27 research outputs found

    Chapter Is Three better than Two? A Study on EEG Activity and Imagination Abilities in 2D vs 3D Stimuli

    Get PDF
    Real and virtual are often considered terms in reciprocal opposition, but the boundaries between the two are blurred. The main goal of our study consists in answering the question whether the presence of a third dimension (3D) is a fundamental step of the virtual toward the real world, and if it causes some difference in the neural activity of the spectator [8]. Also, the possibility to consider real what is virtual will be discussed [6, 7]

    Early changes in alpha band power and DMN BOLD activity in Alzheimer's disease: a simultaneous resting state EEG-fMRI study

    Get PDF
    Simultaneous resting state functional magnetic resonance imaging (rsfMRI)-resting state electroencephalography (rsEEG) studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN) regions. Negative associations were found in occipital regions. In Alzheimer's disease (AD), rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC). We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI-EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8-12 Hz, 8-10 Hz, and 10-12 Hz) was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≄ 50 voxels). This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD signal in numerous regions, including DMN regions, are diminished in AD

    Is three better than two? A study on EEG activity and imagination abilities in 2D vs 3D stimuli

    Get PDF
    Real and virtual are often considered terms in reciprocal opposition, but the boundaries between the two are blurred. The main goal of our study consists in answering the question whether the presence of a third dimension (3D) is a fundamental step of the virtual toward the real world, and if it causes some difference in the neural activity of the spectator [8]. Also, the possibility to consider real what is virtual will be discussed

    Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks

    Get PDF
    Current evidence suggests that volitional opening or closing of the eyes modulates brain activity and connectivity. However, how the eye state influences the functional connectivity of the primary visual cortex has been poorly investigated. Using the same scanner, fMRI data from two groups of participants similar in age, sex and educational level were acquired. One group (n = 105) performed a resting state with eyes closed, and the other group (n = 63) performed a resting state with eyes open. Seed-based voxel-wise functional connectivity whole-brain analyses were performed to study differences in the connectivity of the primary visual cortex. This region showed higher connectivity with the default mode and sensorimotor networks in the eyes closed group, but higher connectivity with the salience network in the eyes open group. All these findings were replicated using an open source shared dataset. These results suggest that opening or closing the eyes may set brain functional connectivity in an interoceptive or exteroceptive state

    Cognitive Efficiency in Alzheimer's Disease is Associated with Increased Occipital Connectivity

    Get PDF
    There are cognitive domains which remain fully functional in a proportion of Alzheimer's disease (AD) patients. It is unknown, however, what distinctive mechanisms sustain such efficient processing. The concept of "cognitive efficiency" was investigated in these patients by operationalizing it as a function of the level of performance shown on the Letter Fluency test, on which, very often, patients in the early stages of AD show unimpaired performance. Forty-five individuals at the prodromal/early stage of AD (diagnosis supported by subsequent clinical follow-ups) and 45 healthy controls completed a battery of neuropsychological tests and an MRI protocol which included resting-state acquisitions. The Letter Fluency test was the only task on which no between-group difference in performance was found. Participants were divided into "low-performing" and "high-performing" according to the global median. Dual-regression methods were implemented to compute six patterns of network connectivity. The diagnosis-by-level of performance interaction was inferred on each pattern to determine the network distinctiveness of efficient performance in AD. Significant interactions were found in the anterior default mode network, and in both left and right executive control networks. For all three circuits, high-performing patients showed increased connectivity within the ventral and dorsal part of BA19, as confirmed by post-hoc t tests. Peristriate remapping is suggested to play a compensatory role. Since the occipital lobe is the neurophysiological source of long-range cortical connectivity, it is speculated that the physiological mechanisms of functional connectivity might sustain occipital functional remapping in early AD, particularly for those functions which are sustained by areas not excessively affected by the prodromal disease

    Resting state EEG abnormalities in autism spectrum disorders

    Get PDF

    Selective cortical adaptations associated with neural efficiency in visuospatial tasks – the comparison of electroencephalographic profiles of expert and novice artists

    Get PDF
    Visuospatial cognition encapsulates an individual's ability to efficiently navigate and make sense of the multimodal cues from their surroundings, and therefore has been linked to expert performance across multiple domains, including sports, performing arts, and highly skilled tasks, such as drawing (Morrone and Minini, 2023). As neural efficiency posits a task-specific functional reorganization facilitated by long-term training, the present study employs a visuospatial construction task as a means of investigating the neurophysiological adaptations associated with expert visuospatial cognitive performance. Electroencephalogram (EEG) data acquisitions were used to evaluate the event-related changes (ER%) and statistical topographic maps of nine expert versus nine novice artists. The expert artists displayed overall higher global ER% compared to the novices within task-active intervals. Significant increases in relative ER% were found in the theta (t (10) = 3.528, p = 0.003, CI = [27.3,120.9]), lower-alpha (t (10) = 3.751, p = 0.002, CI = [28.2,110.5]), upper-alpha (t (10) = 3.829, p = 0.002, CI = [50.2,189.8]), and low beta (t (10) = 4.342, p < 0.001, CI = [37.0,114.9]) frequency bands, when comparing the experts to the novice participants. These results were particularly found in the frontal (t (14) = 2.014, p = 0.032, CI = [7.7,245.4]) and occipital (t (14) = 2.647, p = 0.010, CI = [45.0,429.7]) regions. Further, a significant decrease in alpha ER% from lower to upper activity (t (8) = 4.475, p = 0.001, CI = [21.0, 65.8]) was found across cortical regions in the novice group. Notably, greater deviation between lower and upper-alpha activity was found across scalp locations in the novice group, compared to the experts. Overall, the findings demonstrate potential local and global EEG-based indices of selective cortical adaptations within a task requiring a high degree of visuospatial cognition, although further work is needed to replicate these findings across other domains

    EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions

    Full text link
    Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed. Keywords: Cognition; Electrophysiology; Event-related-potentials; Neural oscillations; Neural synchronisation; Neuromodulatio
    corecore