61 research outputs found

    Resource pooling games

    Get PDF

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Low complexity system architecture design for medical Cyber-Physical-Human Systems (CPHS)

    Get PDF
    Cyber-Physical-Human Systems (CHPS) are safety-critical systems, where the interaction between cyber components and physical components can be influenced by the human operator. Guaranteeing correctness and safety in these highly interactive computations is challenging. In particular, the interaction between these three components needs to be coordinated collectively in order to conduct safe and effective operations. The interaction nevertheless increases by orders of magnitude the levels of complexity and prevents formal verification techniques, such as model checking, from thoroughly verifying the safety and correctness properties of systems. In addition, the interactions could also significantly increase human operators' cognitive load and lead to human errors. In this thesis, we focus on medical CPHS and examine the complexity from a safety angle. Medical CPHS are both safety-critical and highly complex, because medical staff need to coordinate with distributed medical devices and supervisory controllers to monitor and control multiple aspects of the patient's physiology. Our goal is to reduce and control the complexity by introducing novel architectural patterns, coordination protocols and user-centric guidance system. This thesis makes three major contributions for improving safety of medical CPHS. Reducing verification complexity: Formal verification is a promising technique to guarantee correctness and safety, but the high complexity significantly increases the verification cost, which is known as state space explosion problems. We propose two architectural patterns: Interruptible Remote Procedure Call (RPC) and Consistent View Generation and Coordination (CVGC) protocol to properly handle asynchronous communication and exceptions with low complexity. Reducing cyber-medical treatment complexity: Cyber medical treatment complexity is defined as the number of steps and time to perform a treatment and monitor the corresponding physiological responses. We propose treatment and workflow adaptation and validation protocols to semi-autonomously validate the preconditions and adapt the workflows to patient conditions, which reduces the complexity of performing treatments and following best practice workflows. Reducing human cognitive load complexity: Cognitive load (also called mental workload) complexity measures human memory and mental computation demand for performing tasks. We first model individual medical staff's responsibility and team interactions in cardiac arrest resuscitation and decomposed their overall task into a set of distinct cognitive tasks that must be specifically supported to achieve successful human-centered system design. We then prototype a medical Best Practice Guidance (BPG) system to reduce medical staff's cognitive load and foster adherence to best practice workflows. Our BPG system transforms the implementation of best practice medical workflow

    Large-Scale Modelling and Interactive Decision Analysis

    Get PDF
    These Proceedings report the scientific results of an International Workshop attended by more than fifty scientists from thirteen countries. This volume is structured in three parts: (I) Theory and Methodology, (II) Interaction Principles and Computational Aspects and (III) Applications. Part I contains papers dealing with utility and game theory, multicriteria optimizations theory and interactive procedures, dynamic models/systems and concepts of multicriteria analysis. Papers dealing with the user-machine interface, intelligent (user-friendly) decision support and problems of computational aspects are included in Part II. Contributions with applications are mainly concentrated in Part III but can also be found in several papers in other parts. Use of the term "large-scale" in the title of the Proceedings was especially substantiated by contributions dealing with modelling and decision analysis problems of the size of a whole national economy like structuring the carbochemical industry, the energy system or even natural gas trade in Europe

    Energy Modelling and Fairness for Efficient Mobile Communication

    Full text link

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    The 11th Conference of PhD Students in Computer Science

    Get PDF

    An investigation into Braess' paradox

    Get PDF
    Braess' paradox is a counter-intuitive phenomenon which can occur in congesting networks. It refers to those cases where the introduction of a new link in the network results in the total travel time on the network increasing. The dissertation starts by introducing the traffic assignment problem and the concept of equilibrium in traffic assignment. The concept of equilibrium is based on Wardrop's first principle that all travellers will attempt to minimize their own travel time regardless of the effect on others. A literature review includes details of a number of papers that have been published investigating theoretical aspects of the paradox. There is also a brief description of Game Theory and the Nash Equilibrium. It has been shown that the equilibrium assignment is an example of Nash Equilibrium. The majority of work that has been published deals with networks where the delay functions that are used to compute the travel times on the links of the network do not include explicit representation of the capacity of the links. In this dissertation a network that is similar in form to the one first presented by Braess was constructed with the difference being that the well-known BPR function was used in the delay functions. This network was used to show that a number of findings that had been presented previously using simpler functions also applied to this network. It was shown that when it occurs, Braess' paradox only occurs over a range of values at relatively low levels of congestion. Real-world networks were then investigated and it was found that similar results occurred to those found in the simpler test networks that are often used in discussions of the paradox. Two methodologies of eliminating the paradox were investigated and the results are presented.Decision SciencesM.Sc
    • 

    corecore