut of H.

Proof. Suppose to the contrary that there is a negative edge e ∈ EN(H) such that H0 =

H − {e} remains 2-edge-connected. If H contains negative loops, we choose e which is a

negative loop.

Since H0 is 2-edge-connected and |EN(H0)| = |EN(H)−{e}| ≥ 2 is even, Lemma 3.4.1

implies that H0 has a generalized barbell H1 containing all edges of ∪f∈EN (H0)SH0(f). Let

F1 be a signed circuit double cover of H1 by Lemma 3.3.3. Note that SH(e) = {e}
and SH(f) ⊆ SH0(f) for any f ∈ EN(H0) = EN(H) − {e}. Thus ∪f∈EN (G)SH(f) ⊆
{e} ∪ (∪f∈EN (H0)SH0(f)).

If e is not a negative loop of H, then H has no loop, but has a signed circuit C

containing e by Claim 11. Thus F = F1 ∪ {C} is a signed circuit {0, 1, 2, 3}-cover of H

covering all edges of ∪f∈EN (H)SH(f), a contradiction. Assume that e is a negative loop of

G and let u denote the unique endvertex of e.

If F1 contains a barbell C, then let C1 and C2 be the two unbalanced circuits of C.

Since H is 2-edge-connected, there are two edge-disjoint paths in H from u to C1 and C2,

denoted by P1 and P2, respectively. Then C ′i = Ci ∪ Pi + e0 for i = 1, 2 is a barbell of

H. Since F1 is a signed circuit double cover of H1, F = (F1 − C) ∪ {C ′1, C ′2} is a desired

signed circuit {0, 1, 2, 3}-cover of H, a contradiction.
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If F1 contains no barbells, then e is the unique loop of H. Note that H1 is a generalized

barbell. By Lemma 3.3.5, H1 has either a decomposition F ′1 into balanced circuits or a

signed circuit {1, 2}-cover F ′′1 and two edge-disjoint unbalanced circuit C1 and C2 such

that each edge in E(C1) ∪ E(C2) is covered by F ′′1 exactly once. In the former case, let

C ′ be a signed circuit containing e by Claim 11. Then the family F = F ′1 ∪ {C ′, C ′}
is a desired signed circuit {0, 1, 2, 3}-cover of H. In the latter case, since H is 2-edge-

connected, there are two edge-disjoint paths of H from u to C1 and C2, denoted by P1

and P2, respectively. Similar to the case when F1 contains a barbell, we can construct a

desired signed circuit {0, 1, 2, 3}-cover of H, and thus obtain a contradiction.

By Claim 12, H contains no negative loops and |SH(e)| ≥ 2 for each e ∈ EN(H). For

every e ∈ EN(G), let Me denote the set of all components of the subgraph H − SH(e).

Claim 13. For any e, e′ ∈ EN(H), SH(e′) is contained in exactly one member of Me.

Proof. Note that each member of Me is 2-edge-connected, and SH(e) ∩ SH(e′) = ∅ since

H−EN(H) is a spanning tree of H. Then SH(e′) ⊆ ∪M∈MeE(M). Let e∗ be an arbitrary

edge in SH(e′) − {e′}. If there are two distinct members Mi and Mj of Me such that

e′ ∈ E(Mi) and e∗ ∈ E(Mj), then both Mi − e′ and Mj − e∗ are connected, and thus

H − {e′, e∗} is also connected. This contradicts that {e′, e∗} is a 2-edge-cut of H. Thus,

e′ and e∗ are contained in a common member ofMe. The arbitrariness of e∗ implies that

the claim holds.

For every e ∈ EN(H), let me = max{|EN(H)∩E(M)| : M ∈Me}. It is obvious that

me ≤ |EN(H)| − 1 since e /∈ ∪M∈MeE(M).

Claim 14. max{me : e ∈ EN(H)} = |EN(H)| − 1.

Proof. Let e0 ∈ EN(H) and M01 ∈Me0 such that

me0 = |EN(H) ∩ E(M01)| = max{me : e ∈ EN(H)}.

Suppose that me0 < |EN(H)|− 1. Then there is a member M02 ∈Me0−{M01} such that

M02 contains a negative edge e1 of H.
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By Claim 13, SH(e1) ⊆ E(M02) and there is a member M11 ∈Me1 such that SH(e0) ⊆
E(M11). Thus,

{e0} ∪ E(M01) ⊆ SH(e0) ∪ (∪M∈Me0−{M02}E(M)) ⊆ E(M11),

which implies that

me1 ≥ |EN(H) ∩ E(M11)| ≥ 1 + |EN(H) ∩ E(M01)| = 1 +me0 .

This contradicts the choice of e0, and thus the claim holds.

By Claim 14, there is an edge e ∈ EN(H) such that EN(H) − {e} is contained in

exactly one member ofMe. LetMe = {M ′
1, . . . ,M

′
s}. Without loss of generality, assume

that EN(H) − {e} ⊆ E(M ′
1) and all edges of M ′

i (i = 2, . . . , s) are positive. Since H is

2-edge-connected, it follows from the definition of SH(e) that H/∪si=1M
′
i is a circuit, and

each M ′
i is also 2-edge-connected. Since |EN(M ′

1)| = |EN(H)| − 1 ≥ 2 is even, M ′
1 has a

generalized barbell H ′1 containing all edges of ∪f∈EN (M ′1)
SM ′1(f) by Lemma 3.4.1, and H ′1

has a signed circuit double cover F1 by Lemma 3.3.3.

Since EN(M ′
1) = EN(H)− {e} and SM ′1(f) ⊇ SH(f) for any f ∈ EN(M ′

1),

∪f∈EN (H)SH(f) ⊆ SH(e) ∪ (∪f∈EN (M ′1)
SM ′1(f)).

By Claim 11, H has a signed circuit C containing all edges of SH(e), and thus F = F1∪{C}
is a desired signed circuit {0, 1, 2, 3}-cover of H, a contradiction. This complete the proof

of the lemma.

Lemma 3.4.3 (see [33]). Let G be a signed graph. Then |EN(G)| = εN(G) if and only if

for every edge cut T of G, |EN(G) ∩ T | ≤ |T |
2
.

Proof. Let G be an s-bridgeless signed graph with |EN(G)| = εN(G). Without loss of

generality, we further assume that G is connected. Since G is s-bridgeless, we have

|EN(G)| 6= 1. If |EN(G)| = 0, then G is a 2-edge-connected unsigned graph. The lemma

is trivial, and thus assume that |EN(G)| ≥ 2.

Denote G1 = G−B(G)− (∪e∈EN (G)SG(e)). By the definitions of B(G) and SG(e), G1

contains no negative edges of G and is bridgeless. To construct G2, let H = T + EN(G),
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where T is a spanning tree ofG−EN(G) (the existence of T is guaranteed by Lemma 3.4.3).

We have the following observations:

(1) EN(G) = EN(H);

(2) Bg(G) ⊆ Bg(H);

(3) Bs(G) ⊆ Bs(H);

(4) SG(e) ⊆ SH(e) for each e ∈ EN(G).

By Lemma 3.4.2, H has a signed circuit {0, 1, 2, 3}-cover F2 such that each edge of

Bs(H) ∪ (∪e∈EN (H)SH(e)) (⊇ Bs(G) ∪ (∪e∈EN (G)SG(e))) is covered by F2 at least once.

Let G2 = G[∪C∈F2E(C)]. Since G is s-bridgeless, Bs(G) = B(G) and thus E(G) =

E(G1)∪E(G2). It is obvious that G2−EN(G) is acyclic and F2 is a desired signed circuit

{1, 2, 3}-cover of G2.

In particular, if G is g-bridgeless with even negativeness, then Bg(G) = B(G) and

by Lemma 3.4.1, H has a generalized barbell, denoted by G2, containing all edges of

Bg(H) ∪ (∪e∈EN (H)SH(e)) (⊇ Bg(G) ∪ (∪e∈EN (G)SG(e))). Thus E(G) = E(G1) ∪ E(G2),

G2 − EN(G) is acyclic and by Lemma 3.3.3, G2 has a signed circuit double cover. This

proves Lemma 3.2.3.

3.5 Proof of Theorem 3.2.2

In this section, we complete the proof of Theorems 3.2.2 by applying Lemma 3.2.3. Let

G be an s-bridgeless signed graph with εN(G) > 0. We only need to consider the case

|EN(G)| = εN(G) since the existence and the length of a signed circuit cover are two

invariants under the switching operations.

Since G is s-bridgeless and εN(G) > 0, we have that |EN(G)| = εN(G) ≥ 2. If G

contains positive loops, then we may consider the subgraph obtained from G by deleting

all positive loops. Thus we further assume that G contains no positive loops.
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By Lemma 3.2.3, G has a bridgeless unsigned subgraph G1 and a signed subgraph

G2 such that E(G1) ∪E(G2) = E(G), G2 −EN(G) is acyclic and G2 has a signed circuit

{1, 2, . . . , k}-cover F2, where k = 2 if G is g-bridgeless with even negativeness and k = 3

otherwise.

Note that E(G1) ⊆ G−EN(G) and thus E(G1)∩E(G2) ⊆ E(G2)−EN(G) is acyclic.

Hence we have the following two inequalities.

|E(G1)|+ |E(G2)| = |E(G1) ∪ E(G2)|+ |E(G1) ∩ E(G2)|
≤ |E(G)|+ |V (G)| − 1. (3.1)

|E(G2)| ≤ (|V (G)| − 1) + |EN(G)| = |V (G)| − 1 + εN(G). (3.2)

Let F ′2 be a subset of F2 such that F ′2 is still a signed circuit cover of G2 and the

number of signed circuits of F ′2 is as small as possible. We have the following claim.

Claim 15. `(F ′2) = |E(G2)| ≤ k|E(G2)| − 2(k − 1).

Proof. Let t be the number of signed circuits in F ′2. Since |EN(G2)| = |EN(G)| ≥ 2,

t ≥ 1. By the choice of F ′2, every signed circuit in F ′2 has an edge which is covered

by F ′2 exactly once, and so G2 has at least t edges which are covered by F ′2 exactly

once. Note that k = 2 or 3, and each signed circuit in F2 is of length at least 2 since

G has no positive loops. If t = 1, then G2 is the unique signed circuit in F ′2, and thus

`(F ′2) = |E(G2)| ≤ k|E(G2)| − 2(k − 1). If t ≥ 2, then `(F ′2) ≤ k(|E(G2)| − t) + t =

k|E(G2)| − (k − 1)t ≤ k|E(G2)| − 2(k − 1).

Since G1 is bridgeless and unsigned, it follows from Theorem 1.4.3 and 1.4.5 that G1

has a circuit cover F1 with total length

`(F1) ≤ min
{5

3
|E(G1)|, |E(G1)|+ |V (G1)| − 1

}
. (3.3)

Therefore, F = F1∪F ′2 is a signed circuit cover of G and by Claim 15 and Equation (3.3)
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together with Equations (3.1) and (3.2), the total length of F satisfies that

`(F) = `(F1) + `(F ′2)

≤ min
{5

3
|E(G1)|, |E(G1)|+ |V (G1)| − 1

}
+ k|E(G2)| − 2(k − 1)

≤ min
{5

3
(|E(G)|+ |V (G)| − 1) + (k − 5

3
)(|V (G)| − 1 + εN(G))− 2(k − 1),

(|E(G)|+ |V (G)| − 1) + (|V (G)| − 1) + (k − 1)(|V (G)| − 1 + εN(G))− 2(k − 1)
}

= min
{5

3
|E(G)|+ k|V (G)|+ (k − 5

3
)εN(G)− (3k − 2),

|E(G)|+ (k + 1)|V (G)|+ (k − 1)εN(G)− (3k − 1)
}
.

This completes the proof of Theorem 3.2.2.



Chapter 4

Vector Flows and Integer Flows

4.1 Notation and Terminology

Let (D,Φ) be a vector S1-flow of a graph G with flow values

{Φ(e) : e ∈ E(G)} = {±α1,±α2, . . . ,±αb},

where the set {α1,α2, . . . ,αb} consists of b pairwise linearly independent vectors of S1.

We may further assume {Φ(e) : e ∈ E(G)} = {α1,α2, . . . ,αk} since otherwise we may

reverse the orientations of all edges with flow values −αi and negate their flow values.

An edge e is an αi-edge of G if f(e) = αi. For each 1 ≤ i ≤ b, we denote the collection

of all αi-edges by Ei(G).

Definition 4.1.1. Let (D,Φ) be a vector S1-flow of a graph G and {α1,α2, . . . ,αb} be

the set of flow values. For each vertex v of G, define a vector by

ε(v) =< ε1(v), ε2(v), . . . , εb(v) >,

where εi(v) = ε+i (v)− ε−i (v), ε+i (v) = |E+(v) ∩ Ei(G)|, and ε−i (v) = |E−(v) ∩ Ei(G)| for

each 1 ≤ i ≤ b. The vector ε(v) is the balanced vector at vertex v. A vertex v is trivial

if ε(v) = 0, and is unsplittable if either ε+i (v) or ε−i (v) is zero for each 1 ≤ i ≤ b. The

41



CHAPTER 4. VECTOR FLOWS AND INTEGER FLOWS 42

balanced equation of a vertex v is defined as

ε1(v)α1 + ε2(v)α2 + · · ·+ εb(v)αb = 0. (4.1)

Let S(Φ) be the linear subspace of Rb generated by all balanced vectors of (D,Φ) of G.

The rank of the subspace S(Φ), denoted rank(Φ), is also defined as the rank of the vector

S1-flow (D,Φ).

4.2 Vector S1-flows of the dual of unit distance graph

In [45], Thomassen characterized planar graphs admitting vector S1-flows as follows.

Lemma 4.2.1 (Thomassen [45]). Let G be a planar graph. Then G admits a vector S1-

flow if and only if the dual graph G∗ is homomorphic to a subgraph of a unit distance

graph, where a unit distance graph is a graph whose vertices are points in Euclidian plane

R2 such that two vertices are adjacent if and only if they have distance 1.

Based on Lemma 4.2.1, Thomassen [45] constructed a family of graphs that admit

vector S1-flows but no integer 3-NZFs. One of them, denoted by G, is illustrated in

Figure 4.1-(a). The graph G admits a vector S1-flow since its dual graph is homomorphic

to a unit distance graph G∗ (see Figure 4.1-(b)). With no confusion and slight abuse of

notation, let G∗ be the dual of G. Note that G∗ is the Hajós graph [4] with chromatic

number 4. By Tutte’s Theorem [49], G admits an integer 4-NZF but no integer 3-NZF.

In fact, G∗ can be obtained from two K4 by Hajós construction. Repeatedly adding K4

to G∗ by Hajós construction, we can construct an infinite family of counterexamples.

Since G∗ is a unit distance graph, each edge of G∗ can be considered as a unit vector

under some orientation D∗. Observe that there are seven pairwise linearly independent

unit vectors among 11 edges of G∗. If we associate the vectors and orientations of edges

in G∗ to its dual edges in G, respectively, then we obtain a vector S1-flow of G with

orientation D. From Figure 4.1-(b), one can easily see that the following is the set of all

balanced vectors of the vector S1-flow

{± < 1, 1, 1, 0, 0, 0, 0 >, ± < 0, 0, 0, 0, 1, 1, 1 >, ± < 1, 1, 0, 1, 0, 1, 1 >}.
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(a): graph G (b): graph G∗

Figure 4.1: Thomassen’s counterexample G

Thus, the rank of the vector flow is three since they are linearly independent.

Inspired by Theorem 1.5.7 and the above discussion related to the counterexample,

we propose the following problem.

Problem 4.2.2. Find an integer r such that if a graph G admits a vector S1-flow (D,Φ)

with rank at most r, then G admits an integer 4-NZF.

Jain [22] also proposed another vector flow conjecture related to Tutte’s 5-flow con-

jecture. It says that every bridgeless graph admits a vector S2-flow. Inspired by this, we

proposed another problem as follows.

Problem 4.2.3. Find an integer r such that if a graph G admits a vector S2-flow (D,Φ)

with rank at most r, then G admits an integer 5-NZF.
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4.3 Proof of Theorem 1.5.7

4.3.1 Vector S1-flows with rank one

The following lemma is a direct consequence of Definition 2.2.1.

Lemma 4.3.1. Let (D,Φ) be a vector S1-flow of a graph G. Let v ∈ V (G) and A ⊆ E(v)

such that ∑
e∈A∩E+

D(v)

Φ(e) =
∑

e∈A∩E−D(v)

Φ(e).

Then

(1) The graph G(v;A) admits a vector S1-flow (DA,ΦA) and S(ΦA) = S(Φ).

(2) If G(v;A) has a modulo k-orientation, then so does G.

Definition 4.3.2 (Elementary Balanced Vector). Let (D,Φ) be a vector S1-flow

of a graph G with set of flow values {α1,α2, . . . ,αb} and rank(Φ) ≤ 1. Let ε =<

ε1, ε2, . . . , εb > be a vector such that either ε = 0 when S(Φ) = {0}, or ε is a nonzero

vector in S(Φ) satisfying that

(1) all coordinates of ε are integers;

(2) subject to (1), ‖ε‖ =
∑b

i=1 |εi| is as small as possible.

Then the vector ε is the elementary balanced vector of (D,Φ). Clearly, ε is unique

up to scalar multiplication of −1. Its length k∗ is defined by

k∗ = ‖ε‖ =
b∑
i=1

|εi| .

In the following context, if (D,Φ) is a vector S1-flow of a graph G, then we denote

by {α1,α2, . . . ,αb} the set of flow values. If rank(Φ) = 1, we further denote by ε =<

ε1, ε2, . . . , εb > the elementary balanced vector and k∗ the length of ε.
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Lemma 4.3.3. Let (D,Φ) be a vector S1-flow of a graph G with rank(Φ) ≤ 1. If G has

at least one nontrivial vertex, then k∗ ≥ 3 and for each vertex v, either v is unsplittable

and deg(v) is a multiple of k∗, or v is splittable. Furthermore, if v is unsplittable, then v

can be split into deg(v)
k∗

vertices such that the balanced vector of each new vertex is either

ε or −ε.

Proof. (1) Since G has at least one nontrivial vertex, ε 6= 0. Note that k∗ 6= 1, 2 by

Equation (4.1) and Definition 4.3.2. This implies k∗ ≥ 3.

(2) It suffices to prove that each unsplittable vertex v has the balanced vector ε(v) = sε

for some integer s. Since (D,Φ) has rank one, for each vertex v in G, there exists some

s ∈ Q such that ε(v) = sε. Suppose to the contrary s = p
q
, where p, q are integers, |q| > 1

and gcd(p, q) = 1. Then there exist two integers a, b such that p = aq+b and 0 < |b| < |q|.
Thus, b

q
ε = ε(v)−aε is an integer vector but has smaller length than ε, which contradicts

the definition of ε.

Let G be a graph admitting a vector S1-flow (D,Φ) with rank one. If G contains some

splittable nontrivial vertex v (that is, there exists at least one pair of edges incident with

v with the same flow value but opposite orientations), then one can repeatedly split all

possible pairs of edges at v and other splittable vertices until no more splittable vertices.

Let G′ be the resulting graph. By Lemma 4.3.3-(2), for each vertex v of G′, one can split v

into
degG′ (v)

k∗
vertices such that each new vertex has degree k∗ and has the balanced vector

either ε or −ε. The resulting graph is defined as the core of G.

The following is a straightforward observation of Lemma 4.3.1 and definition of core.

Proposition 4.3.4. Let G be a graph admitting a vector S1-flow (D,Φ) with rank one.

If H is the core of G, then

(1) it is a k∗-regular bipartite graph with vertex bipartition (A,B), where

A = {v ∈ V (H) : ε(v) = ε} and B = {v ∈ V (H) : ε(v) = −ε}.

(2) it admits a vector S1-flow, say (Dh,Φh), and S(Φh) = S(Φ).
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(3) it has a modulo k∗-orientation and therefore G has a modulo k∗-orientation.

(4) for each 1 ≤ i ≤ b, Ei(H) has a decomposition into |εi| perfect matchings.

Remark. Orienting all edges of H from A to B, the resulting orientation is a modulo

k∗-orientation of H. Meanwhile, Ei(H) has a perfect matching decomposition since the

subgraph induced by Ei(G) is an |εi|-regular bipartite spanning subgraph of H.

Theorem 4.3.5. If a graph G admits a vector S1-flow (D,Φ) with rank(Φ) ≤ 1, then

either G is eulerian and thus admits an integer 2-NZF, or G admits an integer circular

(2 + 1
p
)-flow for some integer p where k∗ = 2p+ 1 and p ≥ 1.

Proof. If k∗ = 0, then v is trivial and degG(v) is even for each vertex v of G. This implies

that G is eulerian and thus admits an integer 2-NZF.

Now we assume k∗ > 0. Then G contains at least one nontrivial vertex and thus G

admits a modulo k∗-orientation by Proposition 4.3.4-(3). If k∗ is even, then G is eulerian

and admits an integer 2-NZF. Otherwise, by Theorem 1.3.11, G admits an integer circular

(2 + 1
p
)-flow with k∗ = 2p+ 1.

4.3.2 Some useful lemmas

In this subsection, we present some lemmas which will be applied in the proof of the case

of vector S1-flows with rank two.

Lemma 4.3.6. Let {α1,α2, . . . ,αb} be a set of b pairwise linearly independent vectors

in S1. Then the following statements hold.

(1) If
∑b

i=1 εiαi = 0 for some nonzero integers ε1, ε2, . . . , εb, then

(1-a) for each j with 1 ≤ j ≤ b,

|εj| <
∑
i 6=j

|εi|.
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(1-b)
∑b

i=1 |εi| 6= 1, 2, 4.

(2) If α1 + tα2 + tα3 = 0 for some integer t, then for any nonzero integers ε2, ε3, ε4

with |ε4| = 1, we have

ε2α2 + ε3α3 + ε4α4 6= 0.

Proof. (1-a) Note that b ≥ 3 since each εi is nonzero. For each j with 1 ≤ j ≤ b, we

have εjαj = −
∑

i 6=j εiαi. Thus,

|εj| = |εjαj| = |
∑
i 6=j

εiαi| ≤ |
∑
i 6=j

|εi|,

with equality holds only if all αi’s are pairwise linearly dependent. Thus, |εj| <
∑

i 6=j |εi|.

(1-b) Clearly,
∑b

i=1 |εi| 6= 1, 2. Suppose to the contrary
∑b

i=1 |εi| = 4. By (1-a),

2|εj| <
∑b

i=1 |εi| = 4 and therefore |εj| ≤ 1 for each j = 1, 2, . . . , b. Without lose of

generality, we assume |εi| = 1 for each i = 1, 2, 3, 4 and εj = 0 for each j ≥ 5. Then

ε1α1 + ε2α2 + ε3α3 + ε4α4 = 0.

This implies that the vectors ε1α1, ε2α2, ε3α3 and ε4α4 form a parallelogram in R2, which

contradicts the assumption that they are pairwise linearly independent vectors.

(2) Suppose ε2α2 + ε3α3 + ε4α4 = 0. Since ε4 = ±1, we have |ε2| = |ε3| by (1-a). If

ε2 = −ε3, then by equations α1 + tα2 + tα3 = 0 and ε2α2 − ε2α3 + ε4α4 = 0, we have

ε2α1 + 2tε2α2 + tε4α4 = 0.

Since |ε2| ≥ 1, |t| ≥ 1, and |ε4| = 1, we have

|2tε2| = |tε2|+ |tε2| ≥ |ε2|+ |tε4|,

which contradicts (1-a).

If ε2 = ε3, then by equations α1 + tα2 + tα3 = 0 and ε2α2 + ε2α3 + ε4α4 = 0, we have

ε2α1 + tε4α4 = 0,

implying that α1 and α4 are linearly dependent, a contradiction.
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Lemma 4.3.7. Let (D,Φ) be a vector S1-flow of a graph G with rank(Φ) ≤ 1. If k∗ ≤ 5,

then G has a modulo 3-orientation D′ such that either D′ = D or D′ can be obtained from

D by reversing the orientations of all edges of some Ei(G)’s.

Proof. If k∗ = 0, let D′ = D and D itself is a modulo 3-orientation of G. Otherwise, G

contains at least one nontrivial vertex and k∗ ∈ {3, 5} by Lemma 4.3.6-(1-b). Let H be

the core of G. By Proposition 4.3.4-(2), H admits a vector S1-flow, say (Dh,Φh). Based

on the definition of the core, it suffices to show that H has a modulo 3-orientation D′h
which can be obtained from Dh by reversing the orientations of all edges of some Ei(H)’s.

By Proposition 4.3.4-(1),

|deg+
Dh

(v)− deg−Dh
(v)| = |

b∑
i=1

εi(v)| = |
b∑
i=1

εi|.

Thus, if
∑b

i=1 εi ≡ 0 (mod 3), then let D′h = Dh and Dh itself is a modulo 3-orientation

of H. Next we assume
∑b

i=1 εi 6≡ 0 (mod 3).

If k∗ = 3, by Lemma 4.3.6-(1-a), ε has exactly three coordinates with absolute value

equal to 1. Without loss of generality, we assume |εi| = 1 for each i = 1, 2, 3 and εj = 0

for all j with 4 ≤ j ≤ b. By Proposition 4.3.4-(4), Ei(H) is a perfect matching of H for

each i = 1, 2, 3. Thus, we can obtain a modulo 3-orientation from Dh by reversing the

orientation of all edges of Ei(H) for each i with εi = −1.

Now we assume k∗ = 5. Then |εi| ≤ 2 for each i by Lemma 4.3.6-(1-a). Note that

Ei(H) is a perfect matching if |εi| = 1. We first assume |εi| = |εj| = 1 for some i 6= j. If

εi = εj, then we reverse the orientations of all edges of Ei(H) and all edges of Et(H) for

each t 6= i, j and εt < 0. If εi = −εj, we reverse the orientations of all edges of Et(H) for

each t 6= i, j and εt < 0. In either case, we obtain a modulo 3-orientation D′h of H.

Now we assume that ε has at most one coordinate with absolute value 1. Without

loss of generality, we assume either ε = (1,−2, 2) or ε = (1, 2, 2). By Proposition 4.3.4-

(4), E2(H) and E3(H) induce two edge-disjoint spanning 2-regular subgraphs of H, and

E1(H) is a perfect matching. If ε = (1,−2, 2), we reverse the orientations of all edges of

E3(H). If ε = (1, 2, 2), we reverse the orientations of all edges of E1(H). In either case,
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one can obtain a modulo 3-orientation D′h of H.

Lemma 4.3.8. Let (D,Φ) be a vector S1-flow of a graph G with rank one. If the vector

ε =< ε1, ε2, . . . , εa, . . . , εb > satisfies |
∑

j>a εi| ≥ 2 for some 1 ≤ a < b, then G has a

modulo 3-orientation D′ such that D′ agrees with D on
⋃a
i=1Ei(G).

Proof. Similar to the discussion in Lemma 4.3.7, it suffices to prove that the core of G,

say H, has a modulo 3-orientation D′h such that D′h agrees with Dh on
⋃a
i=1Ei(H), where

H is the core of G. We further assume
∑b

i=1 εi ≡ t (mod 3) for some t = 1 or 2.

By Proposition 4.3.4-(1) and |
∑

j>a εi| ≥ 2, H has a vertex bipartition (A,B) and

has two edge-disjoint perfect matchings, say M1 and M2, such that M1 ⊆ Ej1(H), M2 ⊆
Ej2(H) for some j1, j2 > a (it is possible that j1 = j2), and, M1,M2 have the same

orientation either both from A to B or both from B to A. One can obtain a modulo 3-

orientation by reversing the orientations of all edges of 2t (mod 3) members of {M1,M2}
in Dh.

Lemma 4.3.9. Let (D,Φ) be a vector S1-flow of a graph G with rank two. Let {η,φ} be

two integer vectors such that

(1) {η,φ} is a basis of S(Φ);

(2) η =< η1 = 1, η2, . . . , ηa, 0, . . . , 0 > and φ =< φ1 = 0, φ2, . . . . . . , φb >;

(3) the greatest common divisor of nonzero coordinates in φ is 1.

If V (G) can be partitioned into V1 and V2, where

V1 = {v ∈ V (G) : ε(v) = ±η} and V2 = {v ∈ V (G) : ε(v) = ±φ},

then G has a modulo 3-orientation if one of the following statements is satisfied:

(1)
∑a

i=1 |ηi| ≤ 5 and |
∑b

j>a φj| ≥ 2.

(2)
∑a

i=1 ηi ≡ 2 (mod 3), and for some 2 ≤ j ≤ a, ηj = 1 and |φj| ≥ 2.
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Proof. We can assume that each vertex of G is unsplittable by Lemma 4.3.1-(2). Let

V11 = {v ∈ V (G) : ε(v) = η}, V12 = {v ∈ V (G) : ε(v) = −η},
V21 = {v ∈ V (G) : ε(v) = φ}, V22 = {v ∈ V (G) : ε(v) = −φ}.

Thus, G[Vj] is a bipartite graph with vertex bipartition (Vj1, Vj2) for each j = 1, 2. Note

that E1(G) is a perfect matching of G[V1]. Thus, |V11| = |V12| = 1
2
|V1| and the balanced

vector of the edge-cut [V1, V2] is∑
v∈V1

ε(v) =
∑
v∈V11

η +
∑
v∈V12

−η = 0. (4.2)

Case I.
∑a

i=1 |ηi| ≤ 5 and |
∑b

j>a φj| ≥ 2.

Let Gi be the graph obtained from G by contracting V3−i into a new vertex v3−i for

each i = 1, 2. Let (D1,Φ1) be the restriction of the vector S1-flow (D,Φ) of G to G1.

Then (D1,Φ1) is a vector S1-flow of G1. By Equation (4.2), ε(v2) = 0 and thus (D1,Φ1)

is a vector S1-flow with rank one. Since η1 = 1, the vector η is the elementary balanced

vector of (D1,Φ1).

Since
∑a

i=1 |ηi| ≤ 5, by Lemma 4.3.7, G1 has a modulo 3-orientation D′1 such that

either D′1 = D1 or D′1 can be obtained from D1 by reversing the orientations of all edges of

some Eij(G1)’s. Denote by Eij(G1) with j = 1, . . . , t the set of all edges whose orientations

have been reversed. Note that ij ≤ a.

Let D′ be the orientation obtained from D by reversing the orientations of all edges

of
⋃t
j=1Eij(G). Thus, (D′,Φ′) is a vector S1-flow of G where Φ′(e) = −Φ(e) if e ∈⋃t

j=1Eij(G) and Φ′(e) = Φ(e) otherwise. For each i ≤ b, let φ′i = −φi if the orientations

of all edges of Ei(G) are reversed and φ′i = φi otherwise. Since ij ≤ a for each j = 1, . . . , t,

the balanced vector of each vertex v ∈ V2 is either φ′ or −φ′, where

φ′ =< 0, φ′2, . . . , φ
′
a, φa+1, . . . , φb > .

Similarly, G2 admits a vector S1-flow (D2,Φ2) which is a restriction of (D′,Φ′) with

rank one. Since the greatest common divisor of nonzero coordinates of φ is 1, the new
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vector φ′ is the elementary balanced vector of (D2,Φ2). Since |
∑b

j>a φ
′
j| = |

∑b
j>a φj| ≥ 2,

by Lemma 4.3.8, G2 has a modulo 3-orientation D′2 such that D′2 agrees with D2 on⋃a
i=1Ei(G2). Since D′1 and D2 are restrictions of D′, D′1 agrees with D2 on [V1, V2] ⊆⋃a
i=1Ei(G2). Thus, D′1 agrees with D′2 on [V1, V2]. Note that D′1∩D′2 = [V1, V2]. Therefore,

the union orientation D′1 ∪D′2 is a proper modulo 3-orientation of the graph G.

Case II.
∑a

i=1 ηi ≡ 2 (mod 3), and for some j with 2 ≤ j ≤ a, ηj = 1 and |φj| ≥ 2.

Since each vertex of G is balanced with balanced vector either ±η or ±φ, for each

vertex v ∈ V1 and each vertex u ∈ V2, we have

|deg+
D(v)− deg−D(v)| = |

a∑
i=1

ηi| and |deg+
D(u)− deg−D(u)| = |

b∑
i=1

φi|.

Since η1 = 1 and φ1 = 0, we know that E1(G) is a perfect matching in G[V1] and

no vertex in V2 is incident with an α1-edge. Let D1 be the orientation obtained from D

by reversing the orientations of all α1-edges of E1(G). Since
∑a

i=1 ηi ≡ 2 (mod 3), for

each vertex v ∈ V1 and each vertex u ∈ V2, we have |deg+
D1

(v) − deg−D1
(v)| ≡ 0 (mod 3),

deg+
D1

(u) = deg+
D(u), and deg−D1

(u) = deg−D(u).

If
∑b

i=2 φi ≡ 0 (mod 3), then D1 is a modulo 3-orientation of G, done. Now we

assume
∑b

i=2 φi 6≡ 0 (mod 3) and regard D1 as digraphs. Let L be the subgraph of D1

induced by (E1(G) ∪Ej(G)) ∩ (E(G[V1]) ∪E(V1, V2)), the set of all α1-edges and all αj-

edges with at least one endpoint in V1. Since η1 = ηj = 1, for each vertex v ∈ V1 we have

deg+
L(v) = deg−L(v) = 1 and for each vertex u in V2 ∩ V (L) we have either deg+

L(u) = 0 or

deg−L(u) = 0. Therefore, L can be decomposed into a collection of edge-disjoint directed

circuits with all vertices in V1 and directed paths with both endvertices in V2. Note that

all directed circuits are contained in G[V1]. Let {P1, . . . , Pt} be the collection of directed

paths in L and denote by xi and yi the head and tail of Pi, respectively, for each 1 ≤ i ≤ t.

Construct a new digraph D2 from D1 by replacing each directed path Pi with a new

arc ei oriented from yi to xi and assigned αj for each i = 1, 2, . . . , t. Let K be the

underlying graph of D2 and Φ2 be the resulting “flow” function of K. Note that (D2,Φ2)

is not a vector S1-flow of K since all the vertices of V1 are not balanced. But each vertex

of V2 is balanced with balanced vector either φ or −φ in K. By the construction of
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K, each αj-edge of K is either in K[V2] or in the alternating (α1,αj)-circuits of K[V1].

Thus, the subgraph induced by Ej(K[V2]) is a |φj|-regular bipartite graph with bipartition

(V21, V22). Since |φj| ≥ 2, the graph K has at least two edge-disjoint perfect matchings,

say M1 and M2, such that M1 and M2 have the same orientation which is either both

from V21 to V22, or both from V22 to V21.

By the definition of D2,

|deg+
D2

(v)− deg−D2
(v)| = |deg+

D1
(v)− deg−D1

(v)| ≡ 0 (mod 3)

for each v ∈ V1, and

|deg+
Dh

(2)− deg−D2
(u)| = |deg+

D1
(u)− deg−D1

(u)| ≡ r (mod 3)

for each u ∈ V2, where r = 1 or 2. One can obtain a modulo 3-orientation D′2 of K by

reversing the orientations of 2r (mod 3) members of {M1,M2}.

Now we construct D′1 from D1 as follows: for each reversed edge e in D′2, if e = ei for

some 1 ≤ i ≤ t, then we reverse the orientations of all edges of Pi in D1; otherwise, we

reverse the orientation of e in D1. Finally, we obtain a desired modulo 3-orientation D′1
of G.

4.3.3 Vector S1-flows with rank two

In this subsection, we will prove Theorem 1.5.7 for the case of vector flows with rank two.

Theorem 4.3.10. If a graph G has a vector S1-flow (D,Φ) with rank two, then G admits

an integer 3-NZF.

Proof. Note that G is bridgeless since G admits a vector S1-flow. By Theorem 1.3.11,

it is equivalent to show that G admits a modulo 3-orientation. By Lemma 4.3.1-(2), we

can assume that each vertex of G is unsplittable. Note that we can further assume that

G has an odd-k-edge cut with 2 < k < 7. Otherwise, by Theorem 1.5.1, G admits an

integer 3-NZF. Denote the balanced vector of the smallest odd-edge cut by

η =< η1, η2, . . . , ηb > .
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Thus, ‖η‖ ∈ {3, 5}. In either case, by Lemma 4.3.6-(1-a), there exists some i such that

|ηi| = 1. Without lose of generality, assume |η1| = 1 and η =< η1, η2, . . . , ηa, 0, . . . , 0 >,

where a ≤ b and ηi 6= 0 for each 1 ≤ i ≤ a. We further assume ηi ≥ 0 for each i ≤ b,

otherwise we reverse the orientations of all αi-edges if ηi < 0 and negate their flow values.

For each α1-edge uv directed from u to v in D, we subdivide this edge into a path of

length 3 by inserting two new vertices w1 and w2. Denote this path by uw1w2v. Orient

w1w2 from w1 to w2 and assign w1w2 with the vector α1. Replace w1u with ‖η‖ − 1

multiple edges oriented from w1 to u and assign these ‖η‖ − 1 edges with vectors in

{α2, . . . ,αb} such that w1 is balanced with the balanced vector η. Similarly, replace vw2

with ‖η‖ − 1 multiple edges oriented from v to w2 and assign these ‖η‖ − 1 edges with

vectors in {α2, . . . ,αb} such that w2 is balanced with the balanced vector −η. Denote

the resulting graph by G′. Note that G′ admits a vector S1-flow, say (D′,Φ′), and has

the same balanced vector space as G. Moreover, if G′ has a modulo 3-orientation, then

G has a modulo 3-orientation. Similarly, by Lemma 4.3.1-(2), we can assume that each

vertex in G′ is unsplittable.

Now we choose a vector φ =< φ1, φ2, . . . , φb > of S(Φ′) such that

(1) each coordinate φi is an integer and φ1 = 0;

(2) {η,φ} is a basis of S(Φ′);

(3) subject to (1) and (2), ‖φ‖ is as small as possible.

Remark. Note that such φ does exist in (D′,Φ′) because there are some vertices with

the first coordinate equal to zero in their balanced vectors. Moreover, all those balanced

vectors are linearly independent of η.

Claim 16. For each vertex v ∈ V (G′), the balanced vector of v is either η or −η or is

an integer multiple of φ.

Proof. If v is incident with an α1-edge, then by the definition of G′, ε(v) is either η or −η.

Otherwise, we have ε1(v) = 0. Since {η,φ} is a basis of S(Φ′), we have ε(v) = pη + qφ
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for some rational numbers p and q. Since ε1(v) = φ1 = 0 and η1 = 1, we have p = 0.

Thus, ε(v) = qφ. Note that the greatest common divisor of nonzero coordinates in φ

is 1 by the minimality of ‖φ‖. Since each φi and each εi(v) are integers, q must be an

integer.

Note that ηj = 0 if j ≥ a+ 1. Thus, if φj < 0 for some j ≥ a+ 1, we may reverse the

orientations of all αj-edges and negate the flow values to make φj > 0 without affecting

η. Thus, we can assume φj ≥ 0 for each j ≥ a + 1. By relabeling αi’s, we may further

assume η2 ≥ · · · ≥ ηa > 0 and φa+1 ≥ · · · ≥ φb ≥ 0. In summary, we assume

η =< η1, . . . , ηa, 0, . . . , 0 > and φ =< φ1, φ2, . . . , φb >,

which satisfy the following:

(1) η1 = 1, ‖η‖ ∈ {3, 5}, and η2 ≥ η3 ≥ · · · ≥ ηa > 0.

(2) φ1 = 0 and φa+1 ≥ · · · ≥ φb ≥ 0.

Since G′ is unsplittable, combined with Claim 16 and Lemma 4.3.3-(2) we can further

split each vertex v whose balanced vector is qφ into |q| vertices such that the balanced

vector of each new vertex is either φ or −φ. Let H denote the resulting graph. Thus, H

admits a vector S1-flow by Lemma 4.3.1-(1), say (Dh,Φh), such that the balanced vector

of each vertex is in {±η,±φ}. Therefore, V (H) can be partitioned into V1 and V2, where

V1 = {v ∈ V (H) : ε(v) = ±η} and V2 = {v ∈ V (H) : ε(v) = ±φ}.

By Lemma 4.3.1-(2), it suffices to show that H has a modulo 3-orientation. Suppose,

in the following context, that H does not have a modulo 3-orientation.

Claim 17.
∑b

j=a+1 φj ≤ 1 and a ≥ 4. Moreover,

(1) φa+1 ∈ {0, 1} and φa+2 = · · · = φb = 0.

(2) ‖η‖ = 5 and either η =< 1, 1, 1, 1, 1, 0, . . . , 0 > or η =< 1, 2, 1, 1, 0, . . . , 0 >.
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Proof. If
∑b

j=a+1 φj ≥ 2, then by Lemma 4.3.9-(1), H has a modulo 3-orientation since∑a
i=1 |ηi| ≤ 5. This yields a contradiction. Thus,

∑b
j=a+1 φj ≤ 1 and thus φa+1 ∈ {0, 1},

φa+2 = · · · = φb = 0.

If a ≤ 3, then a = 3 since α1 and α2 are linearly independent. Since ‖η‖ = 3 or 5,

we have η2 = η3. Denote t = η2. Thus, α1 + tα2 + tα3 = 0. Since φ1 = 0, we have

φ4 6= 0 and thus |φ4| = 1. Now we have φ2α2 + φ3α3 + φ4α4 = 0 where |φ4| = 1, a

contradiction to Lemma 4.3.6-(2). Therefore, a ≥ 4. This implies ‖η‖ = 5 and either

η =< 1, 1, 1, 1, 1, 0, . . . , 0 > or η =< 1, 2, 1, 1, 0, . . . , 0 >.

Claim 18. ‖φ‖ ≥ 5.

Proof. Suppose ‖φ‖ < 5. By Lemma 4.3.6-(1), ‖φ‖ = 3 and φ has exactly three coordi-

nates with absolute value equal to 1. If there exist i and j such that φi = φj = t ∈ {−1, 1}
and 2 ≤ i < j ≤ a, then it is easy to see that (η − tφ) has length either 2 or 4, a contra-

diction to Lemma 4.3.6-(1-b). Otherwise, by Claim 17-(1), φa+1 ≤ 1 and thus φa+1 = 1,

and there exist i and j such that φi = −φj ∈ {−1, 1} and 2 ≤ i < j ≤ a. By Claim 17-(2),

ηj = 1. Now one can obtain a obtain a modulo 3-orientation of H by reversing the orien-

tations of all αk-edges for each k ∈ {j, a+ 1} with φk 6= φi. This is a contradiction.

Claim 19. ηj = |φj| = 1 for some j ∈ {2, 3, 4, 5} and φa+1 = 1.

Proof. Since H does not have a modulo 3-orientation, it follows from Lemma 4.3.9-(2)

that for each j = 2, . . . , a, if ηj = 1, then |φj| ≤ 1. Suppose |φj| = 0 for each j with

ηj = 1.

By Claim 17-(2), either η =< 1, 1, 1, 1, 1, 0, . . . , 0 > or η =< 1, 2, 1, 1, 0, . . . , 0 >.

Thus, φ3 = · · · = φa = 0. By Claim 17-(1), φa+1 ≤ 1 and φj = 0 for each j ≥ a+ 2. Thus,

φ2α2 + φaαa+1 = 0. Since α2 and αa+1 are linearly independent, φ2 = φa+1 = 0. This

implies that φ is a zero vector, a contradiction to the choice of φ. Therefore, there must

be some j ∈ {2, 3, 4, 5} such that ηj = |φj| = 1.

By Claim 17-(1), if φa+1 6= 1, then φa+1 = 0 and thus φi = 0 for each i ≥ a + 1. By

Claim 18,
∑a

i=1 |φi| ≥ 5 =
∑a

i=1 ηi, φ1 = 0, and there must exist some j ∈ {2, . . . , a}
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such that 1 ≤ ηj < |φj|. Since ηi = 1 implies |φi| ≤ 1, we have ηj ≥ 2 and |φj| ≥ 3. By

Claim 17, η =< 1, 2, 1, 1, 0, . . . , 0 > and thus j = 2. Now we have

φ2α2 + φ3α3 + φ4α4 = 0,

where |φ2| ≥ 3 and |φ3|, |φ4| ≤ 1, a contradiction to Lemma 4.3.6-(1-a). This proves

φa+1 = 1.

The final step.

If
∑b

i=2 φi ≡ 0 (mod 3), then one can obtain a modulo 3-orientation of H by reversing

the orientations of all edges of E1(H) in Dh since φ1 = 0, a contradiction.

If
∑b

i=2 φi ≡ 2 (mod 3), then one can obtain a modulo 3-orientation of H by reversing

the orientations of all edges of E1(H) ∪ Ea+1(H) in Dh since φa+1 = η1 = 1 and ηa+1 =

φ1 = 0, a contradiction again. Therefore,
∑b

i=2 φi ≡ 1 (mod 3).

By Claim 19, ηj = |φj| = 1 for some j ≤ a. Note that φa+1 = 1 and ηa+1 = 0.

If φj = 1, then we reverse the orientations of all edges in Ej(H) ∪ Ea+1(H) in Dh. and

otherwise reverse the orientations of all edges of Ej(H) in Dh. In either case, the resulting

orientation is a modulo 3-orientation of H, a contradiction. This completes the proof of

Theorem 4.3.10.

4.4 Proof of Theorem 1.5.9

Proof. We only need to prove the sufficiency by Theorem 1.5.4. Suppose that G admits a

vector S1-flow (D,Φ). Let v be a vertex of G of degree three. Without loss of generality,

we assume E−(v) = ∅. Denote {α1,α2,α3} = {Φ(e) : e ∈ E+(v)}. Thus,

α1 +α2 +α3 = 0. (4.3)

We further assume that no edges of G have flow value −αi for each i = 1, 2, 3 since

otherwise we can reverse the orientations of all (−αi)-edges and negate their flow values.

By Equation (4.3), we have the following claim.
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Claim 20. Let β = t1α+t2α2+t3α2 where t1, t2, and t3 are integers. Then the following

two statements are true.

(1) If β = 0, then t1 = t2 = t3.

(2) If |β| = 1, then β ∈ {±α1,±α2,±α3}.

Proof. Without loss of generality, we assume t1 ≤ t2 ≤ t3. By eliminating α1 using

Equation (4.3), β = (t2 − t1)α2 + (t3 − t1)α3

(1) If β = 0, then (t2 − t1)α2 + (t3 − t1)α3 = 0. Since α2 and α3 are linearly

independent, t2 − t1 = t3 − t1 = 0 implying t1 = t2 = t3.

(2) If |β| = 1, suppose to the contrary β 6∈ {±α1,±α2,±α3}. Then β is linearly

independent of α2 and α3. Thus, t2 − t1 6= 0 and t3 − t1 6= 0. By Lemma 4.3.6-(1-a),

we have |t2 − t1| = |t3 − t1|. Since t1 ≤ t2 ≤ t3, we have t2 − t1 = t3 − t1. Thus,

β = (t2 − t1)(α2 + α3) = −(t2 − t1)α1. Since |β| = |α1| = 1, we have t2 − t1 = |β| = 1

and β = −α1. This contradiction implies β ∈ {±α1,±α2,±α3}.

Claim 21. For each vertex u of degree three, {Φ(e) : e ∈ E(u)} = {α1,α2,α3}.

Proof. Since G[V3] is connected, it suffices to show that, for each vertex u of degree three

and adjacent to v, {Φ(e) : e ∈ E(u)} = {α1,α2,α3}. Without loss of generality, assume

Φ(vu) = α3. Since deg(u) = 3, there are two other vectors β1,β2 ∈ S1 such that

β1 + β2 −α3 = 0. (4.4)

Adding Equation (4.3) to Equation (4.4), we have

α1 +α2 + β1 + β2 = 0.

Since all vectors in S1 are unit vectors, the vectors α1, α2, β1, and β2 form a parallelogram

in R2. Thus, {β1,β2} = {−α1,−α2} and E+(u) = ∅ since there is no edge e in G having

Φ(e) = −αi for each i = 1, 2, 3. Therefore, {Φ(e) : e ∈ E(u)} = {α1,α2,α3}.

Claim 22. For each edge e of G, Φ(e) ∈ {α1,α2,α3}.
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Proof. Let E ′ = {e ∈ E(G) : Φ(e) 6= αi, for each i = 1, 2, 3} and G′ = G[E ′]. We only

need to show E ′ = ∅. Suppose to the contrary E ′ 6= ∅.

By Claim 21, G′ is a subgraph of G − V3 and thus is acyclic. If E ′ 6= ∅, then there

exists a vertex w of degree one in G′ since G′ is acyclic. Let wz be the edge in E ′ with

flow value β. Then except wz, the flow value of each other edge incident with w is αi for

some i ∈ {1, 2, 3}. Without lose of generality, we assume that wz is oriented from w to

z. Then the balanced vector of w is

ε(w) = β + r1α1 + r2α2 + r3α3 = 0,

where r1, r2, and r3 are integers. Thus, β = −r1α1 − r2α2 − r3α3. By Claim 20,

β ∈ {α1,α2,α3} because |β| = 1 and no edge has flow value −αi for each i = 1, . . . , k.

This contradicts the assumption that β 6∈ {α1,α2,α3}. Therefore, E ′ = ∅.

Claim 22 implies that the balanced vector of each vertex v is ε(v) = t1α1 + t2α2 +

t3α3 = 0 for some integers t1, t2, t3. By Claim 20, t1 = t2 = t3 and thus ε(v) = t1(α1 +

α2 + α3). This implies that the rank of S(Φ) is one. Therefore G admits an integer

3-NZF by Theorem 1.5.7.



Chapter 5

Even Factors of Graphs

In this chapter, our goal is to show that if a graph G has an even factor F , then it has

an even factor H such that

|E(H)| ≥ 4

7
(|E(G)|+ 1) +

1

7
|V2(G)|.

Without loss of generality, all graphs considered in our proof are connected, since the

inequality being considered as above is obviously additive over connected components.

Proof of Theorem 1.6.5. Let (G,F ) be a contra pair to Theorem 1.6.5 such that

(1) |E(G)| is minimized;

(2) subject to (1), m(G) =
∑

v∈V≥3(G)(deg(v)− 3) is minimized;

(3) subject to (1) and (2), |E(F )| is maximized;

(4) subject to (1)-(3), the number of components of F is as small as possible.

Claim 23. V2(G) is an independent subset of V (G).

Proof. Suppose that there are two vertices u, v ∈ V2(G) such that uv ∈ E(G). Let G′

(and F ′) be the graph obtained from G (and F ) by identifying u and v into a new vertex
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w and deleting the resulting loop. Clearly, |E(G′)| < |E(G)|, w ∈ V2(F ′), and F ′ is an

even factor of G′. By assumption (1), G′ has an even factor H ′ such that

|E(H ′)| ≥ 4

7
(|E(G′)|+ 1) +

1

7
|V2(G′)|.

LetH be the subgraph ofG induced by (E(H ′)− EH′(w))∪E(u)∪E(v). Since w ∈ V2(F ′),
H is an even factor of G with |E(H)| = |E(H ′)|+ 1. Note that |E(G)| = |E(G′)|+ 1 and

|V2(G)| = |V2(G′)|+ 1. Hence,

|E(H)| ≥
(

4

7
(|E(G′)|+ 1) +

1

7
|V2(G′)|

)
+ 1

=
4

7
|E(G)|+ 1

7
(|V2(G)| − 1) + 1

=
4

7
(|E(G)|+ 1) +

1

7
|V2(G)|+ 2

7

>
4

7
(|E(G)|+ 1) +

1

7
|V2(G)|

This contradicts the choice of (G,F ).

Claim 24. F is a 2-factor of G.

Proof. Suppose that one component I of F contains a vertex v such that degF (v) = 2t ≥ 4.

Since each component of F is an eulerian subgraph of G, we have an eulerian tour T from

I. We split v into t vertices of degree 2, each of which is incident with two consecutive

edges in T . Denote the resulting graphs by F ′ (from F ) and G′ (from G), respectively. By

assumption (2), (G′, F ′) is not a contra pair since |E(G′)| = |E(G)| and m(G′) < m(G).

Thus, G′ has an even factor H ′ such that

|E(H ′)| ≥ 4

7
(|E(G′)|+ 1) +

1

7
|V2(G′)|.

Note that |V2(G′)| = |V2(G)| + t > |V2(G)|. Let H be the subgraph of G induced by

E(H ′), then H is an even factor of G with |E(H)| = |E(H ′)|. Furthermore,

|E(H)| ≥ 4

7
(|E(G′)|+ 1) +

1

7
|V2(G′)|

=
4

7
(|E(G)|+ 1) +

1

7
(|V2(G)|+ t)

>
4

7
(|E(G)|+ 1) +

1

7
|V2(G)|

This contradicts the choice of (G,F ).
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R
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B
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Y Y

R

Figure 5.1: The {B, Y,R}-edge-coloring around an odd circuit of F , and the selection of the

vertex v

5.1 {B,Y,R}-edge-coloring of G

In this part, we follow an edge-coloring introduced by Chen and Fan [6] and define an

{B, Y,R}-edge-coloring (∗) of G as follows.

For a maximum matching B of F , let Y = E(F ) − B and R = E(G) − E(F ). For

simplicity, we use R, B, and Y to denote the subgraphs induced by E(R), E(B), and

E(Y ), respectively. Note that F is a union of disjoint circuits by Claim 24. We will pick

a particular maximum matching B out of F by choosing, for each odd circuit C of F , the

vertex v not incident with any member of E(C)∩B according to the following rules. See

Figure 5.1 for an illustration.

(a) if C is an odd circuit of F and F has more than one component, then let v be

a vertex of C such that degD(v) is as large as possible in D = G[V (C)] and v is

incident with both Y -edges in C;

(b) subject to (a), degR(v) is as large as possible.

Denote the collection of such vertices by V0(G). An edge e is called an B-edge

(Y -edge, R-edge, respectively) if e ∈ B (e ∈ Y , e ∈ R, respectively).
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Claim 25. R ∪B is a spanning subgraph of G.

Proof. Suppose that G has a vertex v ∈ V (G) − V (R ∪ B). Then v is incident with

only Y -edges and therefore v ∈ V0(G). By Claim 24, deg(v) = 2 and v is incident with

precisely two Y -edges. By the definition of V0(G), there is an odd component C of F

such that v ∈ V (C). By rule (b) in (∗), each vertex of C has degree 2 in G. This implies

G = C, a contradiction to the choice of (G,F ).

Claim 26. Each circuit in R∪B is alternately {R,B}-edge-colored, and any two circuits

are disjoint.

Proof. Suppose that Z is a circuit of R ∪ B that is not alternately {R,B}-edge-colored.

Since B is a matching of F , Z 4 F is an even factor larger than F , a contradiction to

assumption (3).

Suppose Z1 and Z2 are two non-disjoint circuits in R ∪ B and denote K = Z1 ∪ Z2.

Then K contains a vertex v of degree at least 3. Note that any vertex of degree 4 in K

must be incident with two R-edges and two B-edges contradicting that B is a matching.

Thus, degK(v) = 3 and each vertex of degree 3 is incident with one B-edge and two

R-edges (one is in Z1 and one is in Z2). This implies that Z1 4 Z2 contains a circuit of

R∪B in which two R-edges are adjacent to each other. This contradicts that each circuit

in R ∪B is alternately {R,B}-edge-colored.

Claim 27. If Z is a circuit of length 2µ of R ∪ B, then the number of components of F

intersecting with Z is at most max{µ− 1, 1}.

Proof. Suppose that there is a circuit Z of R∪B of length 2µ intersecting with µ (µ ≥ 2)

components of F . By Claim 26, the circuits in R∪B are alternately {R,B}-edge-colored

and pairwise disjoint. Thus, F 4 Z is an even factor of G. Since the (2µ)-circuit Z

intersects with a set X of µ distinct components (circuits) of F , |E(Z) ∩ E(C)| = 1 for

every C ∈ X and therefore (
⋃
C∈X C)4 Z is a single circuit. Hence, F 4 Z has (µ − 1)

components less than F , a contradiction to assumption (4).
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T1 T2

z1 z2

T1 T2

z1 z2

vr

T ′

Figure 5.2: The forest T1 ∪ T2 = (R ∪B)/Z and its extension T ′ (a rooted tree)

5.2 Q-subgraphs in R ∪R∗ ∪B

In Claims 25, 26, and 27, the structure of circuits contained in G[R∪B] has been studied.

Note that not every B-edge is contained in some circuit of G[R∪B]. Denote the collection

of such B-edges by B0 and call each of its elements an B0-edge. By Claim 25, each vertex

of degree 2 must be incident with an B0-edge. By Claim 23, none of these B0-edges is

incident with two vertices of degree 2. Thus, |B0| ≥ |V2|.

Let Z = {Z1, · · · , Zt} be the collection of all circuits in R ∪B. Let tk be the number

of k-circuits of Z. Let T be the graph obtained from R ∪ B by contracting each Zi into

a vertex. By Claim 26, the circuits in Z are pairwise disjoint and therefore T is acyclic.

Let {T1, · · · , Ta} be all components of T and assign an orientation to each Ti as a rooted

tree with the root zi (zi is selected arbitrarily). Then we further extend the rooted forest

T1 ∪ · · · ∪ Ta to be a rooted tree T ′ as follows: add a new vertex vr as the root of T ′

and add a new arc vrzi (zi is the root of Ti) for each 1 ≤ i ≤ a. See Figure 5.2 for an

illustration. Denote R∗ = {vrzi : 1 ≤ i ≤ a}.

Finally, we construct a tree T ∗ from T ′ by further contracting all remaining B-edges

in T ′. Note that all those B-edges are not contained in any circuit of R∪B and therefore

are B0-edges. In T ∗, each edge is an (R ∪ R∗)-edge and each vertex except vr is incident

with a unique incoming arc. Now we can classify the vertex set V (T ∗)− {vr} as follows.
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(1) A vertex x is a Type I vertex if it is contracted from a circuit of Z in R ∪B.

(2) A vertex x is a Type II vertex if it is contracted from an B0-edge in T ′.

(3) A vertex x is a Type III vertex if it is an original vertex in G. In this case, x is

not incident with any B-edge. Thus, x ∈ V0.

For any vertex x ∈ V (T ∗)−{vr}, let yx be the unique arc towards x in T ∗, and let yu

be the edge of G corresponding to yx in T ∗. In R ∪R∗ ∪B, we define the corresponding

Q-subgraphs as follows. See Figure 5.3 for an illustration.

(1) If x is Type I, let Z ∈ Z be the circuit contracted into x in T ∗. The subgraph

induced by the circuit Z and the edge yu is called a Type I Q-subgraph. (A Type

I Q-subgraph looks like a tadpole with the “body” Z and the “trail” yu.)

(2) If x is Type II, let uv be the B0-edge contracted into x in T ∗. The subgraph induced

by the edges uv and yu is called a Type II Q-subgraph. (A Type II Q-subgraph

is a path of length 3, not looking like a tadpole at all. However, we still call the

B0-edge uv the “body” and the edge yu the “tail”.)

(3) If x is Type III, then x = u remains as a vertex of R∪R∗∪B. The subgraph induced

by the edge yx is called a Type III Q-subgraph. (A Type III Q-subgraph is a

single edge yx. Similarly, we call the single vertex x the “body” and the edge yx

the “tail”.)

Denote the body and the tail of each Q-subgraph Qi by b(Qi) and t(Qi), respectively. Note

that the collection of all Q-subgraphs, denoted by Q, is an edge partition of R∪R∗ ∪B.

Let QI (QII , QIII , respectively) be the collection of all Type I (Type II, Type III,

respectively) Q-subgraphs. Then

Q = QI ∪QII ∪QIII , |QII | = |B0|, and |QIII | = |V0(G)|.
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Figure 5.3: Three Types of Q-subgraphs

5.3 Charge and Discharge

In R ∪ R∗ ∪ B, assign each vertex v of G with initial charge hV (v) = 1 and vr with

initial charge hV (vr) = 0; assign each edge e ∈ R ∪ R∗ with initial charge hE(e) = 1 and

each edge e′ ∈ B with initial charge hE(e′) = 0, respectively. Then we have equations as

follows.

Claim 28.

n = |V (G)| =
∑

v∈V (G)

hV (v) =
∑
Qi∈Q

hV (Qi) (5.1)

|R|+ |R∗| =
∑

e∈R∪R∗
hE(e) =

∑
Qi∈Q

hE(Qi) (5.2)

where hV (Qi) =
∑

v∈b(Qi)
hV (v) and hE(Qi) =

∑
e∈E(Qi)

hE(e) for each Qi ∈ Q.

Proof. The proof of Equation (5.2) is trivial. The Equation (5.1) follows from Claim 25

that R ∪B is a spanning graph of G.
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Now we define a ratio to each Q-subgraph Qi as follows:

r(Qi) =
hV (Qi)

hV (Qi) + hE(Qi)
.

Then we have the following observations.

(1) For each Qi ∈ QI , it follows from Claim 26 that the body b(Qi) is an alternately

{R,B}-edge-colored circuit Z of Z. If |Z| = 2µ, then r(Qi) = 2µ
2µ+(µ+1)

with µ ≥ 2.

This implies r(Qi) ≥ 4
7

since it is an increasing function on µ.

(2) For each Qi ∈ QII , the body b(Qi) is a single B0-edge. Thus, r(Qi) = 2
3

(> 4
7
).

(3) For each Qi ∈ QIII , the body b(Qi) is a single vertex. Thus, r(Qi) = 1
2

(< 4
7
).

To increase the ratio of Qi ∈ QIII to 4
7
, we either take some charge from a Type I

Q-subgraph whose body is a (≥ 6)-circuit of Z, or take some charge from a Type II

Q-subgraph.

The following result guarantees that each Qi ∈ QIII can take some charge from an

Q-subgraph in QI ∪QII .

Claim 29. Every odd circuit C of F either contains at least one B0-edge, or intersects

with some (≥ 6)-circuit Zi of R ∪B.

Proof. Suppose that there is an odd circuit C of F such that each B-edge of C is contained

in a 4-circuit of R ∪ B. By Claim 27, each of those 4-circuits intersects with C only,

no other components of F . Denote G[V (C)] = K. By rule (a) in (∗), the minimum

degree of K is at least three. Note that |V (K)| = |E(C)| is an odd integer. Thus,

|E(K)| > 3
2
|V (K)| = 3

2
|E(C)|. By Theorem 1.6.1, K has an even factor D such that

|E(D)| ≥ 2
3
|E(K)| > |E(C)|. Thus, D ∪ (F − C) is an even factor of G larger than F , a

contradiction.

The Discharging Rule: Let C be an odd circuit of F with x ∈ V (C) ∩ V0(G). We

redistribute the charge as follows.
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(R1) If C intersects with some (≥ 6)-circuit Z of Z, then x takes 1
3

from some v ∈
V (C) ∩ V (Z).

(R2) Otherwise by Claim 29, C contains at least one B0-edge uv. Let x take 1
3

from u.

Now we have the following two observations.

Claim 30. Both Equations (5.1) and (5.2) remain the same after redistributing the charge.

Claim 31. The ratio of any Type III Q-subgraph is 4
7

now.

For each Qi ∈ QI , the body b(Qi) is a circuit Z of R ∪ B. We define lQi
to be the

length of Z, and kQi
to be the number of times of being discharged of Qi. Then we have

the following result.

Claim 32. For each Qi ∈ QI ,

hV (Qi) =
4

7
(hV (Qi) + hE(Qi)) +

1

7
(lQi
− kQi

− 4). (5.3)

Moreover, r(Qi) ≥ 4
7

if kQi
≤ lQi

− 4.

Proof. Since Qi is discharged kQi
times,

hV (Qi) = lQi
− 1

3
kQi

and hV (Qi) + hE(Qi) =
3

2
lQi
− 1

3
kQi

+ 1.

Then Equation (5.3) follows and r(Qi) ≥ 4
7

if kQi
≤ lQi

− 4.

Note that each B0-edge is contained in at most one odd circuit of F . Thus, it can be

discharged at most once. For each Qi ∈ QII , we have the following result.

Claim 33.∑
Qi∈QII

hV (Qi) =
4

7

( ∑
Qi∈QII

hV (Qi) +
∑

Qi∈QII

hE(Qi)

)
+

2

7
|B0 −B′0|+

1

7
|B′0|, (5.4)

where B′0 is the set of B0-edges with one endvertex being discharged once.
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Proof. For each Qi ∈ QII with b(Qi) ∈ B′0, we have

hV (Qi) = 2− 1

3
=

5

3
and hV (Qi) + hE(Qi) = 3− 1

3
=

8

3
.

Hence,

hV (Qi) =
4

7
(hV (Qi) + hE(Qi)) +

1

7
.

Similarly, for each Qi ∈ QII with b(Qi) ∈ B0 −B′0, we have

hV (Qi) =
4

7
(hV (Qi) + hE(Qi)) +

2

7
.

Then Equation (5.4) follows from above two equations.

5.4 The Final Step

Assume the Discharging Rule (R1) and (R2) occur x1 and x2 times, respectively. Thus,

|B0| ≥ x2. By Claim 30, both Equations (5.1) and (5.2) remain the same. Combing with

Claims 31, 32, and 33, we have

n =
∑
Q∈QI

hV (Q) +
∑
Q∈QII

hV (Q) +
∑

Q∈QIII

hV (Q)

=
4

7

(∑
Q∈Q

hV (Q) +
∑
Q∈Q

hE(Q)

)
+

1

7

∑
Q∈QI

(lQ − kQ − 4) +
2

7
(|B0| − x2) +

1

7
x2

=
4

7
(n+ |R|+ |R∗|) +

1

7

(∑
Q∈QI

lQ −
∑
Q∈QI

kQ −
∑
Q∈QI

4

)
+

1

7
(2|B0| − x2) (5.5)

Note that ∑
Q∈QI

lQ =
∑
µ≥2

2µt2µ,
∑
Q∈QI

kQ = x1, and
∑
Q∈QI

1 =
∑
µ≥2

t2µ. (5.6)

Since n = |E(F )| and |E(G)| = |E(F )| + |R|, it follows from Equations (5.5) and (5.6)

that

|E(F )| = 4

7
|E(G)|+ 4

7
|R∗|+ 1

7

((∑
µ≥2

(2µ− 4)t2µ

)
− x1

)
+

1

7
(2|B0| − x2) . (5.7)
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By Claim 27 and the Discharging Rule, for each Q ∈ QI , we have kQ ≤ lQ
2
− 1 if lQ ≥ 6

and kQ = 0 otherwise. It follows from Equation (5.6) that

x1 =
∑
Q∈QI

kQ ≤
∑

Q∈QI : lQ≥6

(
lQ
2
− 1

)
=
∑
µ≥3

(µ− 1)t2µ ≤
∑
µ≥3

(2µ− 4)t2µ

That is, (∑
µ≥2

(2µ− 4)t2µ

)
− x1 =

(∑
µ≥3

(2µ− 4)t2µ

)
− x1 ≥ 0.

It follows from Equation (5.7) that

|E(F )| ≥ 4

7
|E(G)|+ 4

7
|R∗|+ 1

7
(2|B0| − x2) .

Since |B0| ≥ |V2(G)| and |B0| ≥ x2, we have

(2|B0| − x2) ≥ |B0| ≥ |V2(G)|.

Note that |R∗| ≥ 1. Thus,

|E(F )| ≥ 4

7
(|E(G)|+ 1) +

1

7
|V2(G)|. (5.8)

This last inequality contradicts the choice of (G,F ).
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