4,681 research outputs found

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    Автоматизированная система подготовки информации для изготовления фотошаблонов

    Get PDF
    Предлагается описание автоматизированной системы, посредством которой по описанию топологии микроэлектронных схем подготавливается входная информация для устройств, выполняющих изготовление фотошаблонов. Входная информация представляет собой описание последовательности прямоугольников. Выбор этой последовательности во многом определяет производительность этих устройств и качество получаемых фотошаблонов. Приводится краткое описание задач, решаемых системой, а также ее структура.We present the automated system of data preparation for integrated circuit layout generators. We consider the problem of covering polygons with rectangles. Input data is the sequence of rectangles. Basically this sequence determines the productivity of these integrated circuit layout generators and quality of output photomask. We describe the tasks which are solved by system, functions and structure of the system and give some examples

    On rr-Guarding Thin Orthogonal Polygons

    Get PDF
    Guarding a polygon with few guards is an old and well-studied problem in computational geometry. Here we consider the following variant: We assume that the polygon is orthogonal and thin in some sense, and we consider a point pp to guard a point qq if and only if the minimum axis-aligned rectangle spanned by pp and qq is inside the polygon. A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense that the so-called dual graph of the polygon is a tree. It was known that finding the minimum set of rr-guards is polynomial for tree polygons, but the run-time was O~(n17)\tilde{O}(n^{17}). We show here that with a different approach the running time becomes linear, answering a question posed by Biedl et al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets of points to guard and guards to use, and it generalizes to polygons with hh holes or thickness KK, becoming fixed-parameter tractable in h+Kh+K.Comment: 18 page

    Partitioning Regular Polygons into Circular Pieces I: Convex Partitions

    Get PDF
    We explore an instance of the question of partitioning a polygon into pieces, each of which is as ``circular'' as possible, in the sense of having an aspect ratio close to 1. The aspect ratio of a polygon is the ratio of the diameters of the smallest circumscribing circle to the largest inscribed disk. The problem is rich even for partitioning regular polygons into convex pieces, the focus of this paper. We show that the optimal (most circular) partition for an equilateral triangle has an infinite number of pieces, with the lower bound approachable to any accuracy desired by a particular finite partition. For pentagons and all regular k-gons, k > 5, the unpartitioned polygon is already optimal. The square presents an interesting intermediate case. Here the one-piece partition is not optimal, but nor is the trivial lower bound approachable. We narrow the optimal ratio to an aspect-ratio gap of 0.01082 with several somewhat intricate partitions.Comment: 21 pages, 25 figure

    A MapReduce-Based Big Spatial Data Framework for Solving the Problem of Covering a Polygon with Orthogonal Rectangles

    Get PDF
    The polygon covering problem is an important class of problems in the area of computational geometry. There are slightly different versions of this problem depending on the types of polygons to be addressed. In this paper, we focus on finding an answer to a question of whether an orthogonal rectangle, or spatial query window, is fully covered by a set of orthogonal rectangles which are in smaller sizes. This problem is encountered in many application domains including object recognition/extraction/trace, spatial analyses, topological analyses, and augmented reality applications. In many real-world applications, in the cases of using traditional central computation techniques, working with real world data results in a performance bottlenecks. The work presented in this paper proposes a high performance MapReduce-based big data framework to solve the polygon covering problem in the cases of using a spatial query window and data are represented as a set of orthogonal rectangles. Orthogonal rectangular polygons are represented in the form of minimum bounding boxes. The spatial query windows are also called as range queries. The proposed spatial big data framework is evaluated in terms of horizontal scalability. In addition, efficiency and speed-up performance metrics for the proposed two algorithms are measured

    Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles

    Full text link
    We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color. We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This can be interpreted as coloring point sets in R^2 with k colors such that any bottomless rectangle containing at least 3k-2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set. For this problem, we also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k)p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the European Workshop on Computational Geometry, held in Assisi (Italy) on March 19-21, 201
    corecore