LOW COMPLEXITY SYSTEM ARCHITECTURE DESIGN FOR MEDICAL CYBER-
PHYSICAL-HUMAN SYSTEMS (CPHS)

BY

PO-LIANG WU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 2016

Urbana, lllinois

Doctoral Committee:

Professor Lui Sha, Chair

Professor Tarek Abdelzaher

Professor Alex Kirlik

Associate Professor Rahul Mangharam, University of Pennsylvania

Abstract

Cyber-Physical-Human Systems (CHPS) are safety-critical systems, where the interaction between
cyber components and physical components can be influenced by the human operator. Guaranteeing
correctness and safety in these highly interactive computations is challenging. In particular, the interac-
tion between these three components needs to be coordinated collectively in order to conduct safe and
effective operations. The interaction nevertheless increases by orders of magnitude the levels of com-
plexity and prevents formal verification techniques, such as model checking, from thoroughly verifying
the safety and correctness properties of systems. In addition, the interactions could also significantly
increase human operators’ cognitive load and lead to human errors.

In this thesis, we focus on medical CPHS and examine the complexity from a safety angle. Med-
ical CPHS are both safety-critical and highly complex, because medical staff need to coordinate with
distributed medical devices and supervisory controllers to monitor and control multiple aspects of the
patient’s physiology. Our goal is to reduce and control the complexity by introducing novel architec-
tural patterns, coordination protocols and user-centric guidance system. This thesis makes three major

contributions for improving safety of medical CPHS.

C1 Reducing verification complexity: Formal verification is a promising technique to guarantee
correctness and safety, but the high complexity significantly increases the verification cost, which
is known as state space explosion problems. We propose two architectural patterns: Interrupt-
ible Remote Procedure Call (RPC) and Consistent View Generation and Coordination (CVGC)

protocol to properly handle asynchronous communication and exceptions with low complexity.

C2 Reducing cyber-medical treatment complexity: Cyber medical treatment complexity is de-

fined as the number of steps and time to perform a treatment and monitor the corresponding

ii

C3

physiological responses. We propose treatment and workflow adaptation and validation protocols
to semi-autonomously validate the preconditions and adapt the workflows to patient conditions,

which reduces the complexity of performing treatments and following best practice workflows.

Reducing human cognitive load complexity: Cognitive load (also called mental workload)
complexity measures human memory and mental computation demand for performing tasks.
We first model individual medical staff’s responsibility and team interactions in cardiac arrest
resuscitation and decomposed their overall task into a set of distinct cognitive tasks that must be
specifically supported to achieve successful human-centered system design. We then prototype a
medical Best Practice Guidance (BPG) system to reduce medical staff’s cognitive load and foster
adherence to best practice workflows. Our BPG system transforms the implementation of best

practice medical workflow

e From reliance on human memory, verbal communication, notes and disparate data sources

e To a real-time integrated workflow-driven display, action coordination, order checking and

tracking and patient response feedback system

iii

Acknowledgments

I acknowledge the contributions of the team members. I am particularly grateful to my advisor Dr. Lui
Sha not only for providing me the right guidance throughout this Ph.D. program, but also for his advice
for my future career and life. I am also grateful to Dr. Richard Berlin. His advice and suggestions
from a physician’s point of view is essential for making clinical impact. Thanks also go to Carle
Foundation Hospital for their contributions to this research. For graduate students, changing the field
of study is always challenging. I would like to thank Dr. Woochul Kang and Dr. Abdullah Al-Nayeem
for their help when I changed my field of study to healthcare systems. I thank Dr. Min Young Nam,
Dr. Jeonghwan Choi, and Maryam Rahmaniheris for their helps and suggestions throughout my Ph.D.
program. I would also like to thank Dr. Tarek Abdelzaher, Dr. Alex Kirlik, and Dr. Rahul Mangharam
for being in my thesis committee and for their helpful suggestions and advices.

I will always cherish the memories of my stay in Champaign-Urbana. I am thankful to all my
friends for being with me. Finally, I thank my parents, A-Jen Wu and Suh-Yuh Chen, for their love
and support. It is their love and support that keep me cheerful and motivated. I also want to thank my

girlfriend, Pei-Chen Peng, for bringing happiness to my life every day.

v

Table of Contents

Chapter1 Introduction it i ittt ittt oenensenseeesos
1.1 Related Work e e
1.2 Technical challenges i

Chapter 2 Reducing Verification Complexity: Interruptible Remote Procedural Call . . .

2.1

2.2

23

24

2.5

2.6

Synchronous and Asynchronous System Model
Communication Patterns and Message Interleaving
Fundamental Protocol Design
Composition of Interruptible RPC L o
Verification and Complexity Evaluation

Summary and Future Work L oL

Chapter 3 Reducing Verification Complexity: Coordination Architecture for Networked

3.1

3.2

33

34

3.5

3.6

3.7

Supervisory Medical Systems it i e
System Model and Clinical Motivation
Hierarchical Organ-based Clustering Architecture
Consistent View Generation and Coordination (CVGC) Protocol
Correctness of the CVGC Protocol
Verification and Complexity Evaluation
Pattern Deployment and Tool Support L.

Summary and Future Work o

10

14

Chapter 4 Reducing Cyber Medical Treatment Complexity: A Treatment Validation Pro-

4.1
42
43
4.4
45

tocol . . . e e e e e e e e e e e 45
Motivation e e e e e 46
Treatment Validation Protocol Design 47
Correctness of the Treatment Validation Protocol 54
Cardiac Arrest Resuscitation Case Study and Verification 57
Summary and Future Work oo oL 58

Chapter 5 Reducing Cyber Medical Treatment Complexity: A Safe Workflow Adapta-

5.1
52
53
54
5.5

tion and Validation Protocol for Medical Cyber-Physical Systems. 60
Physical Models and Definitions 61
Workflow Adaptation and Validation Protocol 62
Design Pattern and Protocol Instantiation, 70
Cardiac Arrest Resuscitation Case Study and Verification 73
Summary and Future Work o 78

Chapter 6 Reducing Cognitive Load Complexity: Supporting Emergency Medical Care

Teams with a Best Practice Guidance System 79

6.1 Human Cognitive Load 80

6.2 Design Methodology 83

6.3 Medical Best Practice Gudiance System Design 100

6.4 Design Rationale and Potential Risks 105

6.5 Cognitive Load Evaluation 107

6.6 Summary and Future Work Lo 112
Chapter 7 Conclusion i i ittt ittt it teeeeeens 113
Bibliography o 0 i i e e e e e e e e e e e e e e e e 115
Appendix A Introduction of Model Checkingand UPPAAL 123
Al ModelChecking. e 123

vi

A2 UPPAAL . . . e

Appendix B Introduction of Integrated Clinical Environment (ICE) Architecture

vii

Chapter 1

Introduction

Cyber-Physical-Human systems (CPHS) are systems that tightly combine computation resources, phys-
ical elements and human operators through communication technologies. Applications of CPHS in-
clude high confidence medical systems, avionics systems, and nuclear plants, etc [57]. In each of these
contexts, all three components contribute collectively to safe and efficient operations. In this thesis,
we focus on the complexity and safety issues of medical Cyber-Physical-Human Systems (CPHS). In
1999, a report from Institute of Medicine (IOM) suggested that “Health care in the United States is not
as safe as it should be—and can be. At least 44,000 people, and perhaps as many as 98,000 people, die
in hospitals each year as a result of medical errors that could have been prevented” [54]. Unfortunately,
the challenge of preventable medical errors persists. According to the Subcommittee on Primary Health
and Aging in a July 2014 hearing, “preventable medical errors persist as the No. 3 killer in the U.S.
third only to heart disease and cancer claiming the lives of some 400,000 people each year” [67]. High
complexity of healthcare environments is a major contributor for preventable medical errors [54, 81].
Without properly controlling and reducing complexity, systems with high complexity may even cause

more safety hazards [78, 92, 61]. As National Science Foundation has remarked,

“These advances have not only made it possible to reach the frontier faster; they have
also increased by orders of magnitude the levels of complexity open to exploration and
experimentation. Understanding complexity and learning how best to harness these new

capabilities are both a challenge and a responsibility.” 5]

1

From a computer science perspective, complexity reflects the workload of performing tasks by
measuring number of steps or elapsed time. For example, in computation theory, time complexity is
usually approximated by the asymptotic notation of the number of steps. In this thesis, we examine
complexity from a safety angle, identify three major types of complexity, and propose complexity

reduction and control mechanisms to address them. Followings are the three types of complexity.

e Verification complexity: Verification complexity can be measured by model checking state

space. Verification complexity of a system has two parts. First is the complexity of each com-
ponent itself and second is the complexity of the interaction between components. Interactive
complexity is a major contributor in the accidents of complex systems [81]. This is especially
true in medical systems, where each components are certified by Food and Drug Association
(FDA) but the configuration of system components and their interactions is outside of the scope
safety certification. The main reason is that there are too many possible combinations of med-
ical devices, and it is impossible for FDA to certify each combination given difference patient
conditions. To appreciate the interplay between safety and system interaction, consider the case
of Laser Airway Surgery, which vividly illustrates that fatal accidents can be caused by incorrect
interactions of certified components even in a simple setting.
Example Under anesthesia a patient needs oxygen enriched air. Unfortunately, the human tissue
in the airway becomes flammable under oxygen enriched air. Surgical fire in the airway would
start when both the laser is on and the oxygen supply to enrich the air is on. However, withhold-
ing oxygen enriched air for too long would lead to brain damage. Thus, incorrect coordination
between the laser operation and oxygen supply would lead to preventable medical errors. What
makes this seemingly easy coordination difficult is that the computer and network to coordinate
the activity may fail randomly. And there is no automatic coordination that has been approved
by FDA yet. Hence, the coordination has been done by human operators. Unfortunately, to err is
human. The American Society of Anesthesiologists estimated that roughly 100 such fires occur
each year causing roughly 20 serious injuries [65]".

In order to mitigate safety hazards, all the possible interactions between the system components

'Readers who are interested to known when this is not simple problem and what are the solutions may read [50]

2

must be thoroughly verified. The high interactive complexity nevertheless causes state space
explosion problems. One of the major sources of interactive complexity is message interleav-
ing due to asynchronous communications”. In CPHS, the components are physically distributed
and communicate asynchronously with each other. However, asynchronous communication may
create combinatorial possible message interleaving, because a sender can send messages at any-
time and a receiver may receive the message with any order. From a verification perspective, all
the message interleaving must be thoroughly verified to guarantee that the incorrect and unsafe
states are not reachable. On the other hand, concurrency control of distributed devices and con-
trollers is another major source of interactive complexity. The combinatorial possible execution
sequences of all the system components should be verified for guaranteeing safety. In medical
CPHS, one of the main reasons for concurrency control of multiple devices and controllers is to
handle exceptions, such as patient adverse events. Most exceptions are raised asynchronously by
distributed medical devices at different time. In order to safely handle an exception, physicians
or supervisory controllers require the timely and consistent view of patient condition and device
status. Moreover, the devices must be properly coordinated to avoid potential adverse devices

interactions.

e Cyber medical treatment complexity: Cyber medical treatment complexity is defined as the
number of steps and time to perform a treatment and monitor the corresponding physiological
responses. Several steps are generally involved to perform a treatment, including deciding the
best fit treatments, checking preconditions, administering, monitoring side effects, and checking
expected responses>.

Example If a patient suffers from cardiac arrest, physicians usually consider administering
epinephrine to improve the patient’s cardiac output. Before administering epinephrine, physi-

cians need to check the preconditions of epinephrine, e.g. patient’s blood pH should be larger

than 7.2. After administering epinephrine, physicians need to check if the patient develops

% Asynchronous communications mean that a sender can initiate transmission at anytime and sporadically send messages
without waiting for the responses from a receiver. The receiver may receive the messages at anytime with any order. Email

and bulletin-boards system are two well-known asynchronous communication examples.
3For certain complicated treatments, such as surgery, additional steps may be required.

pulmonary dysfunction (side effect) and the patient’s cardiac output is improved (expected re-
sponse). If the patient does not response to epinephrine and/or the side effects of epinephrine
adversely affect patient conditions, physicians need to consider alternative treatments.

However, in an intensive care unit (ICU), patients are seriously ill, and there is often short of time
and short of information for medical staff to make decisions. Moreover, medical staff are under
tremendous pressure and overloaded by the great amount of unorganized information. A 2006
study [7] suggested that medication errors are among the most common medical mistakes, harm-
ing at least 1.5 million people every year. According to the study, there are more than 400,000
preventable drug-related injuries in hospitals every year. Medical complications may arise if any
treatment is not performed correctly, which significantly increase the complexity, because more

corrective treatments must be performed.

e Cognitive load complexity: Cognitive load (also called mental workload) complexity measures
human memory and mental computation demand for performing tasks. In the current medical
practice, medical staff are usually overwhelmed by the great amount of unorganized physiologi-
cal data. A Canadian study identified that more than 1,300 data points are generated per patient
per day of ICU stay, an increase in 26% over 5 years [64]. Furthermore, related physiological in-
formation are usually spread across multiple devices and screens. Medical staff need to mentally
gather and correlate all the physiological information, which considerably increases cognitive
load and the likelihood of medical errors. We have identified the four major cognitive tasks:
clinical information assembly, recalls, real-time tracking, and calculation. We believe that the
above cognitive tasks significantly contribute to medical staff’s cognitive load and are generic to
many medical scenarios. The current display systems lack of context-dependent information and
guidance, such as workflows, to reduce medical staff’s cognitive load and help them follow best
practice guidelines. Many preventable medical errors are result from unintended deviation* from
the medical workflows [54]. Unintended deviations further increase the medical staff’s cognitive

load, because medical staff must perform more treatments to either recover from the deviation or

*Unintended deviation is the medical staff unintentionally perform treatments noncompliance with the guidelines. Devi-

ation may adversely affect patients’ outcomes or even cause patients’ death.

4

switch to an alternative workflow.

I High cognitive load
increases the likelihood
of medical errors

errors may
cause severe
complications.

degradation of
patient
conditions
further
increases the
cyber-physical
complexity

Figure 1.1: The interaction between the three types of complexity

Moreover, those three types of complexity could interact with each other and form a vicious cycle,
as described in Figure 1.1. The high cognitive load imposed in such stressful and rapidly changing
medical environments significantly increases the likelihood of medical errors. Those medical errors
may cause deterioration of patient conditions and severe medical complications. Therefore, physicians
and nurses need to perform additional treatments to treat those complications. Since more treatments
must be performed and more patient conditions must be monitored, the cognitive load of medical staff
is further increased. It is worth mentioning that the verification complexity is also increased because the
medical complications and treatments introduce more concurrent events to the supervisory system. As
described before, all the possible interleaving between concurrent events must be thoroughly verified,
which makes the verification complexity grow exponentially.

In order to reduce preventable medical errors, there is an ongoing effort to enable supervisory con-
trol among distributed medical devices. For example, Medical Device Plug-and-Play (MDPnP) [37]
was proposed to collect and consolidate medical information, and allows the reconfiguration of medical

devices. Integrated Clinical Environment (ICE) infrastructure is designed to integrate networked medi-

5

cal devices using MDPnP criteria and provides logically centralized coordination and control [38]. We
argue that such an integrated infrastructure opens a door for reducing preventable safety hazards, but it
also significantly increases the complexity of the system due to the interactions of devices, controllers,
patients and medical staff. Therefore, we need new breed of system designs, which include archi-
tectural design patterns, protocols and user-centric integrated display, to reduce and control the three
types complexity of medical cyber-physical-human systems. We first addressed the verification com-
plexity problem by proposing architectural patterns and communication protocols for achieving consis-
tent coordination with low complexity [97, 93, 49] Second, we addressed the cyber medical treatment
complexity by developing treatment and workflow validation protocols to help medical safely perform
treatment and adapt workflows to adverse patient conditions [95, 96]. Third, we addressed the cogni-
tive load complexity problem by developing a Best Practice Guidance (BPG) system to keep track of
workflow steps, flag deviations from the workflows, and highlight in real-time the progress and status
of medical treatments, as well as provide ready access to the patient’s physiological responses to these
treatments. As a result, the medical staff’s cognitive load is reduced, which leads to better adherence to

the best practice medical guidelines. As the ICU director of Carle Foundation Hospital has remarked,

“It is expected that the use of the system will result in rapid and consistent timing of
medical interventions, stricter adherence to standardized medical treatment guidelines,

more accurate record keeping, and improved team situation awareness”

1.1 Related Work

Complexity reflects the workload of performing tasks by measuring the number of steps and/or elapsed
time. In computation theory, time and space complexity are used to evaluate the time and space take
by an algorithm to generate the output as a function of input length [85]. In order to evaluate system or
software complexity, Card et al. proposed to evaluate the software design complexity by considering
the module size, fan-in, and fan-out, etc [23]. Cyclomatic complexity [66] is used to quantitatively
measure the complexity of a program by calculating the number of linearly independent paths. Chi-
damber et al. introduce six object-oriented complexity metrics: weighted methods per class, coupling

between object classes, response for a class, number of children, depth of inheritance tree and lack of

6

cohesion of methods [25]. Ranganathan er al. defined the system complexity with five aspects: task
structure complexity, unpredictability, size complexity, algorithmic complexity, and chaotic complex-
ity [82]. From a human factor perspective, cognitive load complexity can be measured by a set of
metrics, including response time, accuracy, and NASA-TLX [88, 45]. In this thesis, we address three
types of complexity, verification complexity, cyber medical treatment complexity and cognitive load
complexity, and present a set of evaluation metrics to quantitatively measure the complexity.

Several complexity reduction techniques are proposed for different application domains. Atomic
transaction [39] is widely used in the database system to reduce the interleaving of transactions. Some
techniques are proposed to reduce the verification complexity, such as abstraction [29] and assume-
guarantee framework [44]. Researchers have also proposed various architectural patterns to manage
the system complexity and improve the reliability. Simplex architecture [84] is based on the princi-
ple of “using simplicity to control complexity.” The system dynamically switches to a simple safety
controller subsystem when the stability of the controlled system is threatened. The verification of the
system safety and stability is only applied to the safety controller and the decision logic. Some archi-
tectural patterns and solutions are proposed to reduce complexity by implementing logical synchrony
over an asynchronous computation architecture, e.g. PALS [2], TTA [83]. The developers can design
and verify the system as if the system components were driven by a global clock, which consider-
ably reduces the verification cost. In this thesis, we develop a set of mechanisms reduce verification
complexity, cyber medical treatment complexity, and cognitive load complexity. An organ-based archi-
tecture and consistent view generation and coordination protocol are developed to reduce verification
by providing consistent control and limiting asynchronous messages. A treatment validation protocol is
proposed to reduce cyber medical complexity by checking preconditions, monitoring side effects, and
checking expected responses. A workflow-driven display system is developed to organize physiological
information based on the medical context, so medical staff’s cognitive load can be reduced.

Medical Device Plug-and-Play (MDPnP) provides flexibility and interoperability for medical sys-
tems [38]. However, the dynamic system configurations introduce serious challenges to medical sys-
tems. Some frameworks are proposed to guarantee safety under closed-loop and open-loop con-
trol [50, 6]. Some mechanisms are also used to improve the accuracy and the safety of the systems,

such as fuzzy logic [87], and information technology [12]. Some work aims to improve the safety and

7

reliability of medical devices [58]. One promising technique is formal method, which is widely used
to specify and verify medical devices [76, 3, 77]. Pajic et al. proposed an verification approach, which
combines simulation-based analysis and model checking, to guarantee safety properties of closed-loop
medical systems [77]. King et al. [52] proposed a formal specification language to express and reason
safety properties of on-demand medical systems.

A comprehensive review of computer-supported cooperative work (CSCW) research conducted in
healthcare is provided by Fitzpatrick et al. [36]. Several studies have shown that sense-making and
situation awareness are critical in healthcare [10, 20, 56, 79]. Bossen et al. [20] conducted an ethno-
graphic study in order to understand how physicians achieve a sufficiently informed, accountable and
coherent understanding of a situation. Paul er al. [79] examined the cooperative sense-making of a
medical team in a hospital emergency department. Hajdukiewicz et al. [41, 41] applied work domain
analysis and structured medical knowledge in a hierarchical manner. Their work established a flexible
and comprehensive framework for designing human-computer displays. Nemeth et al. [72] presented
a set of methods to efficiently study a complex, high hazard healthcare environment. Our work has
adopted several presented methods, including interviews, artifact analysis, rapid prototyping, and eval-
uation, to design and improve our medical Best Practice Guidance system. Kusunoki et al. [56] studied
how vital signs monitors support teamwork during trauma resuscitation and provided some suggestions
to improve the monitors. One particular suggestion of theirs that we adopted in the system design is in
“providing rich contextual information.” Specifically, the developed system provides guidance given
contextual information on prescribed workflow and the patient’s physiological responses.

Medical workflows aim to help medical staff adhere to the medical guidelines and correctly per-
form the medical procedures. Some work suggests that workflows can capture clinical information in
more structured formats and support clinical practice if the workflows are properly designed and val-
idated [16, 40, 21]. There are several workflow systems developed for efficient and safe execution of
medical procedures [86, 90]. Song et al. classified healthcare workflows, including the approaches,
goals, and major characteristics, and discussed application issues and software challenges [86]. Wang
et al. [90] proposed a Workflow Intuitive and Formal Approach (WIFA) to model and analyze response
time of emergency healthcare workflows. However, in spite of the potential clinical improvement based

on medical workflows, some research work identifies the disparities between the formal models (work-

8

flows) and actual work practices [19, 43]. Bossen conducted an ethnographic case-study on the use
of electronic health records and stated that the medical staff “experienced a fragmentation of patient
cases and a critical lack of overview of patient treatment and care” [19]. Hartswood et al. also argued
that there are discrepancies between the role of electronic records and the ways that medical staff ac-
tually uses and communicate information in clinical practices. On the other hand, this research work
also pointed out that by establishing strong working relations between the system designers and the
users [19] and adopting a user-led design methodology [43], the gap between IT technologies and clin-
ical practices could be bridged. Consequently, our system design methodology is user-centered, and

we continually involved the users in the deign process.

In medical contexts, high cognitive load due to disorganized information and a stressful environ-
ment poses significant challenges for medical staff to maintain an overall awareness and may fur-
ther result in safety hazards [54]. Some research work focuses on analyzing medical staff’s cognitive
work [47, 71] and decision making process [56]. Jiancaro et al. [47] provided a comprehensive review
on cognitive work analysis in healthcare domain. Burns et al. [22] applied CWA to cardiac nursing co-
ordinators. Nemeth et al. [73, 71] described how the analysis of cognitive artifacts can reveal individual
and group cognitive work. On the other hand, a wide range of research has been done for integrating
physiological information in order to improve medical team’s situation awareness [63, 1, 11]. Kimura
system [63] was developed to provide users with an awareness on the progress on their work and dis-
play background activities on peripheral large displays. The AWARE [1] display system was developed
to prioritize patient’s physiological data and present to medical team in order to reduce task load and
medical errors. However, displaying information to which an operator can attend and perceive is impor-
tant, but is insufficient if it does not also foster operator comprehension and understanding [59]. To the
best of our knowledge, little work on the design of context-dependent display systems for medical team
has been reported. In this work, we developed a workflow-driven display system to integrate physio-
logical measurements as well as context-dependent information based on both medical workflows and

patients’ physiological conditions.

1.2 Technical challenges

This thesis identifies the major technical challenges for designing safe medical cyber-physical-human

systems with low complexity:

Challenge 1. In medical cyber-physical-human systems, asynchronous messages are common
due to interrupts and exceptions, but they significantly increase verification complexity:
In medical CPHS, two types of communication patterns can be considered for the control of devices:
synchronous communication and asynchronous communication. In synchronous communication, su-
pervisory controls are performed in a call-and-block manner, and, hence, the interleaving of individual
messages is limited. However, synchronous communication is inappropriate for timely processing
of urgent events, such as patient adverse events (PAEs). For example, patient adverse events, such
as SpOq_low, are generated asynchronously, and the supervisory controller must be blocked until all
previously sent messages are handled by the devices. The blocking time may cause unacceptable de-
lays for the handling of urgent events. In the asynchronous communication, in contrast, the system
can progress without blocking, which enables arbitrary message flows. Asynchronous communication
is usually used to handle urgent and unexpected messages. However, message interleaving of asyn-
chronous interrupts or exceptions may significantly increase the state space for verification, since all
the combinatorial possible interleaving must be verified. Our experiment in Chapter 2 shows that the
model checking tool, must explore more than 28,000 states to verify a system with only 3 devices.
Moreover, the state space grows exponentially as the number of sensors and queue size increase and
quickly makes the model checking tool run out of memory. Therefore, verifying safety properties is

like searching for needles in a haystack because of the state-explosion problem.

Proposed solutions: In Chapter 2, we propose a communication protocol, Interruptible Remote
Procedure Call (RPC) [97], to reduce verification complexity due to asynchronous message interleav-
ing. The Interruptible RPC exploits the tradeoff between asynchronous and synchronous RPC and
limits the asynchronous messages, which prevents combinatorial possible message interleaving. Based
on the proposed protocol, we further develop a composition method for designing complex hierarchical

command and control systems while maintaining low complexity.

Challenge 2. Concurrency control of distributed devices and controllers result in complicated

10

race conditions, which in turn may cause safety hazards:

There are growing demands to utilize medical devices connectivity and interoperability in order to
improve the effectiveness of medical services and patient safety [37, 38]. However, ad-hoc integration
of medical devices through networking can significantly increase the verification complexity. The
increasing number of devices and hierarchical control layers leads to more complicated race conditions
between devices and controllers. Therefore, modern model checking tools, may quickly run out of
memory and cannot thoroughly verify the safety and correctness properties. Moreover, the distributed
system components must be properly coordinated, which is known as concurrency control, to prevent
conflict/adverse interactions. For example, if multiple controllers command the same infusion pump
without proper coordination, the infusion pump may give the drugs that can cause adverse interactions,
such as sodium bicarbonate and calcium chloride’. Therefore, we need a low complexity architectural

pattern for consistently control distributed devices and controllers and prevent potential conflicts.

Proposed solutions: In Chapter 3, we propose an architectural pattern, which consists of Hi-
erarchical Organ-based Clustering Architecture and Consistent View Generation and Coordination
(CVGC) Protocol [93]. The organ-based hierarchical architecture represents basic human physiology,

human homeostasis®

. Therefore, patient adverse events can be locally handled by different organ-
system controllers, which improves the system effectiveness. Moreover, the separation of concerns
for different layers of controllers enables modular verification. Based on the proposed architecture,
CVGC protocol is developed to mitigate safety hazards by coordinating distributed medical devices

and controllers. CVGC protocol generates consistent view and prevents unsafe race conditions among

distributed devices and controllers, which in turn reduces the verification complexity.

Challenge 3. Medical complications may occur if the medical staff incorrectly perform treat-
ments and improperly adapt workflows to patient conditions
As mentioned in the previous section, medical staff in ICU are usually under great stress and have very

little time to make critical decisions. Slips and lapses of performing treatments may adversely affect

>Sodium bicarbonate and calcium chloride cannot be simultaneously injected through the same IV pump, because they

would form calcium carbonate and make the two drugs ineffective.
®Human homeostasis is the body’s ability to physiologically regulate its inner status to ensure the stability in response to

the physiological changes.

11

patients’ outcomes or even cause patients’ death. Medical workflow codifies best practice guidelines to
help physicians timely and correctly perform treatments. In medical CHPS, synchronizing supervisory
medical systems, physicians’ behavior and patient conditions in compliance with best practice work-
flow is essential for patient safety. However, patient conditions change rapidly and asynchronously.
Therefore, the medical workflow must be adapted to patient conditions. For instance, if patient’s heart
rhythm changes from ventricular fibrillation to sinus bradycardia, a different set of treatments, includ-
ing administering atropine and placing a pacemaker, should be considered. Nevertheless, adapting a
workflow without validating safety requirements may cause safety hazards. For one thing, some treat-
ments may cause severe adverse interactions if they are performed simultaneously. For another, at
certain workflow steps, the workflow is not safe to be interrupted.

Proposed solutions: In Chapter 4, a treatment validation protocol is developed to help medical
staff correctly perform treatments and monitor patient’s physiological responses [95]. Specifically, the
developed protocol validates treatments by checking preconditions, monitoring potential side effects,
and checking patient responses, which can assist medical staff to perform treatments in accordance
with medical guidelines. In addition, like model-based feedback control system, the proposed protocol
validates the preconditions and corrective treatments and provides feedback to the medical staff. In
Chapter 5, we proposed a workflow adaptation and validation protocol to dynamically adapt the work-
flow to the patient conditions while validating safety requirements in collaboration with physicians [96].
From a system verification perspective, we use a model checking tool, UPPAAL 7, to formally verify
the safety and correctness of the proposed two protocols.

Challenge 4. Lack of context-dependent physiological display considerably increases medical
staff’s cognitive load complexity and, further, the chance of medical errors:

In the current medical practice, medical staff are generally overwhelmed by the great amount of unor-
ganized data. Related physiological information are usually spread across multiple devices and screens.
This situation significantly increases medical staff’s cognitive load and the chance of preventable med-
ical errors. In addition, the current display systems lack of medical context-dependent information,

such as workflow, to assist medical staff follow the medical guidelines. Unintended deviation from

"In Appendix A, we give a brief introduction of model checking and UPPAAL. Readers, who are not familiar with

AADL, are encouraged to read the chapter in the appendix.

12

the best practice medical guidelines may adversely affect patients’ outcomes or even cause patients’
death. However, in medical practice, medical staff must recall the steps in the guideline, verbally order
medications, check patient’s physiological measurements displayed across multiple monitors, diagnose
patient, and decide treatment plans. Moreover, certain treatments are time sensitive, and medical staff
are required to keep track of the time progress as well. For example, CPR should be sustained for at
least two minutes, and epinephrine should be injected every three to five minutes. If the guideline is not
followed correctly or the medication order is missed, patient’s safety may be compromised. Therefore,
a situation awareness improved display system is required to provide context-dependent physiological
information and flag the deviations in order to reduce medical staff’s cognitive load.

Proposed solutions: In Chapter 6, we developed a Best Practice Guidance (BPG) system to re-
duce medical staff’s cognitive load and foster adherence to the best practice guidelines in real-time [94].
Our system 1) keeps track of the workflow steps, 2) flags deviation from the workflow, and 3) high-
lights the real-time progress of the treatments, the status of the treatments, and the patient physiological
responses. Based on the context information provided by the workflow, the medical staff can gather
concise and comprehensive physiological information to diagnose patients and decide treatment plans.
We qualitatively and quantitatively evaluated the medical BPG system in a clinical simulation environ-
ment with a medical SimMan 3G Manikin®, and the preliminary results demonstrate promising clinical

effectiveness.

8SimMan 3G is an advanced patient simulator that can display neurological symptoms as well as physiological. http:

//www.laerdal.com/us/SimMan3G

13

Chapter 2

Reducing Verification Complexity:

Interruptible Remote Procedural Call

As described in the previous chapter, message interleaving due to asynchronous communication is one
of the major sources for verification complexity. In this chapter, we focus on the design methodology
of providing formal description of the basic structure for composing complex systems, called building
block, which is flexible, easy to extend, and only introduces low complexity and verification cost (Chal-
lenge 1). In order to achieve the design goal, we present an architectural design pattern — interruptible

RPC [97] — for verifiable command and control systems (Challenge 1).

2.1 Synchronous and Asynchronous System Model

To quantify the system complexity in terms of the number of states, we first define a formal model of

computation and communication for distributed command and control systems.

2.1.1 Synchronous system

The computation and communication model of the synchronous system is similar to the hand-shake
synchronization model of UPPAAL [15].

A single FSM M; is a tuple (S;,19, %, E;) where

14

S; is a set of locations of M;,

lg € S, is the initial locations,

3] is the alphabet, whose elements are input (a?), output (a!), and/or local (a) actions, and

E; C S; x ¥ xS is the set of edges.

In the above definition and the later description, a stands for an event passing between machines encap-
sulating the source and the destination. We write /; — I for a state transition such that (/;,0,0}) € E,
l; € Sjand I} € S; where 0 € X.

A synchronous system is a set of finite state machines M7y, ..., M,,. A state in the system is defined
as a vector of current locations of the machines and denoted I. There are two transition rules in the
system: local transition rule where one FSM make its own move, and synchronized transition rule
where two FSMs make simultaneous move. In the latter case, the two FSMs are synchronized using

input actions, and output actions. Let [; is ith element of vector [and 1[I /1;] represents [; is replaced

by I;. The transition rules are as follows:

—

e Local: | % [L/L) i =5 U

o Sync: % I /LIL /L] i 1 % L and [S 0

2.1.2 Asynchronous system

In asynchronous model, a system is composed of a set of FSMs communicating through queues. we
introduce queues to model the communication delay in the distributed system. Let (;; denotes a
queue connecting from M; to M;. The queue is served as an unidirectional communication channel.
gi,j represents an instance of (); ;, having a sequence of events. If a queue is a concatenation of
two event sequences ¢, ¢, it is represented by ¢ - ¢/. Then, the distributed system can be defined as
a parallel composition Mi|...|My|Q4, j,|--.|Qi.5,, Of @ set of finite state machines M, ..., M,, and
queues Q;, ;s ---, Qinjm- A queue represents the sequence of messages sent by the originator, M;y,
but has not been processed yet by the destination, M, where 1 < k < m. The state of a distributed

system is a pair (ﬁ q) where [’ denotes a vector of current locations of machines, and 7 is a vector of

15

assignments of the queues in the network. ¢;; stands for an element of ¢ connecting M; and M. Let [;
is ith element of vector { and f[l; /1i] represents I; is replaced by .. Also, let ¢; and ¢[q}/q;] are defined
in the same way. Then, the transition rules are local transition, send transition, and receive transition

as defined in the following:

e Local: (I,3) % (I[l}/1:),) if l; > 1]

- T

al . a!l
o Send: <l,(j> — (l[l;/lz],cﬂqgj/qwb ifl; = l;, qgj =qij - a

-

o Receive: (I, @) % (INL/L), dldly/aif]) it li S5 Uy qij = a - d;

2.2 Communication Patterns and Message Interleaving

Fig. 2.1 shows the conceptual difference between asynchronous RPC, synchronous RPC. In Fig.2.1(a),
response R1 can be interleaved with multiple commands: C2 and C'3 due to asynchronous commu-
nication. The message interleaving causes exponential state space growth since all the combinatorial
possible message interleaving must be verified. On the other hand, in synchronous communication, as
shown in Fig. 2.1(b), responses never interleave with any commands. Therefore, there’s no additional
state space growth caused by message interleaving.

The complexity of message interleaving can be shown as the number of states explored by the model
checking tools. We can model asynchronous communication between any two finite state machines
(FSMs) using two directional queues. Let S(Q)) be the total number of states of a queue, where k
is the size of the queue and x is the number of distinct messages in the queue (kK > 1,z > 1). Then,

k+1_q . ..
S(Qk@) =l4+a+22+ .. +2F= xmi_ll in worst case. If there are ¢ distinct commands and r

ck"'lfl) . (rk'*‘lfl)

distinct responses, then the maximum number of states of the two queues can be (“_— —

assuming there is no order enforcement between the commands and responses. Exponential number of
states of the queues represent the maximum possible number of message interleaving which is a major
source of state explosion in distributed systems.

However, asynchronous communication is widely used in supervisory command and control sys-

tems for handling urgent situations. A completely synchronous communication design may not be

16

Supervisory Child device Supervisory Child device

controller controller
C — CH —_—
<« jc! L LA R1
02\4";; CZ(\)
‘¢¢ "" (__________ R2
cq_ C3
&
\ 4 \4 \4 \4
(a) Asynchronous (b) Synchronous

Figure 2.1: Message Interleaving

applicable to many systems. A new communication protocol, therefore, is required to reduce complex-

ity with the consideration of the tradeoff between flexibility and simplicity.

2.3 Fundamental Protocol Design

The system architecture follows the supervisory command and control scenario. The system consists
of a supervisory controller and a set of child devices, including sensors and actuators. Fig. 2.2 shows
our proposed interruptible RPC pattern. The syntax of the model is described in Table 2.1. The basic
scenario follows the synchronous RPC pattern and provides bounded asynchrony. The supervisory
controller actively sends a command to the child device and waits for the result. If the child device
finishes execution without receiving the stop command, child device will send full result and go back
to the ready state. At the supervisory controller side, on receiving the full result, the supervisory
controller will go to the next state and invokes the next command. On the other hand, the supervisory
controller may need to interrupt the current execution due to environment changes or emergency alerts.
Therefore, we provide bounded asynchrony, which allows the supervisory controller to send the stop

command while in blocking state BI. After sending the stop command, the supervisory controller waits

17

Supervisory Child device
controller

stop?

C1

calll

<
C2
stop R2
| I StoP? \
F_Result a P_Result! <

F_Result?
o>
F_Result? or % R3
P_Result? &
\/ \/
(a) Supervisory Controller FSM (b) Child Device FSM (c) Message Interleaving

Figure 2.2: Finite state machines (FSM) and message interleaving of interruptible RPC pattern

msg! Send msg (Insert msg into communication queue)
msg? Receive msg (Extract msg from communication queue)
A B! If receive A then send B

F_Result | Full result, generated after finishing the execution

P_Result | Partial result, generated after receiving stop

Table 2.1: FSM operation syntax

for the partial result in state B2. The reason for making supervisory controller enter a blocking state is
to limit the asynchrony and prevent combinatorial possible message interleaving. Since the supervisory
controller must wait until the child device to finish handling the sfop message, the message interleaving
is bounded. When the supervisory controller receives the sfop command, it will stop the execution and
send the partial result back. Due to the transmission delay, the sfop command may arrive at child device
side after it has already finished the execution (the message interleaving between stop and full result).
In that case, the supervisory controller will accept the full result after sending the stop command.

The proposed model contains three verified properties.

e The only possible message interleaving is between stop command and full result, as shown in

18

Fig. 2.2(c). The supervisory controller will receive full result instead of partial result if the child

device has already finished the execution.

o [f the child device finishes the execution or the supervisory controller sends stop command, then
the supervisory controller goes to the next state and the child device goes to ready state without

leaving pending messages in the queue. Consequently, there is no deadlock in this building block.

e The size of the queue is bounded by two since the child device can only receive two consecutive

commands: call and stop.

Interruptible RPC reduces the verification complexity but also introduces limitations to the system
designs. The concurrency of the child devices is strictly limited. The supervisory controller cannot send
anew command until all child devices send full or partial results. In addition, the supervisory controller
can only issue an asynchronous message and must wait until it is handled by all the child devices to
continue execution. However, we argue that the limitation of currency is a worthwhile comprise, or
the combinatorial possible interleaving may cause state space explosion and result in a un-verifiable

system design.

2.4 Composition of Interruptible RPC

In this section, we describe how our interruptible RPC pattern can be used in designing more compli-

cated systems with multiple commands. Also we describe the complexity of composed system.

2.4.1 Composition Methodology

Fig. 2.3 shows the multi-command model on the caller side can be modeled as a sequential composition
of state machines of commands that are built based on the interruptible RPC pattern. On the other
hand, the composition on the callee side is in a parallel style and can also be easily composed with the
interruptible RPC pattern. However, in reality the commands are executed in a sequential manner and
there is no interleaving between the execution steps of different commands. The order of execution
of commands on the callee side is enforced by the caller. Moreover, the only dependency between

the commands of the proposed pattern is in the interface between the commands. This interface is

19

C1

Interface |
L $ | > <
Cz
Interface
L |
Interface

Cn C1 c2 000 Cn

(a) Caller (b) Callee

Figure 2.3: Composition of multiple commands (C1,...,Cn).

the output of one command used as the input of the next command. The order of commands is the
run-time order in which they are executed. Each command can start only when the previous command

has completed its execution.

Fig. 2.4 shows a search and rescue system with two commands, scan and track. The system is
composed using the interruptible RPC pattern and the composition methodology illustrated in Fig. 2.3.
In the first phase, the mission manager sends out the scan command to both of the sensors. When
a target is detected by any of the sensors, the mission manager moves to the tracking phase. In this
phase the sensors will follow the target and depending on the application can report back the location,
direction and speed of the target. In this model each sensor remains in the tracking mode until it receives
a stop message from the mission manager or it loses the target. The sensor model is shown on the right
side of Fig. 2.4. Similar to the original interruptible RPC model, on receiving a stop command, the

sensors report back their partial result or full result if they have already finished the execution.

20

(a) Manager FSM (b) Sensor FSM

Figure 2.4: Interruptible RPC pattern based search and rescue system model

2.4.2 System Complexity

The verification cost of the system consists of two phases: verification of the commands, Commands
and verification of the composition, Ceomposition- These costs are added together instead of being
multiplied due to the bounded asynchrony property provided by our proposed design pattern.

For the first part, Ceommand, When composing the system using the building blocks, the proposed
composition methodology prevents inter-command interleaving. Therefore, there is no need to verify
the different possible interleaving of execution steps of the commands in our system (Fig. 2.3). The
verification cost is the sum of the verification cost of the commands.

In contrast, the asynchronous model may result in significant inter-command interleaving. There-
fore, the complexity of verifying all possible interleaving is the product of verification cost of the
commands that is much larger than the proposed pattern and can easily cause the state space of the
system to explode.

The second part, Ceomposition. 1S the verification cost that is paid by the designer to find the correct

wiring of the building blocks. This cost depends on the approach that the designer takes to obtain the

21

correct composition for the system. It should be mentioned that the focus of our proposed methodology
is Ceommand- Ceomposition 1 beyond the scope of this thesis, but we intend to address it in future work.

Based on the proposed design pattern, after verifying each command separately (Ceommand), the
designers only need to verify the correct wiring of the building blocks (Ccomposition), that is indepen-
dent of the individual commands. In this manner, the correctness of the composed system is guaranteed
and there is no need to verify the whole system. The proposed design pattern not only provides the de-
signers with a library that consists of building blocks and multiple options for each of the blocks but
also greatly reduces the design and verification costs. The next section contains more details on the

system design and verification cost.

2.5 Verification and Complexity Evaluation

(a) State space comparison (number of states)

synchronous | interruptible | async(2) | async(3) | async(4) | async(5)
1 sensor 5 29 70 121 195 275
2 sensors 11 133 1410 4424 11816 23732
3 sensors 22 701 28691 184418 | 782417 NF
(b) Execution time comparison (msec)

synchronous | interruptible | async(2) | async(3) | async(4) | async(5)
1 sensor 0 1 4 7 12 16
2 sensors 1 13 160 549 1571 3276
3 sensors 1 120 6586 49307 | 1096480 NF

Table 2.2: State space and execution time comparison of search and rescue system. async(n) denote

asynchronous system of queue size n. NF means it didn’t finish within 12 hours.

Table 2.2 shows state space and verification time of modeling a supervisory command and control
system with different patterns: synchronous, asynchronous RPC, and the proposed interruptible RPC.
For each pattern we varied the number of child devices from 1 to 3 in the model. For asynchronous

RPC pattern, we varied the queue size from 2 to 5. Note that interruptible RPC uses queues of size two

22

since the pattern do not need more than two messages in the queue. We used Maude [30] to model the
systems and compared the state space.

We see that the growth rate of the state space and verification time of the three patterns as the
number of child devices increases. It is evident that asynchronous RPC patterns grow much faster than
the other two. The growth rate of ’interruptible’ pattern is about an order of magnitude slower, for each
child device addition, than "async(4)’ — asynchronous with queue size of four. Also, the asynchronous
RPC pattern suffers severely from state space explosion as the queue size grows. Therefore, model
checking of even reasonably sized asynchronous RPC systems will be infeasible. On the other hand,
the interruptible RPC pattern shows reasonable state space growth rate. Moreover, it is not affected by

the queue size since the maximum interleaving is bounded by the design.

2.6 Summary and Future Work

In this chapter, we focus on the command and control systems for search and rescue and propose
a design pattern, Interruptible RPC, as a building block of system designs. We show the proposed
pattern has low complexity and verification costs in terms of number of states explored by the program
verification tool. In addition, we propose a composition methodology to compose complex command
and control systems without introducing state space explosion.

In future work, we will exploit the other safety-critical applications in order to assess the applica-
bility of the proposed design pattern. Moreover, we shall further explore the hierarchical structure of

command and control systems and provide the formal description and proof of the complexity.

23

Chapter 3

Reducing Verification Complexity:
Coordination Architecture for Networked

Supervisory Medical Systems

In the previous chapter, we identify that asynchronous communication significantly increases the ver-
ification complexity and propose a protocol, interruptible RPC, to reduce it. However, interruptible
RPC does not handle exceptions, which are used to notify the high level controllers, e.g supervisory
controller, of abnormalities in a hierarchical control system. In medical systems, one of the major
types of exceptions is patient adverse events (PAEs) due to unexpected worsening of patient’s condi-
tions. PAEs introduce many challenges to design and verify medical systems. First, most PAEs are
raised asynchronously by distributed medical devices at different times. In order to safely handle a
PAE, physicians or supervisory controllers require the timely and consistent view of patient condition
and device status. In addition, the devices must be coordinated to avoid potential adverse device inter-
actions. Second, asynchronous PAEs could generate combinatorial message interleavings. In order to
guarantee safety, all possible message interleavings must be thoroughly checked, which can increase
the verification cost significantly [89]. In addition, in order to deal with more sophisticated medical
scenarios and medical devices, additional layers are required, which make the verification even more

challenging. In this chapter, we propose a reduced complexity architectural pattern [93], which consists

24

ICE
Superviosry
Controller
HeartRate BloodPressure) SpO2 Camera
Ventilator CO2 Pum
Sensor Sensor I Sensor P System

Figure 3.1: ICE structure for laparoscopic surgery

of Hierarchical Organ-based Clustering Architecture and Consistent View Generation and Coordina-
tion (CVGC) Protocol for coordinating medical networked supervisory systems and handling PAEs

(Challenge 2).

3.1 System Model and Clinical Motivation

In this section, we present a simplified laparoscopic surgery scenario [46] under the Integrated Clinical
Environment (ICE) ! infrastructure as a motivating example to show potential safety hazards that might
be caused by uncoordinated interaction between devices?>. We then discuss the system models of the

targeted networked supervisory medical systems.

3.1.1 Clinical Motivation

At the beginning of laparoscopic surgery, the patient is placed under anesthesia and requires a ventilator
to provide oxygen. An SpOs sensor monitors patient’s oxygen saturation (SpO-) and raises a patient
adverse event (PAE) if the oxygen saturation value is too low. The abdomen is inflated with carbon
dioxide gas (CO2) to elevate the abdominal wall to provide a working and viewing space for the surgeon

within the abdominal cavity. Nevertheless, when the COy pressure is increased, the diaphragm is

"Introduction of ICE infrastructure can be found in Appendix B
2Similar situation can be seen in many other medical scenarios, such as airway laser surgery [50] and orthopedic knee

surgery [69].

25

pushed upward toward the lung. This upward movement of the diaphragm can make ventilation of
the lungs and oxygenation difficult at times during these laparoscopic procedures. The laparoscopic
video camera is inserted into the intra-abdominal space to transmit images from the abdominal cavity
to high-resolution video monitors for surgeon operative view. As shown in Fig. 3.1, the ICE supervisor
controls multiple medical devices directly. The medical devices raise a PAE to the ICE supervisor
if an abnormality is detected, and the ICE supervisor sends commands to request the services from
the devices to handle the PAE. For example, the ICE supervisor may receive an SpO2_low PAE and
can handle it by either improving the lung ventilation or decreasing the intra-abdominal pressure. But
a conflict arises and a PAE may also be registered if the physicians detect that decreasing the CO2
filled intra-abdominal space results in an inadequate surgical camera view. The ICE supervisor is faced
with this conflict of a low SpO2 PAE that requires the CO2 pressure be lowered while the surgeons
register a PAE that lowering the COs restricts the view of the operative field within the abdomen. The
SpO2_low PAE and the inadequate space PAE are generated asynchronously, which may cause message
interleaving and lead to safety hazards.

In supervisory medical systems, such as mentioned above, two types of communication patterns
can be considered for the control of devices: synchronous communication and asynchronous com-
munication. In synchronous communication, supervisory controls are performed in a call-and-block
manner, and, hence, the interleaving of individual messages is limited. However, synchronous com-
munication is inappropriate for timely processing of urgent events, such as PAEs. For example, PAEs,
such as SpOs_low, are generated asynchronously, and the ICE supervisor must wait until all previously
requested services are completed by the devices. Otherwise, it might break the consistency between
the devices, potentially incurring safety hazards. The blocking time may cause unacceptable delays for
the handling of urgent PAEs. In the asynchronous communication, in contrast, the system can progress
without blocking, which enables arbitrary message flows. Asynchronous communication is usually
used to handle urgent and unexpected messages, such as PAEs [97]. However, asynchronous handling
of PAEs introduces two significant design challenges.

PAE handling without timely and sufficient information may cause safety hazards. If the ICE
supervisor handles a PAE without collecting the status of all the devices, the system may go to an unsafe

state as shown in Fig 3.2. Suppose the patient’s oxygen saturation is too low, and the SpO, sensor

26

ICE
Supervisory Ccoz2 Sp0O2 Video
Controller Pump Sensor Camera
Oxygen
Saturation

s .
/ Low Operating
Decrease | Room
[~
Pressure / Inadequte

Safety
Hazard

Figure 3.2: Safety hazards due to uncoordinated PAE handling

raises a PAE. The ICE supervisory controller requests the laparoscopic COy pump to decrease intra-
abdominal pressure without coordinating the camera system. At the same time, the surgeon detects
the surgical space is inadequate and issues a PAE through the camera system. The previous command
to decrease the pressure will cause the loss of the intra-abdominal field of vision. This situation is

extremely dangerous if the surgeon is operating at a critical point of the surgical procedure.

Message interleaving of asynchronous PAEs may significantly increase the state space for
verification. Asynchronous events may introduce a lot of message interleaving to systems. All the
possible interleaving must be checked to make sure the PAEs are properly handled without causing any
safety hazard. However, thoroughly checking all the interleaving of a reasonable size system is usually
unfeasible even to modern model checking tools. Therefore, without properly controlling and reducing

the complexity, the safety of the supervisory medical system cannot be guaranteed.

Note that similar situation can be seen in many other medical scenario. For instance, in the airway
surgery model (laser surgery for a tracheal or airway surgical procedure), if a laser scalpel surgical
device is used while the concentration of oxygen in the airway is high, a potential fire hazard may
cause fatal damage to the patients [51]. The ICE supervisor must block the oxygen supply to the

surgical field before allowing the laser scalpel surgical device to be activated. However, the exception

27

may be raised by the ventilator because the oxygen saturation is too low. Instead of unblocking the
oxygen supply immediately, the ICE supervisor must turn off the laser scalpel surgical device first.

However, for the rest of this chapter, we will use laparoscopic surgery as our primary case study.

3.1.2 System Model

In this section, we define system models that are used throughout this chapter.

Device controllers model: A device controller state consists of two parts: physiological measure-
ments and configuration settings. The physiological measurement keeps changing to reflect patients’
condition. However, a device reading is considered clinically valid if the reading is within a given time
bound. To this end, a device reading O; is associated with physiological validity interval (ty,;), and it
is considered as valid if |timestamp(O;) — current_time| < t,,;(O;). The configuration settings of a
device can be changed by device controller itself or by the ICE controller. For instance, the CO5 pump’s
up-to-date state consists of valid CO9 pressure level and the current target pressure level requested by
the ICE controller.

ICE Controllers model: An ICE controller controls a set of device controllers according to con-
figuration settings, which include boundary conditions for PAE generation, limits of control variables,
and PAE handling routines.

Hereafter, we use the term device as the device controller and the term controllers to refer both
device controllers and ICE controllers if not explicitly specified. The term command refers to the
adjustment request to change the controllers configuration settings.

Communication and interaction model: The devices periodically send the measurements to the
controllers and raise PAEs if abnormalities are detected. The controller sends command to the devices
to change devices settings. The above message passings are through asynchronous communication
channels. We model each communication channel with two FIFO queues. One is for the messages
from the ICE controller to the device, and the other is for the messages from the device to the ICE
controller. All messages are put in the corresponding queues and wait to be processed.

Finally, according to the above definitions of controller models and physiological validity, we define

the consistent view as follows: :

28

Definition 1 A consistent view of a controller C.,, denoted as C'V,, is the union of its own settings and
the underlying controllers’ settings and devices states, in which for n controllers

Vi<n|timestamp(O;) — current_time| < tp,;(O;) and the configuration settings are up-to-date.

In this work we take advantage of the fact that human physiology changes are usually slower than
the computer actions. Therefore, we assume that the consistent view can be generated within the valid
time interval of the corresponding measurements. However, the real-time mechanisms to guarantee
such timing requirements are for future work.

Since PAEs are the major reason to change devices settings, in the following sections we use PAEs
handling scenarios to explain the proposed architecture and protocol. However, the proposed architec-

ture can also guarantee consistency when the surgeon commands the configuration changes.

3.2 Hierarchical Organ-based Clustering Architecture

Supervisor -
| - Rsor
Supervisory Supervisor
Controller Layer
| I
/\ I
) . Surgery&
| Anesthetic Surgical .
Anesthesia
Controller Controller
| Layer
] A
| Cardiac Pulmonary Abdominal Oragn-System
Controller Controller Controller Layer
| v .
Medical Devices T N_ __ __ __ __ N _ N
Camera
| HeartRate BloodPressure Ventilator CO2 Pump
Sensor Sensor Sensor System |
| Devices
Layer |

:_ IV Pump _l_ |

Figure 3.3: Hierarchical organ-based structure of the laparoscopic surgery

29

We propose an organ-based hierarchical control structure to enable a low-complexity coordination
pattern among medical devices and controllers. The proposed architecture organizes the controllers in
a tree structure, as shown in Fig. 3.33.

At organ-system layer, devices are grouped into organ-based clusters according to their physiolog-
ical coupling. The rationale behind organ-based clustering is that human physiological variables within
an organ system have strong correlation. For example, since the oxygen saturation level (SpO2) and
the configuration settings of the ventilator are closely related to the human breathing function, both the
SpOs sensor and the ventilator belong to the same pulmonary cluster. Each organ-based cluster is the
minimum unit to handle patient adverse events (PAEs). For instance, when the pulmonary controller re-
ceives an SpO9_low PAE, it adjusts the ventilator settings, such as the tidal volume, fractional inspired
oxygen (FiO2), and breathing rate. The typical allowed adjustments are the tidal volume between 400
to 550 cc and FiO, between 40% to 60%*. Similarly, the cardiac controller is responsible for stabiliz-
ing the cardiac measurements, such as heart rate, blood pressure, and it adjusts the IV pump settings,
which include medication and fluid volume. The abdominal controller is responsible for adjusting the
CO2 pump and the camera system to maintain adequate surgical operating space. If an organ-system
controller receives a PAE, e.g., SpOs_low, it first attempts to locally compensate if the device states
are within the boundary conditions. However, if the device settings have reached the control limits or
inter-organ-system coordination is required, the PAE is propagated to the surgery and anesthesia layer.

At surgery and anesthesia layer, clusters are grouped to provide inter-cluster coordination. In our
current design, this layer consists of two controllers, an anesthetic controller and a surgical controller.
They are responsible for handling the PAEs, which cannot be locally compensated by organ-system
controllers. The surgical controller handles surgery related events, such as, increasing or decreasing the
COq, pressure levels. Since many PAEs are handled by the anesthetic controller or its child controllers,
the interference to the surgery can be minimized.

The supervisory layer provides the highest level of control, and it coordinates surgical and anes-

3The controller boxes shown in the figure represent the controller processes or threads, which can be physically placed in

the same machine or distributed in different machines. In this work, the controllers are placed in an ICE supervisor computer.

*For more details, see http://www.merckmanuals.com/professional/critical_care_medicine/
respiratory_failure_and_mechanical_ventilation/overview_of_mechanical_ventilation.

html

30

thetic controllers. It also serves as a surgeon interface to receive commands from human operators or
surgeons.

The proposed organ-based tree structure has the following benefits. First, the organ-based tree
structure captures human homeostasis and enables local compensation. Therefore, PAEs can be locally
handled by different organ-system controllers, which improves the system effectiveness. For exam-
ple, within the control limits, the pulmonary controller and the cardiac controller can handle the PAEs
concurrently. Moreover, the separation of concerns for different layers of controllers enables modu-
lar verification and reduces the complexity. Organ-system controllers focus on stabilizing individual
organ-system, and the higher level controllers focus on inter-organ-system coordination. Second, since
there is no direct communication between two controllers of the same layer, messages must go through
higher level controllers. This tree communication structure avoids potential conflicts of commands and
controls, since the coordination commands always go through the parent controller. In the medical
environment, conflicting commands may cause safety hazards. For example, if multiple controllers
command the same infusion pumps, they may give drugs that cause adverse interactions. In addition,
organ-based tree structure provides fault-isolation and fault-tolerance. For instance, even if the surgery
controller fails, the other controllers under the anesthesia controller can still function. For the details of

the fault-tolerance issue in the organ-based hierarchical structure, readers are referred to our work [48].

3.3 Consistent View Generation and Coordination (CVGC) Protocol

Consistent views are essential for controllers to safely handle PAEs. However, since PAEs can be
handled by the distributed controllers, the distributed PAE handling may cause race conditions and
violates consistency. For example, the anesthetic controller receives C'V)yi.,, but in the mean time,
the pulmonary controller issues a command to change the ventilator setting. C'V),;,, received by the
anesthetic controller is not consistent with the up-to-date device settings and cause ambiguity. In order
to avoid the above situation, we introduce a locking mechanism to lock the settings of a subtree. The
locking means the controllers are not allowed to change their settings but still function according to

the current settings.

Definition 2 A consistent view of a controller C,, denoted as C'V,, is the union of its own settings and

31

Figure 3.4: The CVGC protocol descriptions

the underlying controllers’ settings and devices states, in which for n controllers

Vi<n|timestamp(O;) — current_time| < tp,i(O;) and the configuration settings are up-to-date.

Definition 3 Each controller has a corresponding lock to protect its settings. A controller C, can send

command to change the settings of another controller C'g only if C, holds Cg’s lock, denoted as Lockg

The CVGC protocol contains the following phases, as shown in Fig. 3.4.

1. PAE propagation phase: The controller C,, propagates the PAE to the controller Cg if C,
cannot handle the PAE. The settings of C},’s subtree must be locked, and C'V,, and the set of

locks that C,, currently holds, denoted as LockSet,,, are also sent to Cg.
2. Locking and consistent view generating phase:

2-a In order to establish a consistent view and lock the settings of the other subtree, the con-
troller Cg sends the lockAndReport message to C.,. The lockAndReport message is propa-
gated downward until it reaches the device layer. The devices lock their settings and send
their states and locks to their parent controller. The parent controllers of the devices com-

bine the responses and propagate the consistent views and the locks upward.

32

2-b Following this layer-by-layer manner, C's can obtain C'V,, and LockSet,. Cg then decides
if it can handle the PAE. If yes, C goes to the command execution and unlocking phase.

Otherwise, C'3 further propagates the PAE and the locks to its parent controller, Cs.

The subtree of C', may have been locked or in the middle of processing the lockAndReport,
because C., receives a PAE’ from its child controller. There are two possible situations. In one
situation, C, cannot handle the PAE’ and needs to propagate it to Cg or C., is waiting for the
responses from its child controllers. C., waits until receiving the consistent views and the locks

from its child controllers. C., then sends the PAFE’, CV, and LockSet., to Cg.

In another situation, C., has already sent the commands to locally compensate the PAE'. Since
the subtree of C, is currently changing the settings, the lockAndReport message from Cg stays in
the queue until the commands are executed and the subtree is unlocked. The command execution
and tree unlocking will be detailed in the next phase. C,, can then lock the subtree and generate

the consistent view to Cj.

3. Command execution and unlocking phase: Controller Cg sends a command to handle the PAE
and the command is propagated to all the C'3’s descendant controllers. The controllers receiving
the command change their settings and waits for the unlock message. In order to prevent the
potential side effects of multiple simultaneous commands, physicians generally separate the two
treatments with a time interval, unless they belong to different organ systems, which is described
as human homeostasis. Therefore, C'z will wait for a pre-specified interval, and then sends the
unlock message to its subtree and unlock itself. The set of locks that Cg holds, except Locksg,
are also released. The controllers receiving the command unlock itself, restores its own lock, and

propagates the unlock message to its child controllers.

Moreover, in order to avoid unbounded waiting, each controller sets a timer when it sends the lockAn-
dReport message. If any child controller does not respond within the specified timeout interval, it is

regarded as failed and an alarm is generated to ask human intervention.

33

3.4 Correctness of the CVGC Protocol

In this section, we prove the correctness of the proposed protocol.

Theorem 1 The CVGC protocol is deadlock free.

Proof.

First, by assumption, a controller cannot deadlock with itself. Thus, a deadlock can only be formed by a
set of controllers creating a circular wait. Assume there are n controllers {C1, ..., C}, } involving in the
circular wait. Since the controllers are structured as a tree, the circular wait may happen only between
the parent and child controllers. Suppose C; is the parent controller and C; is C;’s child controller
and they form a circular wait. According to the pseudocode, C; sends the lockAndReport message and
wait for responses, while C; sends C'V; and LockSet; and waits for the commands. However, in this
case, the parent controller can successfully receive all the child controllers responses without forming

a circular wait. Since we arrive at contradiction, the proposed protocol is deadlock free. O

Since PAEs are raised by distributed devices and handled by distributed controllers, the potential
conflicts among commands may cause safety hazards. In order to guarantee the proper concurrency
control, let us define the following terminologies and prove that the CVGC protocol guarantees proper

concurrency control.

Definition 4 An action is defined as a pair, action = (C, S), where C'is a controller that receives the
new settings, and S is the new settings®. A command is defined as a set of actions.

In our protocol, a command sent from a controller, Cg, consists of the actions of all the C'3’s descen-
dants. For example, an action to the ventilator controller looks like action,en: = (Ventilator, FiOg =
50%), and a command sent from the pulmonary controller looks like Cmdpuimonary = {actionyent,

actiongpo, }-

Definition 5 Sequential Execution

Cmdy and C'mdy are sequentially executed and C'mdy is executed prior to C'mda, denoted as Cmdy <

>If the settings of a controller are not changed, the S is set to null.

34

Cmds iff Vi,jactionﬁ — action%, where < represents the precedence relation of two actions. In other
words, all the actions belonging to Cmdy must complete before the actions belonging to C'mds can

start.

Recall that our architecture captures human homeostasis and enables the local compensation within
an organ system. Therefore, the commands from the pulmonary controllers are compatible with the
commands from the abdominal controllers, because they control two disjoint subtrees. However, the
commands from the pulmonary controllers are incompatible with the commands from the anesthetic

controller, because they both contain the actions to the ventilator and SpO5 sensor.

Definition 6 Compatibility and incompatibility of commands
Two commands C'md; and Cmdy are compatible if

Vi, jactionil.C' % action%.C. Otherwise, the two commands are incompatible.

Lemma 2 Under the proposed architecture and protocol, two commands are incompatible iff the cor-

responding sending controllers are ancestor and descendant.

Proof.

Suppose two controllers C,, and C'z send the commands C'md,, and C'mdg to their descendants. Proof
by contradiction. To prove the “if”” direction, we assume two commands are compatible. Without
loss of generality, we assume C|, is Cg’s descendant. Since the two commands are compatible, there
are no actions of the two commands controlling the same controllers. However, since C,, is Cg’s
descendant, according to the protocol, C'mdg must contain the actions of the subtree of C,,. We arrive
at contradiction.

To prove the “only if”” direction, we assume C,, and Cz are not ancestor and descendant and the two
commands are incompatible. Since C,, and C'z are not ancestor and descendant, the two commands
contain the actions of two exclusive subtrees. We arrive at contradiction, since the two commands are
compatible. O

In medical environment, PAEs are generally handled sequentially unless they can be locally com-
pensated by different organ systems. Therefore, the following theorem proves the correctness of the

concurrency control.

35

Theorem 3 Under the CVGC protocol, compatible commands are concurrently executed, and incom-

patible commands are sequentially executed.

Proof.
Suppose two controllers C,, and Cj try to send the commands C'md,, and C'mdg to their descendants.
The concurrency of the compatible commands is clearly true. Since C'md,, and C'mdg are compatible,
C and Cg can both successfully receive the consistent view of their subtrees and send the commands.
We prove the sequential execution by contradiction. Suppose that C'md,, and C'mdg are incompat-
ible and they are not sequentially executed. According to Lemma 2, C,, and Czg must be ancestor and
descendant. Without loss of generality, we assume C, is Cg’s descendant. Since C'md, and C'mdg
are not sequentially executed, Eli,j’m,nactioné < action!, and action™ <« actionjg. In addition, it
implies that both C,, and U3 receive the consistent view according to the protocol and send commands.
Recall that only the controller that holds all its descendant controllers’ locks can issue a command.
Since C, and Cp are ancestor and descendant, it is impossible that they both holds all the locks and
issue the commands. We arrive at contradiction, so incompatible commands are sequentially executed.

a

The above theorem proves that the CVGC protocol strictly regulates the interactions between com-
mands. In addition, since the interleaving of the incompatible commands is eliminated, the verification
complexity is significantly reduced. Moreover, sequential execution and independence of concurrent
execution enables modular verification [8].

In addition, the queue size (which is defined as the number of messages that reside in the queue) of
four is sufficient for the CVGC protocol®. The lockAndReport message enforces the nodes to process
all the messages and lock the subtree. In addition, after a controller sends a command, it must wait
for a pre-defined time interval and then sends the unlock message. We assume the time interval is
sufficient for the controllers to process the command. Therefore, only the lockAndReport and the unlock
messages can stay in the queue that is for the messages from the parent to the child controllers. For

another, as stated in the previous section, the devices periodically send the measurements. We assume

®We use a model checking tool to verify this property.

36

that the controllers can process the measurements faster than the devices can generate. Therefore only
the controllers’ states, consistent view, locks, and PAEs can stay in the queue that is for the messages
from the child to the parent controllers.

As the readers may have already noticed, generation of consistent view requires extra messages
exchanges, which may introduce delays to PAE handling. The consistent view generation time (CVGC-

Time) can be calculated by the following formula

Controller.CVGCTime = 2u + Controller.StatesW CET
3.1

+ TreatmentInterval + max Child;.CVGCTime
i€Children

Here 1 is the maximum one-way message transmission delay and StaresWCET is the worst case exe-
cution time for generating the responses after receiving the lockAndReport message, and TreatmentIn-
terval is the waiting time for the subtree to be unlocked if it is currently execution a command. The
above formula recursively computes the CVGCTime of each node according to the CVGCTime of the
child nodes. We believe that the delay introduced is a worthwhile compromise. Directly changing
the device settings without knowing the up-to-date system state can potentially cause safety hazards.
Furthermore, in a supervisory medical system, the number of hierarchical layers and medical devices

are limited, so the introduced delay is fairly tolerable.

3.5 Verification and Complexity Evaluation

In order to evaluate the verification complexity of the proposed architecture and verify the correctness
and safety properties, we use abdominal laparoscopic surgery as the case study and model the systems
in UPPAAL [13] to show the number of states and verification time. We compare the proposed design
with totally asynchronous communication model, in which a node can arbitrarily send messages until
the receiver’s queue is full. We use queue size as a parameter to evaluate how the message interleaving
affects the verification complexity. We also show the number of hierarchical layers as a parameter to
evaluate the scalability of the design.

Abdominal laparoscopic surgery case study [46]: At the beginning of laparoscopic surgery, the
patient is placed under anesthesia and requires a ventilator to provide oxygen. An SpO2 sensor monitors

patient’s oxygen saturation and raises a PAE if SpO- value is too low. The abdomen is inflated with

37

carbon dioxide gas (CO») to elevate the abdominal wall to provide a working and viewing space for the
surgeon within the abdominal cavity. Nevertheless, when the CO5 pressure is increased, the diaphragm
is pushed upward toward the lung. This upward movement of the diaphragm can make ventilation of
the lungs and oxygenation difficult at times during these laparoscopic procedures. The laparoscopic
video camera is inserted into the intra-abdominal space to transmit images from the abdominal cavity

to high-resolution video monitors for surgeon operative view.

Verified Properties

P1: The pulmonary controller will increase the control variables of the ventilator upon
Two Layers
receiving a SpO5_low PAE if they are within the normal ranges.

P2: The abdominal controller will increase the laparoscopic CO2 pump upon receiving

an inadequate space PAE.

Three Layers P3: If the cardiac controller issues a PAE indicating the heart rate and the blood pres-
sure are above the threshold and the pulmonary controller issues a SpO2_low PAE, the

anesthetic controller decreases the Intravenous (IV) fluid volume.

P4: If the surgery is not at the critical point and the ventilator raises a SpO;_low
Four Layers
PAE, which is propagated to the supervisory controller, the supervisory controller

must command the laparoscopic CO5 pump to reduce intra-abdominal pressure.

P5: If the surgery is at a critical point, the supervisory controller should not allow a
reduction of the laparoscopic CO2 pump pressure. Instead, an alarm must be raised
to the surgeon or human operator because the control logic has no predefined rules to

handle this situation.

P6: The system is deadlock free.

P7: A controller can issue a command if and only if it holds all its descendant con-
CVGC Properties
trollers’ locks.

P8: There are no incompatible commands executed concurrently

P9: The queue size of the CVGC protocol is bounded by four.

Table 3.1: Verified properties of the laparoscopic surgery

The verified properties are shown in Table 3.1. The two-layer system consists of three organ-
system controllers and medical devices. The three-layer system includes the surgical and anesthetic

controllers, which are responsible for coordinating multiple organ systems. For the four layer system,

38

Hierarchical Metrics CVGC Asynchronous
Layers
queue 2 | queue 4 queue 6 | queue 8 queue 10
Number of states 1887 12084 239410 3346875 | 40639431 | OM
Two Layers
Checking time (s) | <1 3 57 797 8677 oM
Number of states 10651 | 603056 | 25040070 | OM oM OM
Three Layers
Checking time (s) | 2 143 5173 oM oM oM
Number of states 21888 | OM oM OM oM OM
Four Layers
Checking Time (s) | 8 oM oM oM OM oM

Table 3.2: Complexity comparisons with different hierarchical layers (OM indicates UPPAAL runs out

of memory.)

a supervisory controller is introduced to coordinate surgical and anesthetic controller’. The verified
properties of the layers are inclusive. In other words, to verify the four-layer system, the properties
of three-layer and two-layer systems must be verified as well. Note that the properties are used to
demonstrate the efficiency of complexity reduction. Other safety or liveness properties can also be
checked.

Table 3.2 shows the evaluation results in terms of number of states and verification time. The
asynchronous model provides flexibility but also introduces a lot of message interleaving. For example,
for the two-layer system, the synchronous model has only 546 states while the asynchronous model
with queue size 2 involves more than 12,000 states. Furthermore, the complexity of asynchronous
model grows exponentially as the queue size increases. For instance, while the queue size increases
from 4 to 8, the state space increases by several orders of magnitude. In addition, the hierarchical
structure results in more complicated message interleaving and introduces extremely large search space
in the asynchronous model. In the four-layer system, UPPAAL runs out of memory for all asynchronous
designs. This situation gets worse when more devices and more hierarchical layers are involved in the
systems. Consequently, the model checking tools cannot thoroughly verify the asynchronous model

of a reasonable size. Without thorough verifications, the safety of the system cannot be completely

A supervisory medical system must include all four layers to guarantee safety. However, we conceptually separately

them to demonstrate the impact of the hierarchical layers to the complexity.

39

guaranteed.

The CVGC model deploys a locking mechanism for coordination and reduces the unnecessary
message interleaving. Moreover, the complexity of the proposed model is not affected by the queue
size, because the message interleaving is reduced. Even for the four-layer system, the number of states
is still less than 22,000, and the verification time is less than 10 seconds. Therefore, we believe that our

proposed architecture design can achieve good scalability.

3.6 Pattern Deployment and Tool Support

In this section, we describe how to specify the proposed architecture design to an AADL pattern. The
system developers can follow the same principle to instantiate the proposed architecture in different
systems. In addition, we developed a prototype tool in OSATE (the Eclipse-based AADL development
environment [33]) to validate the specifications of the system designs. The tool reads the system model
instances and checks if the AADL specifications follow the behavior of the proposed pattern described
in the previous sections. Once the AADL specifications are validated, the system developers can safely
use the pattern with specified properties. Therefore, the design flow can be summarized as follows. The
system developers first design the system architecture in AADL and deploy the proposed pattern as a
communication layer. Second, our developed tool can perform sanity checks on the AADL architecture
design and raise warnings if any architectural property is violated. Once the design passes the sanity
check, the proposed protocol is correctly deployed with specified semantics. In order to thoroughly
verify the application specific properties, the system developers need to translate the AADL design
to the models that are used by the model checking tools. In this stage, we do not have the tools for
automatic translation®. However, the developed tool can help system designers perform an early check
to make sure the proposed pattern is correctly deployed. In the following sections, we first show a

sample AADL specification and then describe what are the sanity checks performed.

40

€02 Pump
cmd

Abdomial
Pressure
SpUZ_Low

Lock_set_req

Surgical Controller Abdominal Controller

Decision

Decision

Camera System

cmd
Image

Space_Low

Device
States

Figure 3.5: AADL structure

3.6.1 Pattern Specifications in AADL

In order to instantiate the proposed architectural pattern, first of all, the system components should
have communication layers implementing the CVGC protocol. In addition, event data ports for the
lock&report message and each PAE are required for each system component. The connections must
also be correctly declared to specify the message passing between the components. Secondly, the
communication layers should have two execution modes: one corresponds to the lock and consistent
view generation phase (lock_and_gen), and the other corresponds to the command sending phase (cmd).
A node enters a lock_and_gen mode upon receiving a PAE or a lock&report message through the pre-
defined event data ports. The consistent view is sent in a bottom-up manner when the nodes are in the
locked mode. A node transits from the lock_and_gen mode to the cmd mode when sending or receiving
a command. Thirdly, a node specifies the worst case execution time for generating the status message
upon receiving lock&report message in CVGC::StatusWCET property. The maximum tolerable time
of waiting for consistent view generation is specified in CVGC::TolerableTime property. We will show

how to check if the above specifications follow the proposed pattern in Section 3.6.2.

Fig. 3.5 shows the part of the AADL structure of a simplified system for the laparoscopic surgery
(some ports and connections are removed for readability). The messages go through the communication
layer in each component, which has the corresponding ports for commands, PAEs and device data. For

example, there is an event data port corresponding to the Space_low PAE from the camera system to

8We are currently developing a tool for automatic translation, which can close the gap between architecture design and

formal verification.

41

the communication layer of the abdominal controller. We show part of the AADL specifications of the

abdominal controller for demonstration.

Algorithm 1 The AADL specifications of the abdominal controller

System implementation AbdominalCtrl.impl
subcomponents
decision_logic: system DecisionLogic.impl;
comm_layer: system CommLayer.impl;

end AbdominalCtrl.impl;

System implementation CommLayer.impl
Properties
CVGC:: PAEPorts=>("Space_low”);
CVGC: : StatusWCET=>10ms ;
CVGC:: TolerableTime=>100ms;

Modes
normal: initial mode;
cmd: mode;
lock_and_gen: mode

end CommLayer.impl;

3.6.2 CVGC Protocol Property Check

We perform a set of sanity checks to guarantee the CVGC protocol is correctly implemented in each
node. The checks of critical components guarantee that the communication components having two
execution modes. The checks of ports connections guarantee that the message passings between com-
ponents are correctly specified. The checks of consistent view generation time (CVGCTime), which

is calculated using Equation 3.1, guarantees that each node’s CVGCTime is less than or equal to its

42

maximum tolerable time. If any property is violated in the system design, the tool generates warning
messages to indicate which part of the system does not satisfy the properties. Following are the checked
properties for each node:

e Critical Components

1. Each communication component must have two modes: a lock_and_gen mode and a cmd

mode.
2. A node transits to a lock_and_gen mode upon receiving a PAE or a lock&report message.

3. A node transits an cmd mode upon sending or receiving a command.

e Port Connections

1. There is no port connection between the nodes of the same hierarchical layer (the system

components must be in a tree structure).
2. The messages must go through communication layers.
3. The ports of a node are correctly connected to the corresponding ports of the upper layer
nodes.
e Consistent View Generation Time

1. Controller.CVGCTime < Controller.TolerableTime

In summary, in order to close the gap between architectural patterns and system implementations,
we proposed a methodology to model the proposed architectural pattern in AADL. In addition, we

developed a sanity-check tool to validate if the system implementations follow the architectural pattern.

3.7 Summary and Future Work

In this chapter, we propose an architecture pattern to provide consistent coordination in the context
of ICE-based supervisory medical systems. The hierarchical organ-system architecture allows local
compensation for PAEs within different layers of controllers. The proposed CVGC protocol establishes

the consistent view and coordinates the commands in a layer-by-layer manner. Therefore, the safety

43

hazards can be mitigated and the message interleaving is bounded. We use the laparoscopic surgery as
a case study and show that the verification space and time is orders of magnitude smaller than those of
the corresponding asynchronous communication models. The effectiveness of the proposed design is
more evident as the number of hierarchical layers increases.

In our future work, we plan to introduce fault-tolerance mechanisms to the proposed pattern, such
as self-stabilizing mechanisms [31] and NASS framework [50]. In addition, we further plan to develop
an architectural tool in SAE Architecture Analysis $ Design Languages (AADL) [34] to instantiate the

proposed architecture pattern.

44

Chapter 4

Reducing Cyber Medical Treatment
Complexity: A Treatment Validation

Protocol

In this chapter, we will address cyber medical treatment complexity. Incorrectly performing treatments
may increase the chance of medical complications and compromise patient’s safety. In order to assist
medical staff to correctly perform treatments, we propose a treatment validation protocol [95] address
the following three essential aspects (Challenge 3).

Precondition: A treatment can be performed only if the preconditions are satisfied. Unlike traditional
cyber system preconditions, the medical system cannot lock or rollback the states of physical compo-
nents, such as patient conditions. The system should request corrective treatments from the medical
staff if certain preconditions are not satisfied. Nevertheless, the corrective treatments may have precon-
ditions as well, which result in cascading of preconditions and treatments. Therefore, the system must
organize preconditions and treatment to help medical staff keep track of preconditions and performed
treatments.

Potential side effect: The side effects of a treatment may adversely affect other treatments or invalidate
previously satisfied preconditions. The system should continuously monitor the potential side effects

and alert medical staff to adjust the treatments. Moreover, the system must dynamically change the

45

structure of preconditions and treatments to reflect the adjustments from medical staff.
Expected response: The patient response must be checked after a treatment is performed. If patient
response is not as expected, the system must alert the medical staff to issue an alternative treatment.

Therefore, the medical errors due to mistakenly performed treatments can be reduced.

4.1 Motivation

In this section, we use cardiac arrest resuscitation to illustrate the concepts of treatment validation.
Example 1: In a cardiac arrest resuscitation, medical staff intend to activate a defibrillator to deliver a
therapeutic level of electrical shock that can correct certain types of deadly irregular heart-beats such
as ventricular fibrillation. The medical staff need to check two preconditions: 1)patient’s airway and
breathing are under control and 2)the EKG monitor shows a shockable rhythm!. Suppose the patient’s
airway is open and breathing is under control. However, the EKG monitor shows a non-shockable
rhythm?. In order to induce a shockable rhythm, a drug, called epinephrine, is commonly given to
increase cardiac output. Giving epinephrine, nevertheless, also has two preconditions: patient’s blood
pH value should be larger than 7.4.3, and urine flow rate should be greater than 12 mL/s*. In order
to correct these two preconditions, sodium bicarbonate should be given to raise blood pH value, and
intravenous fluid should be increased to improve urine flow rate.

The cascading relations between preconditions and corrective treatments can be captured by a tree
structure, as shown in Figure 4.1. It seems that the satisfaction of preconditions can be achieved by
the well-known post-order tree traversal. However, in medical environment, a treatment may not be
effective, and the side effects of a treatment may invalidate the previously satisfied preconditions of
any tree nodes at any time.

Example 2: One potential side effect of sodium bicarbonate is suppressed respiratory drive®, which

'The shockable rhythms are ventricular fibrillation and ventricular tachycardia [35].

“Non-shockable rhythms are asystole and pulseless electrical activity

3Severe acidosis, which is an increased acidity in the blood and other body tissue, will significantly reduce the effective-
ness of epinephrine [35]

*If a patient suffers from kidney insufficiency, giving epinephrine may worsen the kidney function and cause acute renal

failure [35].
Respiratory drive is the control of respiration, which involves the exchange of oxygen and carbon dioxide

46

ActivateDefibrillaotr

Airway & | Rhythm ==
Breathing | Shockable

AssistedVentilation InjectEPI

BloodPH > | UrineFlow
7.4 >12 ml/s

Inject- IncreaselVFluid
SodiumBicarbonate

Figure 4.1: Treatments and preconditions tree

adversely affect patient breathing. Since the precondition is invalidated, the tree should be expanded to
include the corrective treatment, such as provide assisted ventilation. In addition, increasing IV fluid
volume may not successfully improve patient’s urine flow rate. In this case, diuretics, such as Lasix,
should be given, which leads to a different tree structure.

As illustrated in Example 2, the dynamics of patient conditions and the non-deterministic behavior
of treatments pose significant challenges. The post order tree traversal alone may not be able to ad-
dress these challenges. Similar situation can be found in many other medical scenarios, for instance,

laparoscopic abdominal surgery [80] and airway laser surgery [48].

4.2 Treatment Validation Protocol Design

First, we propose a Treatment Precondition and Correction (TPC) tree for structuring the precondi-
tions and treatments. Based on the TPC tree, the medical staff can keep track of the preconditions
and treatments with concise and comprehensive physiological information. A tree node represents a
treatment, and the number of children equals the number of the preconditions of the treatment. An edge
represents the relation of a precondition and the corresponding corrective treatment. The tree is built

in a top-down manner, and the root node is the treatment that the medical staff intend to perform in the

47

User Interface for Medical Staff

. A ! !
1. Receive a treatment from : : 3. Inject : 5. Inject sodium

|

I

|

|

|

|

|

|

|

medical staff Lepinephrine L bicarbonate &

A
]
|
I v
TPC tree : increase IV fluid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

«~——

ActivateDefibrillator 2. Request checking

o rhythm and
Airway & | Rhythm==|_ _ . :
Breathing | Shockable specifying corrective
treatment
4. Create a tree node,
check preconditions, and
InjectEPI

request specifying
! corrective treatments

BloodPH > | UrineFlow
7.4 >12 ml/s

InjectSodiumBicarbonate IncreaselVFluid

NoCalciumChloride
T
I
|

6. Execute the treatmentsin the tree in a post order.
| Executing Treatment List
v

InjectSodiumBicarbonate

7. Request IV pump to injfect sodium bicarbonate
v

Figure 4.2: TPC tree construction and execution

beginning. If any precondition of the treatment is not satisfied, a child node for the corrective treat-
ment is added. Since the corrective treatment may have its own preconditions and further corrective
treatments, the height of the tree increases accordingly. The leaf nodes are the treatments that either
have no preconditions or the preconditions are satisfied. In addition, due to the dynamics of patient
conditions and potential side effects, the TPC tree is not static and requires to be dynamically updated.
Like fault-tree [60], the proposed TPC tree aims to capture the cause and effect relations and analyze
whether the root node can be reached or not. Unlike fault-tree, TPC tree intends to reach the root node
by adding corrective treatments and must adapt to the dynamics of the medical environment. Moreover,

TPC tree also serves as an interface between the medical staff and the system. Since the TPC tree main-

48

User Interface for Medical Staff

A I

10. Send the updated tree to Ul 11. Issue alternaltive treatments
|
. ¥
TPC tree

ActivateDefibrillaotr

Rhythm ==
Shockable

8. The side effect of
sodium bicarbonate
adversely affect patient
breathing

InjectEPI

UrineFlow

IncreaselVFluid

9. Sodium bicarbonate does not raise the blood
PH as expected. High light the treatments and
preconditions

Executing Treatment List

_| InjectSodiumBicarbonate

Figure 4.3: Side effect monitoring and expected responses checking

tains a logical relations between preconditions and corresponding corrective treatments, medical staff
can keep track of the progress of the medical procedures. In addition, the system provides feedback
through the tree to the medical staff if the side effects of a treatment start to interfere other treatments
or invalidate the previously satisfied preconditions. On the other hand, the medical staff specify the
corrective treatments for the unsatisfied preconditions based on the tree structure.

Second, let us use the following scenario to illustrate how validation of preconditions and corrective
treatments can be achieved with the proposed TPC tree. Suppose the medical staff send a request to
activate a defibrillator. The system builds the TPC tree rooted at ActivateDefibrillator. Since activating

defibrillator has two precondition: airway and breathing are under control, and EKG shows a shockable

49

rhythm. Assume that the first precondition is satisfied, but our system cannot automatically analyze the
EKG rhythm and requires medical staff’s diagnosis. The system requests the medical staff to check
EKG rhythm and specifies a corrective treatment if EKG shows a non-shockable rhythm. Suppose the
medical staff determine that EKG rhythm is non-shockable and specify giving epinephrine, as illus-
trated in step 1-3 of Fig. 4.2. Giving epinephrine has two preconditions: patient’s blood pH larger than
7.4 and urine flow rate larger than 12 mL/s. In this scenario, these two preconditions can be checked
by the system and neither of them are satisfied. The system, then, requests the medical staff to specify
the corresponding corrective treatments. One corrective treatment is injecting sodium bicarbonate for
correcting blood pH value, and the other is increasing IV fluid volume for improving urine flow rate, as
illustrated in step 4 and 5 of Fig. 4.2. Since injecting sodium bicarbonate requires that calcium chloride
is not currently being injected®, the system must check the IV pump status. Suppose IV pump is not
currently injecting calcium chloride and there is no precondition for increasing IV fluid volume. The
construction of TPC tree is complete, because there is no further corrective treatment to be added.

The system sends the TPC tree to the medical staff for approval. If the medical staff disapproves the
treatments, the system discards the TPC tree and waits for the medical staff to issue a new treatment.
Otherwise, the system executes the treatments in a post order, since the treatment of the leaf node must
be performed first to correct the precondition. In this case, the system requests the IV pump to inject
sodium bicarbonate, as illustrated in step 6 and 7 of Fig. 4.2.

The system monitors the potential side effects and checks the expected responses of sodium bicar-
bonate. The following cases might occur:

Case 1: Injecting sodium bicarbonate does not invalidate any precondition and successfully raises pa-
tient’s blood pH value higher than 7.4. The system removes InjectSodiumBicarbonate node from the
TPC tree and executes Increasel VFluid.

Case 2: Sodium bicarbonate adversely affects the patient breathing. The system “highlights” the pre-
conditions in the TPC tree and requests the medical staff to specify a corrective treatment, as illustrated
in step 8 of Fig. 4.2. Suppose the medical staff specifies providing assisted ventilation. The system

adds a treatment node to the TPC treeAssistedVentilation.

Sodium bicarbonate and calcium chloride cannot be simultaneously injected through the same IV pump, because they

would form calcium carbonate and make the two drugs ineffective.

50

Case 3: Sodium bicarbonate fails to raise patient’s blood pH value. The system “highlights” the treat-
ment node and the corresponding preconditions, as illustrated in step 9 of Fig. 4.2. The system sends
the TPC tree to the medical staff and requests the medical staff to specify an alternative corrective
treatment. Note that once the medical staff specify a new corrective treatment, the system must update

the TPC tree and check the preconditions of the new treatment, as described before.

4.2.1 Protocol Algorithm

In this section, we describe the validation protocol in detail and show part of the pseudocode in Al-
gorithm 2 and Algorithm 3. Algorithm 2 shows the construction of the TPC tree. Algorithm 3 shows
the post-order execution and dynamic side effect monitoring. Our protocol consists of the following
phases.

1. TPC tree construction phase: The system receives a treatment from the medical staff and starts
to build a TPC tree in a breath-first manner. The system checks the preconditions of the received treat-
ment. If any precondition is not satisfied or must be checked by the medical staff, the system sends
the tree to the medical staff and requests them to check the preconditions and specify the corrective
treatments, as shown in the line 7-14 of Algorithm 2. After getting the input from the medical staff, the
system checks if each unsatisfied precondition has a corresponding corrective treatment. If the correc-
tive treatments are incomplete, an exception is sent to the medical staff, as shown in the line 19-23 of
Algorithm 2. The system then adds the corrective treatments as child nodes to the TPC tree. Since the
corrective treatments may introduce a new set of preconditions, the system checks the preconditions
and expands the tree. If there are no further preconditions to check or all the preconditions are satisfied,
TPC tree is sent to the medical staff for approval. If the medical staff approves the TPC tree, the system

enters the execution and monitoring phase.

2. Execution and monitoring phase: The system executes the treatments in the TPC tree in a post
order. In order to keep track of all the ongoing treatments, the system maintains an executing treatment
list. Since patient conditions dynamically change, the system checks the preconditions of the treatment

again before performing it’. If the preconditions are satisfied, the system inserts the treatment into the

"If the precondition that the treatment intends to correct is satisfied before the treatment is performed, the treatment is

51

Algorithm 2 Pseudo code for constructing TPC tree

—

checkPrecondAndBuildTree (TPCTreeNode root){

2 PrecondSet precondSet<-root.treatment.PS;

3 TreatmentSet correctiveTreatmentSet;

4 Precondition precond;

5

6 while (precondSet # 0){

7 for each precond € precondSet{

8 if (precond.Checker is medical devices){

9 if (precond is satisfied)

10 precond . status<SATISFIED;

11 else

12 precond . status<-UNSATISFIED;

13 } else if(precond.Checker is medical staff)

14 precond . status <UNKNOWN;

15 }

16

17 correctiveTreatmentSet<receiveFromUI () ;

18 /! check the completeness of corrective treatments

19 for each precond € precondSet{

20 if (precond. status == UNKNONW || (precond.status == UNSATISFIED && no
corrective treatments))

21 sendExceptionToUI (INCOMPLETE) ;

22

23 }

24 for each treatment € correctiveTreatmentSet{

25 // update the precondition set

26 precondSet<Utreatment .PS

27 }

28

29 }

30 }

removed from the tree.

52

Algorithm 3 Pseudo code for post order execution and side effect monitoring

—

postOrderExecution (TPCTreeNode node) {

2

3 TPCTreeNode childNode;

4 for each childNode € node.childNodeList{
5 postOrderExecution (childNode) ;

6 }

7

8 if (all preconditions are satisfied){

9 performingTreatment (node);

10 setUpTimerForExpectedResponse (node) ;

11

12 } else{

13 sendExceptionToUI(IneffectiveCorrectiveTreatment);
14

15 }

16 }

17 // Monitors the side effects of the treatments in the executing list

18 runTimeMonitoring (TPCTreeNode root) {

19 TPCTreeNodeSet affectedNodeSet<«0;

20 /!l Monitoring side effect

21 for each treatment in the executingList{

22 if (sideEffects affect other treatments || sideEffects invalidate the

preconditions){

23 affectedNodeSet«+affectedNodeSetUgetAffectedNodeSet(treatment);
24 setTreeNodeStatus (affectedNodeSet) ;

25 }

26

27 '}

executing list and requests the medical devices to perform the treatment. The system needs to check
the expected response after a time interval, specified by the medical staff, as shown in the line 8-15
of Algorithm 3. The details of checking expected responses will be explained in the next phase. In

addition, the system periodically monitors or requests the medical to check the potential side effects of

53

the treatments in the executing list. The side effects may lead to the following situations:

2-a The side effects of a treatment interfere the other ongoing treatments. Specifically, the side effects
cause the patient’s physiological measurements changing in an opposite direction to the expected re-
sponses of other treatments.

2-b The side effects invalidate the previously satisfied preconditions in the TPC tree.

In both cases, the system will highlight the interfered treatments and the corresponding preconditions
in the TPC tree and send an exception to the medical staff, as shown in the line 22-25 of Algorithm 3.
The medical staff can adjust the existing treatments, such as increasing or decreasing the drug dosage,
or specifying alternative treatments. The system then updates the tree, as described in the previous
phase.

After the system informs the side effects to the medical staff and updates the TPC tree with their
approval, the system restarts the post order execution.

3. Checking expected responses phase: As explained in the previous phases, the system must
check patient’s conditions against the expected responses of the treatment when the timer fires. If
the patient conditions are as expected, the system removes the corresponding treatment node from the
TPC tree and executes the next treatments based on the post order of the TPC tree. If the patient
conditions do not improve as expected, the system highlights the unsuccessful preconditions and the
corresponding corrective treatments on the TPC tree for the medical staff. The medical staff can specify
an alternative corrective treatment, and the system updates the TPC tree accordingly and restarts the
post order execution.

By following the above procedures, the system preforms the treatments and corrects the precon-
ditions in a bottom-up manner. Even if the side effects adversely affect other treatments or invalidate
the preconditions, the system is capable of updating the TPC tree and let medical staff change the

treatments.

4.3 Correctness of the Treatment Validation Protocol

In this section, we prove the correctness of the developed treatment validation protocol.

Theorem 4 Under the proposed protocol, a treatment is performed only if all preconditions of the

54

treatment are satisfied.

Proof.

Proof by contradiction. We assume that a TPC tree node n,, is executed, but one of the preconditions of
N 18 not satisfied. Since the protocol adopts post-order execution, child nodes of n, must be executed
before n, can be executed. A child node is removed from the tree if and only if its expected responses
are satisfied. Consequently, the preconditions of n, must all be satisfied before the child nodes are
removed from the tree. In addition, according to the line 8-9 of Algorithm 3, the precondition is

checked again before the treatment is performed. We arrive at contradiction. O

We then prove that our protocol can correct the unsatisfied preconditions and reach the root node,

which is the treatment that the medical staff intend to perform in the beginning.

Definition 7 An TPC tree is well-formed if each unsatisfied preconditions have a tree node for the

corrective treatment.

Theorem 5 The root node of a well-formed TPC tree is reachable if the corrective treatments are

effective and the preconditions are not invalidated by the side effects.

Proof.

Proof by induction. Let /N be the number of preconditions in a TPC tree.

Base case: When N =0, the statement is trivially true.

Induction step: Assume the statement is true for 1 < N < k, Consider N =k + 1. There are two
possible cases.

Case 1: The (k+1)th precondition is satisfied, the protocol starts post order execution as if there are
only k preconditions in the tree.

Case 2: The (k+1)th precondition is not satisfied. Since the tree is well-formed, by definition, the
(k+1)th precondition has a corresponding corrective treatment node. Moreover, the corrective treatment
can successfully correct the (k+1)th precondition because the corrective treatments are effective and

the preconditions are not invalidated by the side effects. After the (k+1)th precondition is satisfied, the

55

protocol traverses the tree as if there are only k preconditions.

In either case, the induction case holds. Therefore, by induction, the statement is true. O

Lemma 6 The checkPrecondAndBuildTree function, as shown in Algorithm 2, either builds a well-

formed TPC tree or raises an exception.

Proof.

Proof by contradiction. Assume Algorithm 2 build a non-well-formed tree, and no exception is raised.
Suppose a precondition p,, is not satisfied and there is no corresponding corrective treatment node in
the TPC tree. The status of the precondition p, will be set to UNSATISFIED, as shown in line 8-
12. After the medical staff specify the corrective treatments, the protocol checks if all the unsatisfied
preconditions have corresponding corrective treatments. If not, an exception is sent to the medical staff,

as shown in line 21-25. We reach a contradiction. O

Theorem 7 Suppose side effects of a treatment invalidate any precondition and make the TPC tree
become non-well-formed. The protocol updates the tree to be well-formed if the medical staff correctly

specifies the corrective treatments.

Proof.

The protocol periodically monitors the potential side effects of the treatments in the executing list and
checks if any precondition is invalidated. As shown in the line 22-27 of Algorithm 3, if any previously
satisfied precondition is invalidated due to the side effects, the protocol "highlights” the affected tree
nodes and preconditions. The protocol, then, calls the checkPrecondAndBuildTree() to update the tree.
According to Lemma 6, since the medical staff correctly specifies the corrective treatments, the updated

tree is well-formed. O

The above theorems prove that our protocol validates treatments in respect of validating precondi-
tions, monitoring side effects and checking expected responses and adapts the TPC tree to the dynamics

of patient conditions and non-determinism of the treatments.

56

4.4 Cardiac Arrest Resuscitation Case Study and Verification

We use cardiac arrest resuscitation as a case study and model the proposed protocol in UPPAAL. The
system consists of the following models: user interface, validation protocol, side effect monitor, EKG
monitor, defibrillator, IV Pump, blood pH monitor, and urine flow rate sensor. The models communi-
cate using UPPAAL synchronization channels and shared variables.The user interface model follows
the three-step resuscitation procedure and contains a list of pre-defined preconditions and treatments,
such as activating defibrillator and injecting epinephrine, as described in the previous section. The med-
ical devices send the patient’s physiological measurements, which are modeled as non-deterministic
transitions, to the validation protocol. In addition, the medical devices also receive the treatment re-

quests from the protocol and change the states accordingly.

We show part of the verified safety and correctness properties in Table 4.1. We verified two sets
of properties in UPPAAL: medical safety properties and protocol correctness properties. The medical
safety properties capture the safety requirements of the resuscitation scenario, which are given by the
medical staff. For example, safety property P2 can be checked by the UPPAAL temporal logic formula:
A[] ValidationProtocol. IVPumpEPI imply
LabBloodPH.Value > 7.4 && UrineSensor.Vaule > 12. The above formula verifies that for all reach-
able states, the IVPumpEPI state implies that the Value of LabBloodPH is larger than 7.4 and the Value
of UrineSensor is larger than 12. On the other hand, the protocol properties guarantee the correctness
of the proposed protocol. For instance, property P8 can be checked by the formula:
SideEffectMonitor.sideEffectOccur==true ——> SideEffecMonitor. UpdateTree & &
isWellFormed(RootNode), where isWellFormed is a boolean function to check if the TPC is well-
formed. The above formula verifies that if variable sideEffectOccur is true, the UpdateTree state is
eventually reached and isWellFormed returns true. Other safety and correctness properties can be veri-
fied with similar formula. In summary, we demonstrate that the proposed treatment validation protocol

is correctly designed to guarantee safety and correctness properties.

57

Table 4.1:

Verified properties of the resuscitation scenario

Verified Properties

P1: Defibrillator is activated only if the EKG rhythm is a shock-

able one and airway and breathing is normal.

Medical safety properties

P2: Epinephrine is injected only if the blood pH value is larger

than 7.4 and urine flow rate is higher than 12 mL/s.

P3: If the side effect of sodium bicarbonate adversely affects the
breathing, the tree is updated with a new treatment node for as-

sisted ventilation.

P4: If epinephrine does not make patient’s EKG rhythm become
shockable, the tree is updated with an alternative treatment node

for drug vasopressin.

P5: There is no deadlock in the system.

Protocol properties

P6: A treatment is performed only if all its preconditions are sat-

isfied.

P7: If side effect does not occur, the root node of the TPC tree is

added to the executing list

P8: If side effects invalidate a precondition, the TPC tree is up-

dated and well-formed.

protocol adapts the TPC tree to

As future work, we would like to collect medical error case studies from Food and Drug Administra-

4.5 Summary and Future Work

In this chapter, we propose a treatment validation protocol to enforce the correct execution sequence
regarding precondition validation, side effects monitoring, and expected responses checking. The pro-
posed TPC tree structures the preconditions and corrective treatments, which provides a logical path for
medical staff to keep track of the medical procedure. In collaboration with medical staff, the proposed
the dynamics of patient conditions and non-deterministic behavior of

treatments. Therefore, the preventable medical errors due to invalid treatments can be reduced.

58

tion (FDA) and evaluate the reduction of the medical errors with the proposed protocol. Consequently,

we can provide quantitative results of the efficiency of the proposed protocol.

59

Chapter 5

Reducing Cyber Medical Treatment
Complexity: A Safe Workflow Adaptation
and Validation Protocol for Medical

Cyber-Physical Systems

In this chapter, we will address another dimension of cyber medical treatment complexity: workflow
adaptation. Medical workflow codifies best practice guidelines to help physicians timely and correctly
perform treatments. In medical cyber-physical-human systems, synchronizing supervisory medical
systems, physicians’ behavior and patient conditions in compliance with best practice workflow is
essential for patient safety. However, patient conditions change rapidly and asynchronously. According
to a study, physicians are interrupted frequently due to patient adverse events. Those adverse events
may cause distraction and further result in medical errors [26, 54]. Therefore, medical workflows must
be interrupted and adapted accordingly. Nevertheless, adapting a workflow without validating safety
requirements may cause safety hazards. For one thing, some treatments may cause severe adverse
interactions if they are performed simultaneously. For another, at certain workflow states, the workflow
is not safe to be interrupted. We propose a workflow adaptation and validation protocol [96] to safely

adapt workflows with the consideration of physician-in-the-loop. Note that instead of automatically

60

performing treatments, our system utilizes pathophysiological models and workflows to validate safety

requirements and, thus, mitigate safety hazards.

5.1 Physical Models and Definitions

Definition 8 Workflow is modeled as a timed automaton, W = < Q, ¥, C, E, qg >, where

Q is a set of the states of W. X is a set of actions of W.

C is a set of the clocks.

E C QOx X xXB(C)xP(C)xQ is a set of edges, called transitions of W, where

B(C) is the set of boolean clock constraints involving clocks from C, and P(C) is the powerset of C.
qo € Q is the initial state.

More details of timed automata can be found in [4, 13].

It is worthwhile mentioning that a workflow serves as guidance to help physicians follow the best
practice. The developed system does not automate the execution of workflows. In order to develop
an adaptation and validation protocol, we further extend the model to include patient adverse events

information and preconditions.

Definition 9 A workflow state is defined as a tuple <T, o, 0, u >, where

T is the type of the state, and T € {Operation, Treatment}

o is an operation or a treatment that should be performed when reaching this state,

0 is a set of physiological conditions, which specifies abnormal patient conditions that can be handled
in the state. An empty set indicates that the state cannot be interrupted.

L, is the effective time of the state. If the state type is Operation, ji specifies the expected execution time.
If the state type is Treatment, | specifies the time interval between the treatment is being performed

and the treatment has no further effect on the patient'.

For example, the state of Secure airway is defined as < Operation, (Secure airway), (), 5 minutes}

>. Note that securing airway is usually a top priority operation for many medical scenario, so J is an

'Different treatments have different effective time. For example, the effective time of a drug is decided based on the drug

metabolism.

61

empty set. The state of Epinephrine is defined as < Treatment, (Administer Epinephrine), {(Heart rate

> 180)}, 4 minutes >.

Definition 10 AdaptationPrecondition (AP) is defined as a tuple <DS, PCS, ITS>, where

DS (Device Set) is a set of medical devices that are required to perform the treatments or operations
after the adaptation,

PCS (Physiological Condition Set) is a set of physiological condition that must be satisfied before
starting the adaptation,

ITS (Incompatible Treatments Set) is a set of treatments that may cause adverse interactions with the

treatment that will be performed after the adaptation.

For instance, the AP of switching to an asystole workflow is <{Infusion pump, EKG monitor, oxime-

ter}, {(Heart rate < 30), (Blood pressure < 20)}, {Sotalol?} >.

5.2 Workflow Adaptation and Validation Protocol

5.2.1 Illustrative Examples

Let us use the following scenario to illustrate how adaptation and validation are performed with the
pathophysiological and workflow models introduced in the previous section. Suppose a patient with
asystole>. The system validates the preconditions of executing an asystole workflow. First, the system
checks if the required devices, including Electrocardiography (EKG) monitor, infusion pump and pulse
oximeter, are connected to the system. Second, the system checks if the EKG monitor shows a flatline
and heart rate from the oximeter is consistent with the asystole diagnosis. Third, the system checks
the patient is not currently using any drug that may cause adverse interaction with epinephrine, which
is a drug that will be used in the asystole workflow. If all the preconditions are satisfied, the system
switches to the asystole workflow.

While the physicians check the EKG rhythm, the system obtains the patient’s lab test results, which

indicating acidosis (patient’s blood pH lower that 7.2). Suppose the workflow state of Check Rhythm is

%Sotalol is usually used to treat fast heartbeat and is not suitable for a patient with asystole.
3 Asystole, colloquially known as flatline, is one type of arrhythmia, in which patient’s heart stop beating and hence no

cardiac output or blood flow.

62

(User Interface)

? r f I * I
1. Blood pH bAZ' A:d sodium 4. Validation>- StoP Célaum 7.Validation 8 Confn"m
<72 icarbonate state Fail Chloride Success Adaptation
1 1 1
/o) I N
Workflow Adaptation and Validation Protocol . .
3. Validate sodium N .
X Validation Engine
bicarbonate
Asystole Workflow 9. Add sodium bicarbonate state
workflow (
stack s 7
Secure Access IV Calcium | Check
Airway Chloride | Rhythm Bicarbonate
N)
T X
Cannot access IV
Epinephrine
Access 10
Effective Caclcium
treatments list |Chloride
o /

6. 1V Pump: Stop
Calcium Chloride

(a) Adding a state to the workflow

C User Interface >

I
10. 5p0, < 11. Switch 13. Validation 14- Conf,rm
20 workflow Success Adaptation
|) \ 4
Workflow Adaptation and Validation Protocol 12. Validate SpO, workflow \
15. Push asystole workflow to . Validation Engine
Y 16. Switch to SpO, low workflow g
the stIck ¢
SpO, Low Workflow
Workflow
stack If _____)
|)
: Qpen Ex-amlne Intubation
| Airway | Oximeter
N) N J
Trache-
B Asystole T otomy
|_workflow_] ~——
Effective Epinephrine] . S041UM
treatments list Bicarbonate

- /

(b) Switching to another workflow

Figure 5.1: The adaptation and validation protocol. The workflow state with dashed rectangle indicates

the physicians are currently executing that state.

63

interruptible to handle acidosis. The system raises a patient adverse event to the physicians, and physi-
cians specify adapting the workflow by adding a state, administering sodium bicarbonate, as illustrated
in step 1-2 of Figure 5.1(a). The system validates the preconditions by checking that the patient’s
airway is secured and calcium chloride is not currently administered. However, calcium chloride is
continuously administered to treat high potassium level in the patient’s blood. The system alerts the
physicians of potential adverse drug interaction between sodium bicarbonate and calcium chloride. In
this situation, physicians requests to stop administering calcium chloride. The system, then, sends a
command to the IV pump to stop calcium chloride, as illustrated in step 3—6 of Figure 5.1(a). Once the
preconditions are satisfied, the system adds the administering sodium bicarbonate state to the asystole

workflow.

After a few minutes, the patient’s oxygen saturation level (SpOz) suddenly drops below 80%, which
is lower than the threshold. The system raises a patient adverse event, and physicians decide to interrupt
the asystole workflow and treat low SpOs first. The system validates the preconditions of switching
to SpO2 low workflow, as illustrated in step 10—14 of Figure 5.1(b). If all the preconditions are sat-
isfied, the system pushes the asystole workflow into a stack and switches to the SpO2 low workflow,
as illustrate in step 15-16 of Figure 5.1(b). Note that workflow stack is for handling “’nested” patient
adverse events, i.e. a patient adverse event is raised in the middle of handling another patient adverse
event. When the patient’s SpOg level is back to normal, which is usually above 90%, and the SpOq
low workflow is completed, the system notifies the physicians about the performed treatments and the
changes of patient’s physiological conditions. The physicians, afterward, decide to resume the previ-
ous asystole workflow. The system pops the asystole workflow from the stack and must validate the
preconditions again since the patient conditions keep changing. However, it is possible that the previ-
ous workflow may not be fit the current patient conditions. The physicians may request to discard the

asystole workflow and switch to another one.

5.2.2 Protocol Design

The developed workflow adaptation and validation protocol has the following four phases.

1. Raising patient adverse events and re-synchronizing phase

64

The pseudo code is show in Algorithm 4. As explained in the previous section, the protocol dynam-
ically monitors the physiological measurements and raises patient adverse events if any measurement
becomes abnormal. When patient adverse events are raised, there are two possible cases:

Case 1-a: The patient adverse event can be handled at the current workflow state.

The system will inform the physicians of the patient adverse event with all physiological measurements
and device settings. Moreover, the system also lists all the ongoing and unfinished workflow states, as
shown in line 2-8 of Algorithm 4. In this way, the system re-synchronizes the workflow states to
the patient physiological conditions and provides comprehensive information to the physicians, be-
cause medical decisions based on partial information may cause safety hazards [93]. According to the
provided information, physicians can decide the process of adaptation, which is either adding/remov-
ing/updating the states of the current workflow or switching to another workflow. Then, the protocol
enters the validating preconditions phase.

Case 1-b: The patient adverse event cannot be handled at the current workflow state.

The system will add the raised adverse event to a pending list and alert the physicians. When the
workflow state is changed, the system re-examines the pending patient adverse events and notifies the
physicians if any patient adverse event can be handled. Note that the system also allows physicians to
postpone handling patient adverse events within a time frame. However, if any patient adverse event
is not handled within a time interval, the patient adverse event will be raised again, as shown in line
10-12 of Algorithm 4.

Note that it is possible that multiple patient adverse events are raised simultaneously. Our protocol does
not decide which workflow should be executed, and it is the physicians’ responsibility to provide the
appropriate workflow. If there is a workflow to handle multiple patient adverse events, the physicians
can request our system to execute the workflow. On the other hand, the physicians can prioritize the
patient adverse events and provide the workflow for handling the most urgent patient adverse events.
2. Validating preconditions phase

At this phase, the system validates the preconditions according to the adaptation process specified by
the physicians, as shown in line 4-22 of Algorithm 5.

The validation is performed to mitigate three types of safety hazards described in the previous section.

First, the required devices are connected to the system and configured according to the new workflows.

65

Second, the patient conditions are compatible with the new workflow. Third, preformed or performing
treatments will not cause adverse interactions with the treatments specified in the new workflow. If
all the preconditions are satisfied, the system notifies the physicians that the adaptation is safe to be
processed. If physicians approve the adaptation, the system goes to the adapting phase. Otherwise, if
any precondition is not satisfied, the system rejects the adaptation and alerts the physicians along with
the evidence of the unsatisfied preconditions. However, the developed system allows the physicians
to override the validation results. The reason is that medical decisions require sophisticated medical
knowledge and much medical information cannot be monitored and processed by the developed system.
Consequently, our system helps physicians to validate preconditions instead of replacing physicians’
judgments.

3. Adapting phase

Case 3-a: Adding/Removing/Updating the states:

The workflow state is adapted accordingly. In addition, the protocol also commands the corresponding
medical devices to change the settings. For instance, if the adaptation process requires to stop adminis-
tering or changing the dosage of a drug. The protocol sends a command to the infusion pump to change
the device settings if the physicians approve it.

Case 3-b: Switching to another workflow:

The current workflow is pushed into a stack for future reference. The system starts execute the new
workflow specified by the physicians

4. Completing workflow phase

The pseudo code is shown in Algorithm 6 When the workflow is completed, the system sends a sum-
mary of the workflow, including performed treatments, changes of physiological conditions, and total
execution time, to the physicians. There are two possible cases.

Case 4-a: Resuming the previous workflow

The physicians decide to resume the previous workflow. The system pops the workflow from the stack,
validates the preconditions, and resumes it.

Case 4-b: Switching to another workflow

Since patient conditions keep changing, the previous workflow may not suit the current patient condi-

tions anymore, and physicians need to switch to a new workflow. The workflow on top of the stack is

66

discarded. Then, the system validates preconditions of the new workflow and executes it.

In addition to the above adaptation and validation procedures, the system also dynamically monitors
the patient conditions and keeps track of the effective time of the treatments. First, the system peri-
odically checks the physiological measurements from the medical devices. If measurements change
significantly or become abnormal, a patient adverse event is sent to the adaptation and validation pro-
tocol. Second, the system maintains a list of effective treatments. When a treatment is performed, the
treatment is inserted into the list, and a timer is initiated according to the effective time, u. The treat-
ment is removed from the list when the timer fires, which suggests that the treatment has no or little
effect on patient. In this way, the system can keep track of the effective treatments and avoid potential

adverse treatment interactions.

Algorithm 4 Raising patient adverse events and re-synchronizing

1 void recvAdverseEvent(PatientAdverseEvent event)

2 |

3 if (event € currentState.d){

4 for(each workflow state){

5 if (state.status == INCOMPLETE || state.statu == ONGOING)
6 state_list.add(state);

7 }

8 notifyUl(incomplete_listUmeasurements_set) ;
9 } oelse{

10 addToPendingList(event);

11 notifyUI (" Pending adverse event”);

12 setupTimer (event, ReRaiselnterval);

13 }

14 }

5.2.3 Design Rationale and Limitations

In this section, we discuss the rationale behind the developed protocol as well as the limitations and
potential solutions.

First, the proposed protocol requires physicians to specify the workflow adaptation processes. It

67

Algorithm § Validating preconditions

Nl = Y T O R S

—_— = = =
W N = O

14

/1

return true if all the preconditions are satisfied; otherwise,

boolean validatePreconditions (AdaptationProcess adaptation)

{

/! check minimums required devices
if (!(deviceSet C adaptation.DS)){

notifyUI (” Missing required devices”);

return false;
}
/! check patient’s physiological conditions
for(each PC € adaptation.PCS){

if (PC is not satisfied){

notifyUI (" Inconsistent patient conditions”);

return false;

}

// check incompatible treatments
for(each performed or performing treatment t){
if (t € adaptation.ITS){
notifyUI(” Incompatible treatment”);

return false;

}

return true;

return

false

requires extra time and effort for physicians to use the developed system. However, we argue that
the time and effort are worthwhile compromises for performing computer aided validation in order to
mitigate safety hazards and further enhance patient safety. Moreover, the interaction with medical staff
is necessary, because much critical medical information, such as, patient conditions and diagnosis are
described in natural language, which cannot be processed by the system. To improve usability, when
a patient adverse event is raised, a list of well-established adaptation processes for the corresponding

physiological conditions is displayed. We are closely working with medical staff to collect routine and

68

Algorithm 6 Completing workflow

—

void completeWorkflow ()

2 A

3

4 notifyUIl (preformed treatment lists);
5

6 if (resume precious workflow){

7 Workflow workflow = popWorkflow () ;
8 if (validatePreconditions (...)){

9 currentWorkflow = workflow ;

10 } else{

11

12 }

13 } else if(switch to a new workflow){
14 popWorkflow () ;

15 validatePreconditions (...) ;

16

17 }

18 }

well-established medical practices that can benefit from such improved adaptation choice lists.
Second, our protocol does not consider the potential failure of medical devices, supervisory con-
trollers, and communication channels. We assume that each medical device has been certified and
approved by Food and Drug Administration (FDA). If any medical device malfunctions, our system
relies on medical staff to replace the malfunctioned device. On the other hand, the failure of communi-
cation channels is another major issue. When the communication channels fail, the developed system
cannot dynamically monitor the patient conditions and validating the preconditions of adaptation. This
fault-tolerance issue is addressed in [50], and the proposed protocol can cooperate with those mecha-
nisms. The fundamental concept is that each workflow has a pre-specified fail-safe state, which consists
of the safe settings for each medical device. For instance, a fail-safe state of the asystole workflow is
deactivating the defibrillator and maintaining injection of epinephrine. At run time, the system gener-

ates contingency plans that will change each medical device setting to a safe one when communication

69

fails.

Third, in this work, the proposed protocol executes the workflow one at a time and does not sup-
port concurrent workflow execution. The reason for limiting the concurrent workflow execution is that
medical staff generally execute one workflow at a time if applicable. For example, Airway, Breathing,
and Circulation is a commonly accepted sequence for assessment and treatment of patients*. Concur-
rent workflow execution significantly increases physicians mental workload and may even cause safety
hazards due to adverse interactions between the workflows. However, in certain situation, for instance,
in trauma surgery, a patient suffers from multiple organ injuries, such as brain damage, lung collapse,
and kidney failure. In this case, physicians may require to execute multiple workflows concurrently in
order to treat the organ injuries. Therefore, a more complicated protocol for synchronizing and val-
idating multiple workflows, physicians’ actions and patient conditions is required. This is a serious

challenge to be addressed in our future work.

5.3 Design Pattern and Protocol Instantiation

In this section, we structure the workflow adaptation and validation protocol as a design pattern. Fig-
ure 5.3 shows the class diagram of the overall software architecture. (We only show the core com-
ponents and methods in the figure for readability.) The developed design pattern consists of reusable
software components, i.e. ValidationEngine andRuntimeMonitor, and abstract templates, i.e. Abstract-

Workflow and AbstractAdaptationProcess.

o AbstractAdaptationProcess provides a template for system developers to design an adaptation
process. The most implement part is an abstract method, adaptProcess. Depends on the med-
ical scenario and exceptions, the system developers need to implement this method, which is
either adding/removing/updating workflow states or switching to another workflow. In addition,
AbstractAdaptationProcess encapsulates the preconditions of the adaptation, which are required

devices, physiological conditions, and potential conflict treatments.

o AbstractWorkflow declares a set of generic variables and methods to model medical workflows,

“Other variations, such as CAB and ABCDE, are proposed for different medical scenario [55]

70

==Java Class»>

SEEDERED (3 RuntimeMonitor
(® ValidationEngine validarionEngine
validarionEngine
p— p— & timer: Timer
a I 0 Il
mdpnphianager: MDPnPManager ~runtimetlonitor| & mdpnpht MDPnPManager
& validationEngine() oa SF PERIOD_IN_S: int
@ validatePreconditions(AbstractAdaptationProcess).boolean - & effectiveTreatmentList: List<AbstractTreatments
S ST T ST L ST e
DEsE S EETTILER CERELL TR LGRS © gelEffectiveTreatmetList():List<AbstractTreatment>
B checkAdverseinteraction(List<AbstractTreatments y List<AbstractTreatments _ .
@ raiseExceptions():void

~runtimeMonitorTimerTask

<<lava Class>> 0
=<lava Class>> (@ AbstractAdaprationProcess
(© AbstractWorkflow validarionEngine <<java Class>>
validarionEngine hd (3 RuntimeMonitorTimerTask
< targetState: AbstractWorkflowState walidaronEngine
1 tState: AbstractWorkflow Stat
4 name: String - Workh Oc
. . - 5 €)
& workflowStateLists: List<List<AbstractiWorkflow State=> argelivorkTov AbstractdaptationProcess() <" RuntimeMonitorTimerTask(}
0.1 @ getMinimumReguiredDevice() List<AbstractDevice= Yvoid
ccAbstraqurkﬂow[stnng}) @ run{j:voi
@ getAssumedPhysiologicalCondition(j:List<PhysiologicalCondition= < monftorPatientConditions()-void
n " I
© addWorkflow State{AbstractWorkflow State)void @ gethdverselnteractedTreatments():List=AbstractTreatment= & updateEffectiveTreatmentList():void
@ i ke tate(AbstractWorkflow State)-void J‘eoepterﬁonchessU void
Oz S P S R B switchWorflow (AbstractWorkfiow :void
#adversenteractedTreatments /
<<)ava Class=> #minimumRequiredDevice
(® AbstractWorkflow State <<lava Class=> o # dRhysiol IConditi
ractorTe (® AbstractTreatment zssumegfysilegica Conditon
validarionEngine T <<Java Classs> T
13) << >
< name: String ~treatment 3 @Absmacmewce ava . ass: .
2 name: String o § (® PhysiologicalCondition
 type: Type walidarionEngine o
) 0.1 | & guidelineDosage: Double validarionEngine
< exceptionSet: Set=Exception> & name: String
o - & administerintervalinSec: int 4 physiologicalMeasurement: PhysiologicalMeasurement
< effectiveTimelniin: int = & status: DeviceStatus
AbstractTreatment(String) Physiol ICondition(}
ocAbstra ctWorkflowState(String) 4 OCADStradDevlce[Strmg} OC ysiologicalCondition(}

@ sendCommand(Command):void
@ recvleasurements() void

@ getStatus():DeviceStatus

@ setStatus(DeviceStatus):void

Figure 5.2: Abstract Class Diagram

and provide interfaces to allow AbstractAdapataionProcess to add/remove/update a workflow
state.

e ValidationEngine implements the adaptation and validation protocol based on the preconditions

specified in AbstractAdaptationProcess, as described in Section 5.2.

e RuntimeMonitor is a periodic process, which monitors the physiological measurements from

AbstractDevice and raises exceptions if measurements change significantly or become abnormal.

In order to instantiate the developed pattern to a medical scenario, system developers must im-
plement scenario-dependent workflows and adaptation processes in collaboration with physicians. We

show the class diagram of a concrete implementation of cardiac arrest resuscitation in Figure 5.3. Fol-

lowing are the detail implementation strategies:

1. A set of workflows, such as asystole and ventricular fibrillation workflows, must be codified in ac-

cordance with the best practice guidelines. System developers should cooperate with physicians

71

=<lava Class=>
(& AbstractAdaprationProcess

validarionEngine

n <<lava Class>»
< targetState: AbstractWorkflow State (3 AddBicarbonateAdapataion
&Abslradﬁ«daptaliunPrucass(} validarionEngine
@ getMinimumReguiredDevice():List<AbstractDevice= ~bicart
© gethssumedPhysiologicalCondtion () List<PhysiologicalConditions GEAMB‘D_E”’”"‘“EM“""m‘”"("
@ getAdverselnteractedTreatments(); List<AbstraciTreatment> SladaptaiontXocess{lvond \\-:\. =<lava Class=>
v‘“ adaptationProcess().void #targetWorkflow 0.1 (C] Bl‘trzajbonafeslale
B switchiWorflow (Abstractilorkfiow):void \ <<Java Classs> ===

(® SwitchToAsystoleAdaptation ocBicarbunateState(Smng}

validarionEngine

FawitchToAsystoleAdaptation()

#adverselpteractedTreatments <» adaptationProcess():void
#aszumedPhysiologicalCondition). #minimumRequiredDevigh. .= o 0.1 ~asystoleWorkflow
<<Java Class=> <elava Classes ey <<lava Class== o
(3 PhysiologicalCondition @ AbstraciDevice (3 AbstractTreatment (3 AbstractWorkflow -
valdarionEngine valigsrionEngine validarionEngine S TS <<Java Class=»
& physiologicalileasurement: PhysiologicalMeasurement 4 name: String & name: String & name: String (© AsystoleWorkflow
& PhysiologicalCandition() & status: DeviceStatus & guidelneDossge: Do... | | & WorkfowStateLists: ListeList<Apstractiorkfely State=> <} EeETa
& AbstractDevice(String) & administerintervalns & AbstractWorkflow(String) & AsystoleWorkflow(String)
@ sendCommand(Command)void | | & AbstractTreatment(... @ addWorkflow State(AbstractWorkflowSlate):void
@ recvieasurements():void @ flow State(AbstractiWpfkflow State):void
@ getStatus():DeviceStatus. @ updale‘.‘u’urkﬂnwSIate(Abslra%:kﬂnwslale} woid
@ setStatus(DeviceStatus):void
541 R sodiumBicarbonate 1
<<lava .ﬁlﬂss>> <zlava Classs> <<Java Class=> «zlava Class=» «<Java Class>> <<lava Class=>
(Oximeter @ IPump (& EKGMonitor @ Defibrillator (3 Epinephrine (© SodiumBicarbonate
validarionEngine validarionEngine aidarionEngine al — validarionEngine walidarionEnging
o oximeter(String) || @FvPump(String) & EKGHonitor(String) & Defibrilator(String) | | & Epinephrine{String) & SodumBicarbonate(String)

Figure 5.3: Instantiation of Cardiac Arrest Resuscitation

to verify the correctness of the codified workflow. Physiological correctness of the workflow is

out of the scope of the pattern.

. The concrete medical devices, e.g. defibrillator and EKG monitor, must be and extended from
AbstractDevice. AbstractDevice class serves as a proxy of the physical medical devices and pro-
vides interface for AbstractAdaptationProcess to receive physiological measurements and send
commands. The communication between AbstractDevice and physical medical device can be

achieved through Medical Device Plug-and-Play (MDPnP) framework >.

. The treatments that may be used in the medical scenario, e.g. epinephrine and sodium bicar-
bonate, must be extended from AbstractTreatment. Moreover, AbstractTreatment contains best
practice guideline dosage and administering interval to assist physicians to perform the treat-

ments in accordance with the guidelines.

4. For each exception that may occur during the medical scenario, an adaptation process should

SMore details of the implementation of MDPnP programs can be found at http://sourceforge.net/

projects/mdpnp/

72

be specified to adapt the workflow as well as the corresponding preconditions. For instance,
in Figure 5.3, we show two adaptation processes addBicarbonateAdaptation and switchToAsys-

toleAdaptation to handle acidosis and EKG rhythm changing to asystole, respectively.

By following the above strategies, the proposed design pattern can be instantiated to a medical scenario

to support workflow adaptation and validation.

5.4 Cardiac Arrest Resuscitation Case Study and Verification

In this section, we first describe a cardiac arrest resuscitation scenario as our case study. We, then,
model the proposed protocol in UPPAAL [13], which is a model checking tool, to verify the safety and

correctness properties.

5.4.1 Cardiac Arrest Resuscitation Case Study

Cardiac arrest is the abrupt loss of heart function and can lead to death within minutes. Cardiopul-
monary resuscitation (CPR) and medications, such as epinephrine and calcium chloride, are used to
provide circulatory support. Defibrillator is used to deliver a therapeutic dose of electrical energy
to the heart in order to reestablish normal heart rhythms. American Heart Association (AHA) pro-
vided resuscitation guidelines for the urgent treatment of cardiac arrest [35]. The guidelines contain
the workflows for treating six types of life-threatening arrhythmia: ventricular fibrillation (VF), ven-
tricular tachycardia (VT), asystole, pulseless electronic activity (PEA), sinus bradycardia, and sinus
tachycardia. Each workflow consists a set of medical procedures, including secure airway, defibrilla-
tion and rhythm check, and a set of drugs, including epinephrine, sodium bicarbonate, and calcium
chloride, with dosage and administering interval. In addition, patient’s physiological measurements
may become abnormal, for instance, sudden drop in SpO; level. Therefore, physicians need to adapt
the workflow to react to the rhythm changes and abnormal physiological measurements. However,the
adaptation of the workflows may cause safety hazards. We gather a list of safety hazards, shown in

Table 5.1, by interviewing our physician collaborator.

73

Table 5.1: Safety hazards of workflow adaptation during cardiac arrest resuscitation

Workflow adaptation safety hazards

Device con- | H1: The system switches to a ventricular fibrillation or ventricular tachycardia work-

figuration flow, but a defibrillator is not yet connected to the system.%

hazards H2: The system adds a workflow state of administering sodium bicarbonate, but an
infusion pump is not yet connected to the system.

Patient H3: Sodium bicarbonate is given before the patient’s airway is secured.

physiologi- | H4: The system switches to a sinus tachycardia workflow, but patient’s heart rate is

cal condition

slower that 150 bpm’.

hazards HS: The system switches to a sinus bradycardia workflow, but patient’s heart rate is
faster that 50 bpm?®.

Adverse H6: Sodium bicarbonate and calcium chloride is administered simultaneously with

treatment the same infusion pump.

interaction H7: Sotalol is administered while the system switches to a sinus bradycardia

hazards workflow.”

HS8: Atropine is administered while the system switches to a sinus tachycardia

workflow. °

5.4.2 UPPAAL Models and Verification

We model the proposed protocol in UPPAAL [13]. The system consists of the following models:

user interface, adaptation and validation protocol, EKG monitor, defibrillator, IV Pump, and blood pH

monitor. The communications between the models are through UPPAAL synchronization channels

and shared variables. The user interface contains a list of pre-defined workflows, and the workflow is

®When patients’ heart rhythm changes ventricular fibrillation or ventricular tachycardia, early defibrillation is critical for

improving patients’ survival rate.

" According to AHA guidelines [35], tachycardia is the heart rate abnormally exceeding 150 bpm and a set of drugs may

be administered to slowdown the patient’s heart rate.

8 According to AHA guidelines [35], bradycardia is the heart rate abnormally slower than 50 bpm.

?Sotoal is usually used to treat fast heart rate and not suitable for treating sinus bradycardia.

10 Atropine is usually used to treat slow heart rate and not suitable for treating sinus tachycardia.

74

BradyRhythm . i

TachyRhyth .

ekg_clock >=
MinRhythminterval

NormalRhythm

ekg_clock >=

MinRhythminterval RhythmChanged!

ekg_clock := 0,

RhythmChanged! currentRhythm = Normal

ekg_clock =0,
currentRhythm :=

ekg_clock >=
MinRhythminterval

VFRhythm

RhythmChanged!
ekg_clock =0,
currentRhythm = VF
RhythmChanged!
ekg_clock =63
currentRhythm = VF

RhythmChanged!

ekg_clock =0,

currentRhythm = Tachy . VTRhythm

ekg_clock >=
MinRhythml I
okg._clock >= inRhythminterva
MinRhythml I
inRhythminterva ekg_clock >=
MinRhythmInterval

’

RhythmChanged! =
ekg_clock =0,
currentRhythm :=
Asystole

Asystole

ekg_clock >=
. MinRhythmInterval

PEARhythm

. AsystoleRhythm

Figure 5.4: The EKG monitor in UPPAAL

Table 5.2: Protocol correctness properties

Protocol
correct-
ness

properties

P1: There is no deadlock in the system.

P2: A patient adverse event is raised to the user interface only if the current workflow

state is interruptible to handle the adverse event.

P3: An adaptation is performed only if all the preconditions are satisfied.

switched according the states (rthythms) of EKG monitor. The user interface also has a list of patient
adverse events and the corresponding adaptation process. The medical devices send the physiological
measurements, which are modeled as non-deterministic transitions with timing constraint, to the adap-

tation and validation protocol. In addition, the medical devices receive the treatment requests from the

protocol and change the states accordingly.

We show two UPPAAL models of the developed system in Figure 5.4 and Figure 5.5. The other
UPPAAL models share the similar structures. Figure 5.4 shows the EKG monitor model. The EKG
model changes the rhythm non-deterministically, and the the minimum time interval between rhythm
changes is defined by a variable MinRhythminterval. When the rhythm changes, the global variable

currentRhythm is updated and a patient adverse event, RhythmChanged, is raised to the adaptation and

75

OO BULON
=
Ny == YISeUOVRIE]

9L

IVVddN ut [000301d uonepijea pue uoneidepy :¢'G 2In3L

1HaIVUOIRIALISSIANDY

LOJJIRIQUIISAPY

98[8} == JNBOHUO[ORISY|

516} == JnsoruoNp

uoPuODIUB REdeIqIEd W]

IHIVUORIPUOO)UBe dRIqEdWOOU |

s|iej uonepijen

eajreqBulssIN

iHelveoiASaBuIgSIN

= Olusle

©5[e} == HNSOUPIBASOAD

ang = ynsayuog|puodiuane

PlIEAJIBHRA|EULON

IBASOIABQEULON

anu) == JnSayPIEASONP|

(tegsoireq]

MOYUOMAYORL 038} mm 058} mm s/e} == Jnsaupensomsp|
= MOIPHOMJUBLND .
onj == uojpoeIRu) ' Auor Loy =: \ = DlulB:
ang, — ynsayuoppuoduaned sy ==
PllEAenEgAyoe] [eA®D1AOQAYE L

//S rh_ = }inseyUORILIONI o8f8) == ._znozév:uog_/v/_ 986} == JNSRYPIIEARIG]
A - Npuel - = d

ong == ynsexuoRoBIRuI _ I P— L

pegueigBujya))

o8]} == yineayuonipUoualjed

[eASO|AOQApRIg

98f8) ==)neaypifEASdAap'

= Inod

\ esie) == ynseyuogorse
A =

on} == YNseuojoRIew]

MOPUOMIN
eund

PlleAelBdejojshsy
osjeyl=\: ynseyucHoRIGE

o opeped

os[e) == J|nseyuogipuojueiyed

PlisAsoIAsejcyshey

- Ojuened
8Ny == JINSBYPIEASINEP

088} == JNSYPIASN

Ojuaned

N1 == JnESNUOHIRISI

SUOI30RIDIUI SJUBWIRDIY 393D

any == ynsaxuogpuogiuaged

AN

PlIBABIARGHA

N} == YNSIUPIBASOINSP

(1950|080 /0B | RBSEAABOOBYI=TINSSPIEAEIINBP
Kuyoe) == wWykippuaLno

[BULION == WA UeLND

msApe.g

Aprig == wykyyueuna

/

SEISMOHOMPE

(leg20mag:
SySAsY mm WYKAYNIUBLND

1038k

(1959911004

4 == WEALIIBLNS

HesdA

suolIpuod Juaned 323Y)

|PIRRIOUGIME

$221A9p padinbal ¥oay)

MOLPUOMUAIMNG
RIDETHODIBM

N\

validation protocol. Other medical devices, such as pulse oximeter, have a similar structure. The design
of the adaptation and validation protocol, as shown in Figure 5.5, reflects the pseudocode, described in
Section 5.2.2. We only show the core part of the protocol, validation procedure, for readability. When
the protocol receives a SwitchWorkflow request from the user interface, the protocol first validates if all
the required medical devices has been connected to the system. If any device is missing, a MissingDe-
viceAlert is sent to the user interface. Second, the protocol validates the physiological measurements
from the medical devices is compatible with the preconditions specified in the workflow. If there is any
incompatible physiological condition, an IncompatiblePatientConditionAlert is sent to the user inter-
face. Third, the protocol validates the potential treatment interactions. If any treatments in the effective
treatment list may have adverse interactions to the treatments specified in the workflow, an Adverseln-
teractionAlert is sent to user interface. If all the preconditions are satisfied, a SwitchGranted message

is sent to the user interface.

We use UPAAL to formally check that none of the safety hazards, described in the pervious sec-
tion, occur in our system. The main temporal operators for verifying safety properties supported by
UPPAAL are A [] ¢, which means ¢ is satisfied in every state along every execution path, and E [/
¢, which means ¢ is satisfied for all states along at least one execution path. For instance, H5 can be
checked by the formula: A[] not (nextWorkflow == Bradycardia) or HeartRate < 50). The above for-
mula verifies that for all reachable states, the system switch to a bradycardia workflow only if patient’s
heart rate is lower than 50. Moreover, we also verify a set of protocol correctness properties, which are
shown in Table 5.2. For instance, P3 can be checked by the formula:

A[] not(av_protocol.SwitchingGranted) or (av_protocol.deviceValidResult == true and

av_protocol.patientConditionResult == true and av_protocol.interactionResult == true), where Switch-
ingGranted is a state indicating the workflow approved to be switched by the protocol and device-
ValidResult, patientConditionResult, and interactionResult are three boolean variables indicating the
validation results of the three types of preconditions, respectively. Other safety and correctness prop-
erties can be verified with similar formula. According to the model checking results, we demonstrate
that the proposed workflow adaptation and validation protocol is correctly designed to mitigate safety

hazards.

77

5.5 Summary and Future Work

In this chapter, we develop a workflow adaptation and validation protocol to adapt workflows to the
patient adverse events. In order to mitigate safety hazards, the proposed protocol utilizes the intro-
duced pathophysiological and workflow models and validates the preconditions of the adaptation. In
collaboration with physicians, the validation is performed on device configurations, patient physiolog-
ical conditions, and potential adverse treatment interactions. We use cardiac arrest resuscitation as a
case study to verify the safety and correctness properties of the developed protocol.

As future work, the developed protocol should support concurrent workflow execution by providing
synchronization and adaptation mechanisms to assist physicians to treat multiple diseases and organ
systems. For evaluating usefulness of the developed system, we would like to collect medical error
case studies from Food and Drug Administration (FDA) and evaluate the reduction of the medical

errors with the proposed protocol.

78

Chapter 6

Reducing Cognitive Load Complexity:
Supporting Emergency Medical Care
Teams with a Best Practice Guidance

System

In the previous chapters, we have proposed several protocols to reduce both verification and cyber med-
ical treatment complexity. In this chapter, we turn our focus to human cognitive load complexity, since
human operators, i.e physicians and nurses, significantly contribute to safe and effective operations of
medical systems. The work of a hospital’s medical staff is safety critical and often occurs under severe
time constraints. Unfortunately, despite recent advances [18], technological support for cognition and
teamwork in healthcare remains considerably behind other industries such as aviation [59]. In many
cases, technology design in healthcare does not take advantage of a user-centered design process to en-
sure that it provides effective cognitive support to medical professionals [70]. Effective design requires
that the entire system comprised of humans and both hardware and software components be designed
in a coherent way and one informed by known best medical practices. The purpose of the this chapter is
to illustrate our approach by describing a prototype design informed heavily by end user input together

with a proof-of-concept demonstration and evaluation in the medical domain.

79

In collaboration with physicians and nurses from Carle Foundation Hospital, we identified and cate-
gorized the major sources of cognitive load in cardiac arrest resuscitation. We then designed a medical
Best Practice Guidance (BPG) system to reduce medical staff’s cognitive load and foster adherence
to best practice workflows in real-time (Challenge 4). The resulting support system is analogous to
an automobile GPS navigation system, but for effectively “navigating” the pathways leading to safe
and effective medical care and treatment. We have seized upon “guidance” terminology to highlight an
analogy between our design concept and a GPS-enabled navigation system in an automobile or aircraft.
Less skilled or experienced practitioners have best practices readily presented to them to be followed,
akin to the way a driver or pilot can follow a computer-recommended route of travel. More skilled or
experienced practitioners, in contrast, will still benefit by information on best practices in times of high
workload or distraction, and will, like a driver or pilot, be able to override the guidance a system pro-
vides when deemed necessary. Ultimate decision making authority remains in the hands of the medical

professionals using the BPG system.

6.1 Human Cognitive Load

Let us use a simplified cardiac arrest resuscitation scenario to illustrate the high cognitive load due
to concurrent and interactive medical activities. As shown in Fig. 6.1, a physician is performing CPR
(Cardiopulmonary resuscitation), which should be continued for at least two minutes according to AHA
guidelines, so s/he needs to keep track of the time while maintaining high-quality CPR. In the middle of
CPR, in order to improve patient’s cardiac function, a drug, called epinephrine, should be administered
every three to five minutes; therefore, the medical staff also needs to keep track whether another dose
of epinephrine should be administered or not. In addition, when another dose of epinephrine should be
administered, the medical staff needs to recall the guideline of epinephrine. According to the guideline,
the dosage of epinephrine is 1 mg and may be ineffective when the patient’s blood pH value is lower
than 7.2. Consequently, the medical staff needs to check if the patient condition, i.e. blood pH, is
appropriate for another dose of epinephrine.

Moreover, the patient conditions may suddenly worsen, for instance, the patient’s oxygen saturation

level (SpO2) drops below 90. In this situation, the medical staff needs to provide proper treatments,

80

* Recall workflow
steps and prepare * Recall

for next assessment | epinephrine
and treatment.! guidance? 5

* Perform treatments for
increasing Sp0,.% 34

* Verbally order
the medication®

High cognitive load
tasks:

1. Recall workflow steps
2. Recall treatment guidelines

3. Recall diagnosis and performed treatments

4. Recall pending medication orders

5. Assemble clinical information from scattered medical devices and monitors
6. Real-time tracking of temporal progress

7. Real-time tracking of patient’s condition changes

Figure 6.1: Assessments and treatments during cardiac arrest resuscitation. The arrows indicate the
concurrent medical processes. The text boxes below the arrows are the corresponding assessments and

treatments. The numbers shown as superscripts are the sources of cognitive load.

such as assisted ventilation. In addition, during the whole process, the medical staff also has to keep
recalling best practice workflows in order to decide the next assessment and treatment. The above
high-cognitive-load situation could be worsened as more patient conditions become abnormal and more
treatments need to be performed.

In collaboration with physicians and nurses from the Carle Foundation Hospital, we conducted a
series of interviews, compiled a list of cognitive tasks that significantly contribute to cognitive load, and
categorized these tasks into three categories: information assembling, recall, and real-time tracking.

M1. Assemble clinical information: Medical staff needs to mentally gather patient’s physiological

measurements from scattered medical devices and monitors, such as EKG monitor, oximeter, and blood

81

pressure cuff, and diagnose the patient.

M2. Recalls:

e Recall workflow steps: Medical staff can perform treatments more effectively if they can antici-

pate the next move and follow best practice workflows.

e Recall treatment guidelines: Medical staff needs to validate the preconditions, administer the
drug based on the guideline dosage, and set the time for another dose. In an interview, one

physicians mentioned

We know that epinephrine could be less effective to a patient with acidosis (blood pH
value lower than 7.2); in this situation we may consider using sodium bicarbonate to

treat acidosis.
Another physician added that

Moreover, before using sodium bicarbonate, there are many other factors(preconditions)
we need to consider. For instance, we need to check patient is provided with adequate

1

ventilation.” Unfortunately, sometimes we just forget to check it because we are so

busy doing other things.

e Recall pending medication order: In clinical practices, physician in charge gives a verbal med-
ication order, and other physicians and nurses need to prepare the drug and administer it to the
patient. However, because of the high-stress and chaotic environment, the verbal medication or-
der may be neglected. The medical staff needs to recall if any medication is ordered but has not

yet been administered.

e Recall the previous diagnosis and performed treatments: Medical staff needs to recall this infor-

mation in real-time to decide upon future treatment plans.
Ma3. Real-time tracking:

e Track real-time changes of the patient conditions: Medical staff needs to keep track of the

changes of the patient conditions and perform treatments accordingly.

LGiving sodium bicarbonate without providing adequate ventilation to the patient may further worsen acidosis.

82

e Track temporal progress of the treatment: Certain treatments are time sensitive, and medical staff
is required to closely monitor and assure compliance with temporal task constraints. As the Carle

Foundation Hospital Director of ICU put it:

Timely and correctly performing treatments is crucial for us to treat patients. In
cardiac arrest resuscitation, CPR should continue for at least two minutes. Unfor-
tunately, the environment we deal with is very chaotic and requires multitasking, so

correctly keeping track of the time sometimes is hard for us.

In addition to the above three categories, we also discovered that calculation is another major source
of cognitive load. Medical staff sometimes needs to calculate the drug dosage based on patient’s sex,
weight and age. However, in cardiac arrest resuscitation, most of the drug dosage does not depend on
this information, so our system does not provide dosage calculation. It is worth mentioning that recalls
are difficult for the medical staff who does not practice resuscitation routinely but may be easier for the
experienced medical staff. On the other hand, assembling clinical information and real-time tracking

significantly increases the cognitive load for both inexperienced and experienced medical staff.

6.2 Design Methodology

In this section, we describe the design methodology we performed over a 2-yr period working in close
collaboration with physicians and nurses at Carle Foundation Hospital to create our medical Best Prac-

tice Guidance system.

6.2.1 Contextual Design and Design Process Overview

Jan. 2013 Jun. 2013 Feb. 2014 May 2014 Aug. 2014 Dec. 2014 Jan. 2015
| | | | | | | »
| _ _ - | | | | el
In;:erwew ICU p:ysn'.lla ns) |1 t.f eedba;k el 2" feedback 3" feedback Evaluation
or acquiring domain simufation conducte simulation simulation Simulations
knowledge at Carle ICU

Figure 6.2: Development timeline of the Best Practice Guidance System

83

Table 6.1: The settings of the interviews and simulations

Frequency | Participants Duration
Contextual Inquiry Interviews | «~ 6 ICU director, consul- | 30 min
tant physician, 2 ad- | -« 1

ditional physicians (A, | hour/in-
B), and 2 head nurses | terview

(A, B)

1st Feedback Simulation 1 ICU director, consul- | 1 hour
tant physician, resi-
dent A, and head nurse

A

Interview after 1st Simulation | 1 The same participants | 30 min

as the 1st Simulation

2nd Feedback Simulation 1 ICU director, physi- | 1 hour
cian A, resident B, and

head nurse B

Interview after 2nd Simulation | 1 The same participants | 30 min

as the 2nd Simulation

3rd Feedback Simulation 1 ICU director, physi- | 1 hour
cian B, resident C, and

head nurse A

Interview after 3rd Simulation | 1 The same participants | 30 min

as the 3rd Simulation

Evaluation simulations 3 4 medical staff for | 1 hour

each simulation

During the whole design process, we had weekly 2-hour meetings with our consultant physician.

84

Contextual design [17] is a user-centered design approach for developing systems on the basis of
data gathered from the intended users. The design process starts by collecting data about the users in the
field (contextual inquiry). The data collected from the contextual inquiry is interpreted in a structured
way by using five work models: the flow model, the sequence model, the artifact model, the cultural
model, and the physical model. Based on the work models, the system design team then prototypes the
system with the users in the design process. The prototype is then iteratively tested and refined with

the users.

The design process for our BPG system accords with contextual design. The system design and
development timeline is illustrated in Fig. 6.2. The settings for the interviews and simulations engag-
ing users are presented in Table 6.1. During the design process, our system design team, consisting
mainly of two postdoctoral researchers and one Ph.D student, had weekly meetings with our consul-
tant physician from Carle Foundation Hospital. We began the contextual inquiry first to understand
the intended users’ needs and to identify key design requirements. We then analyzed and structured
the collected data by using a set of work models according to the contextual design methodology. All
the five work models have impacted on the design of the BPG system. Based on the work models,
we started to prototype the system. We afterward conducted three clinical feedback simulations with
physicians and nurses from Carle Foundation Hospital to gather users’ feedback of the prototype, and
iteratively improved it. After improving the prototype based on their comments, we conducted three
evaluation simulations to quantitatively evaluate the effectiveness. In the following sections, we de-

scribe the design process in details.

6.2.2 Interviews and Contextual Inquiry

Starting in January 2013, we conducted a series of interviews with ICU physicians and nurses at Carle
Foundation Hospital in order to gather knowledge about their work environment and design require-
ments. Every month we had a group meeting with 3 to 5 physicians and nurses from ICU of Carle
Foundation Hospital. These meetings lasted about 30 minutes to one hour each. The director of Carle
ICU and our consultant physician attended every meeting, and they also invited some other physicians

and nurses to join the meetings and provide feedback. In five months, we met totally 6 medical staff,

85

including the director of Carle ICU, our consultant physician, two additional physicians, and two head
nurses. Through the interviews, we came to understand how the physicians and nurses treat cardiac
arrest patients, the devices they used, and the possible mistakes they may make, etc. The system design
team iteratively built a set of work models drawn from the contextual design methodology with our
consultant physician’s feedback. Each work model informed a different aspect of system design as

described in the following sections.

Flow Model

Head nurse
Write down diagnosis
and performed
treatments

Assist physician in
charge

Code sheet
e Record diagnosis,
treatments and
patient conditions

Assistant physician/ nurse

e Prepare and Inject
drugs

e Assist with medical

procedures Z Cond'\’f\o"‘S

Patient conditions and
medical history

Physician in charge (PiC)

e Diagnose the patient,
e.g. EKG rhyhtm.

Order treatments

Observe patient
conditions and defibrillate

the patient
Defibrillator Other medical devices
e Display patient’s EKG (oximeter, BP cuff, etc)
rhyhtm, HR, and BP, etc. e Monitor patient
e Defibrillate patients conditions

Figure 6.3: Flow model. The ellipses are the medical staff, and the rectangles are the artifacts. The

items in them are responsibilities or purposes. The arrows show the communicated information.

The flow model, which is shown in Fig. 6.3, is used to depict the communication and coordination

between personnel as well as their responsibilities. A cardiac arrest resuscitation team usually consists

86

of a physician in charge, a head nurse, and/or one to two assistant physicians/nurses depends on the
availability. The physician in charge (PiC) is responsible for coordinating the team, diagnosing the
patient, and ordering treatments. The head nurse is responsible for writing the diagnosis, performed
treatments, and patient conditions on a code sheet, so physician in charge can review it and decide
further treatment plans. The PiC may raise questions regarding patient’s conditions and performed
treatments, and the head nurse is the primary person to provide the answers. The team members
continually look at the patient’s physiological measurements displayed on a defibrillator and then use
it to defibrillate the patient. If a team member notices any abnormal patient conditions, s/he needs to
reports the abnormality to PiC. In addition, all the medical staff should follow best practice workflows
developed by AHA [35] to the greatest extent yet actively decide upon the treatment plans that best meet
the current patient conditions. Based on the above findings, the system was designed to externalize the
communicated clinical information in order to reduce the possibility of misunderstandings and the

medical staffs’ mental workload.

Sequence Model

Fig. 6.4 shows the sequence model, which describes how a sequence of tasks unfolds over time. In order
to develop the sequence model, during the interviews, we asked the physicians and nurses to describe
the treatments and assessments they need to perform when treating a cardiac arrest patient. They used
the AHA (American Heart Association) guidelines as the references, because they usually follow the
guidelines to the greatest extent and pointed out certain treatments and assessments that they usually
performed but are not included in the AHA guidelines. For instance, in addition to check the patient’s
heart rhythm, they will also check other abnormal patient conditions, such as acidosis (patient’s blood
pH value lower than 7.2), and provide treatments accordingly.

The steps of treating cardiac arrest patients can be summarized as the following. When a patient
does not breathe and has no pulse, physicians or nurses need to call a code 997 and request help.
They, then, start doing CPR, attaching medical devices, including a defibrillator and oximeter, and

perform initial assessments. They usually follow the sequence of Airway, Breathing, and Circulation

2Code 99 is an emergent situation where the patient is not breathing and/or has no pulse.

87

Trigger: Patient has
no pulse

v

Call a code

v

Start CPR and
attach EKG,
oximeter, BP cuff.

v

Intent: secure airway Open airway, assist
and breathing breathing, and
access IV/I0
Intent: return to normal *

sinus rhythm

Y

Check EKG rhythm

Y
Un-shockable Normal sinus
Shockable rhythm thythm thythm
\ A

Check abnormal

_ | patient conditions and

provide treatments
accordingly

Defibrillation

Inject epinephrine or
amiodarone every
3~5 minutes

Transfer to ICU

CPR for 2 minutes

Figure 6.4: Sequence model.

(ABC)3. In addition, they perform intravenous (IV) or intraosseous (10) infusion*. When the devices

3Some physicians may prefer (CAB), instead.
*IV or IO infusion is to infuse fluid or medication directly into the patient’s vein or marrow.

88

are ready, they check the patient’s heart rhythm displayed on the defibrillator. The rhythm can be a
shockable rhythm, such as ventricular fibrillation, or a non-shockable, such as asystole. If the rthythm
is shockable, the physicians and nurses activate a defibrillator to deliver a therapeutic dose of electrical
energy to the heart. If the rhythm is non-shockable or the defibrillation has been performed, they
usually treat abnormal patient conditions, such as low blood pH, and administer drugs, such as sodium
bicarbonate. They, afterward, perform CPR for at least 2 minutes and check rhythm again until the
patient’s heart thythm returns to a normal sinus rhythm.

Based on the sequence model, the system was designed to provide guidance on the assessments and

treatments in complaint with the AHA guidelines.

Cultural Model

Physicians

Give warnings if
deviation from the We do not trust
guidelines is detected, automation, and
but do not enforce us medicine is ’very

doing anything complicated

Automated
diagnosis and
treatments
can save alot
of physicians’
efforts v

Nurses

ospital manage

We are mutli-
tasking, and voice-
recognition is
desirable

We expect seeing
potential clinical
benefits not just user
friendliness

System designers
The accuracy of the
voice recognition is
a concern due to

noisy environment.

User interfaces
should be as
intuitive as possible

Figure 6.5: Cultural model

In cultural model, as shown in Fig. 6.5, we present how the physicians, nurses, and hospital man-

agers influenced the system design. The physicians have a great impact on the design of our medical

&9

BPG system. At the early stage of development, we initially intended to design a system supporting
automated diagnosis and treatment in order to reduce physician effort. In contrast, the physicians wor-
ried that automated diagnosis and treatments may potentially compromise patient safety if not designed
correctly. In addition, the safety and efficacy of patient care should ultimately depend on physicians’
judgments and expertise. The physicians preferred that the system alert their attention to deviations
from medical best practices but not to enforce their behavior. Additionally, because nurses are respon-
sible for communicating much medical information, such as diagnoses, treatment orders, and lab test
results, their opinions have also had a large influence on our system design as well. At the start of
our work, the nurses expected that the system would have voice recognition capabilities. However,
the noisy environment and simultaneous speaking between physicians and nurses pose significant chal-
lenges to voice recognition. After a series of discussions, the system designers and nurses agreed to
have a tablet for the nurse to input medical information. The tablet is not as desirable as voice recogni-
tion, but accuracy is much higher. In addition, the user interface of the tablet is designed to be intuitive
for the nurses from a look and feel perspective, and with respect to the terminology they already use.
Moreover, hospital management expects to see potential improvements in clinical outcomes assuming
our system is deployed. In summary, based on the cultural model, the system was designed to meet

medical staffs’ expectations.

Artifact Model

The artifact model was used to analyze the artifacts collected from the physicians and nurses. In partic-
ular, we focused on the medical devices and code sheet that are used during cardiac arrest resuscitation.
Fig. 6.6 shows the defibrillator used to monitor patient conditions and defibrillate patients. Critical
physiological measurements, including heart rate, body temperature and EKG rhythm, are displayed
on an 8.4-inch diagonal LCD. Physicians and nurses can use the green knob to control the defibrillation
energy. The code sheet, which is shown in Fig. 6.7, is used for documenting diagnosis and performed
treatments. Physicians and nurses start from assessing Airway, Breathing, and Circulation. During the
resuscitation, the head nurse keeps a written record of the patient’s physiological measurements, and
the performed treatments, including defibrillation and drugs. In addition, physician in charge may order

blood test; when the test results are back, head nurse should document the results, including blood pH

90

Defibrillation
energy control pad

Vital sign
EKG rhythm

Other
physiological
measurements

Figure 6.6: Defibrillator

value and potassium level. By studying these artifacts, the system designers were able to understand

the most critical information to be displayed and recorded electronically.

Physical Model

In Fig. 6.8, we present the physical model, which illustrates the physical environment. When it is no-
ticed that a patient has no heart rate and is not breathing, physicians and nurses rush to the patient’s
room and carry a cardiac arrest cart, which is equipped with a defibrillator, an oximeter, a blood pres-
sure cuff, and the drugs commonly used for cardiac arrest resuscitation. In our original design, we
used a projector to present the integrated display on the wall of the room, because we believed that a
projector could be readily accommodated on the cardiac arrest cart, and the size of the display could
be adjusted based on the physical environment and users’ needs. In one simulated scenario however,
we noticed that physicians and nurses needed to walk around the patient frequently and occasionally
blocked the projected display. In addition, we found that most patient rooms are equipped with a 50-

inch high resolution televisions. Consequently, we decided to use the television as the primary display

91

Time Code Called:
Time Team Arrival:

Upon Team Arrival

Patient | ODYES ONO Time: ABG
Airway pH: C02: 02: HCO3: BE: SAT:
Breath YES ONO Time: ISTAT LABS
Sounds | CICLEAR Na: Cl: K: GLUC:

CJOTHER HCO3: BUN: CO2: Creat:
Resp. dsoB CJAPENIC Hgb: Hct: Pit: PTT: INR:
Status CJAGONAL BedSide Glucose:
Pulse YES ONO .
Present | OIHR ORrHyTHM | ™~ Initial f

[sp O assessments

Weight in KG: Blood lab test results
Neuro CJALERT
Status CJUNRESPONSIVE

COVERBAL [IPAIN
Seizures | CJYES CONO
NIHSS
Score

Run-time physiological Given
measurements medicaltions
Time | HR [Pulse Present | BP | RR | Sa02 ththm] Defib Meds Signature
Pacing | Dosage/Strength

Figure 6.7: Code sheet

device. Based on the physical model, the system designers understood the environmental constraints

and opportunities that need to be considered for a successful design.

Design Requirements

Based on the information we have documented here in contextual design work models, we specified
a list of design requirements in collaboration with physicians and nurses. The most important design
requirements were those specifically related to the goal of reducing cognitive load. Each of the require-
ments below is directed toward reducing the cognitive load and supporting the medical team in better
adherent to the best practice guidelines.

Reducing cognitive load due to M1. assemble clinical information:

R1 Integrate clinical information to support both individual and team situation awareness:
The system should integrate and externalize clinical information, including physiological in-

formation, workflow, and treatment history, in order to facilitate the communication between

92

Cardiac arrest cart

Defibrillator
N

BP Cuff

’ Drugs drawer ‘

|

O Physicial
in charg
Patient
% Code
sheet
Respiratory Nurse Head
@ therapist @ ® nurse

Q 9 Physician

O

50-inch TV

Figure 6.8: Physical model
medical staff, as described in the flow model (Fig. 6.3).
Reducing cognitive load due to M2. recalls:

R2 Display workflows according to physician’s diagnosis and patient conditions: The medical
staff should recall workflows and follow them to the greatest extent. Consequently, according to
the physician’s diagnosis and currently patient conditions, the system should display the corre-
sponding workflow and provide step-by-step guidance. In addition, a warning should be raised

if a potential deviation from a workflow is detected.

R3 Support the medical team in validating treatment preconditions: As described in the previ-

ous section, the system should continuously monitor patient conditions and validate the precon-

93

ditions of the treatments. The status of the treatments should be displayed to let physicians and

nurses be aware of the applicable treatments.

R4 Support the medical team in recalling pending medication orders: The system should display
the medication that has been ordered but not yet administered to the patient. Consequently, the

chance of missing or misunderstanding medication orders can be reduced.

R5 Provide diagnosis and treatment log: The history of diagnoses and performed treatments is

valuable information for physicians in deciding upon future treatment plans.

Reducing cognitive load due to M3. real-time tracking:

R6 Support the medical team temporal awareness of treatments in progress: As described in
the sequence model (Fig. 6.4), certain treatments are time sensitive, so the system should keep
track of the time progress of the treatments and reminds physicians if any treatment is performed

too early or should be performed.

R7 Support the medical team in attending to abnormal physiological measurements: Any ab-
normal physiological measurements should be brought to the attention of physicians so the med-
ical team can respond to them as appropriate. Moreover, the system should allow physicians to
configure the thresholds of the physiological measurements defining what is meant by abnormal,
as these thresholds are context-dependent, i.e. depending on the patients’ conditions including

age, sex, and medical history.

6.2.3 Prototyping

We started to prototype our system in June 2013. The system architecture and the initial user interface
prototypes are shown in Fig. 6.9. The system separates the concern of user interfaces, which are an in-
tegrated patient condition and workflow display (details in Section 6.3.1) and a nurse’s tablet (details in
Section 6.3.2), and decision logic, which is a best practice workflow manager (details in Section 6.3.3).
The integrated display and workflow manager are setup on a laptop and communicate with the nurse’s

tablet through Wi-Fi. At Carle Foundation Hospital, most of the patient rooms are equipped with a

94

“Inte

BP * —_——

START FINISH

EPI 22:27:13=>
HR D | count: 1 SelectRhythm

- | _li
2 Asystole PEA
Patientinto | Lab Resuts | x1ay L 1 |
Name: Unknown EKG Image used only for demo purpose
Age: Unknown

Bradycardia || Tachycardia
Weight: Unknown

Current Workflow

Treatment List

WO r kﬂ ow EPI Bicarbonate

Shock J{Check Rhythm
Current WF Type

- Vasopressin

9 Touch Screen Control ON

2013/12/08 22:28:40

@ = Open Log | P Resusciation
Start Time: 22

Duration: [IPICENEN | open Manual (for Testing) J

Nurse’s Tablet

[
00005 st Cote
» 9000 CPR iatod

0149 Ordr P

520> Ordr Biarbonste

Figure 6.9: System Architecture and User Interface Prototypes

50-inch television, we use a Belkin Miracast, which is a wireless display device for mirroring a com-

puter screen to a television without requiring any physical cables, to show the integrated display on the

television.

The integrated display is designed to provide concise, comprehensive, and integrated workflow and

clinical information for all the team members to maintain overall awareness of the patient conditions

95

and treatment procedures. The head nurse has a unique task to record the diagnosis and treatments, and
s/he also needs to answer the questions raised from physicians. The nurse’s tablet is for the head nurse
to input and record diagnosis and treatment orders. In addition, the head nurse can also review the previ-
ous diagnosis and treatments. The workflow manager checks the status of physiological measurements,
validates treatment preconditions, provides guidance, and raises warnings on the integrated display to
help medical staff follow the guidelines. At the current development stage, the workflow manager uses
Medical Device Plug and Play (MDPnP) middleware [37] to interface with the distributed medical de-
vices and receive physiological measurements, such as EKG, heart rate, and blood pressure, from them.

In the next section, we will discuss how the system is involved through simulations and interviews.

6.2.4 First Feedback Simulation at Carle ICU

Figure 6.10: Simulation environment

After prototyping the first version of our medical BPG system, we needed physicians and nurses’

feedback on using the system. Nevertheless, Carle Foundation Hospital has strict regulations that do

96

not allow non-medical personnel to participate in or even observe real clinical practices. In addition,
since the developed system has not yet been approved by the FDA (Food and Drug Administration),
we cannot deploy the system for treating actual patients. We therefore conducted a scenario-based
simulation, which was videotaped, with actual physicians and nurses from Carle ICU. The simulation
was performed in a safe environment where no actual patients were involved and where we could ob-
serve the interactions between medical staff and the system. The simulation environment is shown in
Fig. 6.10. In addition to members of our system design team, four medical staff members were in-
volved in the simulation: the director of ICU, our consultant physician, Resident A, and Head nurse A,
as shown in Table 6.1. We started by giving a 10-minute introduction to explain the displayed clinical
information, the system behavior, and the interactions between the system components. Unlike many
engineered systems, medicine has very few “equations” to describe or predict patients’ physiological
changes to diseases and treatments [32]. Therefore, instead of developing an automated scripted sce-
nario, aspects of the scenario were under the control of the director of ICU with expert knowledge and
experience. The director of ICU decided how the patient’s physiological measurements changed over
time, in a manner consistent with previous cases and representative alternatives. The consultant physi-
cian, resident A, and head nurse A interacted with the prototype system in deciding upon treatment
plans.

After the simulation, we conducted an interview with all the participants together. The interview
took about thirty minutes. We asked their opinions about each individual displayed component, such as
workflow, vital signs panel, and treatment progress bars. In addition, we also asked a list of questions,

including,
1. Can the generated warnings help them be better adherent to the AHA guidelines?
2. What are the difficulties they faced when using our system?
3. What are the additional features they expected the system to have?
4. Do they think the displayed information is user-friendly?

In summary, the physicians and nurses thought the displayed information was helpful and improved

their situation awareness. They believed that system-generated warnings were useful for reducing

97

potential medical errors. However, they faced some difficulties to gather the clinical information as
some interaction was clumsy and expected the system being more user-friendly. First, the previous
medical events, i.e. diagnosis and treatments, in the log were organized as a sequence of boxes, as
shown in the blue box in Fig. 6.9. The physicians, however, thought that it would be easier for them to
retrieve the information by overlaying the medical events on a timeline. Second, a physician pointed

out that

I cannot relate the displayed workflow to the AHA guidelines [35], because the flowchart
in the guidelines is shown in a vertical way but your workflow is shown in a horizontal
way (as shown in the red box in Fig. 6.9). At a glance, I did not know what it is and just

ignored it.

We addressed those issues and improved the user interface design accordingly. In addition, on the
basis of information obtained via simulation, we identified a set of additional design requirements for

improving usability.

R8 Automatic code sheet generation: As described in the previous section, the head nurse needs
to manually fill information into the code sheet (Fig. 6.7), which considerably increases his/her
workload. Therefore, the system should automatically generate the code sheet based on the

recorded diagnosis and treatments.

R9 Default drug dosage: Since many drugs have standard dosage in the AHA guidelines, the system
should use the guideline dosage as a default and allow the head nurse to change it if so desired.

In this way, head nurse does not need to input drug dosage every time a drug is ordered.

6.2.5 Purchasing an American Heart Association (AHA) online training tool

Given the many limitations of our initial simulation-based approach to system evaluation, and also to
privacy regulations, we are unable to directly observe how physicians and nurses treat cardiac arrest
patients. In order to enhance the fidelity of future simulation-based evaluations, we purchased an online

training tool® which was developed by the AHA to train medical staff to assess patients, formulate a

Shttps://www.onlineaha.org/system/scidea/courses/15/more_info/90-1405_HC_ACLS.

pdf

98

treatment plan based on the guidelines, and provide treatments. Through interacting with this training
tool, we gained an improved understanding of the commonly used drugs, the preconditions of the drugs,
and how the workflows are executed. Afterwards, the system was improved by including more com-
prehensive drug and drug administration preconditions lists. In addition, the best practice workflows

were also revised in a manner consistent with those used in the training tool.

6.2.6 2nd and 3rd Feedback Simulation

In August and December 2014, we conducted two additional simulations to gather more feedback from
physicians and nurses. The settings of the simulations are similar to the 1st one, and the participants
and duration are described in Table 6.1. It is worth pointing out that in the 2nd and 3rd simulation
we invited different groups of physicians and residents to use our system, because they may provide
feedback from a different perspective. Unfortunately, due to the scheduling issue, in the 3rd simulation
we were unable to invite another head nurse to join the simulation. After the simulations, we conducted
interviews with all the participants together. We present the detailed analysis and improvement in the
next lteration and Extension section.

During the interviews, in addition to give feedback about the system design, the medical staff also
provided some clinical cases they faced and sought for IT supports. In particular, in the 2nd simulation,

a physician mentioned that

Yesterday, we treated a patient with bradycardia, which is the heart rate abnormally slower
than normal heart rate. The patient’s heart rate kept slowing down, and we knew it would
turn to asystole (flatline) in a short time. We must do something to prevent this. Moreover,
we also need to know all the performed treatments, so we can know whether the patient

responses to the treatments or not. If not, we should consider alternative treatments

In the 3rd simulation, one physician pointed out that in real clinical practices, blood test results are
critical for physicians to decide treatment plans. A nurse needs to draw patient’s blood and send the
blood to the lab. If the blood test results do not come back, it may be because the nurse forgets to send
the blood to the lab or for some other reasons. The system should alert the medical staff of this issue,

so they can adjust the treatment plans accordingly.

99

6.2.7 Iteration and Extension

The participants of 2nd and 3rd simulations were satisfied with displayed information and agreed that
the system can improve their situation awareness. The head nurses also thought that the design of the
nurse’s tablet is very intuitive and easy to use. In addition, the system team improved the system based
on the clinical cases mentioned by the physicians during the interviews. Those clinical cases motivated

two major design requirements.

R10 Support the medical team in tracking the trends of physiological measurements: The system
should take the trend of physiological measurements into consideration and inform the medical

team of applicable treatments for treating the abnormalities.

R11 Display brief summaries of the previous diagnosis and performed treatments: The system
should provide brief summaries of the performed treatments, so at a glance, physicians can know,
for instance, how many doses of epinephrine have been given to the patient and decide treatment

plans accordingly.

In the following sections, we will present the final design of the developed medical Best Practice

Guidance system and the evaluation results.

6.3 Medical Best Practice Gudiance System Design

Over two years, we have conducted more than 10 demonstrations and interviews to about 10 physi-
cians and nurses from Carle Foundation Hospital. We iteratively improved our system based on their
feedback, including adding new features, improving usability, and customizing the user interface. Due
to space limit, we are not able to present their feedback and improvements for every iteration. In this
section, we only provide detailed information on the final design of medical Best Practice Guidance

system.

6.3.1 Integrated Patient Conditions and Workflow Display

The integrated display, shown in Fig. 6.11, provides concise and comprehensive clinical information to

fulfill design requirement R/. The integrated display consists of the following main components:

100

e - T
el
N
AT T DK | s e g VE

v

1

[f—

EPI 1.0mg 4 Unknown... 00:00
A Acustala 0015

! Condition: Blood pH is too low oy 1
Treatment: Injecting bicarbonate ?|

o
S
[ecpeusn | iae] 00 1
e 3
e A [
_\JW noay
| s Y

Timeline Log

e ——

@ vrrworim

Connecton Staus

[) [

Figure 6.11: Integrated Patient Conditions and Workflow Display

C1. Workflow for treating abnormal heart rhythm: The system displays the workflow in the con-
text of cardiac arrest resuscitation based on patient conditions and physician’s diagnosis inputted by the
nurse tablet.

C2. Workflow steps: The status of a workflow step is categorized into done, in progress, and should
be performed. Color-coding is used to help discriminate between these categories. In the case shown,
the patient has been defibrillated, so the Shock state is shown in white (done). The EPI (epinephrine)
state has an outline in red. Red is used to draw physicians and nurses’ attention to the fact that it is
time to give EPI (should be performed). The CPR state is in blue, which indicates that CPR has not yet
been performed. Medical teams are supported in determining the most appropriate next step to take by
displaying this workflow information in a perceptually salient manner, in view of all team members.
C3. Warning dialog: If any potential deviation from the workflow is detected, for example, a treatment
should be performed but physicians have not yet ordered it, or any patient’s physiological measurement
becomes abnormal, a warning dialog is shown to alert the medical team. In addition, if best practice
guidelines suggest certain treatments for correcting the abnormal physiological measurement, the sug-
gested treatments are also displayed. In the case shown, the team is being reminded that this patient’s

blood pH level is too low and sodium bicarbonate is recommended. In order to prevent the warning

101

dialog from blocking other critical information, the dialog will only appear for a short time, i.e. 10 sec,
and be recorded. Physicians and nurses can retrieve the warning information from the log.

C4. Treatment time progress bars: Time progress bars are used to help the medical team meet the
timing requirements of each action. At a glance, all the team members can easily keep track of the
temporal progress of the treatments. Therefore, requirement R6 is satisfied.

CS. Physiological measurements panel: The system continuously monitors the patient’s physiolog-
ical measurements, e.g. heart rate and blood pressure, and the status of the measurements are color-
coded, which fulfills requirement R7. White means normal; red means seriously abnormal; yellow
means caution.

C6. Treatment status panel: The panel shows the status of commonly used treatments, including
epinephrine and sodium bicarbonate. The status of treatments is color-coded. Green means all the
preconditions are satisfied. Yellow means some physiological measurements for validating the pre-
conditions are missing; therefore, the medical staff should perform the treatment with caution. Red
means some preconditions are not satisfied. Based on this treatment status panel, the medical staff can
recognize the applicable treatments. Consequently, requirement R3 is satisfied.

C7. Pending medical requests table: When a physician orders a treatment, the ordered treatment and
dosage will be shown in the table until it is performed, which fulfills requirement R4. If a treatment
order is pending for longer than a nominal time interval, a warning dialog is shown to remind the med-
ical team of this fact.

C8. Timed medical log: The timed medical log records all the diagnoses and treatments that have
been performed and displayed in a time sequence. Together with the recorded patient’s physiologi-
cal measurements, it allows physicians to assess the effectiveness of the current treatment approach.

Consequently, requirement RS is satisfied.

6.3.2 Nurse’s Touch Tablet

The nurse’s tablet, as shown in Fig. 6.12, is designed to allow the head nurse to input medical informa-
tion and quickly gather information regarding the established diagnosis and performed treatments. The

nurse tablet consists of the following major components:

102

h >atment order dialog and

vith default do

|
£J1cU Tablet | P

2015/03/23 14:46:45 Hisl&’y Log
Start Time: 14:42:46 — < Show All
Duration: - Order L Given Ord iven > B Weas) [ERST misc

00:00> Start Code
00:09> CPR Started
00:17> Device
Activated: EKG
00:20> Device

START l FINISH ‘

er Gi
1. Commonly o mg J
» CPRStart = CPR Stop
sed buttons
Activated: IV Pump

S 1500 | 170J | 2004
— 02:33» CPR Finished
‘ Clear Bed 02:44> EKG Select: VT
Commands m F403:02> Shock 150.0
 Pusecheck Order Given Order Given “/ Given
Show Xray
action Types Order Given Order Given
2. Action N «(«Drug
types EKG Rhythm
l%y_ Order Given Order Given

Patient S
| /3 Device/Ventilation J Q Help (TBD) Leave Note

Figure 6.12: Nurse’s Tablet

1. Commonly used buttons: There are some procedures or treatments, e.g. CPR and defibrillation,
frequently performed during cardiac arrest resuscitation. In order to let the head nurse quickly input
that information, buttons pertaining to these procedures are grouped together.

2. Action types: The functionality of the nurse’s tablet is categorized into four action types: drug,
EKG rhythm, patient settings and device/ventilation settings. When the head nurse selects any of the
group, a corresponding panel is displayed in the middle. The drug panel is used to input drug orders
and dosage. The EKG rhythm panel is used to input the rhythm diagnosis. Patient settings panel is
used to input patent’s personal information and medical history. Device/ventilation settings are used to
configure the thresholds of the physiological measurements, which satisfies requirement R7. We use
the drug panel as an example.

3. Treatment order and given panel: This panel is used for entering drug orders and given informa-
tion. Our system takes two steps, i.e. “order” and “given”, to administer a drug. First, a physician in
charge gives a verbal drug order. Second, a nurse takes the drug from the drug drawer, checks the drug
name and dosage, and injects it into the patient. Therefore, there are two buttons for each drug. When
the head nurse pushes the “Order” button of a drug, an order dialog is shown with guideline dosage as

the default one, which fulfills requirement R9. When a drug is given to a patient, the head nurse needs

103

to pushes the “Given” button and the system will record the given time and dosage.
4. History log: This log is for the head nurse to have a clear understanding of the established diagnosis

and previously performed treatments, which fulfills requirement R/ /.

6.3.3 Best Practice Workflow Manager

Our best workflow manager explicitly codifies medical workflows and treatments in order to provide
guidance for the medical staff. Specifically, the best practice workflow manager has three major func-
tionalities. First, it selects and presents the recommended workflow according to the medical infor-
mation, e.g. diagnosis and treatments, entered on the nurse’s tablet. Medical workflows are codified
from AHA guidelines using timed automaton. The workflow manager reminds the medical staff of
the assessments and treatments should be performed according to the workflow states and transitions.
In addition, if any potential deviation from the guidelines is detected, for example, a treatment should
be performed but physicians have not yet ordered it, the workflow manager will create a warning on
the integrated display. Consequently, together with the C/ and C2 of the integrated display, the med-
ical staff can easily comprehend and adhere to the workflows, which fulfills the requirement R2. It
is worth mentioning that the codified workflow has been validated by the physicians through clinical

simulations. The details of the simulations will be discussed in Section 6.5.

Second, in order to satisfy requirement R3, the workflow manager continuously monitor the pa-
tient conditions against the treatment preconditions. The status of the treatments is color-coded and
displayed on the C6 of the integrated display. In addition, if the workflow manager receives a treatment
order from the nurse’s tablet and the treatment preconditions are not satisfied, a warning will be raised
to alert the medical team to this precondition violation. In our current system design, the treatment
information are specified by the physicians before the procedure starts, but the information only need
to be inputted once and will be stored in the system for further reference. We are currently working to

interface our system with a pharmaceutical database to automatically retrieve treatment information.

Third, the workflow manager maintains a log of the established diagnosis and all the performed
treatments. The logged information is displayed on C8 of the integrated display. Physicians and nurses

can review this information to help them decide upon future treatment plans. In addition, at the end of

104

cardiac arrest resuscitation, the workflow manager automatically generates the code sheet based on the
recorded information, which fulfills requirement RS.

Furthermore, the workflow manager also keeps track of the patient’s physiological measurements.
If the any measurement is out of the normal range specified by the physicians, it will change the corre-
sponding measurement color shown on C5 of the integrated display. In addition, more incipient changes
of patient conditions may be sooner recognized by identifying trends of measurements. Therefore, the
workflow manager monitors the changes of the measurements over time and alerts the medical staff
when any measurement is moving toward abnormal. For instance, when a patient’s heart rate is slow-
ing, a warning dialog is displayed with a list of drugs which are commonly used to increase a patient’s
heart rate. Consequently, design requirement R7 and R/ are satisfied.

In this work, we focus on the human-centric design and reducing medical staff’s cognitive load,
more details of the protocols utilized in workflow manager can be found in our previous work [93, 95,

96].

6.4 Design Rationale and Potential Risks

In this section, we discuss the design rationale behind our medical BPG system and the potential limi-
tations.

Our system selected the AHA (American Heart Association) guidelines as the basis to provide
guidance, although AHA guidelines may be insufficiently detailed and incomplete [74]. The AHA
guidelines, nevertheless, provide a set of essential and well-accepted primitives for treating cardiac
arrest patients. Clinical outcomes can be generally improved if medical staff adheres to the AHA
guidelines [91]. Recognition of this fact is the main reason that Carle Foundation Hospital intends
to use the developed system to improve adherence. However, patient conditions may change rapidly
and develop complications, such as brain damage, so it is very difficult to develop a guideline to take
all the possible patient conditions and complications into consideration [68]. Therefore, in clinical
practices, the medical staff should follow those essential and well-accepted guideline primitives to the
greatest extent yet actively decide upon the treatment plans that best meet the current patient conditions.

Our system, consequently, externalizes the AHA guidelines and essential clinical information in a

105

sensible and organized manner without precluding the medical staff to also take into account additional

information in deciding upon actual care. As one Carle physician explained:

The basis for AHA, however, is to emphasize those primary principles, so that, at least,
they will be followed; this fact allows the physician/nurse/team to then address other pa-
tient conditions. The real-time information provided by the system is very useful in that
sense, because it significantly reduces our burden from keeping track of the time progress

and the performed treatments and lets us more focus on the patient conditions.

We now discuss the limitations of our system. First, the patient conditions monitored by our system
are incomplete due to the limitations of available medical devices. For example, the quality of CPR is
an important factor, which can be measured by an exhaled carbon dioxide monitor. ®. Unfortunately,
most of the patient rooms at Carle Foundation Hospital are not equipped with this medical device, and
thus our system cannot display exhaled carbon dioxide information. Our system relies on the medical
staff to manually monitor the patient conditions, especially the conditions that cannot be monitored
by the system. Second, our system can only issue warnings when the deviation from best practice
workflows is detected but not stop such deviation. Therefore, deviations may still occur if the medical
staff neglects the warnings. The above two types of limitations are disclosed to the medical staff, and
we are working with them to design training activities in order to address the limitations. Third, if the
medical staff over-relies on the system, in the occurrence of the system failure the medical staff could
potentially become confused. Therefore, our system design takes fault-tolerance into consideration and
provides redundant hardware and a logging and recovery mechanism, so the system can be resumed
from the point of failure.

In this work, we use cardiac arrest resuscitation as our case study. However, we argue that the pre-
sented analysis of cognitive load and the developed technology can be applied to other medical scenar-
ios, such as stroke and sepsis. Take stoke management as an example. Medical staff also suffers from
high cognitive load due to recall, clinical information assembling and real-time tracking. Particularly,
in addition to recall the workflow steps, the medical staff also needs to validate the treatment precon-

ditions and keep track of the temporal progress of the treatment, for instance, initial assessments and

The exhaled carbon dioxide indicates if CPR is effective to improve blood flood to excrete CO, from the patient.

106

treatment, including preforming CT scan, maintaining airway, and managing blood pressure, should be
performed within 60 minutes of patient arrival [S3]. We have worked closely with Carle Foundation

Hospital and adapted the developed medical Best Practice Guidance system for stroke management.

6.5 Cognitive Load Evaluation

6.5.1 Quantitative Evaluation

The remaining challenge is to quantitatively evaluate and compare the medical staff’s cognitive load
with and without the developed medical BPG system. We therefore conducted three scenario-based
simulations with total 12 actual physicians and nurses from Carle Foundation Hospital on a medical
SimMan 3G Manikin, which is used for training purpose.

In each simulation, a medical team consists of four members of medical staff: a physician in charge,
a head nurse, and two assistant physician/nurse. The physician in charge will be responsible for making
diagnoses and ordering treatments. The head nurse recorded the physiological measurements and per-
formed treatments. The assistant physicians/nurses performed the treatments on a medical manikin and
remind the physician in charge of any abnormal physiological measurements. The coordinator of the
Carle life support program was in charge of adjusting the manikin’s responses in a manner consistent
with treatments performed by the medical team. The medical team performed cardiac arrest resuscita-
tion twice in each simulation: the first time without the developed system, and the second time with it.
After the medical team finished the two scenarios, they evaluated their workload by using NASA Task
Load Index (NASA-TLX) questionnaire.

NASA-TLX [42] is a widely-used and subjective assessment tool that rates perceived workload in
order to evaluate users’ effectiveness and performance. It has been used in various domains, including
aviation, healthcare and other complex socio-technical domains. There are six metrics: mental demand,
physical demand, temporal demand, performance, effort, and frustration. The descriptions of each
metric are summarized in Table 6.2. The physicians and nurses gave a score from 1 to 20 for each
metric, and the lower score means the lower demand, better performance, and less effort and frustration.

In Fig. 6.13, we showed the average score for each of the six metrics from 12 physicians and nurses.

Our system significantly reduces medical staffs’ mental demand and temporal demand, because the

107

Metrics Description

Mental Demand How much mental or perceptual activity was required?

Physical Demand | How much physical activity was required?

Temporal Demand | How hurried or rushed was the pace of the task?

Performance How successful were you in performing the task? (Lower score means better
performance)

Effort How hard did you have to work to accomplish the task?

Frustration level How insecure, discouraged, irritated, and stressed, did you feel during the task?

Table 6.2: Descriptions of cognitive load metrics

Mental Workload Evaluation Results

16.0
P With Medical BPG System I Without Medical BPG System
12.0
)
2}
E 8.0
73]
4.0
0.0
Mental FPhysical Temporal Performance Effort Frustration
Demand Demand Demand

Figure 6.13: Cognitive Load Evaluation Results from 12 physicians and nurses.

critical clinical information and the temporal progress of the treatments are presented on the integrated
display. Therefore, the medical staff has less clinical information to recall and can easily track the
progress of treatments and patient conditions in real-time. Moreover, with the developed system, the
medical staff believed their performance is significantly improved. The performance improvement will

be further discussed in the next section. In addition, the effort and frustration levels are also low, which

108

suggests that the displayed information is critical and easy for medical staff to comprehend. However,
our system does not significantly reduce their physical demand as we expected, because they still need
to physically perform treatments, i.e. CPR, administering epinephrine. In summary, the evaluation
showed that the developed medical BPG system can significantly reduce medical staff’s cognitive load

and improve their performance.

6.5.2 Qualitative evaluation

In addition to reduce medical staff’s cognitive load, the medical staff also believed that our medical
BPG system can improve their performance in terms of adherence, situation awareness, and record/re-

view. We have conducted a series of interviews to gather their opinions.

Adherence to best practice guidelines

The medical staff agreed that the developed system could improve the adherence to best practice guide-

lines. One of the physicians mentioned:

The displayed workflow and the guidance of the assessments and treatments that should be
performed could be very useful for residents. For experienced physicians and nurses, we
tend to remember those things, but it is still a good idea for us to take a look just in case

we forget.

In addition, validating treatment preconditions is very useful for the medical staff. They commented

that

The warning of blood pH to low when epinephrine is ordered is very helpful, because we
tend to forget it, especially in a rush. Other warnings, like not to shock a patient with

unshockable rhythm, may also be helpful for residents.

In summary, our system improves adherence through providing step-by-step guidance of workflows

and validating the preconditions of treatments.

109

Team Situation Awareness

Another important aspect is to improve team situation awareness. First, our system improves temporal
awareness through the use of treatment time progress bars. Because these progress bars are color-
coded, medical teams can easily keep track of the temporal progress of the treatments. One physician

commented:

The time progress bars are very helpful. I can know how long I should keep performing
CPR or whether to give another dose of epinephrine or not. In our working environment,

it is hard to always accurately keep track of the time.

Second, the table for pending medical request was originally designed to reduce the chance of
misunderstanding or neglecting of treatment orders. The coordinator of the Carle life support program

added that

That table helps us think ahead and be prepared for it. Physician in charge can request
certain drugs, such as epinephrine, even the injection interval has not yet reached. Nurse
can prepare the drug in advance. When it is time to give the drug, nurse can inject it with

short time delay.

Third, our system shows the candidate treatments and the status of the preconditions check, which
can help the medical team be aware of the applicable treatments. One head nurse believed that the

treatments status panel is very useful, especially for inexperience residents. She said that:

Personally, I like that (treatments status panel) feature. I involved in some situations, and
the second year residents just got lost. With that display, they can start to think what the

treatments should be considered are.

In short, the medical staff believe that they can better comprehend the situation and treat patients.

Records and review

One important feature appreciated by the medical staff is to record performed diagnosis and treatments

and automatically generate a code sheet. As a nurse commented on this

110

Keeping an accurate code sheet is hard, because so many things happen at the same time.
A physician just starts doing CPR, while another nurse gives epinephrine to the patient. It
is not easy to always keep track of the treatments and time correctly. Your (nurse’s) tablet

can save me a lot of effort.

A physician added that

The records are also important for reviewing and improving purposes, especially for resi-
dents. Based on the records, I or other senior doctors can review what residents have done

and point out what they may consider doing differently next time.

In summary, physicians and nurses believed this feature can reduce their effort, improve the accu-

racy of the code sheet, and potentially improve the clinical outcome in the future.

6.5.3 Limitations

In this section, we discus the limitations of the evaluations. First, the conducted evaluations are a pilot
study for collecting safety and effectiveness data. Therefore, in spite of the promising results collected
from a relatively small group of participants, the evaluation results should not be interpreted with
statistical significance. Second, due to the nature of the training classes at Carle Foundation Hospital,
the evaluations were not conducted with strict experimental and control groups. Consequently, the
cardiac arrest scenarios that the two groups experienced were different and leaded to different cognitive
load. The system designers asked the coordinator to give the experimental group a more challenging
scenario, which favors the control group. Third, the evaluations may be subject to confirmation bias’,
since the ICU director, the consultant physician, and the coordinator of Carle life support program
were involved in the system development and provided feedback. Nevertheless, the participants of the

evaluations were not involved in the development. Therefore, the confirmation bias should be reduced.

"Confirmation bias is a tendency to search for or interpret information in a way that confirms one’s preconceptions,

leading to statistical errors [75].

111

6.6 Summary and Future Work

In this chapter, we first modeled the individual medical staff’s responsibility and interactions in car-
diac arrest resuscitation and decomposed their overall tasks into a set of distinct cognitive tasks. We
documented our findings using the contextual design methodology. We then developed a medical Best
Practice Guidance (BPG) system to reduce medical staff’s cognitive load and thus help them better
adhere to the workflows in real-time. The developed system was evaluated by the medical staff under
clinical simulations with a medical manikin. The evaluation results showed significant reduction of
cognitive load and performance improvement. As the ICU director of Carle Foundation Hospital has

remarked,

“It is expected that the use of the system will result in rapid and consistent timing of
medical interventions, stricter adherence to standardized medical treatment guidelines,

more accurate record keeping, and improved team situation awareness”

Therefore, the developed system has been recommended and approved by Carle Foundation Hospital
for clinical trials.

As future work, in order to more extensively and objectively evaluate the medical BPG system, we
are closely working with Carle Foundation Hospital and will conduct a series of additional simulations.
The medical staff’s performance will be evaluated in respect of two aspects: number of deviations
and time to response to critical events. We believe that these measures will be useful for objectively
evaluating the quality of our system and provide diagnostic feedback for adapting the system to other

medical applications.

112

Chapter 7

Conclusion

Medical CPHS are both safety-critical and highly complex, because medical staff need to coordinate
with distributed medical devices and supervisory controller to monitor and control multiple aspects
of the patient’s physiology. Complexity is one of the major reasons for medical errors in medical
cyber-physical-human systems (CPHS). This thesis makes novel contribution to reduce and control
complexity in respect of verification complexity, cyber medical treatment complexity, and cognitive
load complexity. Architectural patterns and protocols are developed to limit asynchronous commu-
nication and provide consistent control for distributed medical devices and controllers, which in turn
reduces the verification complexity. A treatment validation and a workflow adaptation protocols are
designed to assist medical staff to correctly perform treatments by checking preconditions, monitoring
side effects, and checking expected responses. We also developed a best practice guidance system to
provide context-dependent information for reducing medical staff’s cognitive load and further foster

real-time adherence to the best practice guidelines.

Beyond the scope of this thesis, there are several open challenges.

e We currently verify the developed architectural patterns and protocols by developing system
models and checking the correctness and safety properties of the models. However, there is a
gap between system models and implementations. In other words, a correct system model does
not guarantee a correct implementation. In order to address this issue, we plan to use a source

code model checker CBMC [28], which is bounded model checker for C and C++ programs, to

113

verify the implementation of the architectural patterns and protocols.

We believe that the developed best practice guidance system can also improve patient hand-over
and transfer process. The developed system keeps track of the patient conditions and performed
treatments during the transportation, so with the help from our system, physicians and nurses can
resume the workflow and seamlessly continue the treatment. We plan to use sepsis as our case

study and develop the system to provide end-to-end workflow guidance and seamless hand-over.

In order to conduct clinical trials at Carle Foundation Hospital, the developed system must be
approved by Food and Drug Association (FDA). In addition to follow best practice software en-
gineering process, FDA also requires the system designers to perform risk analysis and software
traceability. For risk analysis, we plan to perform fault-tree analysis to identify how an undesired
or hazardous system state could be reached by a combination of software and/or hardware com-
ponents faults. Then, a set of fault-tolerance requirements are derived from our fault-tree analysis
to reduce the likelihood and severity of the risks. Traceability supports many software engineer-
ing activities, such as compliance verification, traceback of code, regression test selection, and
requirements validation For traceability, we plan to establish a hierarchical structure with the fol-
lowing layers (top-down): customer requirements, system requirements, software requirements,

implementation, and test cases.

114

Bibliography

[1]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Adil Ahmed, Subhash Chandra, Vitaly Herasevich, Ognjen Gajic, and Brian W Pickering. The
effect of two different electronic health record user interfaces on intensive care provider task load,
errors of cognition, and performance*. Critical care medicine, 39(7):1626-1634, 2011.

A. Al-Nayeem, Sun, Xiaokang Qiu, and L. Sha. A Formal Architecture Pattern for Real-time
Distributed Systems. Proceedings of the 30th IEEE RTSS, 2009.

R. Alur, D. Arney, E.L. Gunter, 1. Lee, J. Lee, W. Nam, F. Pearce, S. Van Albert, and J. Zhou.
Formal specifications and analysis of the computer-assisted resuscitation algorithm (cara) infusion
pump control system. International Journal on Software Tools for Technology Transfer (STTT),
5(4):308-319, 2004.

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183-235, 1994.

VA Arlington. National science foundation investing in america’s future: Strategic plan fy 2006—
2011. 2006.

D. Arney, M. Pajic, J.M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky. Toward patient safety
in closed-loop medical device systems. In Proceedings of the 1st ACM/IEEE ICCPS. ACM, 2010.

Philip Aspden, Julie Wolcott, J Lyle Bootman, Linda R Cronenwett, et al. Preventing medication
errors: quality chasm series. National Academies Press, 2006.

H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential verification of serializability. ACM
Sigplan Notices, 45(1):31, 2010.

Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume 26202649. MIT
press Cambridge, 2008.

Jakob E Bardram and Claus Bossen. Mobility work: The spatial dimension of collaboration at a
hospital. Computer Supported Cooperative Work, 14(2):131-160, 2005.

Jakob E Bardram, Thomas R Hansen, and Mads Soegaard. Awaremedia: a shared interactive dis-
play supporting social, temporal, and spatial awareness in surgery. In Proceedings of conference
on Computer supported cooperative work (CSCW’06), pages 109—118. ACM, 2006.

D.W. Bates and A.A. Gawande. Improving safety with information technology. New England
Journal of Medicine, 348(25):2526-2534, 2003.

115

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

G. Behrmann, A. David, and K.G. Larsen. A tutorial on uppaal. Lecture Notes in Computer
Science, pages 200-236, 2004.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco Bernardo
and Flavio Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th Inter-
national School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200-236. Springer—Verlag, September
2004.

J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. Lectures on Concur-
rency and Petri Nets, pages 87—124, 2004.

Marc Berg. Accumulating and coordinating: occasions for information technologies in medical
work. Computer supported cooperative work (CSCW), 8(4):373-401, 1999.

Hugh Beyer and Karen Holtzblatt. Contextual design: defining customer-centered systems. Else-
vier, 1997.

Ann M Bisantz, Rollin J Fairbanks, and Catherine M Burns. Cognitive engineering for better
health care systems. Cognitive Systems Engineering in Health Care, page 1, 2014.

Claus Bossen. Representations at work: A national standard for electronic health records. In
Proceedings of the conference on Computer supported cooperative work(CSCW’06), pages 69—
78. ACM, 2006.

Claus Bossen and Lotte Groth Jensen. How physicians ’achieve overview’: A case-based study
in a hospital ward. In Proceedings of the Conference on Computer supported cooperative work

(CSCW’14), pages 257-268. ACM, 2014.

John Seely Brown and Paul Duguid. Organizational learning and communities-of-practice: To-
ward a unified view of working, learning, and innovation. Organization science, 2(1):40-57,
1991.

Catherine M Burns, Yukari Enomoto, and Kathryn Momtahan. A cognitive work analysis of
cardiac care nurses performing teletriage. Applications of cognitive work analysis, pages 149—
174, 2008.

D.N. Card and W.W. Agresti. Measuring software design complexity. Journal of Systems and
Software, 8(3):185-197, 1988.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic logic and mechanical theorem proving.
Academic press, 2014.

Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design. Software
Engineering, IEEE Transactions on, 20(6):476-493, 1994.

Carey D Chisholm, Edgar K Collison, David R Nelson, and William H Cordell. Emergency de-
partment workplace interruptions are emergency physicians “interrupt-driven” and ”multitasking”
? Academic Emergency Medicine, 7(11):1239-1243, 2000.

Edmund Clarke. The birth of model checking. 25 Years of Model Checking, pages 1-26, 2008.

116

[28] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in Computer Science, pages
168-176. Springer, 2004.

[29] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(5):1512—-1542, 1994.

[30] M. Clavel, E. Duran, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, , and C. Talcott. Maude
manual, 2007.

[31] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the
ACM, 17(11):643-644, 1974.

[32] L.J. Easdown, A. Banerjee, and M.B. Weinger. Simulation to assess human responses to critical
events. In John D Lee, Alex Kirlik, and MJ Dainoff, editors, The Oxford Handbook of Cognitive
Engineering. Oxford University Press, 2013.

[33] P.Feiler. Open source aadl tool environment (osate). In AADL Workshop, Paris, 2004.

[34] P.H. Feiler. The architecture analysis & design language (AADL): An introduction. Technical
report, Software Engineering Institute, Cranegie-Mellon University, 2006.

[35] John M Field, Mary Fran Hazinski, Michael R Sayre, Leon Chameides, Stephen M Schexnayder,
Robin Hemphill, Ricardo A Samson, John Kattwinkel, Robert A Berg, Farhan Bhanji, et al. Part 1:
executive summary 2010 american heart association guidelines for cardiopulmonary resuscitation
and emergency cardiovascular care. Circulation, 122(18 suppl 3):5S640-S656, 2010.

[36] Geraldine Fitzpatrick and Gunnar Ellingsen. A review of 25 years of cscw research in healthcare:
Contributions, challenges and future agendas. Comput. Supported Coop. Work, 22(4-6):609-665,
August 2013.

[37] J.M. Goldman, S. Whitehead, S. Weininger, and MD Rockville. Eliciting clinical requirements for
the medical device plug-and-play (MD PnP) interoperability program. Anesthesia & Analgesia,
102:S1-54, 2006.

[38] J. Goldmann. Medical devices and medical systems—essential safety requirements for equipment
comprising the patient-centric integrated clinical environment (ICE)—part 1: General require-
ments and conceptual model. draft ASTM TC F, 29, 2009.

[39] J. Gray and A. Reuter. Transaction processing: concepts and techniques. Morgan Kaufmann,
1993.

[40] Jeremy M Grimshaw and Ian T Russell. Effect of clinical guidelines on medical practice: a
systematic review of rigorous evaluations. The Lancet, 342(8883):1317-1322, 1993.

[41] John R Hajdukiewicz, Kim J Vicente, D John Doyle, Paul Milgram, and Catherine M Burns.
Modeling a medical environment: an ontology for integrated medical informatics design. Inter-
national journal of medical informatics, 62(1):79-99, 2001.

117

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results of
empirical and theoretical research. Advances in psychology, 52:139-183, 1988.

Mark Hartswood, Rob Procter, Mark Rouncefield, and Roger Slack. Making a case in medical
work: implications for the electronic medical record. Computer Supported Cooperative Work
(CSCW), 12(3):241-266, 2003.

T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Methodology and case
studies. In Computer Aided Verification, pages 440-451. Springer, 1998.

Jan Horsky, David R Kaufman, Michael I Oppenheim, and Vimla L Patel. A framework for
analyzing the cognitive complexity of computer-assisted clinical ordering. Journal of biomedical
informatics, 36(1):4-22, 2003.

M. Jacobs, JC Verdeja, HS Goldstein, et al. Minimally invasive colon resection (laparoscopic
colectomy). Surgical laparoscopy & endoscopy, 1(3):144, 1991.

Tizneem Jiancaro, Greg A Jamieson, and Alex Mihailidis. Twenty years of cognitive work analy-
sis in health care a scoping review. Journal of Cognitive Engineering and Decision Making, page
1555343413488391, 2013.

Woochul Kang, Po-Liang Wu, Lui Sha, Richard B. Berlin, and Julian M. Goldman. Towards
safe and effective integration of networked medical devices using organ-based semi-autonomous
hierarchical control. Technical report, University of Illinois at Urbana Champaign, 2012.

Woochul Kang, PoLiang Wu, Maryam Rahmaniheris, Lui Sha, Richard B Berlin, and Julian M
Goldman. Towards organ-centric compositional development of safe networked supervisory med-
ical systems. In Computer-Based Medical Systems (CBMS), 2013 IEEE 26th International Sym-
posium on, pages 143-148. IEEE, 2013.

C. Kim, M. Sun, S. Mohan, H. Yun, L. Sha, and T.F. Abdelzaher. A framework for the safe
interoperability of medical devices in the presence of network failures. In Proceedings of the st
ACM/IEEE ICCPS, pages 149-158. ACM, 2010.

C. Kim, M. Sun, H. Yun, and L. Sha. A Medical Device Safety Supervision over Wireless.
Reliable and Autonomous Computational Science, pages 21-40, 2010.

Andrew L. King, Lu Feng, Oleg Sokolsky, and Insup Lee. A modal specification approach for on-
demand medical systems. In Proceedings of the Third International Symposium on Foundations
of Health Information Engineering and Systems, 2013.

Catharina JM Klijn and Graeme J Hankey. Management of acute ischaemic stroke: new guide-
lines from the american stroke association and european stroke initiative. The Lancet Neurology,
2(11):698-701, 2003.

Linda T Kohn, Janet M Corrigan, Molla S Donaldson, et al. To err is human: building a safer
health system, volume 627. National Academies Press, 2000.

Digna R Kool and Johan G Blickman. Advanced trauma life support®). abcde from a radiological
point of view. Emergency radiology, 14(3):135-141, 2007.

118

[56] Diana S Kusunoki, Aleksandra Sarcevic, Zhan Zhang, and Randall S Burd. Understanding visual
attention of teams in dynamic medical settings through vital signs monitor use. In Proceedings
of the conference on Computer supported cooperative work (CSCW’13), pages 527-540. ACM,
2013.

[57] Edward A. Lee. Cyber physical systems: Design challenges. Technical Report UCB/EECS-2008-
8, EECS Department, University of California, Berkeley, Jan 2008.

[58] Insup Lee, George J. Pappas, Rance Cleaveland, John Hatcliff, Bruce H. Krogh, Peter Lee, Harvey
Rubin, and Lui Sha. High-confidence medical device software and systems. IEEE Computer,
39(4), Apr. 2006.

[59] John D Lee, Alex Kirlik, and MJ Dainoff. The Oxford Handbook of Cognitive Engineering.
Oxford University Press, 2013.

[60] Wen-Shing Lee, DL Grosh, Frank A Tillman, and Chang H Lie. Fault tree analysis, methods, and
applications ? a review. Reliability, IEEE Transactions on, 34(3):194-203, 1985.

[61] Nancy G Leveson and Clark S Turner. An investigation of the therac-25 accidents. Computer,
26(7):18-41, 1993.

[62] David E Long. Model checking, abstraction, and compositional verification. PhD thesis, Citeseer,
1993.

[63] Blair Maclntyre, Elizabeth D Mynatt, Stephen Voida, Klaus M Hansen, Joe Tullio, and Gregory M
Corso. Support for multitasking and background awareness using interactive peripheral displays.

In Proceedings of the symposium on User interface software and technology, pages 41-50. ACM,
2001.

[64] Orit Manor-Shulman, Joseph Beyene, Helena Frndova, and Christopher S Parshuram. Quanti-
fying the volume of documented clinical information in critical illness. Journal of critical care,
23(2):245-250, 2008.

[65] Adam Marcus. Once a tech fantasy, plug-and-play or edges closer to reality. Anesthesiology
News, 33(1), 2007.

[66] Thomas J McCabe. A complexity measure. Software Engineering, IEEE Transactions on,
(4):308-320, 1976.

[67] Erin McCann. Deaths by medical mistakes hit records. Healthcare IT News, 2014.

[68] Brian S Mittman, Xenia Tonesk, and Peter D Jacobson. Implementing clinical practice guide-
lines: social influence strategies and practitioner behavior change. QRB. Quality review bulletin,
18(12):413-422, 1992.

[69] J.B. Moseley, K. O’Malley, N.J. Petersen, T.J. Menke, B.A. Brody, D.H. Kuykendall, J.C.
Hollingsworth, C.M. Ashton, and N.P. Wray. A controlled trial of arthroscopic surgery for os-
teoarthritis of the knee. New England Journal of Medicine, 347(2):81-88, 2002.

119

[70] Sirajum Munir, John A Stankovic, Chieh-Jan Mike Liang, and Shan Lin. Cyber physical system
challenges for human-in-the-loop control. In Presented as part of the 8th International Workshop
on Feedback Computing, Berkeley, CA, 2013.

[71] Christopher Nemeth, Michael O?Connor, P Allan Klock, and Richard Cook. Discovering health-
care cognition: the use of cognitive artifacts to reveal cognitive work. Organization studies,
27(7):1011-1035, 2006.

[72] Christopher Nemeth, Robert L Wears, Sachin Patel, Greg Rosen, and Richard Cook. Resilience is
not control: healthcare, crisis management, and ict. Cognition, Technology & Work, 13(3):189—
202, 2011.

[73] Christopher P Nemeth, Richard Cook, Michael O Connor, P Allan Klock, et al. Using cognitive
artifacts to understand distributed cognition. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 34(6):726-735, 2004.

[74] Mark D Neuman, Jennifer N Goldstein, Michael A Cirullo, and J Sanford Schwartz. Durability
of class i american college of cardiology/american heart association clinical practice guideline
recommendations. JAMA, 311(20):2092-2100, 2014.

[75] Raymond S Nickerson. Confirmation bias: A ubiquitous phenomenon in many guises. Review of
general psychology, 2(2):175, 1998.

[76] M. Pajic, Z. Jiang, . Lee, O. Sokolsky, and R. Mangharam. From verification to implementation:
A model translation tool and a pacemaker case study. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2012 IEEE 18th, pages 173—-184. IEEE, 2012.

[77] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee. Model-driven safety
analysis of closed-loop medical systems. IEEE TRANSACTIONS ON INDUSTRIAL INFORMAT-
ICS, 2012.

[78] Emily S Patterson, Richard I Cook, David D Woods, and Marta L. Render. Examining the com-
plexity behind a medication error: generic patterns in communication. Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on, 34(6):749-756, 2004.

[79] Sharoda A Paul and Madhu C Reddy. Understanding together: sensemaking in collaborative
information seeking. In Proceedings of the conference on Computer supported cooperative work

(CSCW’10), pages 321-330. ACM, 2010.

[80] Mandy Perrin and Anthony Fletcher. Laparoscopic abdominal surgery. Continuing Education in
Anaesthesia, Critical Care & Pain, 4(4):107-110, 2004.

[81] Charles Perrow. Normal accidents: Living with high risk technologies. Princeton University
Press, 2011.

[82] Anand Ranganathan and Roy H. Campbell. What is the complexity of a distributed computing
system? Complexity, 12(6):37-45, 2007.

[83] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms. /EEE
Transactions on Software Engineering, 25:651-660, September 1999.

120

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Lui Sha. Using Simplicity to Control Complexity. IEEE Software, 18(4):20-28, Jul./Aug. 2001.
Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2006.

Xiping Song, Beatrice Hwong, Gilberto Matos, Arnold Rudorfer, Christopher Nelson, Minmin
Han, and Andrei Girenkov. Understanding requirements for computer-aided healthcare work-
flows: experiences and challenges. In Proceedings of the International conference on software
engineering (ICSE’06), pages 930-934. ACM, 2006.

N. Stevens, A.R. Giannareas, V. Kern, A. Viesca, M. Fortino-Mullen, A. King, and I. Lee. Smart
alarms: multivariate medical alarm integration for post cabg surgery patients. In Proceedings
of the 2nd ACM SIGHIT symposium on International health informatics, pages 533-542. ACM,
2012.

John C Thomas and John T Richards. Achieving psychological simplicity: Measures and methods
to reduce cognitive complexity. Human-Computer Interaction: Design Issues, Solutions, and
Applications, page 161, 2009.

A. Valmari. The state explosion problem. Lectures on Petri nets: advances in Petri nets, page
429, 1998.

Jiacun Wang. Emergency healthcare workflow modeling and timeliness analysis. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 42(6):1323-1331, 2012.

Diane B Wayne, Aashish Didwania, Joe Feinglass, Monica J Fudala, Jeffrey H Barsuk, and
William C McGaghie. Simulation-based education improves quality of care during cardiac arrest
team responses at an academic teaching hospital: a case-control study. Chest Journal, 133(1):56—
61, 2008.

David D Woods, Emily S Patterson, and Richard I Cook. Behind human error: taming complexity
to improve patient safety. Handbook of Human Factors and Ergonomics in Health Care and
Patient Safety. London: Lawrence Erlbaum, pages 45976, 2007.

Po-Liang Wu, Woochul Kang, Abdullah Al-Nayeem, Lui Sha, Richard B Berlin Jr, and Julian M
Goldman. A low complexity coordination architecture for networked supervisory medical sys-
tems. In Proceedings of the 4th ACM/IEEE ICCPS, pages 89-98. ACM, 2013.

Po-Liang Wu, Min-Young Nam, Jeonghwan Choi, Alex Kirlik, Lui Sha, and Richard Berlin.
Medical best practice guidance, navigation and control (GN&C) system for supporting situation
awareness. Technical report, University of Illinois at Urbana Champaign, 2015.

Po-Liang Wu, Dhashrath Raguraman, Lui Sha, Richard B. Berlin, and Julian M. Goldman. A
treatment validation protocol for cyber-physical-human medical systems. In Software Engineer-
ing and Advanced Applications (SEAA), 2014 EUROMICRO Conference on. IEEE, 2014,

Po-Liang Wu, Lui Sha, Richard B. Berlin, and Julian M. Goldman. Safe workflow adaptation and
validation protocol for medical cyber-physical. In Software Engineering and Advanced Applica-
tions (SEAA), 2015 EUROMICRO Conference on. IEEE, 2015.

121

[97] H. Yun, PL. Wu, M. Rahmaniheris, C. Kim, and L. Sha. A reduced complexity design pattern
for distributed hierarchical command and control system. In Proceedings of the 1st ACM/IEEE
ICCPS, pages 42-49. ACM, 2010.

122

Appendix A

Introduction of Model Checking and
UPPAAL

A.1 Model Checking

During the last two decades, research in formal methods has led to the development of several very
promising verification techniques, such as model checking [27] and theorem proving [24], that facilitate
correctness and safety of system designs.. These techniques are accompanied by powerful software
tools that can be used to automate various verification steps, simulate system behaviors and generate
source code. Several studies have shown that formal verification procedures would have revealed the
software errors [9].

Model checking is a formal verification technique that explores all possible system states in a brute-
force manner. In this way, it can be shown that a given system model truly satisfies a certain property.
A model checking problem can be stated as the following:

Let M be a Kripke structure (i.e., finite state machine specifications). Let f be a formula of temporal
logic (i.e., the properties to be verified). Find all states s of M such that M, s = f. [27] In general, the

steps of applying model checking can be summarized as the following:

123

1. Build a model for the system, typically as a set of timed automata.
2. Formalize the properties to be verified using temporal logic.

3. Use the model checker to generate the space of all possible states and to exhaustively check

whether the properties hold in all of the possible dynamic behaviors of the model
Model Checking has a number of advantages, and followings are some of these advantages:

e Diagnostic counterexamples: If any property is not satisfied, the model checker will produce a
counterexample of execution trace that shows why the property does not hold. System designers

can examine the counterexample and debug the systems.

o Expressiveness of temporal logic: Temporal logic can easily express many of the properties

that are needed for reasoning about correctness and safety of systems.

e Partial verification: Properties can be verified individually. Thus, system designers can focus

on the essential properties first even without a complete system design.
However, model checking also has several disadvantages:

e State explosion problem: The number of system states needed explore may easily exceed the
amount of available computer memory. Despite the development of several very effective meth-
ods, such as abstraction and compositional verification [62], to address this problem, models of

realistic systems may still be too large.

e Verifying a system model and not the actual system: Model checking only verifies the system
model (i.e. finite state machines) instead of real system implementation. Therefore, it is possible
that the system model is correct but the implementation contains serious errors. Complementary

techniques, such as testing, are required.

e Completeness of correctness and safety properties: Model checking relies on system design-
ers to specify the verification properties, and there is no guarantee that the specified properties

are complete and accurate.

Despite the above limitations, model checking can still provide a significant increase in the level of

confidence of a system design.

124

A.2 UPPAAL

UPPAAL [14] is a integrated tool for both validation (via graphical simulation) and verification (via
automatic model-checking) of real-time systems. In UPPAAL, systems are modeled using timed-

automata, which are finite state machines with clocks.

Definition 11 A timed automaton is defined as a tuple < Q, ¥, C, A, E, qo , I>, where

Q is a set of the states of W. X is a set of actions of W.

C is a set of the clocks.

A is a set of actions.

EC OxAX X XB(C)xP(C)xQ is a set of edges, called transitions of W, where

B(C) is the set of boolean clock constraints involving clocks from C, and P(C) is the powerset of C.

1:Q<B(C) assigns invariants to states. qo € Q is the initial state.

A timed-automaton is represented as a graph which has states as nodes and transitions as edges between
states. States can be in one of the four different types: initial, urgent, committed, and normal.
Each timed-automaton must have exactly one initial state marked as double-circle. In an urgent state
(marked with u), clock is frozen. In other words, time is not allowed to pass when the system is in an
urgent state. In a committed state (marked with c¢), clock is also frozen like urgent state, but the next
transition must be an outgoing transition from a committed state.

Edges are annotated with guards, updates, and synchronizations. A guard is an expression which
uses the variables and clocks of the model in order to indicate whether a transition is enabled or not. An
update is an expression that is evaluated when the corresponding edge is fired. The synchronization
is the basic mechanism used to coordinate the action of two or more UPPAAL processes. Specifically,
the synchronization enforces two (or more) processes to take a transition at the same time. A channel
should be declared as chan c; one process will have an edged annotated with ¢/ and the other(s)
process(es) another edge annotated with ¢?. A synchronization pair is chosen non-deterministically if
several combinations are enabled.

UPPAAL uses a simplified version of timed computation tree logic (TCTL) as the query language

to specify verification properties. Like in TCTL, the UPPAAL query language consists of path formula

125

Alle F\\ E< ¢ (l)\ VA ® Q
1 0O @) I\j

p—

Figure A.1: Path formulae supported in UPPAAL. The filled states are those for which a given state
formula ¢ holds. Bold edges are used to show the paths the formula evaluate on. This figure is

from [14].

and state formula. State formula describe individual states, whereas path formula quantify over paths
or traces of the model. A graphical representation of the query language is in Fig A.1. The specific

types of properties that can be expressed in the UPPAAL query language can be classified as:

e Reachability properties: Rechability properties express that if there exist a path starting at the
initial state, such that a property, ¢, is eventually satisfied along that path. This property is

specified with the syntax E<> .

o Safety properties: Safety properties express that if a property, (, is satisfied in all the states of an
execution path. There are two possible cases. A[]p expresses that ¢ is satisfied in all reachable

states. E[] expresses that there exist a maximal path such that ¢ is always satisfied.

e Liveness properties: Liveness properties express that a property, ¢, will eventually be satisfied.
This property is specified with the syntax A<> ¢. Another useful form is the leads to or response

property, expressed as ¢ — — > 1, which means that whenever ¢ is satisfied, then eventually ¢

126

will be satisfied.

e Deadlock properties: Deadlock properties express that if a state is in a deadlock. A state is
in a deadlock if there are no outgoing transitions neither from the state itself or any of its delay

SUCCeSSsOor.

127

Appendix B

Introduction of Integrated Clinical

Environment (ICE) Architecture

Integrated Clinical Environment (ICE) architecture [37] provides a centralized supervisory framework
for integrating networked medical devices to enable the development of supervisory protocols. Logi-

cally, ICE is a hierarchical control architecture, as illustrated in Figure B.1.

Medical Devices are responsible for measuring the patient conditions(e.g. heart rate, blood pres-
sure) and providing treatments or interventions (e.g. drug administration, assisted ventilation). Adapters
facilitate communication between the medical devices and the Supervisor through wireless network.
Medical Device Plug and Play (MDPnP) controller is to provide an integrated communication inter-
face for the Supervisor with responsibilities including data routing, format translation, and quality of
service (QoS) enforcement. Supervisory protocols are responsibility for encoding clinical knowledge
and coordinating with medical and medical devices. In this thesis, we take advantage of such an inte-
grated framework and develop the validation and coordination protocols on as part of the supervisory

protocols in order to reduce medical errors and improve patient safety.

The high-level scenario can be described as the following. Medical staff issue a treatment command
through user interface. The supervisory protocols validate the treatment command against the patient
conditions provided exported by the MDPnP controller. If the supervisory protocols detect any poten-

tial safety hazards, an exception is raised to the medical staff. Otherwise, the supervisory protocols

128

Medical Staff

Lo
=i

Supervisor
Medical Patient
commands conditions and
devices states
Supervisory
Protocol
Device A patient
commands conditions and
\ devices states
MDPnP
Controller
|
Network
I [[|
Adapter Adapter Adapter Adapter
EKG Monitor Defibrillator Pulse Infusion
Oximeter Pump

OE} Patients

Figure B.1: The Integrated Clinical Environment (ICE) Architecture

request the medical devices to perform treatments through MDPnP controller. On the other hand, the
supervisory protocols dynamically monitor the patient conditions and alert the medical staff to adjust

the treatment if a patient adverse event is raised.

129

