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—Humankind cannot gain anything without first giving something in

return. To obtain, something of equal value must be lost. That is

Alchemy’s first law of equivalent exchange.

Alphonse Edric, Fullmetal Alchemist

1
Introduction

1.1 Let’s pool!

Alchemists who are devoted to the philosophy of equivalent exchange believe that you can

never get ahead without sacrificing something. These alchemists are wrong. Sure, we1 cannot

create gold out of thin air, but we can often gain something for free by organizing things

more efficiently. One way to achieve this is via resource pooling: an arrangement in which a

group of common resources (machines, inventories, servers, etc.) is shared between multiple

customer streams. The idea is that when the customer arrival process is stochastic2 and we

don’t know in advance which customer needs a given resource at a certain time, then resource

flexibility can mitigate the uncertainty. It is well-known in the literature (e.g., Eppen, 1979;

Smith and Whitt, 1981) that, compared to an arrangement in which each resource is dedicated

to an individual customer stream, resource pooling arrangements typically result in reduced

congestion and improved availability.

All of us regularly encounter pooled resources in daily life, whether we realize it or not.

One example is when we place an order for tennis shoes at an internet retailer who fulfills the

customer orders from all over Europe from a single, centralized warehouse. Here, resources

(inventories) are pooled over multiple customer streams (countries). Another example is

when we go to the post office and are served by an employee who can provide both mail and

1“We” refers to you, the reader, and me, the author. It is customary in the operations research literature

to write in this “we” voice. However, any personal opinions will be written in the “I” voice.
2Stochastic is basically just another word for random or uncertain.



2 Chapter 1. Introduction

Figure 1.1: In a post office without pooling (in which employees are dedicated to either mail or non-

mail services) a customer who requires mail service has to wait in a queue when all mail servers are

busy, even if a non-mail server is free. In a post office with pooling (in which employees are not

dedicated to a specific service category) the same customer can immediately receive service.

non-mail services. Here, resources (employees) are pooled over multiple customer streams

(service categories). In both settings, pooling is beneficial. To understand why, suppose that

the internet retailer would hold dedicated, separate inventories per country instead. Then,

if demand in one country is higher than expected, even if there are extra units available

in another country, there may still be a stock-out. In contrast, by pooling inventories over

multiple countries, high demand in one country can be offset by lower demand in another

country. The argument for the merging the mail and non-mail departments in a post office

is analogous. Figures 1.1 and 1.2 provide an illustration.

These examples show that the efficiency benefits of resource pooling are already commonly

exploited in case there is one service provider (e.g., an internet retailer or a post office)

who owns all resources and who is responsible for serving all customer or demand streams.

However, these benefits can also be obtained if there are multiple, self-interested players, each

associated with a number of separate resources and customer streams. Pooling of the players’

resources and customer streams can yield operational improvements, as described above, but

the presence of multiple players—who care only about their own bottom line—does lead to all

kinds of questions, such as who pays for the shared resources and how much. Such questions

are not relevant when there is only one player, but they become essential when there are

multiple players, and they form the main focus of this thesis.
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Figure 1.2: For an internet retailer who does not pool inventories (i.e., with separate warehouses per

country) a Dutch customer will not receive his desired tennis shoe if the Dutch warehouse is stocked

out, even if the German warehouse is not. For an internet retailer who pools inventories (i.e., with

one centralized warehouse) the same customer’s demand can be immediately fulfilled.

The remainder of this chapter is organized as follows. In Section 1.2, we start with

examples of resource pooling between independent players. Subsequently, we get things rolling

in Sections 1.3 and 1.4 with a more detailed description of our research questions and research

methodology, respectively. We illustrate them via examples in Section 1.5. Finally, Section

1.6 presents an overview of the rest of this thesis.

1.2 Pooling of resources between independent players

Excellent examples of pooling between multiple decision makers, each with their own interests

in mind, can be found in the capital goods industry. Capital goods such as power-

generating plants, chemical production lines, naval vessels, MRI scanners, wind turbines,

baggage handling systems, semiconductor fabs, construction equipment, and airplanes form

the backbone of much of our society. To ensure operational continuity of these capital goods,

maintenance activities are often needed. For the execution thereof, different types of costly

resources are needed, such as spare parts and specialized service engineers. In the case of

spare parts, it happens all too often that separate companies in the same geographical region

keep their own parts on stock and do not share them with each other. Since the total demand

for parts on a given day is driven by random component failures and therefore cannot be
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predicted with certainty in advance, there is always the risk that demand is higher than

expected. Hence, if companies do not pool their parts, even high safety stocks cannot always

prevent the unfortunate situation in which one company has a shortage of inventory while

another company has an excess of inventory. Such mismatches cannot occur if companies

join forces and pool inventories. Moreover, pooling mitigates the risk of a shortage, which

implies that the total safety stock can usually be reduced. Real-life cases of independent

firms considering a spare parts pool are described in Guajardo et al. (2012) and Braglia and

Frosolini (2013). Sharing (non-branded) service engineers makes sense for similar reasons.

The capital goods industry forms an important application because it embodies opportu-

nities for massive monetary savings. The sale of spare parts and after-sales services in 2006

has been pegged at $1 trillion in the United States alone, representing 8% of its gross domestic

product (Cohen et al., 2006, pp. 129-130, and references therein). At the same time, lacking

a spare part or available service engineer can lead to downtime of capital goods, which is very

expensive due to loss of operational continuity: an unresolved failure of a capital good can

result in the standstill of a complete factory. For example, in the semiconductor industry, the

opportunity costs for lost production are estimated to run into tens of thousands of euros per

hour (Kranenburg, 2006, p. 17). Several studies (such as Kukreja et al., 2001, who looked at

pooling possibilities between independently operating power-generating plants) showed that

reductions in spare parts provisioning and maintenance costs in the order of 50% are easily

possible when resources are pooled. Indeed, as stated by Cohen et al. (2006, p. 136): “the

best way for companies to realize economies of scale is to pool spare parts.”

While pooling of spare parts and service engineers is one of our main motivations for the

research presented in this thesis, there is an abundance of resource pooling opportunities in

other sectors as well. For instance, clinical departments in a hospital, each with their own

patient populations, may share operating rooms, intensive care beds, medical staff, blood

banks, diagnostic equipment, or medicine inventories. Here, the availability of the right

resource at the right time can mean the difference between life and death. Less critical

but still relevant, manufacturing facilities may share flexible production equipment between

several job types, university faculties may share a high-performance computer cluster, and

neighboring municipalities may pool stocks of snow salt (see van Outeren, 2010). Another

example is that of pooling of mobility scooters between senior citizens living in a home for

the elderly (see Pinedo, 2012). Other examples that come to mind are business units of a

large insurance firm that share a common call center with cross-trained telephone agents,

airline companies that pool check-in counters at an airport, and regional broadcasters that

share internet capacity in case of a localized disaster (see ANP, 2011). Shared ownership of

corporate jets also occurs in practice (see Keskinocak, 1999). Another example is found in the

rental industry, where independent car rental agencies may collaborate by holding a common

set of rental cars for all their customers. And as a final example, a group of banks may share

tellers by directing customers at the branch locations to automated video screens that connect
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to tellers who remotely authorize transactions and review checks from the headquarters (see

Sidel, 2012).

We could go on to list many other examples, but hopefully, these examples already make

the point that the world is teeming with resource pooling opportunities between independent

players. These players could be business units of a single firm, or even competitors that

collaborate on, e.g., back-end maintenance operations to improve their competitiveness

against the rest of the world. In general, such collaborations enable more efficient use of

resources and offer the opportunity to benefit from large (statistical) economies of scale:

benefits aplenty! However, establishing a resource pool between independent, self-interested

players is not easy—indeed, it raises all kinds of difficult questions, such as how to make sure

that all parties benefit from collaboration. The following section deals with these questions.

1.3 Research question

When several players pool resources, the first issue to be addressed is what the best operating

policy might be: How many resources would be needed in total if they are shared between

multiple players? This question does not pose a big hurdle because it also comes up if all

customer streams belong to just one service provider. Accordingly, the literature provides

many models and solutions. By estimating probability distributions of uncertain quantities

(such as the demand pattern for spare parts), quantifying the monetary consequences of

our decisions (such as inventory holding and/or shortage costs), and subsequently applying

a mathematical queueing or inventory model from the literature, we can find an adequate

operating policy.

The next natural concern, which is more closely linked to our problem with separate

players, is whether or not full pooling among all players is actually the arrangement with

minimal cost. Would partial pooling or separate pools for smaller coalitions (subgroups of

players) be more beneficial? If so, which coalitions will form? Furthermore, when multiple

players are waiting for the same resource to become available, who should get it first? These

questions are tricky when the customer streams are associated with different cost parameters

or different service requirements, or in case transshipping a resource from one location to

another comes with a substantial cost. This thesis will tackle some of these complexities to a

certain extent. However, the majority of our work focuses on situations where all customers

have identical costs parameters, identical service requirements, and negligible transshipment

costs. Under these assumptions, the answer to the aforementioned questions is simple: full,

complete pooling between all players on a first-come first-serve basis is optimal.

The more interesting question—indeed, the key question that this thesis is dedicated to—is

the following:
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When multiple service providers collaborate by sharing resources in a stochastic

inventory or queueing system, is it possible to allocate the total costs of their pooled

system amongst them in a stable way, and if so, can we identify a rule that results

in stable cost allocations with appealing properties?

Four clarifications on this research question are in order. First, “total costs of their pooled

system” refers to the sum of the resource costs and shortage costs in the service facility set up

by the grand coalition of all players together. Second, “a stable way” means a way ensuring

that the cooperation doesn’t break up into smaller coalitions in the long run. Third, “identify

a rule . . . with appealing properties” implies that we will be aiming to prove structural results,

not trying to formulate an optimization program that picks the best cost allocation rule. Due

to the plethora of appealing, yet conflicting, properties, there wouldn’t be an unambiguous

best. Fourth, we remark that although this question could also be studied from a profit

allocation perspective, we will study this from the perspective of companies minimizing costs;

from a stability perspective, this makes no difference.

The motivation for this research question is that a fair, transparent cost allocation

mechanism is an essential prerequisite for a successful cooperation. Indeed, when independent

decision makers join forces, they are not really interested in the benefits of pooling for society

as a whole; they are mainly interested in the consequences for themselves. Without an

equitable mechanism to allocate the total costs, or a guarantee that such a mechanism even

exists, firms will not be convinced that participation in a resource pool is profitable. They

may fear that some firms will end up paying to subsidize the others, and that new members

may take more benefit out of the pool than they bring in. The construction of fair allocation

mechanisms that do sustain support for the collaboration tends to be challenging—indeed,

it is one of the more severe impediments for horizontal cooperation in the logistics industry

(Cruijssen et al., 2007).

The existing literature, which we discuss in more detail later, does not provide satisfactory

solutions to the cost allocation problems that arise in pooled stochastic inventory or queueing

systems. This thesis takes a step towards a more comprehensive examination of the issue of

resource pooling and cost allocation among independent parties, whether it arises in service,

inventory, or manufacturing applications. We do this by proving novel, elegant theoretical

results for mathematical models, as we describe next.

1.4 Research methodology

To answer the questions raised in the preceding section, we will follow the research

methodology of quantitative modeling and draw upon the mathematical fields of queueing

theory, inventory theory, and cooperative game theory. In this section, we briefly describe

these approaches. Chapter 2 introduces the mathematical concepts in more detail.
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1.4.1 Quantitative modeling

In this thesis, we formulate and analyze mathematical models. In the terminology of

Bertrand and Fransoo (2002), we do quantitative, model-based, axiomatic research. This

methodology uses equations, real numbers, sets, functions, probabilities, etcetera to provide

a (simplified) abstraction of reality. The messy details of the real-world situation are

purposefully disregarded to end up with a tractable model that allows us to study the aspects

of interest in more detail.

A mathematical model for a real-world situation is similar to a geographical map. Indeed,

in making a model, it is necessary to make many simplifying assumptions so as to render the

mathematics tractable; consequently, we find ourselves in an imaginary world. To paraphrase

Rubinstein (2012), models can be denounced for being simplistic and unrealistic, but they

are still the best tool we have for clarifying concepts and acquiring insights. Indeed, no one

would mistake a geographical map for physical reality, but it can still help us find our way.

In similar fashion, a model is merely a simplified version of reality, but it can still help us

grasp the world around us.

Analysis of a model can provide us with new knowledge in the form of mathematical

statements or theorems. A theorem may state, for example, that a cost allocation rule always

satisfies a certain fairness property in a specific model under certain assumptions. The truth or

falsity of these theorems is demonstrated not by observations or experiments, as in the natural

sciences, but by a rigorous mathematical proof that follows logically from the assumptions.

The purpose of these theorems is to provide insights that will serve us when we return from

the model to real life.

Models and theorems may sometimes be abstract. To make these abstractions more

concrete, more vivid, and more specific, many illustrative examples will be presented. As

humans tend to be good at inductive reasoning, I strongly believe in the value of simple

examples; they allow us to grasp definitions, understand real-world applications, and prevent

obfuscation. Obfuscation is not unlike a bewildered soliloquy on a non-isomorphic, thinly

veiled non-theoremhood that results, considering several metaphysical and etymological

ramifications, in an inability to understand as to what may be the original intention of a model

or theorem, often inclusive of a subsemantic identity containing unnecessarily aggrandized

words and a superfluous amount of clauses, deliberately constructed in a mythopoetic fashion

to concoct confusion and verbal subterfuge for the express purpose of, indeed, escaping

comprehension. I realize that, to a reader who is not well versed in the language of

mathematics, an academic thesis can be just as puzzling as the previous sentence. Still,

I hope to avoid obfuscation by explaining complex ideas via simple examples. I consider this

to be an important part of quantitative modeling research.
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1.4.2 Queueing and inventory theory

Queueing theory is the mathematical modeling and analysis of waiting lines. In queueing

theory, a model is constructed wherein customers enter a service system according to

a generally unpredictable arrival process, receive some kind of service, and subsequently

leave the system. If all servers are occupied, customers either wait in a queue or leave

without receiving service, depending on the model. The inherent uncertainty with respect

to interarrival and service times is translated into a mathematical model via the use

of probabilities and random variables. Using queueing models, steady-state performance

measures, such as the expected time one has to wait for an available repairman, can be

predicted. The foundations of queueing theory were laid by Erlang3 about a century ago.

Inventory theory is the mathematical modeling and analysis of inventory systems. In

inventory theory, a model is constructed wherein stock is depleted by demands, which occur

according to a stochastic process, and stock is replenished by orders. The key decisions that

inventory theory can help with are how much to order and when to order. Uncertainties with

respect to demands are again captured via probabilities and random variables. Inventory

models allow us to calculate performance measures such as the expected number of items on

hand or the probability that we face a stock-out. The 1950s and 1960s were banner years for

the development of stochastic inventory models.4

There is a tight link between queueing theory and inventory theory; the central analogy

is between the number of parts in the replenishment pipeline in inventory models and the

number of busy servers in queueing models. However, in inventory theory the cost functions

are typically different, as inventory theorists are interested in, e.g., the average inventory, not

the average queueing time.

1.4.3 Cooperative game theory

Cooperative game theory is concerned primarily with the mathematical modeling and analysis

of situations where coalitions (groups of players) may collaborate to save costs. To represent

a cooperative game, we must list all the possible coalitions that can be formed, together with

how much each coalition would have to pay when cooperation would be limited to just that

3Agner Krarup Erlang (1878-1929) was a Danish mathematician and telephone engineer. While working

for the Copenhagen Telephone Company, Erlang was presented with the problem of determining how many

circuits were needed to provide an acceptable telephone service. To answer this problem, he developed his

classic formulae for loss and waiting time. As told in Brockmeyer et al. (1948), an American researcher even

learnt Danish to be able to read Erlang’s papers in the original language. A unit of telephone traffic and a

probability distribution have been named in his honor.
4The rigorous analysis of multi-period inventory models with stochastic demand began with the seminal

paper of Arrow et al. (1951). Most of the basic analytical methods of the field, such as dynamic programming

and stationary analysis, were established in the 1950s and 1960s (see, e.g., the memoir of Scarf, 2002).
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coalition. The basis of cooperative game theory was laid by von Neumann5 during World

War II, and it offers a natural paradigm to tackle cost allocation problems. In the model

of a cooperative game, enforceable binding agreements and side payments are allowed, while

players are assumed to coordinate their actions and share all information.

An important aspect in cooperative game theory is how the total costs when all players

collaborate should be split equitably over the players. Cooperative game theory provides

several solutions that convert information about smaller coalitions into fair payoffs to each

individual player. A main set of solutions from cooperative game theory that we will often

focus on is the core. The core is the set of cost allocations that are stable in the sense that

no smaller coalition is given an incentive to split off and, in our context, set up a separate

resource pool. Under such a stable allocation, each player will feel motivated to collaborate

with everyone, and no group of players is paying to subsidize the others. Such an allocation

can be seen as a bond that keeps the players from defecting. Yet, even if collaboration leads

to an overall cost reduction, it is not always the case that a stable allocation exists. Moreover,

stability is not the only interesting notion of fairness. Various alternatives will be considered

in this thesis.

1.5 Illustration of the research approach

This section presents two examples to make the research questions and research methodology

more concrete. The first example deals with pooling of spare parts when emergency procedures

and optimized base stock levels are used, and it illustrates the multiplicity of stable cost

allocations in a two-player setting. The second example (inspired by Curiel, 1997) describes

pooling of an exogenously given number of repairmen to reduce waiting times, and it illustrates

the problem of the existence of a core allocation in a setting with a lot of players.

Example 1.1. Consider two independently managed airlines, A and B, that are located at

negligible distance from each other. Both use spare parts to replace failed components. The

number of failures observed for some component is subject to a lot of uncertainty: one year a

given component might not fail at all, while the next year it may suddenly fail multiple times.

Since obtaining a new part from the regular replenishment channel takes several months,

having enough spare parts on hand to guard against the uncertain demands is essential.

Indeed, when a spare part is unavailable when needed, an airplane goes out of service for a

while, and an emergency procedure is needed to obtain the part from an alternative channel.

5John von Neumann (1903-1957) was a Hungarian-born American mathematician who made major

contributions to a vast range of fields, including set theory, quantum mechanics, game theory, computer science,

and even the Manhattan Project. He can be rightfully called the founder of game theory, both cooperative and

non-cooperative. His tome “Theory of Games and Economic Behavior,” co-written with Oskar Morgenstern

and published in 1944, introduced the concepts of a cooperative game in characteristic function form. For

more of a historical flavor, see Poundstone (1993).
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This costs a lot of money. However, if one attempts to reduce stock-out risk with excessively

large stocks, then these stocks will tie up a lot of capital. So, there is a trade-off between

inventory holding costs and shortage costs. But no matter how this trade-off is managed, the

sum of holding and shortage costs for a single player is likely to be substantial.

To reduce these costs, the two players consider cooperating by setting up a joint stock point

for spare parts. Their inventory planners meet up, share information, discuss the options, and

figure out how to jointly set optimal base stock levels.6 Let us focus on one specific repairable

part, for which player A expects λA = 0.2 demands per year and B expects λB = 0.3 demands

per year. To analyze the stock point, the inventory planners use a mathematical inventory

model: the (S − 1, S) infinite-horizon model with lost sales under the assumption of Poisson

demand processes. This allows them to estimate the expected yearly costs for both inventory

holding and shortages under any base stock level. Subsequently, an optimal, cost-minimizing

base stock level can be identified.

Let us suppose that it would be optimal for player A, when acting alone and in absence

of pooling, to stock 1 part with expected total yearly costs of $13K. For player B, when

acting solitarily, it would be optimal to stock 1 part with expected total yearly costs of $15K.

(These numbers encompass costs for both inventory holding and shortages.) If the two players

cooperate while maintaining 2 parts in total, then their collective costs would go down to $22K

as a result of pooling, but they can do even better by re-optimizing the base stock level: when

they share only 1 part, minimal costs of $17K in total are attained.

At first, player A has cold feet about this type of collaboration. “What if I need a part,”

player A might wonder, “when player B took it the day before?” However, after mulling it

over, player A realizes that a single-minded focus on this worst-case scenario is not productive.

The expected total yearly cost is what really matters, and it is reduced significantly by sharing

1 part.

But there is still an element of competition here: the two players are fighting to pay as

little as possible. Many solutions are possible. They could agree on side payments such that

the $17K are split equally, proportional to their individual demand rates, or proportional

to their individual costs. They could also focus on the benefits, $13K+$15K−$17K=$11K,

rather than the costs, which can lead to a different allocation rule. And how about letting

player A pay half the costs of a fictive pool with total demand rate 2λA, and B the rest?

All these allocations may very well make both players better off, but it leaves us with the

problem of picking the fairest or most reasonable one, whatever that even means. This

problem can be cracked with the axiomatic approach of cooperative game theory. This

approach involves first formalizing the vague, intuitive notion of fairness by putting down a

set of natural properties that an allocation should satisfy, and then either deriving a solution

6The base stock level is the initial number of parts on hand. The terminology stems from the (S − 1, S)

inventory model, in which a new part is immediately ordered upon any demand; consequently, the number of

parts on hand plus the number of parts on order is kept at a fixed level: the base stock level.
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(preferably a unique one) that satisfies these properties, or showing that these properties are

incompatible.

Choosing a certain way to split the $17K is not the end-all, as the players may quickly

face additional challenges. First off, how to implement an allocation in expected terms for

any demand realization, especially when the realized costs in any period of time may differ

greatly from expected costs? Furthermore, what if a player believes that it is not in his best

interest to disclose his demand rate truthfully and decides to lie about it? Finally, what if a

third player shows up and joins the pool; will that make the existing players better off, and

how does that depend on the cost allocation mechanism? All these questions may, of course,

influence the choice for an allocation rule in the first place.

With so many questions, the player may very well keep on fighting over the cost allocation

and never even come to an agreement, in which case the spare parts pool would not materialize.

We need a fair, implementable cost allocation that all parties can trust. This thesis will

provide that. 3

Example 1.2. Consider a manufacturer of advanced office equipment, such as 3D printers

and computer mainframes, who offers service contracts to customers that purchase a new

product. Each of the equipment categories is managed by a separate department. Each

department employs a number of repairmen and has its own demand rate for repair requests.

The departments have separate, limited budgets and can decide for themselves how to run

their service operations. Due to the random duration of a repair and the uncertainty in the

number of repair requests that are placed every day, customers sometimes have to wait for a

repairman to arrive.

To reduce waiting times, five departments (A, B, C, D, and E) consider cooperating by

pooling all their repairmen. Repairmen are trained to repair all types of products. The

departments do not want to hire or fire anyone, so the total number of repairmen will stay

fixed at the prior staffing levels. Using a mathematical queueing model—specifically, the

M/M/s model—the expected waiting time of an arbitrary repair request can be estimated

in the pooled service system for any coalition that might form. These waiting times can be

translated into monetary terms via contractual penalties stipulated in the service contracts.

After a careful analysis of the situation, the five departments conclude that resource

pooling would lead to expected yearly costs of $20K for the five of them together. Of course,

this amount has to be divided among them. At first, assigning $4K to each department seems

like a reasonable allocation. However, each department contributes a different demand rate

and a different number of repairmen to the pool. After some additional analysis, D and E

figure out that if they would work together without the other three, they would face yearly

expected costs of $7K, which is less than the $8K that they would have to pay according to

the allocation proposed above. An ad hoc solution might be to allocate $2.5K to each of D

and E and $5K to each of A, B, and C. This settles the original problem, but only results in a

new one: A, B, and D quickly figure out that setting up up a pool for only the three of them
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results in costs $11K, which is less than the the $12.5K that they would have to pay under

the new allocation. Stability is threatened once again.

This could go on for a while. In the meantime, the departments are losing precious pooling

opportunities because no one wants to commit without knowing first how the costs will be

divided. They need a more systematic way to analyze the situation.

Formulating the problem as a cooperative game does exactly that. Cooperative game

theory can explain the departments’ problem as the search for a core allocation. Recall that a

core allocation guarantees that no coalition can do better by themselves: it not only keeps the

individual players happy, but every possible coalition happy, too. However, the core might

also be an empty set. If that would be the case, then no matter how hard you try, you can

never find a core allocation.

So, the big question is: is there a certain structure in the game of our five departments,

or more generally any game that results from pooling of M/M/s queues, that somehow

guarantees the existence of a core allocation? (And if so, how to determine such an allocation?)

This thesis will investigate such fundamental existence questions for several classes of resource

pooling games. 3

1.6 Overview and contribution of the thesis

The setup of this thesis is like a 3-course restaurant meal. Chapters 2 and 3 are the starter;

Chapters 4, 5, and 6 are the main course; and Chapters 7 and 8 are the dessert. We receive

the bill in Chapter 9, which concludes with a summary of the main results and insights.

1.6.1 The starter

Chapters 2 and 3 lay the foundation for the rest of the dinner.

Chapter 2 describes mathematical preliminaries to make this thesis self-contained. This

will equip us with all the mathematical concepts and formalisms required to formulate and

analyze a variety of cooperative games that arise from resource pooling arrangements in

inventory and queueing systems.

Chapter 3 provides an extensive review of the related literature. After all, we are not

the first to study resource pooling between independent players from the perspective of

cooperative game theory. However, as we will describe in Chapter 3, the existing game

theoretical literature has mostly focused on simple newsvendor, lot sizing, and M/M/1

models. These works provide useful insights, but they are based on limiting assumptions such

as a single period, deterministic demand, and/or a single server. Due to these limitations, they

cannot be used directly in our motivating resource pooling settings. Chapter 3 also positions

the work in this thesis in the existing literature: this thesis will extend the game theoretical

analysis to more general models that describe the reality of our motivating applications
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Queueing problem Inventory problem

No waiting allowed Chapter 4 Chapter 4

Waiting possible Chapter 5 Chapter 6

Table 1.1: Classification of Chapters 4, 5, and 6 based on modeling assumptions.

more accurately. Specifically, we will study inventory models with both multiple periods

and stochastic demands, as well as queueing models with multiple servers in parallel.

1.6.2 The main course

The main content of our work is in Chapters 4, 5, and 6. In these chapters, we consider similar,

yet disparate models because different situations require different modeling assumptions.

When considering a resource pooling situation, we could be dealing with an inventory problem,

as in Example 1.1, or with a queueing problem, as in Example 1.2. Likewise, we could have

a situation in which waiting for an available resource is not possible, as in Example 1.1, or

a situation in which waiting in a queue is allowed, as in Example 1.2. Every combination of

choices leads to a different model, and conclusions that are drawn for one model need not

remain valid when we change our assumptions. So, to cover a variety of practically relevant

resource pooling arrangements, we will consider different models in different chapters.

In a queueing context, we will study games derived from pooling of Erlang loss systems

(i.e., M/G/s/s queues, in which waiting is not allowed) and of Erlang delay systems (i.e.,

M/M/s queues, in which waiting in a queue is possible). In an inventory context, we will

study resource pooling games in a model that is realistic for expensive, low-demand spare

parts: the (S − 1, S) infinite-horizon model with Poisson demand processes, both under lost

sales (waiting for a part is not allowed) and backlogging (waiting for a part is possible). Table

1.1 provides a chapter overview. For each of those queueing and inventory settings, we study

two variants: one where the total number of resources for any coalition is optimized, as in

Example 1.1, and one where each player brings a fixed number of resources to every coalition,

as in Example 1.2. The typical approach for each model variant is to capture the relevant

aspects of the problem in a cooperative game, subsequently provide sufficient conditions for

the games to possess a core allocation, and finally identify a specific stable cost allocation, if

possible.

Chapter 4 fills a dual role in that it analyzes Erlang loss games that simultaneously capture

pooling of M/G/s/s queues and pooling in the (S − 1, S) model with lost sales. The most

important theorem in that chapter is that Erlang loss games always admit a stable allocation if

players have symmetric shortage costs. We also derive new analytical properties of extensions

of the classic Erlang loss function.

Chapter 5 deals with Erlang delay games in which M/M/s queues join forces. The most
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surprising result of that chapter is that Erlang delay games with optimized numbers of servers

need not admit a stable allocation, even if players have symmetric shortage costs. We also

derive new analytical properties of an extension of the classic Erlang delay function.

Chapter 6 treats games derived from the (S − 1, S) model with backlogging. The most

important theorem in that chapter is that the resulting games always admit a stable allocation

if players have symmetric shortage costs. We also derive new analytical properties of the cost

function in the (S − 1, S) inventory model with backlogging.

1.6.3 The dessert

Chapters 7 and 8, like a cake, could be devoured as a separate, quick snack. Nevertheless,

they taste best after the entire main course.

In Chapter 7, we relax an assumption that underlies the (S − 1, S) infinite-horizon model

with Poisson demand processes. In that model, the stochastic demand process is stationary

and independent over time, and the focus is on steady-state behavior. In Chapter 7, we

analyze the resource pooling games that arise from a finite-horizon, periodic inventory model

in which the demand processes are not only stochastic but also non-stationary and dynamic

due to, e.g., seasonal effects or correlations over time. In the presence of such correlations,

information on a past demand observation can matter. The key theorem for this model is

that a stable cost allocation is still guaranteed to exist.

In Chapter 8, we study the appeal of several cost sharing mechanisms, including simple

proportional ones, with regard to various fairness criteria. The analysis in that chapter does

not take place in a specific queueing or inventory model but in a more general class of so-called

elastic single-attribute games. This class includes, amongst others, the inventory games with

optimized numbers of servers from Chapters 4 and 6 in which each player has one attribute

only: his demand rate. We define six fairness properties and five allocation rules. After

showing the impossibility of combining two of those fairness properties, we show for each of

the five rules which of the six properties it satisfies.

1.6.4 Reading guide

This thesis can be read in several ways, and it is written with different audiences in mind.

Students, operations managers, practitioners, my mom, and other interested readers can

browse through it, looking especially at the game theory tutorial in Section 2.3, the model

formulation in Section 4.3.1, the examples in each chapter, and Chapter 9. In this way, one

can get a fairly good idea of what this thesis is about. Queueing or inventory researchers

who are mainly interested in new contributions to the literature on queues or inventories may

be particularly interested in Sections 4.2, 5.2, and 6.2, where new analytical properties of

(extensions of) the classic Erlang loss and Erlang delay functions and of the cost function in

the (S − 1, S) inventory model with backlogging are derived. Game theorists who are mainly
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interested in new contributions to the literature on cooperative games might enjoy the new

game theoretical results and allocation rules described in Chapters 2 and 8. These sections

and chapters have been set up such that they can be read separately from the rest of the

thesis. Finally, one can do a thorough reading of the thesis, which is of course the path that is

wholeheartedly recommended to anyone doing research on the interface of cooperative games

and stochastic operations management.





—If people do not believe that mathematics is simple, it is only because

they do not realize how complicated life is.

John von Neumann

2
Preliminaries

2.1 Introduction

In this chapter, we start off with a brief review of the basic terminology and notation that

will be used throughout this thesis. Afterwards, we define a number of elementary concepts of

game theory and stochastic processes. Several examples will be used to illustrate the concepts.

Any result for which a formal proof is worked out is a new contribution to the literature.

2.2 Terminology and notation

The beauty of mathematics is that rather complex concepts are built up from basic notions

such as sets and functions. In this section, we briefly review these and related notions.

Although the reader is probably familiar with many of the concepts that will be treated, this

section serves to fix notations and definitions, to collect them in a single place, and to aid the

reader who needs a quick refresher on the terminology of sets and functions. For more detail,

we refer the reader to, e.g., Kosmala (2004).

2.2.1 Sets

The notion of a set is fundamental to mathematics. A set is a collection of distinct, well-

defined objects. These objects can be anything: numbers, names of people, other sets, and

so on. If a is an element of the set A, this is denoted as a ∈ A. The cardinality of a set A,
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written |A|, is the number of elements of the set. The empty set ∅ is the unique set with zero

cardinality.

There are several fundamental operations for constructing new sets from given sets. The

union of two sets A and B, denoted A∪B, is the set that contains all elements that belong to

either A or B. The intersection of two sets A and B, written A ∩B, is the set that contains

all elements of A that also belong to B. The subtraction of a set A from B, written B \A, is

the set of all elements that are in B but not in A. Finally, the Cartesian product of two sets

A and B, denoted A × B, is the set of all possible ordered pairs whose first component is a

member of A and whose second component is a member of B.

Sets may contain a finite or an infinite number of elements. In line with the game

theoretical orientation of this thesis, we call any finite, nonempty set a player set. Some

of the infinite sets that we will encounter in this thesis are:

• N = {1, 2, . . .}, the set of natural numbers;

• N0 = N ∪ {0} = {0, 1, 2, . . .}, the set of non-negative integers;

• R = (−∞,+∞), the set of real numbers;

• R+ = [0,∞), the set of non-negative real numbers;

• R++ = R+ \ {0} = (0,∞), the set of positive real numbers;

• Q, the set of rational numbers, i.e., numbers that can be expressed as a fraction of two

integers.

A set A is said to be a subset of B, written A ⊆ B, if every element of A is also contained

in B. Note that if A = B then A ⊆ B and B ⊆ A. If A is a proper subset of B, i.e., if A ⊆ B
and A 6= B, then we write A ⊂ B.

The power set of a finite set N , written 2N , is the set of all subsets of N (including N itself

and the empty set). Two variants are denoted by 2N− = 2N \ {∅} = {M | M ⊆ N,M 6= ∅}
and 2N−− = 2N \ {∅, N} = {M |M ⊆ N,M 6= N,M 6= ∅}.

For n ∈ N, we denote by Rn the set of real vectors of length n, where the coordinates

correspond to 1, 2, . . . , n. So, an element x ∈ Rn can be represented by (x1, x2, . . . , xn). For

a player set N , we denote by RN the set of real vectors of length |N |, where the coordinates

correspond to the elements of N . So, an element x ∈ RN can be represented by (xi)i∈N .

Given any finite set N , a set A ⊆ RN is said to be convex if, for all x, y ∈ A and all

t ∈ [0, 1], the point (1 − t)x + ty is contained in A, i.e., if every point on the line segment

connecting x and y is an element of A.

Given any finite set N , we call a set P of non-empty sets a partition of N if it is a

collection of non-empty proper subsets of N such that every element of N is in exactly one

of these subsets (i.e., if
⋃
A∈P A = N) and if each two distinct elements of P are disjoint, i.e.,

if A ∩B = ∅ for all A,B ∈ P .
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2.2.2 Functions

The notion of a function is also fundamental to mathematics. A function describes a relation

(specifically, a set of ordered pairs) between a set of inputs, called the domain, and a set of

permissible outputs, called the codomain, such that each element in the domain is paired to

exactly one element in the codomain. We denote a function f with domain D and codomain C

by f : D → C. The set of elements in the codomain that are paired with at least one element

in the domain is called the image of a function. In the literature, domains of functions are

often not specified explicitly. This makes sense when the domain is understood from context,

but in this thesis we will often focus on domain restrictions. Many of the functional relations

that we will study turn out to exhibit different properties under different domains, so we will

need to be more explicit with our domain specifications.

A function can have various interesting properties. First off, a function f : D → R with

D ⊆ R is called non-decreasing (resp. increasing) if, for all x, y ∈ D with x < y, it holds that

f(x) ≤ f(y) (resp. f(x) < f(y)). The properties non-increasing and decreasing are defined

analogously.

A real-valued function f : A→ R defined on a convex set A ⊆ RN is called convex if, for

any two points x1, x2 ∈ A and any t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2),

and is called strictly convex if, for any two points x1, x2 ∈ A with x1 6= x2 and any t ∈ (0, 1),

f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2).

So, the graph of a (strictly) convex function lies (strictly) below any line segment joining two

points from its graph. The function f is called (strictly) concave if −f is (strictly) convex.

We will often be interested in optimization. For a function f : D → R, the minimum

minx∈D f(x) is the smallest element in the image of f , if such an element exists, and the

set of minima argminx∈D f(x) is comprised of all elements x ∈ D for which f(x) equals

the minimum value. The maximum maxx∈D f(x) and the set of maxima argmaxx∈D f(x) are

defined analogously. Note that argminx∈A f(x) and argmaxx∈A f(x) are sets. A minimum and

a maximum are guaranteed to exist if D is finite and non-empty. Alternatively, a minimum

and a maximum exists if f is continuous while D is a closed, bounded, non-empty set7.

An important property signifying economies of scale is subhomogeneity of degree zero. A

function f : D → R with D ⊆ RN is called subhomogeneous of degree zero if f(x) ≥ f(tx) for

all x ∈ D and all t ≥ 1 with tx ∈ D.8 Subhomogeneity of degree zero of f says that scaling

up all arguments with the same relative amount t leads to a value that is no greater than the

initial value.
7Any interval containing its boundaries, i.e., of the form [a, b], is closed and bounded.
8More generally, subhomogeneity of degree a is based on the inequality f(x) ≥ taf(tx). Of course, t0 = 1

for all t ≥ 1. This illustrates where the “zero” in subhomogeneity of degree zero comes from.
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Example 2.1. Consider the function f : D → R with D = N × R++ defined by f(s, a) =

1/(sa) for all (s, a) ∈ D. This function is subhomogeneous of degree zero because for any

(s, a) ∈ D and any t ≥ 1 with (ts, ta) ∈ D (i.e., with ts ∈ N) it holds that f(s, a) = 1/(sa) ≥
1/(t2sa) = f(ts, ta). 3

Another property related to economies of scale is elasticity. A function f : R+ → R is

called elastic if f(0) = 0 and f(x1)/x1 ≥ f(x2)/x2 for all x1, x2 ∈ R++ with x1 ≤ x2. If

f(x) expresses the cost of, say, serving demand level x, then elasticity of f says that the

per-demand cost is non-increasing in the total demand served.

Example 2.2. Consider the function f : R+ → R+ defined by

f(x) =


0 if x = 0;

5 if x ∈ (0, 5];

x if x > 5.

This function is elastic because f(0) = 0 and because f(x)/x is non-increasing for x > 0.

Specifically, f(x)/x is decreasing with minimal value 1 for x on (0, 5], while f(x)/x = 1 for

all x > 5. 3

The following theorem characterizes an elastic function as a function f for which any

straight line segment drawn through a point (a, f(a)) on its graph and the origin lies

completely below or on the graph of f . This has an obvious link to concavity. We omit

the obvious proof.

Theorem 2.1. Consider any function f : R+ → R+ with f(0) = 0.

(i) The function f is elastic if and only if f(x) ≥ f(a)x/a for all a ∈ R++ and all x ∈ (0, a].

(ii) If f is concave, then f is elastic.

The converse of Part (ii) of this theorem is not true. In fact, many of the elastic functions

that will be considered in this thesis are not concave. One example is illustrated in Figure 4.3

on page 90. All elastic functions that we consider in this thesis are, however, non-decreasing.

This implies continuity, except possibly at 0, as shown in the following theorem.

Theorem 2.2. Let f : R+ → R+ be a non-decreasing, elastic function. Then f is continuous

on R++.

Proof. Let a ∈ R++ and let ε > 0. If f(a) > 0, then fix δ = min{a, εa/[2f(a)]}; otherwise, if

f(a) = 0, then fix δ = a. Let x ∈ (a − δ, a + δ). If x < a, then fix b = a − δ; otherwise, if

x ≥ a, then fix b = a+ δ. We obtain

|f(a)− f(x)| ≤ |f(a)− f(b)| ≤
∣∣∣∣f(a)− f(a)

b

a

∣∣∣∣ = f(a)
δ

a
≤ ε/2 < ε,

where the first inequality holds because f is non-decreasing and the second inequality holds

by Part (i) of Theorem 2.1. We conclude that f is continuous at a.
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2.3 Game theory

Sets and functions, while abstract, can help to formalize situations of conflict or cooperation

into mathematical models. Those kinds of models are studied in game theory. The field of

game theory can roughly be divided into non-cooperative game theory and cooperative game

theory.

Non-cooperative game theory primarily deals with the analysis of conflict situations. In

a non-cooperative game, several rational decision makers (the players) independently have to

choose a strategy that eventually results in a payoff for every player. This payoff depends

not only on the player’s own strategy but also on the other players’ strategies, and the key

question is which strategies the players will choose. Non-cooperative games in strategic form,

in which every player makes a single decision simultaneously, are defined in Section 2.3.1.

In non-cooperative game theory, binding agreements between the players are not possible.

If binding agreements and side payments are allowed, and if coordination of players’ actions

and sharing of information is possible, then it is more appropriate to study an interactive

situation from the perspective of cooperative game theory.

In a cooperative game, the players still have their own best interest in mind, but they

typically benefit from collaborating with others, i.e., the players become better off when they

join forces. A cooperative game captures the synergy and cost sharing aspects in a way that

conveniently enables us to work out how much every player should pay. We will solely focus

on cooperative games with transferable utility, which means that players can measure their

utilities in a common currency and can make monetary transfer payments to each other. As

this thesis is crafted around cooperative games, we dedicate Sections 2.3.2 through 2.3.10

to the introduction of important concepts from cooperative game theory. A comprehensive

reference on cooperative game theory is the book by Peleg and Sudhölter (2007).

2.3.1 Non-cooperative games

A non-cooperative cost game in strategic form is a triple (N, (Si)i∈N , (fi)i∈N ), where

• N is a player set;

• Si is a nonempty set containing the strategies for player i ∈ N ;

• fi :
∏
i∈N Si → R is a function that determines the costs inflicted on player i ∈ N .

Note that the cost functions fi for player i ∈ N depends not only on player i’s own strategy

but also on the other players’ strategies. Now, a strategy profile is any vector s ∈
∏
i∈N Si

that contains an element from the strategy set Si for each player i ∈ N . A strategy profile

s∗ = (s∗i )i∈N is called a Nash equilibrium (cf. Nash, 1951) if no player has anything to gain

by changing his own strategy unilaterally, i.e., if for all i ∈ N it holds that fi(s
∗) ≤ fi(σ) for

every strategy profile σ with σi ∈ Si for player i and σj = s∗j for all other players j ∈ N \ {i}.



22 Chapter 2. Preliminaries

2.3.2 Cooperative games

A cooperative cost game with transferable utility, which we will simply refer to as game, is a

pair (N, c) where

• N is a player set;

• c : 2N → R is a characteristic cost function with c(∅) = 0.

A non-empty subset M ∈ 2N− is called a coalition, the set N of all players is called the grand

coalition, and any coalition other than the grand coalition is called a subcoalition. Note that

the empty set is not a coalition.

The function c assigns to every subset M ⊆ N the value c(M), which is interpreted as

the total costs of the joint cooperative effort if only the players in M are involved in it. In

other words, c(M) is determined solely by what M can accomplish on its own, without the

participation of the other players. Because c(∅) = 0 by definition, we will systematically

refrain from listing c(∅) = 0 when defining a characteristic cost function.

The costs of any coalition M can be measured in monetary terms and are freely

transferable between the players of M . In particular, c(N) represents the total costs for

the grand coalition when all players agree to work together.

2.3.3 Subadditivity and concavity

Games can satisfy all kinds of interesting properties. A game (N, c) is called subadditive if

for any two coalitions M,L ∈ 2N− with M ∩L = ∅ it holds that c(M) + c(L) ≥ c(M ∪L). In a

subadditive game, it is always beneficial to combine coalitions, and cooperation by the grand

coalition is socially optimal.

Another interesting property that a game might satisfy is concavity. A game (N, c) is

called concave (cf. Shapley, 1971) if any player’s marginal cost contribution is smaller if he

joins a larger subset, i.e., if for each i ∈ N and for all M,L ⊆ N \{i} with M ⊆ L it holds that

c(M ∪ {i})− c(M) ≥ c(L∪ {i})− c(L). The concavity property of set functions is sometimes

referred to as submodularity.

Example 2.3. Consider three service providers (named 1, 2, and 3) who wish to set up a

service system. If they set up separate systems, then player 1 has to pay 10 euros, player 2 has

to pay 20 euros, and player 3 has to pay 30 euros to adequately satisfy all their demands. If the

individuals decide to work together and set up a joint system, then (due to the peculiarities

of the synergies between the player’s demands) a saving of 1 euro can be obtained if the

system is set up to serve player 1 and exactly one other player, and a saving of 10 euros can

be obtained if the system is set up to serve at least players 2 and 3. This situation may be



2.3. Game theory 23

modeled by a game (N, c) with player set N = {1, 2, 3} and characteristic cost function

c(M) =



10 if M = {1};
20 if M = {2};
30 if M = {3};
29 if M = {1, 2};
39 if M = {1, 3};
40 if M = {2, 3};
50 if M = N .

This game is subadditive because combining coalitions never increases their collective costs.

This game is not concave because c({1, 2})− c({2}) = 9 < 10 = c({1, 2, 3})− c({2, 3}). 3

Example 2.4. Consider four wizards (Jon, Kai, Gabriel, and Olivier) who each wish to cast

the powerful spell Lightning Helix. Olivier vengefully even wants to cast not just one, but

two copies of this spell. To cast any Lightning Helix, a certain amount of magical fuel is

required: one red mana and one white mana. The wizards can obtain this mana by buying

Black Lotuses at the bargain price of 5 euros apiece; each Black Lotus generates either three

red mana or three white mana. The wizards can collaborate by buying several Black Lotuses

jointly and pooling the generated mana.

For example, if Jon and Olivier collaborate, then they can obtain the required 3 red mana

and 3 white mana for the 3 spells they wish to cast together from two copies of Black Lotus,

at a total cost of 10 euros. If Kai or Gabriel would join, then two additional copies of Black

Lotus would be needed. This situation may be modeled by a game (N, c) with player set

N = {J,K,G,O} and characteristic cost function

c(M) =

{
20 if |M | ≥ 3 and O ∈M ;

10 otherwise.

This game is subadditive because combining coalitions never increases costs. This game is

not concave because c({J,K})− c({J}) = 0 < 10 = c({J,K,O})− c({J,O}). 3

2.3.4 The imputation set and the core

A central problem in any game (N, c) is to allocate c(N) to the individual players in a fair

way. Formally, an allocation for a game (N, c) is a vector x = (xi)i∈N ∈ RN satisfying∑
i∈N xi = c(N). The requirement

∑
i∈N xi = c(N) is often called efficiency. The value xi

should be interpreted as the costs assigned to player i. An allocation x for a game (N, c) is

called individually rational if xi ≤ c({i}) for all players i ∈ N . Individual rationality means

that every player is allocated no more costs than what he would face by staying alone. The set

of all individually rational allocations of a game (N, c) is called the imputation set, denoted

as I(N, c).
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An allocation x for a game (N, c) is called stable if
∑

i∈M xi ≤ c(M) for all M ∈ 2N− .

Stability extends individual rationality to all coalitions. Under a stable allocation, each group

of players has to pay no more collectively than what they would face by acting independently

as a group. Hence, if the costs of the grand coalition are assigned according to a stable

allocation, then no subcoalition has an incentive to split off and establish cooperation on its

own. The set of all stable allocations is called the core, proposed9 by Gillies (1959). So, the

core C(N, c) of a game (N, c) is

C(N, c) = {x ∈ RN |
∑

i∈N xi = c(N) and
∑

i∈M xi ≤ c(M) for all M ∈ 2N−−}.

Note that the core is a convex set. A stable allocation is also sometimes called a core allocation;

the two terms bear the same meaning. The following two examples illustrate individual

rationality and stability. The second example additionally shows that a game may have an

empty core, even if it is subadditive.

Example 2.5. Reconsider the game (N, c) described in Example 2.3. The vector x̂ =

(9, 20, 21) is an individually rational allocation, but it is not stable because x̂2 + x̂3 = 41 >

40 = c({2, 3}). The allocation x̄ = (10, 19, 21), however, is both individually rational and

stable.

To describe the core of this game, note that for any x ∈ C(N, c), we must have x1 = 10

because c({1}) = 10, c({2, 3}) = 40, and c(N) = 50. Combining this observation with

the values of c({1, 2}) and c({1, 3}), we obtain that the core of this game is described as

the set of all convex combinations of the points (10, 11, 29) and (10, 19, 21), i.e., C(N, c) =

{t(10, 11, 29) + (1− t)(10, 19, 21) | 0 ≤ t ≤ 1}. 3

Example 2.6. Reconsider the game (N, c) described in Example 2.4. The imputation set

is given by I(N, c) = {x ∈ RN |
∑

i∈N xi = 20, xi ≤ 10 for all i ∈ N}. For example, the

allocation x ∈ RN that assigns xi = 5 to each player i ∈ N is individually rational. But this

allocation x is not stable because xJ +xK +xG = 15 > 10 = c({J,K,G}). In fact, there is no

stable allocation. To see this, assume to the contrary that x̂ is an element of C(N, c). Then,

the stability conditions x̂J + x̂K + x̂G ≤ 10 and x̂O ≤ 10 together with efficiency imply that

x̂O = 10. At the same time, these conditions imply that x̂i must be positive for at least one

i ∈ {J,K,G}; suppose without loss of generality that Jon is the unlucky one, i.e., x̂J > 0.

Then, x̂O + x̂J > 10 = c({O, J}), which means that it would be beneficial for Jon and Olivier

together to split off and only buy the required Black Lotuses for the two of them. Hence, our

assumption that x̂ is a core allocation must be wrong. We conclude that, even though (N, c)

is subadditive, C(N, c) = ∅. So, any proposed allocation is unstable. 3

9The idea of the core already appeared in Von Neumann and Morgenstern (1944), for instance in footnote

3 on page 41, but they rejected it as a solution concept because it may be empty. The core is attributed to

Gillies because he did not let the possible emptiness get in his way: he revived and analyzed the concept in

his PhD thesis (Gillies, 1953) before publishing his work in 1959.
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Although picking an allocation from the core may, at first, have seemed like an unshakably

good idea, the preceding examples emphasize two of the major challenging problems with this.

First, as shown in Example 2.6, the core may be empty. In Section 2.3.5, we provide a set

of necessary and sufficient conditions for a game to possess a core allocation. Second, as

shown in Example 2.5, the core may contain (infinitely) many allocations, which raises the

important question of which allocation to choose. In Section 2.3.6, we present several rules

that prescribe an allocation to any game.

2.3.5 Balancedness

Though in a small example it is not difficult to determine whether a game has an empty

core or not, we are often interested in the derivation of general results for classes of games.

To prove such results, it can be helpful to use the notion of a balanced game, introduced by

Bondareva (1963) and Shapley (1967). Before describing balancedness of a game, we first need

to define balanced maps and balanced collections for any player set N . A map κ : 2N− → [0, 1],

which assigns a number from the unit interval to any coalition, is called balanced for N if∑
M∈2N− :i∈M κ(M) = 1 for all i ∈ N . Such a map may be interpreted as describing an artificial

arrangement wherein each player i ∈ N divides 1 unit (of, say, time/effort) over the coalitions

that include i, with κ(M) the fraction dedicated to coalition M . For each balanced map κ

for N , we define B(κ) = {M ∈ 2N− | κ(M) > 0} to be the set of coalitions with positive

coefficients.

Example 2.7. Consider player set N = {1, 2, 3} and map κ : 2N− → [0, 1] defined by

κ(M) =

{
1/2 if M ∈ {{1, 2}, {1, 3}, {2, 3}};
0 otherwise.

This map10 is balanced because for player 1 we have
∑

M∈2N− :1∈M κ(M) = κ({1, 2}) +

κ({1, 3} = 1 with similar equations for players 2 and 3. Accordingly, B(κ) = {{1, 2}, {1, 3},
{2, 3}}. Observe that balanced maps may be fractional-valued. 3

Example 2.8. Consider player set N = {J,K,G,O} and map κ : 2N− → [0, 1] defined by

κ(M) =


2/3 if M = {J,K,G};
1/3 if M ∈ {{J,O}, {K,O}, {G,O}};
0 otherwise.

This map is balanced because for player J we have
∑

M∈2N− :J∈M κ(M) = κ({J,K,G}) +

κ({J,O}) = 1 with similar equations for the other players. Accordingly, B(κ) = {{J,K,G},
{J,O}, {K,O}, {G,O}}. 3

10The arrangement described by this balanced map is artificial because in a real partitioning of the players

in which players work the same hours every day, player 3 should be in coalition {3} whenever players 1 and 2

are in coalition {1, 2}.
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Any collection B ⊆ 2N− of coalitions is called balanced for N if there is a balanced map

κ for N such that B = B(κ). Every partition of N is balanced for N . A balanced collection

B is called minimally balanced for N if B 6= {N} and there does not exist another balanced

collection for N that is a proper subset of B. Correspondingly, a balanced map κ is called

minimally balanced for N if B(κ) is a minimally balanced collection for N . Each minimally

balanced collection is associated with a unique minimally balanced map (Shapley, 1967). We

let WN denote the set of minimally balanced maps for N .

It follows immediately from the definition of a balanced map that every κ ∈ WN satisfies∑
M∈B(κ) κ(M) ·

∑
i∈M f(i) =

∑
i∈N f(i) for all functions f : N → R. This property will

prove pivotal in the analysis of resource pooling games later on.

Example 2.9. Consider player set N = {1, 2, 3}. The collection B = {{1, 2}, {1, 3}, {2, 3}}
is balanced for N because its elements are the coalitions with positive coefficients in the

balanced map κ of Example 2.7, i.e., B(κ) = B. The collection B is minimally balanced

because B 6= {N} and every proper subset of B is not balanced on N . The (only) other

minimally balanced collections on N are the partitions of N .

If we now consider the function f : N → R defined by f(i) = 2i for all i ∈ N , then we

obtain that
∑

M∈B(κ) κ(M) ·
∑

i∈M f(i) = 1
2(2+4)+ 1

2(2+6)+ 1
2(4+10) = 12 =

∑
i∈N f(i). 3

Example 2.10. Consider player set N = {J,K,G,O} and collection B′ = {{J,K,G}, {J,K},
{J,O}, {K,O}, {G,O}}. It is balanced for N because the map κ′ : 2N− → [0, 1], described by

κ′(M) =



1/3 if M = {J,K,G};
1/2 if M = {J,K};
1/6 if M ∈ {{J,O}, {K,O}};
2/3 if M = {G,O};
0 otherwise.

is a balanced map satisfying B′(κ′) = B′. However, the collection B′ is not minimally balanced

for N because the collection B(κ) described in Example 2.8 is balanced for N whilst being a

proper subset of B′. 3

We are now ready to define balancedness of a game. A game (N, c) is called balanced if

for every minimally balanced map κ ∈ WN it holds that
∑

M∈2N−
κ(M)c(M) ≥ c(N). The

following theorem was derived independently11 by Bondareva (1963) and Shapley (1967).

Theorem 2.3. Let (N, c) be a game. The core of (N, c) is non-empty if and only if (N, c) is

balanced.
11The seminal contribution of Bondareva was written in Russian and appeared in a rather obscure source. It

therefore remained hidden for the game theorists in the West (Gilles, 2010), while Shapley independently found

the same fundamental existence theorem, which has since been known as the Bondareva-Shapley Theorem.

Bondareva’s work was discovered before Shapley’s work was published, however. Indeed, Shapley (1967) refers

to Bondareva (1963) and refines her results by eliminating redundant balanced collections.
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A game (N, c) is called totally balanced (cf. Shapley and Shubik, 1969) if, for each coalition

L ∈ 2N− , the subgame (L, cL), defined by cL(M) = c(M) for all M ⊆ L, is balanced. It is

well-known that any concave game is totally balanced and that any totally balanced game is

subadditive.

Example 2.11. Reconsider the game (N, c) described in Example 2.4 and the minimally

balanced map κ described in Example 2.8. Observe that
∑

M∈2N−
κ(M)c(M) = 162

3 . Since

162
3 < 20 = c(N), the notion of balancedness provides an alternative way to prove that the

game of Example 2.4 has an empty core. However, the subgame ({K,G, J}, c{K,G,J}) is easily

seen to be balanced. 3

2.3.6 The Shapley value and the nucleolus

As mentioned earlier, a central question in cooperative game theory is how to allocate the

costs of the grand coalition to the individual players. Cooperative game theory offers various

solutions or allocation rules that provide an answer to this question. An allocation rule is a

function f that assigns to any game (N, c) a vector f(N, c) ∈ RN satisfying
∑

i∈N fi(N, c) =

c(N). Two well-known allocation rules are the Shapley value (introduced in Shapley, 1953)

and the nucleolus (introduced in Schmeidler, 1969).

To describe the Shapley value, we first need to define orderings and marginal allocations.

An ordering on player set N is a bijection12 σ : N → {1, . . . , n}, which should be interpreted

as saying that player i is in position σ(i). We let Π(N) denote the set of all orderings on N .

For an ordering σ ∈ Π(N), we let σ−1(j) denote the player in position j ∈ {1, . . . , |N |} and

we let P σi = {j ∈ N |σ(j) < σ(i)} describe the set of players that precede i.

The marginal contribution of player i according to ordering σ in a game (N, c) is denoted

by mσ
i (N, c) = c(P σi ∪{i})−c(P σi ), i.e., the cost difference when player i joins his predecessors.

The vector mσ(N, c) = (mσ
i (N, c))i∈N is called the marginal allocation according to σ.

The Shapley value Φ(N, c) of a game (N, c) is then defined as the average of all marginal

allocations, i.e.,

Φi(N, c) =
1

|N |!
∑

σ∈Π(N)

mσ
i (N, c) for all i ∈ N .

An alternative description is that

Φi(N, c) =
∑

M⊆N\{i}

(|M |)!(|N | − |M | − 1)!

|N |!
· [c(M ∪ {i})− c(M)] for all i ∈ N .

As shown in Shapley (1971), concavity of a game (N, c) implies that mσ(N, c) ∈ C(N, c) for

any σ ∈ Π(N). Because C(N, c) is a convex set, Φ(N, c) ∈ C(N, c) as well if (N, c) is concave.

12A function f : D → C is called a bijection if every element of D is paired with exactly one element of C,

and vice versa.
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In the absence of concavity, however, Φ(N, c) may fall outside the core, even if the core is

non-empty.

The nucleolus is defined for games with a non-empty imputation set only. To define the

nucleolus, we first need to introduce satisfactions and the lexicographic ordering. Consider

a game (N, c).13 The satisfaction of a coalition M ⊆ N under an allocation x is given by

c(M) −
∑

i∈M xi. Given an allocation x, we let θ(x) ∈ R2|N|−1 represent the vector that

takes the corresponding satisfactions of all 2|N | − 1 different coalitions and arranges them in

non-decreasing order, so that θa(x) ≤ θb(x) for all a, b ∈ {1, . . . , 2|N | − 1} with a ≤ b. Given

two allocations x and x̂, we say that θ(x) is lexicographically larger than θ(x̂) if there exists

an index b ∈ {1, . . . , 2|N | − 1} such that θa(x) = θa(x̂) for all a ∈ {1, . . . , b− 1} and such that

θb(x) > θb(x̂).

The nucleolus ν(N, c) of a game (N, c) with I(N, c) 6= ∅ is then defined as the (unique)

allocation in I(N, c) whose θ is lexicographically maximal. In words, the nucleolus considers

how satisfied each coalition is with any proposed allocation and then selects the allocation

that maximizes the minimal satisfaction. The nucleolus always picks an allocation in the core

whenever it is nonempty. Moreover, it satisfies appealing fairness properties (see Snijders,

1995).

Example 2.12. Reconsider the game (N, c) described in Example 2.3. The Shapley value

Φ(N, c) is (92
3 , 151

6 , 251
6) and the nucleolus ν(N, c) is (10, 15, 25). The nucleolus is stable, but

the Shapley value is not. 3

2.3.7 Population monotonic allocation schemes

Population monotonicity (cf. Sprumont, 1990) refines the concept of stability. Under a

population monotonic allocation scheme, adding extra players to an existing coalition does not

make anyone worse off. An allocation scheme for a game (N, c) is a vector y = (yi,M )i∈M,M∈2N−

with
∑

i∈M yi,M = c(M) for any M ∈ 2N− , which specifies how to allocate the costs of every

coalition to its members. This scheme is called a population monotonic allocation scheme

(PMAS) if the amount that a player has to pay does not increase when the coalition to which

he belongs grows. That is, yi,M ≥ yi,L for all coalitions M,L ∈ 2N− with M ⊂ L and i ∈M . If

a game (N, c) admits a PMAS, say y, then it is totally balanced and (yi,N )i∈N is an element

of its core. Not every totally balanced game admits a PMAS, though. Norde and Reijnierse

(2002) provide a set of necessary and sufficient conditions for a game to admit a PMAS. One

class of games that always admits a PMAS is the class of concave games.

Example 2.13. Reconsider the game (N, c) that was introduced in Example 2.3. For

convenience, it is described in Table 2.1. The vector y as described in Table 2.1 is an allocation

scheme because
∑

i∈M yi,M = c(M) for all coalitions M ∈ 2N− . To see that y is population

13Although Schmeidler (1969) defined the nucleolus for games in profit rather than cost terms, it carries

over straightforwardly by simply reversing all inequalities involved. We tacitly did the same for the core.
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Coalition M c(M) y1,M y2,M y3,M

{1} 10 10 * *

{2} 20 * 20 *

{3} 30 * * 30

{1, 2} 29 10 19 *

{1, 3} 39 10 * 29

{2, 3} 40 * 15 25

N 50 10 15 25

Table 2.1: The game and the (population monotonic) allocation scheme of Example 2.13.

monotonic, observe that if player 2 would join player 1 to form coalition {1, 2}, player 2’s

cost reduces from y2,{2} = 20 to y2,{1,2} = 19. This population monotonicity can be verified

for the members of all other nested pairs of coalitions as well, implying that y is population

monotonic. We remark that that the allocation (10, 15, 25) is an element of the core of (N, c),

which we described in Example 2.5. 3

2.3.8 Overview of implications

Figure 2.1 summarizes the relationships among the various properties that we considered so

far. The reverse directions in Figure 2.1 do not hold in general.

I(N, c) 6= ∅ C(N, c) 6= ∅

(N, c) is
subadditive

(N, c) is
balanced

ν(N, c) ∈ C(N, c)

(N, c) is
totally balanced

(N, c) admits
a PMAS

Φ(N, c) ∈ C(N, c) (N, c) is
concave

� -

�� � B
B
B
BBM

��
�
�

��	
?

?

6

Figure 2.1: Implications between properties for any game (N, c).

2.3.9 We have to go stricter

In this section, we strengthen the notions of stability, population monotonicity, and so on by

changing non-strict inequalities to strict inequalities. We propose the stronger concepts for

two reasons.
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First, in practice, people are usually interested in allocations that make each coalition

strictly better off when cooperating. Indeed, an allocation x under which some group of

players is indifferent between cooperating or not (i.e., if
∑

i∈M xi = c(M) for some subcoalition

M ∈ 2N−−, while perhaps
∑

i∈L xi < c(L) for another subcoalition L ∈ 2N−−) may be hard

to defend in practice because coalition M may decide to stay “alone” if they do not strictly

benefit from the collaboration, out of spite. This is avoided if every coalition reaps a strict

cost saving.

Second, when we analyze a real-life cooperation via a mathematical model, then some

aspects of real life are invariably left out of the model, and the cost parameters will almost

always be based on imprecise, judgemental accounting standards (as Dror et al., 2012, also

point out). Consequently, the characteristic cost function is only an approximation of the

true cost figures. So, even if players never hold a grudge, coalition M may still be hesitant

to collaborate under the allocation x that was described above. This hesitance now stems

from M ’s worry that even a very small change of its characteristic costs (as a result of a more

precise analysis, modeling, or measurement) may imply that cooperation is strictly worse

than staying alone. Such worries can be alleviated, at least to some extent, if each coalition

reaps a strictly positive cost saving.

The issues described above are rarely addressed in the literature on cooperative game

theory. An exception is Zhao (2001), who introduces and characterizes the relative interior

of the core. We will instead consider the strict core, which is defined as

C+(N, c) =
{
x ∈ RN |

∑
i∈N xi = c(N) and

∑
i∈M xi < c(M) for all M ∈ 2N−−

}
.

Note that the strict core is a convex set. Given a game (N, c), we call any element of

C+(N, c) a strictly stable allocation. By definition, such allocations remain stable after small

perturbations in the costs of subcoalitions.

We next define three more strict concepts. Firstly, a game (N, c) is called strictly

subadditive if for any two coalitions M,L ∈ 2N− with M ∩ L = ∅ it holds that c(M) +

c(L) > c(M ∪ L). Secondly, an allocation scheme y for a game (N, c) is called strictly

population monotonic (an SPMAS) if yi,M > yi,L for all coalitions M,L ∈ 2N− with

M ⊂ L and i ∈ M . Thirdly, the strict imputation set I+(N, c) is defined to be{
x ∈ RN |

∑
i∈N xi = c(N) and xi < c({i}) for all i ∈ N

}
; any element of this set is called a

strictly individually rational allocation. Although strict concavity could be defined in similar

fashion, we disregard this concept because it need not be satisfied by the (generally non-

concave) resource pooling games encountered in this thesis.

Example 2.14. Reconsider the 3-player game (N, c) from Example 2.3 and its allocation

scheme y from Table 2.1. Recall that y is a PMAS, which implies that (10, 15, 25) ∈ C(N, c)
and that (N, c) is subadditive. However, these properties do not extend to the strict concepts:

the allocation scheme y is not strictly population monotonic because y2,{2,3} = y2,{1,2,3}, the

allocation (10, 15, 25) is not strictly stable because 10 = c({1}), and the game (N, c) is not
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strictly subadditive because c({1}) + c({2, 3}) = 50 = c({1, 2, 3}). One strict concept still

applies, though: the strict imputation set I+(N, c) is not empty because it contains, e.g., the

allocation (8, 16, 26). 3

The class of games with a non-empty strict core can be characterized via balanced maps,

in line with the characterization result of Bondareva (1963) and Shapley (1967) for games

with a non-empty “traditional” core. We call a game (N, c) strictly balanced if for every

minimally balanced map κ ∈ WN it holds that c(N) <
∑

M∈B(κ) κ(M)c(M). Moreover, this

game is called strictly totally balanced if for each coalition L ∈ 2N− the subgame (L, cL) is

strictly balanced.

The following theorem deals with the relationships between these strict concepts; as it

turns out, all corresponding implications portrayed in Figure 2.1 extend to the strict concepts

if there are two or more players. Part (ii) of the following theorem pertains to the multiplicity

of (strictly) stable allocations; there is no analogue in Figure 2.1.

Theorem 2.4. Let (N, c) be a game with two or more players.

(i) The strict core C+(N, c) is non-empty if and only if (N, c) is strictly balanced.

(ii) If (N, c) is strictly balanced, then (N, c) has infinitely many (strict) core allocations.

(iii) If (N, c) admits an SPMAS, say y, then (yi,N )i∈N ∈ C+(N, c) and (N, c) is strictly

totally balanced.

(iv) If (N, c) is strictly totally balanced, then it is strictly subadditive.

(v) If (N, c) is strictly subadditive, then its strict imputation set I+(N, c) is non-empty.

(vi) If C+(N, c) 6= ∅, then I+(N, c) 6= ∅.
(vii) The strict core C+(N, c) is non-empty if and only if ν(N, c) ∈ C+(N, c).

Proof. We first simultaneously prove the ⇐ direction of Part (i) and Part (ii) because both

proofs require the same setup. We will return to the ⇒ direction of Part (i) afterwards.

Suppose that c(N) <
∑

M∈B(κ) κ(M)c(M) for each κ ∈ WN . Then, let κ∗ ∈
argminκ∈WN

∑
M∈B(κ) κ(M)c(M). Such a κ∗ exists because the number of minimally balanced

collections for N is finite (this number is no larger than the number of subsets of 2N−−) and

because each minimally balanced collection is associated with a unique minimally balanced

map. Let ε∗ =
∑

M∈B(κ∗) κ
∗(M)c(M) − c(N); note that ε∗ > 0. We will aim to identify two

different strictly stable allocations for the game (N, c). To this end, we define the auxiliary

game (N, c∗) by c∗(M) = c(M) for all proper subsets M ⊂ N and c∗(N) = c(N) + ε∗. Then,

for any κ ∈ WN , we obtain

c∗(N) = c(N) + ε∗ =
∑

M∈B(κ∗)

κ∗(M)c(M) ≤
∑

M∈B(κ)

κ(M)c(M) =
∑

M∈B(κ)

κ(M)c∗(M),

where the second inequality holds by definition of ε∗ and the inequality holds by choice of κ∗

as a minimizer. Hence, the game (N, c∗) has a non-empty core as well, which implies that

the nucleolus ν(N, c∗) is in the core of (N, c∗).
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For notational ease, let n = |N |. Now, we let i, j ∈ N with i 6= j be two different players,

and we define two allocations for the game (N, c): x(i) and x(j). The first allocation, x(i), is

defined by x
(i)
k = νk(N, c

∗)−ε∗/((n+1)(n−1)) for all k ∈ N\{i} and x
(i)
i = νi(N, c

∗)−ε∗n/(n+

1). The second allocation, x(j), is defined analogously, now reducing player j’s allocation by

ε∗n/(n+ 1) instead. Since n ∈ {2, 3, . . .}, it holds that n/(n+ 1) 6= 1/((n+ 1)(n− 1)); hence,

x(i) 6= x(j). Note that x(i) is an efficient allocation for (N, c) since

∑
k∈N

x
(i)
k =

 ∑
k∈N\{i}

νk(N, c
∗)

− ε∗

n+ 1
+ νi(N, c

∗)− ε∗n

n+ 1
= c∗(N)− ε∗ = c(N),

where the second equality holds because ν(N, c∗) is an efficient allocation for the (N, c∗).

Moreover, x(i) is a strictly stable allocation for game (N, c) since, for any M ∈ 2N−−, it holds

that ∑
k∈M

x
(i)
k <

∑
k∈M

νk(N, c
∗) ≤ c∗(M) = c(M),

where the first inequality holds because ε∗ > 0 and the second inequality is valid because

ν(N, c∗) was a stable allocation for the game (N, c∗). We conclude that x(i) is a strictly stable

allocation for (N, c). The argument for strict stability of x(j) goes analogously. Thus, the

game (N, c) has a non-empty strict core, and the⇐ direction of Part (i) is proven. Finally, as

the (strict) core is a convex set, the existence of two different (strict) core allocations implies

that there are infinitely many (strict) core allocations. This completes the proof of Part (ii).

We now return to the⇒ direction of Part (i). Suppose that (N, c) has a non-empty strict

core. Consider any x ∈ C+(N, c) and κ ∈ WN . Then, by definition of a balanced map,

c(N) =
∑
i∈N

xi =
∑
i∈N

∑
M∈B(κ):i∈M

κ(M)xi =
∑

M∈B(κ)

κ(M)
∑
i∈M

xi <
∑

M∈B(κ)

κ(M)c(M),

where the inequality holds because x is a strictly stable allocation for the game (N, c).

(iii). Let y be an SPMAS. By definition, y satisfies
∑

i∈M yi,N <
∑

i∈M yi,M = c(M) for

every M ∈ 2N−− and
∑

i∈N yi,N = c(N). Hence, (yi,N )i∈N is a strictly stable allocation. To

show strict total balancedness, let L ∈ 2N− and consider the subgame (L, cL). By definition,

y satisfies
∑

i∈M yi,L <
∑

i∈M yi,M = c(M) for every M ∈ 2L−− and
∑

i∈L yi,L = c(L). Hence,

(yi,N )i∈N is a strictly stable allocation, and thus C+(L, cL) 6= ∅. By the ⇐ direction of Part

(i), this means that (L, cL) is balanced. We conclude that (N, c) is strictly totally balanced.

(iv). Assume that (N, c) is strictly totally balanced. Let M,L ∈ 2N− with M ∩ L = ∅.
Consider the subgame (M ∪ L, cM∪L), and take the map κ : 2M∪L → [0, 1] with κ(M) =

κ(L) = 1 and κ(J) = 0 for all other coalitions J ∈ 2M∪L \ {M,L}. Note that this map is

balanced for M ∪ L because M and L are disjoint sets by assumption. Then, c(M) + c(L) =∑
J∈B(κ) κ(J)c(J) > c(M ∪ L), where the inequality follows from strict total balancedness of

(N, c). We conclude that (N, c) is strictly subadditive.
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(v). Assume that (N, c) is strictly subadditive. This immediately implies that∑
i∈N c({i}) > c(N). Hence, the allocation x defined by xi = c({i}) −

(∑
i∈N c({i}) −

c(N)
)
/|N | is strictly individually rational, and thus I+(N, c) 6= ∅.

(vi). This readily follows from the observation that C+(N, c) ⊆ I+(N, c).

(vii). The ⇐ direction is trivial. The ⇒ direction follows from the observation that the

nucleolus maximizes the minimal satisfaction of subcoalitions. Indeed, when C+(N, c) 6= ∅,
an allocation with a positive satisfaction for every subcoalition exists, which implies that the

minimal satisfaction of a subcoalition under ν(N, c) is positive. Hence, ν(N, c) ∈ C+(N, c) 6=
∅.

We remark that, obviously, any strict concept immediately implies its non-strict counter-

part. The reverse of Part (ii) of Theorem 2.4 is not true if the parenthesized word “strict”

is removed. Specifically, as shown in the following example, a game with infinitely many core

allocations need not admit a strictly stable allocation.

Example 2.15. Reconsider the game (N, c) that was described in Example 2.3. As derived

in Example 2.5, C(N, c) = {α(10, 11, 29) + (1− α)(10, 19, 21) | 0 ≤ α ≤ 1}, i.e., this game has

infinitely many core allocations. However, since x1 = 10 = c({1}) for all x ∈ C(N, c), this

game does not possess a strictly stable allocation. 3

2.3.10 Single-attribute games

In this section, we consider games that arise from situations in which every player is associated

with a certain resource endowment: his attribute, described by a positive real number. The

players can pool their endowments to attain potential cost savings. To describe this, we

introduce a single-attribute situation as a triple ϕ = (N, K̃, λ), where

• N is a player set;

• K̃ is a non-decreasing function mapping R+ to R+ with K̃(0) = 0;

• λ = (λi)i∈N is an element of RN++.

Here, λ should be interpreted as a vector of attributes, with λi the attribute of player i ∈ N .

We will systematically write λM =
∑

i∈M λi for any M ⊆ N . The function K̃ expresses the

costs to serve any level of attributes. The non-decreasing requirement on K̃ is imposed to

highlight the applications that we have in mind: in these applications, K̃ expresses the costs

to serve any level of demand in a resource pooling setting and such a cost does not shrink as

demand increases.

We remark that single-attribute situations have the same mathematical structure as the

cost sharing situations considered in, e.g., Hamlen et al. (1977), Moulin and Shenker (1992),

and Sudhölter (1998). We will return to this correspondence in Section 8.4. Our current

interpretation and terminology is based on Özen et al. (2011).
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A single-attribute situation naturally leads to a corresponding game. Given a single-

attribute situation ϕ = (N, K̃, λ), we call the game (N, cϕ) that is defined by cϕ(M) = K̃(λM )

for all M ∈ 2N− the associated single-attribute game.

Let K̃ : R+ → R+ be a non-decreasing function with K̃(0) = 0. A game (N, c) is called a

single-attribute game embedded in K̃ if there exists a vector λ ∈ RN++ such that c(M) = K̃(λM )

for all M ∈ 2N− . We remark that the set of all single-attribute games embedded in K̃ contains

games with two players, games with three players, etc.

The following theorem is based on Özen et al. (2011).14 Part (i) of the following theorem

also follows from Hamlen et al., 1977, p. 621.

Theorem 2.5. Let K̃ : R+ → R+ be a non-decreasing function with K̃(0) = 0.

(i) If K̃ is elastic, then for any single-attribute situation ϕ = (N, K̃, λ) the allocation

scheme assigning K̃(λM ) · λi/λM to any i ∈ M and M ∈ 2N− is a PMAS for the

associated single-attribute game (N, cϕ).

(ii) If K̃ is not elastic, then there exists a single-attribute game embedded in K̃ that has an

empty core.

(iii) If all single-attribute games embedded in K̃ have a non-empty core, then K̃ is elastic.

Theorem 2.5 indicates that elasticity of K is of crucial importance. Fortunately, the cost

functions underlying many of models to be studied in this thesis will turn out to be elastic.

2.4 Stochastic processes

In this thesis, we are interested in phenomena that are not predictable with certainty in

advance but, rather, exhibit an inherent variation. One example is the number of customers in

a service system, which may evolve over time in an apparently random fashion. To model such

quantities, we employ notions from probability theory and queueing theory. In this section,

we briefly introduce several elementary concepts from those fields. For a more extensive

treatment, see the book by Ross (2007).

2.4.1 Probability theory and random variables

Probability theory provides a mathematical way to model random phenomena or experiments

that can produce a number of outcomes, each with a specified likelihood of happening.

Although the reader is probably familiar with basic notions from probability theory, we will

provide a quick refresher on the terminology. For brevity, in this section we only recall the

formal definitions for finite or countable sample spaces.

A sample space Ω is a set that contains all possible scenarios (possible futures,

experimental outcomes, etcetera). For finite or countable Ω, a probability measure P : Ω →
14Although Özen et al. (2011) focus on games in profit rather than cost terms, their results carry over

straightforwardly by simply reversing all inequalities involved.
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[0, 1] is a function with
∑

ω∈Ω P(ω) = 1. This function describes the occurrence probability

of the various scenarios.

We are frequently interested in functions that assign a real number to each scenario, as

opposed to the scenario itself. These functions are known as random variables. So, a random

variable has domain Ω and the probability of taking on a certain value is described by P. The

expected value or mean of a random variable X, written E[X], is the average, weighted by P,

of the possible values that X can take on.

For finite or countable Ω, two random variables X1 : Ω→ C1 and X2 : Ω→ C2 are called

independent if observing the value of one does not affect the probability of observing any

value of the other, i.e., if for every y1 ∈ C1 that can occur with positive probability, it holds

for all y2 ∈ C2 that

∑
x∈Ω:X2(x)=y2,X1(x)=y1

P(x) =
∑

x∈Ω:X2(x)=y2
P(x) ·

∑
x∈Ω:X1(x)=y1

P(x).

For uncountable Ω, notions such as random variables and their independence have analogous,

well-known meanings. As we do not use the formal, technical definitions for uncountable Ω

in this thesis, we omit them for brevity.

2.4.2 Poisson distribution and exponential distribution

In this thesis, we will often consider random variables with Poisson or exponential distribu-

tions. These distributions are relatively easy to work with and are often a good approximation

of natural processes.

An integer-valued random variable X is said to be Poisson distributed with parameter

λ > 0, written X ∼ Poi(λ), if for every y ∈ N0 the probability that X takes on the value y,

written P[X = y], is equal to λye−λ/y!. The mean of a Poisson distributed random variable

with parameter λ is equal to λ.

A real-valued random variable X is said to be exponentially distributed with parameter

λ > 0 if for every y ∈ R+ the probability that X takes on any value smaller than or equal to

y, written P[X ≤ y], is equal to 1− e−λy. The mean of an exponentially distributed random

variable with parameter λ is equal to 1/λ.

2.4.3 Markov processes

Given any set T , often interpreted as a set of time indices, and any set S, often referred to

as the state space, we call a collection of indexed random variables (Xt)t∈T , all taking values

in S, a stochastic process.

A stochastic process (Xt)t∈R+ taking values in N0 is said to be a Poisson process with

rate λ > 0 if it counts the number of events that have occurred in a system where the time

between each pair of successive events is independently and identically distributed (i.i.d.)
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according to an exponential distribution with parameter λ.15 The exponential interarrival

time distribution is memoryless, which means that the probability of having to wait until at

least time x + y for the first arrival, given that the first arrival has not happened yet after

time y, is equal to the initial probability of having to wait until at least time x. Merging of

independent Poisson processes results in another Poisson process with the sum of the rates.

That is, if (Xt
1)t∈T and (Xt

2)t∈T are two independent Poisson processes with respective rates

λ1 and λ2, then the superposition (Xt)t∈T defined by Xt = Xt
1 + Xt

2 for all t ∈ T is also a

Poisson process with rate λ1 + λ2.

A stochastic process (Xt)t∈R+ taking values in S is said to be a (stationary, continuous-

time, non-absorbing) Markov process if there exists a non-negative transition rate vector

q = (qi,j)i,j∈S,i6=j satisfying
∑

j∈S:j 6=i qi,j > 0 for all i ∈ S such that each time the process

enters a state i ∈ S, the amount of time it spends in that state before making a transition

to a different state is exponentially distributed with parameter
∑

j∈S:j 6=i qi,j , and when the

process leaves state i, it next enters a different state j with probability qi,j/
∑

k∈S:k 6=i qi,k.

This means that the future is independent of the past and present. A Markov process can be

graphically represented as a directed graph with set of nodes S, where an arc is drawn from

node i to a different node j if qi,j > 0, with the value qi,j placed on that arc.

A simple example of a Markov process is a Poisson process. The following example provides

another example of a Markov process and simultaneously illustrates the merging property of

independent Poisson processes.

Example 2.16. Suppose that broken machines of type A (resp. B) arrive at a repairman

(i.e., a single-server service system) in accordance with a Poisson process with rate λA (resp.

λB). The two arrival processes are independent. This means, by the merging property of

independent Poisson processes, that the times between successive arrivals of an arbitrary

machine (i.e., a customer) are exponential i.i.d. with parameter λ = λA + λB.

Upon arrival, any machine directly goes into repair (i.e., enters service) if the repairman

is free; if not, then the machine joins the waiting line. When the repairman finishes serving

a machine, that machine leaves the system and the next in line, if there are any waiting,

goes into repair. The successive repair times (i.e., service times) are exponential i.i.d. with

parameter µ > λ for both types A and B.

The corresponding stochastic process (Xt)t∈R+ , where Xt represents the total number of

customers in the system at time t, is the Markov process represented in Figure 2.2. 3

Under suitable regularity conditions, which are satisfied by all Markov processes considered

in this thesis, the probability of observing a Markov process (Xt)t∈R+ in state i ∈ S at time

15Alternatively, we may say that (Xt)t∈R+ is a Poisson process with rate λ > 0 if for all s ≥ 0 and all t > 0

it holds that Xs+t −Xs has a Poisson distribution with parameter λt, where Xs+t −Xs is interpreted as the

number of events that occur in the interval (s, t], and if it holds that the number of events occurring in disjoint

time intervals are independent.
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Figure 2.2: The Markov process (an M/M/1 queueing model) of Examples 2.16 and 2.17.

t converges, as t tends to infinity, to a limiting value. We call this value πi the steady-state

probability of state i, and it should be interpreted as the long-run proportion of time that the

process is in state i.

2.4.4 Queueing models

A queueing model, at least in this thesis, is a stochastic process taking values in N0

that describes the evolution over time of the number of customers in a service system

where customers randomly arrive, possibly wait in a queue, and leave after being served.

Kendall’s A/B/C/D notation is the standard way to classify a queueing model when the

service discipline is first-come first-serve, as in all queueing models considered in this thesis.

Here, A is a code for the interarrival time distribution, B is a code for the service time

distribution, C is the number of servers, and D is the maximum number of customers

allowed in the system including those in service. The D entry is often omitted if there is

infinite waiting space. Common codes for distributions (A and B) are M , which represents

the memoryless exponential distributions, and G, which indicates a general or arbitrary

independent distribution. The G code encompasses deterministic times.

Example 2.17. Reconsider the (merged) process described in Example 2.16. Clearly, this

is a queueing model. In this model, both the interarrival and service times are exponentially

distributed, there is a single server, and there is infinite waiting space. Accordingly, in

Kendall’s notation, this system is an M/M/1(/∞) queue. This is the most elementary of

queueing models and it has been analyzed extensively in the literature. Two well-known

results are that the steady-state probabilities are given by πi = (λ/µ)i(1−λ/µ) for all i ∈ N0

and that the expected time spent in the system (i.e., time waiting in the queue and in service)

by an arbitrary customer in steady-state is 1/(µ− λ). 3

The queueing models underlying the various resource pooling games analyzed in this

thesis are the M/G/s/s model, the M/M/s model, and the M/G/∞ model. We will briefly

describe these three models. Firstly, the M/G/s/s queue, also known as Erlang loss system,

is a model where interarrival times follow an exponential distribution (with parameter λ),

service times follow a general distribution (with mean 1/µ), there are s servers, each arriving
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Figure 2.3: The M/M/s/s queue.

Figure 2.4: The M/M/s queue.

Figure 2.5: The M/M/∞ queue.
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customer immediately goes into service if there is an unoccupied server available, and an

arriving customer that finds no free server does not enter but rather is lost and never served.

Such customers are called blocked customers. If the service time distribution in an Erlang

loss system is exponential, then the corresponding stochastic process is a Markov process,

as pictured in Figure 2.3. Secondly, the M/M/s queue, also known as Erlang delay system,

is a model where waiting is allowed; it features exponential i.i.d. interarrival and service

times, s servers, and infinite waiting space. Figure 2.4 represents the corresponding Markov

process. Finally, the M/G/∞ queue is a model where interarrival times follow an exponential

distribution, service times follow a general distribution, and there is an unlimited number

of servers. If the service time distribution is exponential, then the corresponding stochastic

process is a Markov process, as shown in Figure 2.5. In any of these models, we will call the

product of the arrival rate and the mean service time the offered load.

We now make a connection with infinite-horizon inventory models. Suppose that initially

there are S ∈ N0 items on stock, that demands occur according to a Poisson process with

rate λ, and that a one-for-one replenishment strategy is followed under i.i.d. lead times with

mean τ > 0. This setting is known as the (S − 1, S) model. If demands are lost in case of a

stock-out, then the process for the number of items in the replenishment pipeline is identical

to the process for the number of busy servers in an M/G/S/S system with arrival rate λ and

mean service time τ . If demands are backlogged in case of a stock-out, then the process for

the number of items in the replenishment pipeline is identical to the process for the number

of busy servers in an M/G/∞ system with arrival rate λ and mean service time τ .

2.4.5 Discussion of assumptions

An appealing feature of the M/G/s/s, the M/M/s, and M/G/∞ queueing models described

above is that closed form expressions for their steady-state probabilities are available. From a

steady-state distribution π, performance measures such as the mean time spent waiting in the

queue can be easily obtained. Although technically π only describes the system when it has

been running for an infinite amount of time, we are motivated by structural collaborations

over long periods of time. For the context of pooling spare parts or repairmen in particular,

the machines that the spare parts or repairmen aim to service typically have lifetimes of

several decades, which is long enough for π to reasonably approximate the state of the system

at an arbitrary point in time during the collaboration, assuming that the installed base

stays constant over time. Research on queueing models and infinite-horizon inventory models

customarily focuses on the steady-state distributions, due to its analytical tractability.

All above-mentioned queueing models feature a Poisson arrival process. The assumption

of a Poisson arrival process is reasonable when customers arrive independently from a large

population. One example of this in a service operations setting where a customer arrival

represents a component failure. Components of high-tech machines typically have close to
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exponentially distributed lifetimes (cf. Wong et al., 2006). As such, the failure process of a

single machine is close to Poisson, and a merged stream of component failure processes — as

faced by a stock point for spare parts or a group of repairmen that serve a large number of

machines — corresponds very well to a Poisson process. The assumption of a Poisson arrival

process may even be justified when a customer arrival represents the arrival of a human

who strategically chooses his arrival time to avoid congestion: as shown in Lariviere and van

Mieghem (2004) with Nash equilibirum concepts, the assumption of Poisson arrivals is still

acceptable in such a setting.

Besides its ability to resemble real-world phenomena, a Poisson arrival process also enables

tractable mathematics. One important reason for this is that Poisson arrivals see time

averages—a property known under the tasty acronym PASTA, which means that the fraction

of arriving customers who observe n other customers in the system upon arrival is equal to

πn, i.e., the steady-state probability of having n customers in the system (Wolff, 1982).



—If I have seen further, it is only by standing on the shoulders of giants.

Isaac Newton

3
Literature review

3.1 Introduction

In the previous chapter, we took the characteristic cost function of a game as a given and

explored concepts such as the core. We did not pay much attention to the origin of a

characteristic cost function, i.e., the underlying situation from which a game actually stems.

Often, a game stems from a situation where several players face a joint optimisation or

operations research problem. There is a growing stream of literature that considers various

operations research (OR) problems from the perspective of cooperative game theory. Such

research typically studies the general properties (e.g., balancedness or convexity) of all games

arising from that specific type of OR problem and/or the properties of context-specific cost

allocation rules defined on the parameters of that specific type of problem.

The applications of cooperative game theory to operations research problems were

surveyed at the start of this century by Borm et al. (2001). They mainly focused on games

stemming from problems of a combinatorial nature, such as connection, routing, scheduling,

and production. Since then, various researchers have applied cooperative game theory to

inventory and queueing problems. In this chapter, we survey the corresponding games whilst

simultaneously positioning the work of this thesis in the existing literature. We describe

inventory games in Section 3.2 and queueing games in Section 3.3. In Section 3.4, we briefly

describe the literature on pooling in stochastic inventory and queueing systems with only a

single decision maker.
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3.2 Cooperative inventory games

There is a growing stream of literature on cooperative games in inventory systems. In two

recent papers, Fiestras-Janeiro et al. (2011) and Dror and Hartman (2011) provide detailed

reviews of this stream of literature. This section provides a briefer overview with three aims:

acquainting the reader with the various lines of inventory game research, formally defining

concepts that we will use later, and pinpointing the literature gaps that this thesis aims to

fill. We distinguish five lines of inventory game research: economic order quantity (EOQ)

games, economic lot sizing (ELS) games, newsvendor games, continuous-review games, and

spare parts games. We next review each line separately.

3.2.1 EOQ games

The first line of research is on EOQ games in which players face deterministic demand at

a constant rate. For any order that is placed, a fixed ordering cost is incurred. Holding

inventory in stock is also costly. The players may cooperate by ordering jointly and sharing

the fixed ordering costs. The optimal replenishment policy for any coalition is determined

via the basic Economic Order Quantity model (see, e.g., Zipkin, 2000). Formally, an EOQ

situation is a triple (N, (m2
i )i∈N , a) where

• N is the set of players;

• m2
i > 0 is the square of the optimal number of orders per time unit for player i ∈ N if

ordering alone;

• a > 0 is the fixed (major) ordering cost, say of leasing a truck.

The EOQ game (N, c) corresponding to such a situation is described by

c(M) = 2a

√∑
i∈M

m2
i

for each coalition M ∈ 2N− . Meca et al. (2004) show that EOQ games are concave. Moreover,

they show that the allocation assigning c(N) ·m2
i /
∑

j∈N m
2
j to each player i ∈ N is stable

and reachable through a PMAS. Mosquera et al. (2008) axiomatically characterize this

proportional cost allocation rule. Their characterization uses an axiom saying that the rule

should be immune to coalitional manipulation via artificial splitting or merging of the players.

Meca et al. (2003) show that a wider class of Economic Production Quantity situations

with shortages lead to exactly the same class of games, and Meca et al. (2007) analyze a

further extension with temporary price discounts.

Anily and Haviv (2007), Dror and Hartman (2007), and Zhang (2009) study the

balancedness of generalized EOQ games in which, in addition to the fixed (major) ordering

costs, there is also an individual (minor) delivery cost for every player that is incurred only
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when that player participates in an order. Dror et al. (2012) numerically study how frequently

these generalized EOQ games are concave and numerically study the performance of various

cost allocation rules.

Fiestras-Janeiro et al. (2012) analyze a variant where the (minor) delivery costs are based

on the distance to the supplier and the players are located on a line route, such that only

the (minor) delivery cost of the player at maximal distance to the supplier has to be paid.

He et al. (2012) analyze a variant where the joint ordering cost can be any nondecreasing,

submodular function.

3.2.2 ELS games

Economic Lot Sizing (ELS) situations are similar to EOQ situations in that there are

deterministic demands, but instead of having demands coming in at a constant rate over an

infinite time horizon, each player now has discrete demands over a finite number of periods.

There are possible economies of scale in the production. Inventory may be held, at a holding

cost, to satisfy demands in future periods. The players may cooperate by constructing and

executing an optimal joint production plan. The optimal plan may be determined via the

Wagner-Whitin algorithm (see, e.g., Zipkin, 2000). Formally, an ELS situation is a tuple16

(N,T, {(dti)i∈N , ht, bt, pt}Tt=1) where

• N is the set of players;

• T ∈ N is the number of periods in the planning horizon;

• dti ≥ 0 is the deterministic demand for player i ∈ N in period t;

• ht ≥ 0 is the unit inventory holding costs for period t;

• bt ≥ 0 is the unit backlogging costs for period t;

• pt : R+ → R+ is the concave, nondecreasing production cost function for period t.

The ELS game corresponding to such a situation is described by the total costs of each

coalition’s optimal production plan. For details, see Chen and Zhang (2008).

Van den Heuvel et al. (2007) focus on a specific subclass of ELS games in which

backlogging is not allowed (i.e., bt = ∞ for all periods t) and in which pt is the sum

of a variable cost component that is linear in the number of units produced and a fixed

setup cost component that is incurred any time production is initiated. They show that the

corresponding games are balanced. Chen and Zhang (2008) prove the stronger, more general

result that all ELS games as described above are balanced.

16A tuple is an ordered list of elements. In contrast to a set, a tuple is ordered and can contain repeat

elements. A tuple with two elements is called a pair, and a tuple with three elements is called a triple.
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Xu and Yang (2009) and Gopaladesikan et al. (2012) propose cost-sharing methods for

ELS games. Zeng et al. (2011) consider an extension of ELS games with perishable inventory,

and Drechsel and Kimms (2011) consider an extension of ELS games with transshipment

costs and scarce capacities.

Guardiola et al. (2008, 2009) study a variant of ELS games, called production-inventory

games, where pt is a linear function for all periods t. So, they disregard setup costs. However,

their variant has different cost parameters for every player, and they allow any coalition to

use the cheapest cost parameters among its members.

3.2.3 Newsvendor games

Next up is the vast line of research on newsvendor games. In this setting, each player faces

a stochastic demand for the same item in a single period. There is a trade-off between the

costs of ordering too much and the costs of ordering an insufficient amount. The players

may cooperate by coordinating their orders and pooling their inventories after the demand

realization is known. The optimal order quantity is determined via the basic newsvendor

model (see, e.g., Zipkin, 2000). Formally, a newsvendor situation is a tuple (N, (Di)i∈N , co, cu)

where

• N is the set of players;

• Di is the stochastic demand (a real-valued random variable with finite mean) of player

i ∈ N ;

• co ≥ 0 is the oversupply cost;

• cu ≥ 0 is the undersupply cost.

The corresponding newsvendor game (N, c) is defined by

c(M) = min
s≥0

(
co · Emax

{
s−

∑
i∈M

Di, 0
}

+ cu · Emax
{∑
i∈M

Di − s, 0
})

for all coalitions M ∈ 2N− .

Müller et al. (2002) and Slikker et al. (2001) independently derived that every newsvendor

game is balanced. Later, several authors introduced and analyzed various games associated

with generalizations of the basic newsvendor model. We start our overview of these

generalizations with Slikker et al. (2005), who enrich the basic model with transshipment costs

and asymmetric (i.e., possibly player-dependent) oversupply and undersupply costs. Many

other generalizations have been studied as well: Montrucchio and Scarsini (2007) consider an

infinite number of newsvendors, Özen et al. (2008) and Chen and Zhang (2009) consider

supplying via warehouses, Chen (2009) consider price-dependent demands and quantity



3.2. Cooperative inventory games 45

discounts, Kemahlıoğlu-Ziya and Bartholdi III (2011) consider a separate supplier who enables

pooling, Özen et al. (2012a) consider lower bounds on the amount of inventory that each player

must receive, and Özen et al. (2012b) consider demand forecast updates. Most papers show

that the corresponding games remain balanced. The properties of newsvendor games and

their generalizations are reviewed in more detail in Montrucchio et al. (2012).

Alternative model formulations, convexity, and truthful information disclosure for newsven-

dor situations have also stimulated research. Anupindi et al. (2001) and Granot and Sošić

(2003) study a setting where the ordering decisions are made individually and only the

transshipment decision is taken cooperatively. Dror and Hartman (2005) and Dror et al.

(2008) consider games based on demand realizations rather than expectations. Özen et al.

(2011) tackle the convexity of newsvendor games. Finally, Norde et al. (2011) propose

mechanisms for truthful revelation of private demand information.17

3.2.4 Continuous-review games

The fourth line of research is on inventory centralization games in a continuous-review setting

where several players face stochastic demand for the same item and penalty costs have to be

paid per backorder occurrence independent of duration. The players can cooperate by pooling

inventory, thereby reducing their total required safety stocks. Gerchak and Gupta (1991),

Robinson (1993) and Hartman and Dror (1996) examined the problem of allocating the joint

costs and showed balancedness of games formulated via an approximation of the total costs

rather than an exact evaluation.

3.2.5 Spare parts games

The final, relatively scarce line of inventory game research is on spare parts games. Though

similar to continuous-review games, spare parts games are based on Poisson demand processes,

which permits exact Markov chain analysis. Wong et al. (2007) are the first to study a

multi-location, continuous-review, infinite-horizon model that is motivated by spare parts

applications. In their model, every player has a number of machines, each containing a critical

component whose operational lifetime and repair time is exponentially distributed. The

players may cooperate by pooling their spare parts via costly lateral transshipments. Several

cost allocation mechanisms are proposed and numerically illustrated in a 3-player example.

We also mention Kilpi et al. (2009), who specify a framework of cooperative strategies, each

17The newsvendor model has also formed the backdrop for several papers on strategic competition and

bargaining in supply chains. Often, such papers analyze interactions between suppliers and retailers with

non-cooperative game theory and look for a Nash equilibrium (see the review of Cachon and Netessine, 2004)

or study the coalition formation process under farsightedness (as reviewed in Nagarajan and Sošić, 2008). In

contrast to those works, we are interested in settings where cooperation via a binding pooling agreement is

possible. We abstract away the intricacies of negotiation and coalition formation and, in doing so, we model

our settings as cooperative games. This allows us to focus on the cost allocation problem in more detail.
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with a different degree of contractual integration, for the availability of repairable aircraft

components. They do not explicitly formulate a game, but they do propose mechanisms for

sharing the pooling benefits in the spirit of the game theoretical approach. Their mechanisms

are illustrated numerically. Neither of these two papers investigate analytical properties of

the underlying game or stability of cost allocations in general; this is left as a future research

direction.

3.2.6 Contribution to the literature

This literature review has shown that most of the inventory game research has dealt with

deterministic demands (the EOQ games and ELS games) or stochastic demands in a single-

period model with no further inventory replenishment or inventory carry-over (the newsvendor

game). However, in our motivating spare parts pooling applications, we have stochastic

demands over a long time horizon. So, any reasonable inventory model for this application

should feature multiple periods (possibly an infinite number of periods, i.e., a steady-state

setting) with inventory carry-over and a plethora of replenishment opportunities. The

importance of extending newsvendor games to multiple periods has also been pointed out

by Chen (2009).

Although some research has been done on games derived from inventory models with

these features (the continuous-review and spare parts games), this existing research has its

limitations. In particular, the continuous-review games feature approximate rather than exact

cost expressions and, moreover, assume that penalty costs have to be paid per backorder

occurrence independent of duration. In our motivating applications, either such costs are

paid for each unit of time an item is backordered (as we will assume in Chapter 6 and 7)

or backordering is not an acceptable option and stock-outs are dealt with via emergency

procedures instead (as we will assume in Chapter 4). The spare parts games, on the other

hand, have only received ad hoc analysis; structural results are lacking.

We conclude that there is a lack of knowledge on structural properties of games and cost

allocation mechanisms for pooled spare parts. Indeed, not even the elementary (S − 1, S)

infinite-horizon inventory model with Poisson demand processes has been adequately studied

from the perspective of cooperative game theory, in spite of its practical relevance for spare

parts inventory management. Moreover, the inventory game literature hasn’t come close to

touching a variant with non-stationary, stochastic demands and correlations over time. These

are precisely the voids that we aim to fill in Chapters 4, 6, and 7: We will formulate these

games and prove, amongst other results, existence of a stable allocation.

3.3 Cooperative queueing games

In this section, we direct our attention to games in queueing systems. The existing literature

that applies cooperative game theory to analyze resource pooling in queueing models can be
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Optimized service capacity Fixed service capacity

Waiting in queue

González and Herrero (2004) Anily and Haviv (2010)

Garćıa-Sanz et al. (2008) Timmer and Scheinhardt (2010)

Yu et al. (2009) Anily and Haviv (2011)

Table 3.1: Classification of literature on single-server cooperative queueing games

Optimized numbers of servers Fixed numbers of servers

Waiting in queue
Yu et al. (2007) Chapter 5

Chapter 5

No waiting allowed

Özen et al. (2011) Chapter 4

McLean and Sharkey (1993)

Chapter 4

Table 3.2: Classification of literature on multi-server cooperative queueing games

classified along several dimensions: Tables 3.1 and 3.2 position the existing literature and

the queueing chapters in this thesis according to various modeling assumptions. (Although

the model in Chapter 6 has queueing characteristics, its game is based on inventory analysis;

accordingly, Chapter 6 is not included in the tables.)

As can be seen in the tables, the literature on cooperative queueing games is scarce.

This scarcity is surprising because related problems have been studied extensively. Indeed,

cooperative games stemming from sequencing or scheduling problems, which consider a finite

population of customers and are not concerned with steady-state congestion as we are,

have been fruitfully analyzed; see Curiel et al. (2002) for a survey. Likewise, competition

among service providers and customer equilibrium behavior in queues, analyzed from a non-

cooperative perspective, has been a rich research domain; see Hassin and Haviv (2003) for

a survey. However, as revealed in Tables 3.1 and 3.2, only a few papers have investigated

queueing models from a cooperative point of view.

In this section, we survey the various categories of queueing games separately. We first

treat single-server queueing games where the service capacity can be varied continuously and

where the service capacity can be easily consolidated into a single server (e.g., by choice of

material or technology). Afterwards, we treat multi-server queueing games where the service

rate of a server is given exogenously and where service capacity can only be adjusted by

changing the number of servers (e.g., by hiring additional repairmen). Finally, we pinpoint

the gaps in the existing literature on queueing games that this thesis aim to fill.
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3.3.1 M/M/1 games with fixed numbers of servers

Anily and Haviv (2010) study a model with several service providers. Each service provider

corresponds to a player. Each player is associated with a Poisson customer arrival stream and

a capacity endowment. The work content for each customer is exponential i.i.d. Any coalition

operates an M/M/1 queue that serves the union of its members’ arrival streams with a single

exponential server whose service rate is the sum of the capacity endowment of the coalition

members. Such collaboration leads to reduced congestion, as measured by the total number

of customers in the system. To describe the model considered by Anily and Haviv (2010), we

define an M/M/1 situation with fixed service capacity as a tuple (N, (λi)i∈N , (µi)i∈N , (di)i∈N ),

where

• N is the set of players;

• λi > 0 is the arrival rate of customers that belong to player i;

• µi > λi is the capacity endowment of player i;

• di > 0 is the delay cost incurred for each unit of time a customer of player i ∈ N spends

in the system (i.e., time waiting in the queue and in service).

As mentioned, any coalition M operates an M/M/1 queue with total customer arrival rate

λM =
∑

i∈M λi and uses a single exponential server under first-come first-served discipline

with service rate µM =
∑

i∈M µi.
18 In this system, the expected sojourn time (time waiting

in the queue and in service) of an arbitrary customer is equal to 1/(µM−λM ). By defining the

costs of any coalition M as the long-term average delay costs per unit time in the queueing

system that only involves the players in M , we obtain the corresponding game (N, c). Since

customers for player i ∈M arrive at rate λi and have to pay di per unit of time spent in the

system, the corresponding game (N, c) is defined by c(M) =
∑

i∈M λidi/(µM − λM ) for all

coalitions M ∈ 2N− . Note that we used the PASTA property here.

Anily and Haviv (2010) study this setting under symmetric unit delay cost parameters,

i.e., di = 1 for all i ∈ N . They show that, even though the game (N, c) need not be concave,

it is balanced: the allocation x that assigns xi = λi/(µN − λN ) to each player i ∈ N is in the

core. Subsequently, they investigate the multiplicity and non-negativity of core allocations.

They show that, if |N | > 1, there are infinitely many core allocations and there always exists

a core allocation where all entries are non-negative.

18Anily and Haviv (2010) consider a more general model featuring a measure α ∈ (0, 1] that indicates

whether the actual service rate is closer to the arrival rate or the capacity endowment. The service rate for

any coalition M in this more general model is given by the geometric mean λ1−α
M µαM . The measure α, however,

lacks a natural interpretation: it is unclear where it would come from and why it would be the same for all

coalitions. It also does not provide additional insights. Our formulation corresponds to α = 1, which Anily

and Haviv (2010) tout as an important special case. It allows a more natural interpretation and a closer fit

with the model described in the next subsection.
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The stability result of Anily and Haviv (2010) is easily generalized to strict population

monotonicity and to asymmetric delay cost parameters. Indeed, if we consider the allocation

scheme y that assigns yi,M = λidi/(µM − λM ) to each player i ∈M in any coalition M , then

for all coalitions M,L ∈ 2N− with M ⊂ L and i ∈M it holds that

yi,M =
λidi

µM − λM
>

λidi
µM − λM + µL\M − λL\M

= yi,L,

where the inequality is valid because, by assumption, µj > λj for each j ∈ L \M .19

We conclude this section with some comments on more complex, alternative single-server

queueing games with fixed numbers of servers. Timmer and Scheinhardt (2010) and Anily and

Haviv (2011) analyze models that feature several single-server stations in a certain network

structure. In these models, the network structure is kept intact (as opposed to pooling

capacities into a single station) and the total network capacity is predetermined. The various

stations may cooperate by redistributing their combined service capacity or by re-routing

arrivals, resulting in a network of M/M/1 queues.

3.3.2 M/M/1 games with optimized numbers of servers

Yu et al. (2009) study a model that is similar to the one introduced by Anily and Haviv

(2010). As before, each player is associated with a customer arrival stream, and every coalition

operates an M/M/1 queue which serves the union of its members’ arrival streams. However,

instead of letting the service capacity for each coalition be determined exogenously, Yu et al.

(2009) assume that the service rate is optimized. Of course, any coalition desires both low

capacity costs and low sojourn times, but these are conflicting objectives. To manage this

trade-off, there are two main approaches:

1. Measure the costs for capacity and delay in monetary terms and choose a service rate

that minimizes the sum of delay and capacity costs;

2. Stipulate a sojourn time constraint and choose the lowest service rate that satisfies this

constraint.

Yu et al. (2009) combine both approaches20 in a single, overarching model. That is, they

19Although this result is new, it is nevertheless placed in the literature review chapter because it is

straightforward to derive, because its proof may help understand the original stability result of Anily and

Haviv (2010), and because we do not analyze M/M/1 situations with fixed service capacity elsewhere in this

thesis.
20Which of the two approaches should be selected in practice? This often depends on how easy it is to

quantify the delay costs. Delay costs may be easy to quantify when customers are external to the service

provider (in which case delay costs may correspond to contractually agreed penalties) and when customers are

machines or employees that are internal to a service provider (in which case delay costs may be measured in

terms of idle time or lost productivity). However, in the absence of such contractual agreements or internal

customers, delays may be indirect and hard to quantify. In those cases, service constraints may be more readily

adoptable.
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consider an M/M/1 situation with optimized service capacity, which we will represent as a

tuple (N, (λi)i∈N , (di)i∈N , (αi)i∈N , (wi)i∈N , k), where

• N is the set of players;

• λi > 0 is the arrival rate of customers that belong to player i;

• di ≥ 0 is the delay cost incurred for each unit of time a customer of player i ∈ N spends

in the system (i.e., time waiting in the queue and in service);

• αi ∈ [0, 1) and wi > 0 together make up a sojourn time constraint saying that the time

an arbitrary customer of player i ∈ N spends in the system cannot be larger than wi

time units with probability αi;

• k > 0 is the linear cost rate for service capacity.

The special case of αi = 0 for all i ∈ N corresponds to a pure cost-based formulation. The

special case of di = 0 for all i ∈ N corresponds to a pure service constraint model. The case

where both di = 0 and αi = 0 for all i ∈ N is not allowed.

As mentioned, any coalition M operates an M/M/1 queue with total customer arrival

rate λM =
∑

i∈M λi and uses a single exponential server under first-come first-serve discipline

with an adjustable service rate µ. For any particular choice of this service rate µ > λM , the

expected costs per unit time in steady state are KM (µ) = kµ+
∑

i∈M diλi/(µ− λM ) and the

time spent in the system by an arbitrary customer in the queueing system of coalition M is

exponentially distributed with parameter µ− λM . The service rate must satisfy the sojourn

time constraint for all members of M , which is done by guaranteeing it for the most “urgent”

stream. Straightforward analysis then reveals that a cost minimizing service rate that adheres

to the sojourn time constraints is given by

µ∗M = λM + max

{
max
i∈S

− ln(1− αi)
wi

,

√∑
i∈M diλi

k

}
.

If the first term in the maximization is larger than the second, then the service level constraint

is more stringent than the cost considerations. The corresponding game (N, c) is defined by

c(M) = KM (µ∗M ), which represents the long-term average delay and capacity costs per unit

time, for all coalitions M ∈ 2N− .

Yu et al. (2009) study these games under the assumption that wi = wj for all i, j ∈ N , i.e.,

they consider a setting where the maximal sojourn time is symmetric. They show that this

subclass of games is always balanced, and they identify a cost allocation rule that is in the

core. Subsequently, they investigate settings where the delay costs are private information

and design a cost allocation mechanism that induces all players to truthfully report their

private information.
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Garćıa-Sanz et al. (2008) study these games under the assumption that di = 0 for all

i ∈ N , i.e., they consider a pure service constraint model. They show that this subclass of

games is always concave. Their model is a generalization of the model considered in González

and Herrero (2004), who were motivated by a cost allocation problem arising from sharing

a medical service in the Spanish health system: the players in their problem correspond to

medical procedures. González and Herrero (2004) assume, in addition to di = 0 for all i ∈ N ,

that 1 − αi = 1/e for all i ∈ N , which implies (by the exponentially distributed sojourn

times) that they consider a model with a constraint on the mean sojourn time of an arbitrary

customer.

Garćıa-Sanz et al. (2008) also study an alternative model that allows mixed21 preemptive

priority disciplines. Their motivation is that the first-come first-served discipline is generally

not optimal if the players have specified different sojourn time constraints. To analyze their

alternative model, they assume 1 − αi = 1/e for all i ∈ N (cf. González and Herrero, 2004)

and show that the allocation rule which assigns the total costs in proportion to players’ arrival

rates accomplishes core allocations. They uniquely characterize this rule via several axioms.

One of their axioms says that the rule should be such that artificial splitting or merging of

the players is non-advantageous. This axiom is defined on a domain that we will refer to as

symmetric M/M/1 situations, where each element can be represented as a tuple (N,λ,w),

with all elements as described before. As all players in such a situation have symmetric

sojourn time constraints, the M/M/1 game corresponding to such a situation is described by

c(M) = λM + 1/w for each coalition M ∈ 2N− .

We conclude this section by pointing out a connection with single-attribute games. For

a given sojourn time constraint w > 0, consider the non-decreasing function K̃ : R+ → R+

with K̃(0) = 0 and K̃(`) = ` + 1/w for each ` > 0. Note that K̃ is concave, even affine on

R++, and thus elastic. Any single-attribute game (N, c) embedded in K̃, say via attribute

vector λ, is an M/M/1 game corresponding to symmetric M/M/1 situation (N,λ,w). Hence,

Theorem 2.5 provides an alternative way to show stability of the proportional allocation and

additionally shows that it can be reached through a PMAS.22

3.3.3 Multi-server queueing games

The preceding two subsections showed that most of the research on cooperative queueing

games has been carried out in the context of the M/M/1 model. This model is applicable

when service capacity can be easily consolidated into a single server whose service rate can

be set at arbitrary levels. The M/M/1 model is not appropriate, however, when there are

21A mixed priority discipline consists of multiplexing a finite set of priority disciplines in such a way that

each of them will operate during a desired percentage of time. This makes it possible to further reduce the

required service capacity and to meet specific service constraints.
22Although the population monotonicity result is new, it is nevertheless placed in the literature review

chapter for the same reasons as in Footnote 19.
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multiple servers whose service speeds are given. For settings where additional servers have

to be acquired to increase the service capacity, the M/M/s model or the M/G/s/s model is

more appropriate. The main difference between the M/M/1 and the M/M/s model is that

the latter has possibly more than one server in parallel. Accordingly, the behavior of the

M/M/1 model is fundamentally different from the behavior of the M/M/s model; a detailed

comparison is made in Section 5.2. The M/G/s/s model differs from the M/M/1 model in

two additional ways: it disallows waiting in a queue (e.g., because waiting for service is not

an acceptable option), while it allows general service time distributions.

Many of the real-life examples described in Section 1.2 can be accurately modeled as

Erlang delay or Erlang loss systems, whereas an M/M/1 model would not fit. However,

almost no research has been carried out on games where coalitions operate a queueing system

with possibly more than one parallel server.

Two exceptions are McLean and Sharkey (1993) and Yu et al. (2007). McLean and

Sharkey (1993) consider a multi-channel telecommunication model that contains theM/G/s/s

model as a special case. They describe several cost allocation mechanisms, including the

Shapley value, and illustrate them with numerical examples. However, they do not investigate

analytical properties of the underlying game or stability of allocation rules in general. Yu et al.

(2007), a previous version of Yu et al. (2009), briefly consider a setting in which each coalition

operates an M/M/s queue with an adjustable number of servers. They show balancedness of

a game formulated via heavy traffic limit formulas under the assumption that the number of

servers is chosen via the square-root safety staffing principe (Borst et al., 2004), a close-to-

optimal rule of thumb. However, their results do not apply to settings with non-heavy traffic

and/or settings where the number of servers is optimized according to exact formulas.

3.3.4 Contribution to the literature

Based on the preceding subsections, we conclude that there is a lack of knowledge on structural

properties of games and cost allocations corresponding to resource pooling in multi-server

queueing systems. This is exactly the void that we aim to fill in Chapters 4 and 5, in which

we formulate and analyze Erlang loss games and Erlang delay games, respectively. We study

these settings under both fixed numbers of servers (the analogue of the model by Anily and

Haviv, 2010, as reviewed in Section 3.3.1) and optimized numbers of servers (the analogue of

the model by Yu et al., 2009, as reviewed in Section 3.3.2).

While the research that led to these chapters was carried out, Özen et al. (2011)

independently formulated and analyzed some of these games as well. Specifically, they

use the framework of single-attribute games, which we reviewed in Section 2.3.10, to

study balancedness of various cooperative games arising from optimization of capacity or

optimization of the amount of demand to serve in Erlang loss or delay systems.

Our games with fixed numbers of servers differ from their games because we endow each
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player with two attributes (arrival rate and number of servers), whereas the framework of Özen

et al. (2011) calls for a single attribute per player. Erlang loss games with optimized numbers

of servers, which we analyze in Chapter 4, are also studied by Özen et al. (2011). Under linear

resource costs, they independently derived the same conclusion as we did: the allocation

proportional to players’ arrival rates is stable. We generalize this result, however, by showing

that it remains valid for concave resource costs and for a service constraint formulation.

Erlang delay games with optimized numbers of servers, for which in Chapter 5 we prove that

they are not balanced in general, are disregarded in the analysis of Özen et al. (2011); they

focus on alternative models instead.

3.4 Pooling in queueing and inventory systems

There is a rich literature on resource pooling in queueing and stochastic inventory systems,

under the assumption that the system is owned by a single entity who decides whether or not

to pool. We will only mention a few works and do not aim to give an exhaustive review.

Considering pooling in queueing systems, Smith and Whitt (1981) were the first to

prove that sharing the servers of multiple Erlang loss or Erlang delay systems with identical

service time distributions into an aggregate system is always beneficial. For the Erlang delay

system, Calabrese (1992) found that combining servers into larger groups, while keeping server

utilization constant, leads to reduced congestion, and Benjaafar (1995) provides performance

bounds on the effectiveness of resource pooling. A good survey on the analysis, design, and

control of queueing systems in general appears in Stidham Jr. (2002). In more practically

oriented works, Papier and Thonemann (2008) and De Bruin et al. (2010) use (generalizations

of) Erlang loss models to study merging of rental fleets and hospital wards, respectively.

As for pooling in inventory models, Eppen (1979) was the first to explore the benefits of

pooling inventories in a simple newsvendor model with normally distributed demands. He

shows that pooling leads to a decrease in the required safety stock and that the savings are

higher when demands are negatively correlated. Eppen and Schrage (1981) and Corbett and

Rajaram (2006) generalize some of the results in Eppen (1979) to positive lead times and

arbitrary (non-normal) distributions, respectively.

Inventory pooling has also been considered in infinite-horizon continuous-review inventory

models with Poisson demand processes for spare parts under one-for-one replenishments.

Kukreja et al. (2001) and Wong et al. (2005) study such a model and show that if there

are multiple stock points at one echelon level, it is generally worthwhile to use lateral

transshipments between these stock points in order to reduce costs or increase the service level.

Alfredsson and Verrijdt (1999), Grahovac and Chakravarty (2001), Wong et al. (2006), and

Kranenburg and van Houtum (2009) analyze multi-echelon variants with inventory pooling

via lateral transshipments. Wong et al. (2006) and Paterson et al. (2011) give more extensive

overviews of the literature on pooling in spare parts inventory models.
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All of the above-described papers consider models with a single decision maker, i.e., a

single player who owns all the resources and is responsible for all the demands or customers.

As opposed to this literature, we will consider resource pooling arrangements between

independent service providers, each with their own interests, and explicitly address the issue

of fair cost allocation.



—It’s only after we’ve lost everything that we’re free to do anything.

Tyler Durden

4
Erlang loss games

4.1 Introduction

In this chapter, based on Karsten et al. (2011a) and Karsten et al. (2012), we formulate and

analyze games—called Erlang loss games—wherein an arbitrary number of service providers

face exogenous Poisson streams of customer arrivals for whom waiting is not an option. The

service providers are allowed to collaborate by completely sharing their servers, combining

their individual customer streams into a pooled resource system whose steady-state behavior

is equivalent to that of an Erlang loss system. The main benefit of such resource pooling is a

reduction in the number of blocked customers that find no free server upon arrival (Smith and

Whitt, 1981). As we describe in more detail in Subsection 4.3.1, the Erlang loss model has

applications to a broad range of service systems in practice. In a queueing context, one may

think of clinical departments that pool hospital beds or car rental agencies that pool rental

cars. In an inventory context, one may think of high-tech companies that pool low-demand,

expensive spare parts whose stock-outs are dealt with via emergency procedures.

Costs consist of penalty costs for blocked customers and concave resource costs for servers.

We consider two settings: one where players’ numbers of servers are exogenously given and

one in which every coalition can pick an optimal number of servers. The former setting leads

to a corresponding game with fixed numbers of servers. The latter setting leads to two games:

one based on a cost formulation and the other on a service formulation.23 As we will see,

23These two games correspond to the two main ways to manage the trade-off between resource and penalty

costs, as discussed in Subsection 3.3.2.
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there is no obvious relationship between the (cost-based) games of the two different settings.

Nevertheless, we are able to prove interesting results under the assumption that penalty costs

(or naturally chosen service level constraints) are symmetric. First and foremost, we show

that all three games have a non-empty core. Moreover, when the number of servers may be

optimized, we identify a specific allocation in the core: the division of the total system-wide

costs proportional to the players’ arrival rates.

One important aspect is that the number of servers has to be an integer at all times.

Indeed, resources such as spare parts or service engineers can only be varied in discrete

amounts. Yet, the difference between placing one or two spare parts in a warehouse or between

employing one or two service engineers in a repair shop can be massive, and as a result, the

integrality requirement can be a pivotal obstacle. Not from an optimization perspective—we

can simply choose the integer number of servers that yields minimal costs. But from a game

analysis perspective—when comparing coalitions, it could happen that, say, one spare part is

sufficient for two companies together while two spare parts are needed for three companies.

This discrete number of resources, which may differ across coalitions, results in analytical

complications. Essentially, structural properties such as the stability of a cost allocation

rule come down to inequalities involving the classic Erlang loss function (which represents

the steady-state blocking probability in an Erlang loss system, i.e., the probability that an

arriving customer finds no free server), and while proving such inequalities is challenging

within the confines of integrality, it becomes doable when non-integral numbers of servers are

allowed.

For these technical reasons, we focus on extensions of the Erlang loss function (i.e.,

functions that extend the domain of the Erlang loss function to non-integral numbers of

servers) and derive structural properties of such extensions. In particular, we prove that

several such extensions satisfy a property that we call scalability. Scalability means that the

blocking probability as described by the extension becomes no larger when the offered load a

and the number of servers s are scaled by the same relative amount, even when scaling up from

integral s to non-integral s. Most importantly, we prove scalability of the linear interpolation,

which signifies that the blocking probability in a system with a = 2 and s = 3 is higher than

the blocking probability in a system with a = 3 that uses 4 servers half of the time and 5

servers the other half, assuming steady-state conditions are instantaneously achieved under

both, with zero mixing times. These results may be relevant beyond the context of our

games, as extensions of the Erlang loss function have seen applications in other fields as well.

For example, loss systems with overflow layers come to mind. Indeed, techniques such as

the equivalent random method (Wilkinson, 1956) and Hayward’s approximation (Fredericks,

1980) for performance approximations of such systems also employ extensions of the Erlang

loss function. However, they mainly allow us to prove positive results on balancedness and

stability.

These positive results are valid under symmetric penalty costs. If penalty costs are not
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symmetric and full pooling of all servers is mandated, then the corresponding games are no

longer even guaranteed to be subadditive. The reason for this, as we will show, lies in our

assumption of full pooling: Full pooling under asymmetric penalty costs has two, possibly

conflicting, effects. On the beneficial side, full pooling always reduces the number of customers

that find all servers occupied upon arrival. On the adverse side, full pooling may allow a low-

penalty customer to occupy a server that could have been saved for a high-penalty one. We

disentangle these two effects to provide general conditions for balancedness of Erlang loss

games with fixed numbers of servers. Although the effects of fully pooling customer streams

with different service times into a single Erlang loss system have been well studied (see, e.g.,

Smith and Whitt, 1981; Papier and Thonemann, 2008), to our knowledge the effects of fully

pooling customer streams with different penalty costs have not been investigated before, let

alone in a cooperative framework. At the end of this chapter, we briefly consider partial

pooling approaches in which some servers are held back for more “critical” customer classes.

As it turns out, a game that was not balanced under full pooling may become balanced under

an optimal “partial” pooling policy.

Altogether, the model, results, and analysis we present in this chapter make three primary

contributions. First, we derive several new analytical properties of extensions of the classic

Erlang loss function. Second, we introduce Erlang loss games with fixed numbers of servers

and prove that they are totally balanced if the penalty costs are symmetric among players.

Third, we show that Erlang loss games with optimized numbers of servers lack an obvious

relationship to the ones with fixed numbers of servers, but nevertheless admit a proportional

core allocation if penalty costs are symmetric among players; this holds for both the cost-based

and the service-based variant.

The structure of this chapter is as follows. We start in Section 4.2 by analyzing the

extensions of the Erlang loss function. Then, in Section 4.3, we describe our basic model.

Sections 4.4 and 4.5 focus on the games with fixed and optimized numbers of servers,

respectively. In Section 4.6, we describe a more general model that allows for optimization of

the pooling policy. Finally, we draw conclusions and suggest directions for future research in

Section 4.7.

4.2 Scalability of extensions of the Erlang loss function

In this section, we define the classic Erlang loss function, subsequently introduce three

extensions (including linear interpolation) that extend its domain to non-integral numbers

of servers, and finally show that all three extensions satisfy the scalability property.
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4.2.1 The classic Erlang loss function

The Erlang loss function B̂ : N0 × R++ → [0, 1] is a classic in queueing theory. It was first

published by Erlang (1917) and is defined by

B̂(s, a) =
as/s!∑s
y=0 a

y/y!
for any s ∈ N0 and a ∈ R++. (4.1)

The value B̂(s, a) may be interpreted as the steady-state probability that an arriving customer

finds no free server in an Erlang loss system with s servers and offered load a. Recall that, in

such a system, the service times are i.i.d. according to some general distribution function with

finite and positive mean, say τ , and that customers arrive according to a Poisson process.

The arrival rate will typically be denoted by λ. Given λ and τ , the offered load a is equal to

λτ . Since customers that find no free server upon arrival are often called blocked customers,

B̂(s, a) is also sometimes referred to as the blocking probability.

The Erlang loss function satisfies several useful properties. The following three theorems

collect several properties that will be important in our analysis.

Theorem 4.1. Let s, s′ ∈ N and a, τ, λ, λ′ ∈ R++. Then,

(i) B̂(s, λ/µ) is decreasing and convex in µ for µ on R++.

(ii) D2B̂(s, a) = [B̂(s, a)− 1 + s/a] · B̂(s, a).24

(iii) B̂(s, a) = aB̂(s− 1, a)/[aB̂(s− 1, a) + s].

(iv) If s < s′, then B̂(s, a) > B̂(s′, a).

(v) B̂(s+ s′, (λ+ λ′)τ) · (λ+ λ′) ≤ B̂(s, λτ) · λ+ B̂(s′, λ′τ) · λ′.
(vi) B̂(s, λ̄τ)λ̄ is increasing and convex in λ̄ for λ̄ on R++.

Property (i) corresponds to Proposition 3 in Harel (1990). The partial derivative with

respect to the load, (ii), is due to Theorem 15 in Jagerman (1974). The recursive relation

of property (iii) is well-known; see, e.g., Jagerman (1974, p. 531). Property (iv) is also

well-known; see, e.g., Whitt (2002). The subadditivity property, (v), is due to Theorem 1 in

Smith and Whitt (1981). Finally, property (vi) is due to Krishnan (1990).

Theorem 4.2. For all s ∈ N and a ∈ R++, a[B̂(s, a)]2 − 1− (a− s− 1)B̂(s, a) ≤ 0.25

Proof. Let S ∈ N and a ∈ R++. By Equation (4.1), what we aim to show is that

a

[
aS/S!∑S
y=0 a

y/y!

]2

− 1− (a− S − 1)
aS/S!∑S
y=0 a

y/y!
≤ 0. (4.2)

24The operator D2 represents differentiation with respect to the second argument. We avoid the more

standard notation δ/δa because it may lead to confusion when we swap arguments in a proof later on.
25This theorem was independently derived by Özen et al. (2011): it corresponds to their Inequality (19).

Their proof is by contradiction, whereas our alternative proof is direct.
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Re-arranging, combining all terms into a single fraction, and multiplying both sides of the

resulting inequality with −
(∑S

y=0 a
y/y!

)2
< 0, we obtain that Inequality (4.2) is equivalent

to  S∑
y=0

ay

y!

2

− a ·
(
aS

S!

)2

+ (a− S − 1) ·

 S∑
y=0

ay

y!

 · aS
S!
≥ 0. (4.3)

For all s ∈ N, define

f(s) =

 s∑
y=0

ay

y!

2

− a2s+1

s! · s!
+

s∑
y=0

ay+s · (a− s− 1)

y! · s!
. (4.4)

Notice that Inequality (4.3) corresponds to f(S) ≥ 0. To complete the proof, we show that

f(s) ≥ 0 for all s ∈ N by induction. Firstly,

f(1) = (1 + a)2 − a3 + (a+ a2)(a− 2) = (1 + a)2 − a3 + a2 − 2a+ a3 − 2a2 = 1 ≥ 0.

To avoid empty summations later on, it is convenient to treat the case s = 2 separately:

f(2) =

(
1

2
a2 + a+ 1

)2

− 1

4
a5 +

(
1

4
a4 +

1

2
a3 +

1

2
a2

)
· (a− 3)

=
1

4
a4 + a3 + 2a2 + 2a+ 1− 1

4
a5 +

1

4
a5 +

1

2
a4 +

1

2
a3 − 3

4
a4 − 3

2
a3 − 3

2
a2

=
1

2
a2 + 2a+ 1 ≥ 0.

For the induction step, let s ∈ {3, 4, . . .} and assume that f(s− 1) ≥ 0. Then,

f(s) =

 s∑
y=0

ay

y!

2

− a2s+1

s! · s!
+

s∑
y=0

ay+s · (a− s− 1)

y! · s!

=

 s∑
y=0

ay

y!

2

− a2s+1

s! · s!
+
a2s+1

s! · s!
− a2s · s
s! · s!

− a2s

s! · s!
+

s−1∑
y=0

ay+s · (a− s− 1)

y! · s!

=
a2s

s! · s!
+ 2 ·

s−1∑
y=0

ay+s

y! · s!
+

s−1∑
y=0

ay

y!

2

− a2s · s
s! · s!

− a2s

s! · s!
+

s−1∑
y=0

ay+s · (a− s− 1)

y! · s!

=

s−1∑
y=0

ay

y!

2

− a2s · s
s! · s!

+

s−1∑
y=0

ay+s · (a− s+ 1)

y! · s!

=

s−1∑
y=0

ay

y!

2

+

−as · s
s!

+
s∑

y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s+ 1)

y!

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

s−1∑
y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s+ 1)

y!

 · as
s!
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=

s−1∑
y=0

ay

y!

2

+

s−2∑
y=1

ay

(y − 1)!
+

s−2∑
y=0

ay · (−s+ 1)

y!

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

s−2∑
y=1

ay

y!
· (y − s+ 1)

− s+ 1

 · as
s!

≥

s−1∑
y=0

ay

y!

2

+

s−2∑
y=1

ay

y!
·
(
−s2

y + 1
+ s

)
− s+ 1

 · as
s!

≥

s−1∑
y=0

ay

y!

2

+

s−2∑
y=1

ay

y!
·
(
−s2

y + 1
+ s

)
− s2 + s− s2

a

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

s−2∑
y=0

ay

y!
·
(
−s2

y + 1
+ s

)
− s2

a

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

− as−1 · s
(s− 1)!

−
s−2∑
y=0

ay · s2

(y + 1)!
− s2

a
+

s−2∑
y=0

ay−1 · a · s
y!

+
as−1 · s
(s− 1)!

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

− as−1 · s
(s− 1)!

−
s−1∑
y=1

ay−1 · s2

y!
− s2

a
+

s−1∑
y=0

ay−1 · a · s
y!

 · as
s!

=

s−1∑
y=0

ay

y!

2

+

− as−1 · s
(s− 1)!

+

s−1∑
y=0

ay−1 · (a− s) · s
y!

 · as
s!

=

s−1∑
y=0

ay

y!

2

− a2(s−1)+1

(s− 1)! · (s− 1)!
+

s−1∑
y=0

ay+s−1 · (a− (s− 1)− 1)

y!(s− 1)!

= f(s− 1) ≥ 0.

In the first couple of steps, we split up summations, split off terms from summations, and

cancel out common terms. The first inequality is valid because, for all y ∈ N0, it holds that

s2−2s(y+1)+(y+1)2 = (s− (y+1))2 ≥ 0, and thus y−s+1 ≥ −s2/(y+1)+s. The second

inequality holds because −s+ 1 ≥ −s2 + s ≥ −s2 + s− s2/a, since s > 1. In the final steps,

we rearrange our expression to show that it is equal to f(s− 1), which was non-negative by

the induction hypothesis. Hence, by the principle of mathematical induction we have for all

s ∈ N that f(s) ≥ 0. This completes the proof.

Theorem 4.3. The Erlang loss function is subhomogeneous of degree zero.

Theorem 4.3 is attributed to Paul Burke in the appendix of Smith and Whitt (1981).

Subhomogeneity of degree zero was defined in Section 2.2.2; it means that for any s ∈ N and

a > 0, B̂(ts, ta) is decreasing in t for t ∈ {1/s, 2/s, . . .}. This captures the economies of scale
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in Erlang loss systems: when we increase the offered load a and the number of servers s with

the same relative amount t, the blocking probability always decreases. This scaling occurs,

for instance, when we combine the servers and arrival streams of two Erlang loss systems

with the same a/s value into a single joint system. Note that this is only meaningful when

the scaling factor t is chosen such that the number of servers in the scaled system, ts, is an

integer number. As an example, the blocking probability in a system with a = 2 and s = 3 is

higher than in a system with a = 4 and s = 6.

To prove that various Erlang loss games have a non-empty core, we will frequently use

the notion of balancedness. In doing so, we encounter fractional-valued balanced maps and,

accordingly, we want to be able to construct Erlang loss systems with possibly fractional

numbers of servers. In other words, it will be convenient to be able to scale up to an Erlang

loss system with, say, a = 3 and s = 4.5. But 4.5 is not an admissible number of servers.

Indeed, the Erlang loss function is not defined for non-integral numbers of servers. A seemingly

obvious way to deal with this problem would be to interpret the blocking probability via an

extension, i.e., a function that extends the domain of the Erlang loss function to non-integral

numbers of servers and that coincides with the Erlang loss function whenever the number of

servers is an integer. However, for such an extension to be helpful, it needs to satisfy several

properties, such as scalability or convexity in the number of servers. These properties are not

satisfied by all extensions.

4.2.2 Extensions of the Erlang loss function

As mentioned, we are interested in functions that extend the domain of the Erlang loss

function to non-integral numbers of servers. Formally, we call any function E : R+ ×R++ →
[0, 1] an extension of the Erlang loss function (or extension for short) if E(s, a) = B̂(s, a) for

all s ∈ N0 and a ∈ R++. We next introduce three different extensions; all are depicted in

Figure 4.1.

First, the continuous extension B : R+ × R++ → [0, 1] is defined by

B(s, a) =

(
a

∫ ∞
0

e−ax(1 + x)sdx

)−1

for all s ∈ R+ and a ∈ R++. (4.5)

This function, which is related to the Erlang loss function via the Gamma function, is indeed

an extension (Jagerman, 1974). It is one of the most commonly used extensions in the

literature (Fredericks, 1980).

The extension B satisfies several useful properties. First, as shown by Jagers and van

Doorn (1986), it is convex in the number of servers.

Theorem 4.4. For each fixed a > 0, B(s, a) is a convex function of s for s on R+.

As stated in the next theorem, B is subhomogeneous of degree zero, which may be viewed

as a generalization of Theorem 4.3. The proof of this theorem is based on an argument in the
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Figure 4.1: The extensions X(s, a) (dashed), L(s, a) (middle), and B̂(s, a) (thick) for a = 1 fixed.

appendix of Smith and Whitt (1981), simultaneously taking out some of their inaccuracies

w.r.t. strictness of inequalities.

Theorem 4.5. The extension B is subhomogeneous of degree zero. More specifically, for any

a ∈ R++ and s ∈ R+, the following holds: if s > 0, then B(ts, ta) is decreasing in t for t on

R++; if s = 0, then B(ts, ta) = 1 for each t > 0.

Proof. Let a > 0. First, let s ∈ (0,∞). By letting w = tax in Equation (4.5), we obtain for

any t > 0 that

B(ts, ta) =

(
ta

∫ ∞
0

e−tax(1 + x)tsdx

)−1

=

(∫ ∞
0

e−w
(

1 +
w

ta

)ts
dw

)−1

. (4.6)

For w > 0 and t > 0, it holds that

d

dt

(
1 +

w

ta

)ts
=

d

dt
ets·ln(1+w/(ta))

= ets·ln(1+w/(ta)) ·
[
s ln

(
1 +

w

ta

)
+ ts · 1

1 + w/(ta)
· −w
t2a

]
=
(

1 +
w

ta

)ts
· s ·

[
ln
(

1 +
w

ta

)
− w

ta+ w

]
> 0,

where the inequality is valid because, for all h > 0,

ln(1 + h) =

∫ 1+h

1

1

k
dk =

∫ h

0

1

1 + k
dk >

∫ h

0

1

1 + h
dk =

h

1 + h
.
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We conclude that for t on R++, the integral in Equation (4.6) is increasing in t, which implies

that B(ts, ta) is decreasing in t.

Next, let s = 0. Then, for any t > 0, it holds that B(ts, ta) = B(0, ta) = B̂(0, ta) = 1

since B is an extension.

Another extension is obtained by using linear interpolation (cf. Kortanek et al., 1981). To

be more precise, this piecewise linear function L : R+ × R++ → [0, 1] is defined by

L(s, a) = (1− (s−bsc)) · B̂(bsc, a) + (s−bsc) · B̂(dse, a) for all s ∈ R+ and a ∈ R++ (4.7)

where dse denotes the smallest integer larger than or equal to s, and bsc denotes the largest

integer smaller than or equal to s. By virtue of being a linear interpolation, this function is

obviously an extension of the Erlang loss function.

The question of whether or not an extension satisfies various properties is particularly

interesting for the linear interpolation L, as this interpolation represents a long-run blocking

probability that is actually achievable by “mixing” between two consecutive integer numbers

of servers. That is, operating under each of those two numbers of servers during a desired

percentage of time. This “mixing” (cf. van Houtum and Zijm, 2000) sometimes occurs in

practice to meet a service constraint exactly. The scalability of L is investigated in the next

subsection.

Finally, we introduce a new extension of the Erlang loss function X : R+ × R++ → [0, 1],

which is defined by

X(s, a) =

{
B̂(bsc, a · bsc/s) if s ≥ 1 and a ∈ R++;

1 if s ∈ [0, 1) and a ∈ R++.
(4.8)

This function is not continuous, but it is clearly an extension by definition. We use this

extension to prove scalability of L in the next section. As illustrated in Figure 4.2, for any

s ∈ R+ and a ∈ R++, it holds that X(ts, ta) as a function of t is stepwise constant and

non-increasing for t on R++; indeed, if s > 0, then for t between two successive values

t− ∈ {1/s, 2/s, . . .} and t+ = t− + 1/s, X(ts, ta) equals B̂(st−, at−). Accordingly, it is easy

to prove that X satisfies subhomogeneity of degree zero.

Theorem 4.6. The extension X is subhomogeneous of degree zero.

Proof. Let s ∈ R+, a ∈ R++, and t > 1. If s ∈ [0, 1), then X(s, a) = 1 ≥ X(ts, ta). Otherwise,

if s ≥ 1, then X(s, a) = B̂(bsc, a ·bsc/s) ≥ B̂(btsc, a ·btsc/s) = X(ts, ta), where the inequality

holds by Theorem 4.3.

4.2.3 Scalability of the linear interpolation

In this subsection, we aim to show that the linear interpolation L satisfies the scalability

property. This property will prove instrumental in analyzing Erlang loss games later on. We

start by defining it formally.
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Figure 4.2: For s = 2 and a = 1 fixed, the extensions X(ts, ta) (dashed), L(ts, ta) (middle), and

B̂(ts, ta) (thick) as functions of t.

Definition 4.1. An extension E is said to be scalable if, for each s ∈ N0 and a ∈ R++,

E(ts, ta) ≤ E(s, a) for all t ∈ (1,∞) and E(ts, ta) ≥ E(s, a) for all t ∈ (0, 1).

In words, scalability means that if we take an Erlang loss system with an integer number

of servers as our starting point, an increase (resp. decrease) of the offered load and the number

of servers with the same relative amount will result in a blocking probability that is no larger

(resp. no smaller) than before. If this scaling would result in a system with a nonintegral

number of servers, then the blocking probability is described by the extension.

Not every extension is scalable. A sufficient condition for scalability of an extension E is

subhomogeneity of degree zero. (This goes beyond scalability by additionally comparing two

systems that both have a real number of servers.) So, scalability of the extensions B and X

follow as straightforward corollaries to Theorems 4.5 and 4.6, respectively.

To prove scalability of L, it will be convenient to show that the graph of L never dips

below the graph of B and never jumps above the graph of X, as illustrated in Figures 4.1

and 4.2. The next theorem tackles the first of these two properties.

Theorem 4.7. B(s, a) ≤ L(s, a) for all s ∈ R+ and a ∈ R++.

Proof. Let a ∈ R++. Since, by Theorem 4.4, B(s, a) as a function of s is convex for s on R+,

whereas L(s, a) linearly interpolates between points on the graph of B̂(s, a) at which B̂(s, a) =

B(s, a), the desired inequality follows immediately from the definition of convexity.

In the process of proving that the graph of L always lies at or below the graph of X, we

will present two lemmas that consider X and L as a function of the number of servers on a
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domain restricted to an interval between two consecutive integers. To describe this formally,

it will be convenient to introduce two restricted functions: for any fixed r = (S, a) ∈ N×R++,

we define the functions Lr and Xr, both mapping [S, S + 1) to [0, 1], by Lr(s) = L(s, a) and

Xr(s) = X(s, a) for all s ∈ [S, S + 1). So, these functions are described on their domain by

Xr(s) = B̂(S, aS/s); (4.9)

Lr(s) = (1 + S − s) · B̂(S, a) + (s− S) · B̂(S + 1, a). (4.10)

Figure 4.1 on page 62 provides an illustration: there, the graph of X(1,1) corresponds to the

dashed curve on [1, 2) and the graph of L(1,1) corresponds to the middle curve on [1, 2). So,

Xr and Lr allow us to consider the functions X and L when the number of servers may only

vary between two consecutive integers S and S + 1. The following lemma states two useful

properties of X.

Lemma 4.8. Let r = (S, a) ∈ N × R++. Then Xr is decreasing and convex on its domain

[S, S + 1).

Proof. By Part (i) in Theorem 4.1, it holds for each fixed ŝ ∈ N and λ ∈ R++ that B̂(ŝ, λ/µ)

is decreasing and convex in µ for µ ∈ [S, S + 1). By substituting ŝ = S, λ = aS, and µ = s,

we conclude that Xr(s) = B̂(S, aS/s) is decreasing and convex in s on [S, S + 1).

In contrast to X and L, the functions Xr and Lr are differentiable, which allows us to

compare their derivatives, evaluated at S, in the following lemma.

Lemma 4.9. Let r = (S, a) ∈ N× R++. Then L′r(S) ≤ X ′r(S).

Proof. First of all, the derivative of Lr for any s ∈ [S, S + 1) is

L′r(s) = B̂(S + 1, a)− B̂(S, a). (4.11)

To obtain the derivative of Xr, we combine Part (ii) of Theorem 4.1 with Equation (4.9) to

derive that for any s ∈ [S, S + 1),

X ′r(s) = [B̂(S, aS/s)− 1 + S/(aS/s)] · B̂(S, aS/s) ·
(
−aS/s2

)
= [B̂(S, aS/s)− 1 + s/a] · B̂(S, aS/s) ·

(
−aS/s2

)
. (4.12)

For notational ease, let B = B̂(S, a). Evaluating the derivatives (4.11) and (4.12) at s = S,
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we obtain

L′r(S)−X ′r(S) = B̂(S + 1, a)−B−
[
B− 1 +

S

a

]
·B · −a

S

=
aB

aB + S + 1
−B−

[
B− 1 +

S

a

]
·B · −a

S

= B ·
[

a

aB + S + 1
+ (B− 1) · a

S

]
=

aB

S(aB + S + 1)
·
[
S + (B− 1) · (aB + S + 1)

]
=

aB

S(aB + S + 1)
·
[
aB2 − 1− (a− S − 1)B

]
≤ 0.

The second equality holds by Part (iii) of Theorem 4.1. The other equalities hold by rewriting.

The inequality holds because B > 0, a > 0, S(aB + S + 1) > 0, and aB2 − 1 − (a − S −
1)B ≤ 0, where the last-mentioned inequality holds by Theorem 4.2. We conclude that

L′r(S) ≤ X ′r(S).

We use these lemmas to prove that the graph of L never jumps above the graph of X.

Theorem 4.10. X(s, a) ≥ L(s, a) for all s ∈ R+ and a ∈ R++.

Proof. Let s ∈ R+ and a ∈ R++. We distinguish two cases.

Case 1: s < 1. Then, by definition X(s, a) = 1, whereas L(s, a) ≤ 1.

Case 2: s ≥ 1. Then, we denote S = bsc and consider the functions X(S,a) and L(S,a),

which are described on their domain [S, S + 1) by Equations (4.9) and (4.10). First of all,

observe that X(S,a)(S) = L(S,a)(S) since both X and L are extensions of the Erlang loss

function. Secondly, by Lemma 4.9, we observe that the derivative of L(S,a) at S does not

exceed the derivative of X(S,a) at S. Thirdly, X(S,a) is convex by Lemma 4.8, whereas L(S,a)

is by definition a linear function, which (together with the second observation) implies that

X ′(S,a) ≥ L
′
(S,a) on [S, S+ 1). Combining these three observations yields X(S,a)(s) ≥ L(S,a)(s).

We conclude that X(s, a) ≥ L(s, a).

With the various theorems derived so far, we can now prove the following theorem.

Theorem 4.11. The extension L is scalable.

Proof. Let s ∈ N0 and a ∈ R++. For any t ∈ (1,∞), we find that

L(ts, ta) ≤ X(ts, ta) ≤ X(s, a) = L(s, a),

where the first inequality holds by Theorem 4.10, the second inequality holds by Theorem 4.6,

and the equality holds because both X and L are extensions. Analogously, for any t ∈ (0, 1),

we find that

L(ts, ta) ≥ B(ts, ta) ≥ B(s, a) = L(s, a),
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where the first inequality holds by Theorem 4.7, the second inequality holds by Theorem 4.5,

and the equality holds because both B and L are extensions. Hence, L is scalable.

We remark that it remains an open question whether or not L satisfies the stronger

property of subhomogeneity of degree zero. We have not been able to find a counterexample,

but at the same time our proof approach for Theorem 4.11 is not readily adaptable for

subhomogeneity of degree zero. Nevertheless, scalability is sufficient for the purpose of proving

results in Section 4.5.

4.3 Model description

In this section, we introduce our model for sharing an Erlang loss system between a number of

players. In Section 4.3.1, we start with an preliminary model which features a simplified cost

structure—kept simple to allow illustration of the modeling approach with simple examples.

In Section 4.3.2, we describe the final model which features a more general cost structure.

4.3.1 The basic setup

Consider a number of players who require certain costly servers for their customer populations.

Let N denote the set of players. Each player’s customers arrive according to mutually

independent Poisson processes, with rate λi > 0 for player i. Service times (for an arbitrary

customer of any player) are i.i.d. according to some general distribution function with finite,

positive mean τ . Each newly arriving customer immediately goes into service if there is an

unoccupied server available. Conversely, if that customer finds no free server, he is lost and

penalty costs p > 0 have to be paid. Besides these penalty costs, there are resource costs for

servers: h > 0 per server per unit of time. We assume throughout that players are interested

in their long-term average costs per time unit.

Any coalition M may collaborate by operating an Erlang loss system that serves the

union of the arrival streams of players in M . Since the superposition of independent Poisson

processes is also a Poisson process, the Erlang loss system operated by this coalition faces

a Poisson arrival process with merged rate λM =
∑

i∈M λi. The shared servers are able to

handle all types of customers with equal ease, and all customers can effortlessly access the

joint service facility. By Part (v) of Theorem 4.1, if the total number of servers remains

unchanged when pooling, then such cooperation always leads to a reduction in the expected

costs per unit time.

To derive an expression for the long-run average costs per unit time faced by any coalition

M , we first need to know how many servers will be used in total. Let us suppose, for the time

being, that this coalition uses s ∈ N0 servers. We will return later to the question of where

this number s comes from. Given s, coalition M faces holding costs of hs per unit time and,

by PASTA (as explained in Section 2.4.5), expected penalty costs of λMp per unit time when
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Servers Players Customers Service time Penalty costs Res. costs

Hospital Clinical Patients Length of stay Diversion cost to Costs of

beds departments other hospital or a bed

in hospital government fines

Call center Call centers Callers Call duration Goodwill loss Salary cost

agents when caller

gets busy signal

Rental cars Rental car Drivers Rental period Revenue loss due Capital and

agencies to inability of maintenance

renting out a car costs

Spare parts Spare parts Failures Repair / order Emergency Inventory

stock points lead time procedure costs holding costs

Fire trucks or Townships Fires Time required Damage while Capital and

helicopters or chemical to extinguish fire truck arrives maintenance

factories a fire from elsewhere costs

Repairmen Manufacturing Repair Repair lead Contractual Salary

departments requests time penalties cost

Table 4.1: Motivating examples.

the system is in the state where all servers are occupied, which occurs with a steady-state

probability of B̂(s, λMτ). Accordingly, the expected costs per unit time in steady state for

coalition M are given by KM (s) = hs+ B̂(s, λMτ) · λMp.
Now that we have a general expression for these costs under an arbitrary integer number

of servers s, we turn to the origin of s. In practice, two different arrangements may occur:

fixed and optimized numbers of servers. These two settings will lead to two different games.

In the game with fixed numbers of servers, which will be analyzed in Section 4.4, each

player i ∈ N owns a predetermined number of servers, denoted by Si, and any coalition

M uses
∑

i∈M Si servers. This leads to costs KM (
∑

i∈M Si). In the game with optimized

numbers of servers, which will be analyzed in Section 4.5, any group of players—including

singletons—may benefit by (re-)optimizing the number of servers in their joint system. This

leads to costs mins∈N0 KM (s) for any coalition M . We will briefly treat an alternative service

constraint formulation in Section 4.5.4. For clarity, however, we focus solely on the cost-based

formulation in the current section.

A broad range of stochastic systems behave as Erlang loss systems. Emergency medical

service providers (Restrepo et al., 2009), hospital wards (De Bruin et al., 2010), call centers

(Gans et al., 2003), rental agencies (Papier and Thonemann, 2008), spare parts inventory

systems (Kranenburg, 2006), or fire departments (Chiu and Larson, 1985) come to mind. In
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Table 4.1, we phrase several real-life applications in the terminology of the model framework.

We next provide two extensive examples that illustrate in more detail how real-life settings

fit into this modeling framework. The two examples illustrate two different application

domains. The first example deals with the inventory setting of pooling of repairable spare

parts, reminiscent of Example 1.1 from the introduction. The second example deals with

the queueing setting of pooling of service technicians, reminiscent of Example 1.2 from the

introduction. These examples serve to justify the combination of our modeling assumptions

for these specific settings and to illustrate the difference between the settings with fixed and

optimized numbers of servers.

Example 4.1. Consider three air carrier companies: Company A, located in Amsterdam;

Company B, located in Brussels; and Company E, located in Eindhoven. Each company owns

a large fleet of airplanes, all of the same model type. Each aircraft consists of a number of

components that are subject to failures. We only consider one such component: a gearbox

for an airplane’s auxiliary power unit. For each company, failures of this component occur

according to a Poisson process.26 Based on historical data, A expects 4 failures per year,

B expects 4 failures per year, and E expects 8 failures per year. The companies are not

competitors to each other as they serve different geographical regions; hence, their failure

processes are independent.

An aircraft with a failed gearbox has to be grounded due to safety regulations.27 It is

difficult to attach a monetary cost to this, but a reasonable estimate is that a grounded

aircraft costs 500,000 euro per day. As all companies operate in the same industry, this

downtime cost is the same for all of them. To avoid this downtime cost, each company can

stock a number of spare gearboxes that can be used to replace failed gearboxes. Currently, the

companies operate separate stockpoints. Company A owns 1 spare gearbox, Company B owns

0 gearboxes, and Company E owns 1 spare gearbox. Spare gearboxes are quite expensive.

Holding costs, which mainly reflect the opportunity cost of capital tied up in stock that could

have been used for another purpose, are incurred at a rate of 10,000 euro per spare gearbox

per year. These costs are incurred when spares are in the on-hand inventory as well as when

they are in repair.

Gearboxes are repairable.28 The so-called Fix-It Corporation has a repair facility that

26A failure doesn’t mean that an airplane crashes as a result—it just means that, during engineering

inspection, the condition of the component was not in accordance with safety norms, in which case the

component is termed “failed”.
27We remark that when an airplane is grounded, no failures occur. However, the fraction of time during

which an airplane is down is negligible since failure rates are low and, due to the use of emergency procedures,

downtimes are never long. Additionally, the work for a grounded airplane may be taken over by a functional

airplane (albeit while incurring the penalty costs due to the inconvenience). This implies that the total

component failure rate remains close to constant.
28The assumption that a failed part can always be repaired is not critical: our model is also applicable for

spare parts under condemnation in case one immediately procures a new part if a failed part appears to be
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specializes in repairs of this gearbox. Therefore, all three companies have a standard contract

with the Fix-It Corporation. This standard contract stipulates a fixed repair lead time of 3

months for any gearbox. Hence, repair lead times are i.i.d. for all players. Since the costs to

send a shipment of parts to the Fix-It Corporation are small relative to the price of the part,

there is no point in waiting to send a batch: Company A, B, and E always immediately send

any failed gearbox to the Fix-It Corporation. Failed gearboxes that complete their repair are

added back to the stock of spares.

If a demand for a spare gearbox cannot be immediately fulfilled from stock, an emergency

procedure is instigated: a spare part is leased for the duration of the repair time from the

Lease-It Corporation, an exogenous infinite supplier that always has gearboxes available.29

It takes one day for such a leased part to arrive, during which a plane is grounded at a cost

of 500,000 euro. Additionally, there are direct costs for the emergency shipment and the

lease, which total 20,000 euro. So, the total costs incurred for such a stock-out are 520,000

euro. The probability that another part completes its repair and returns to the stock point

before the arrival of the leased part is small, and we disregard it. The component that was

responsible for this emergency procedure is still sent to the Fix-It Corporation for repair.

When it completes repair, it is used to replace the leased part, and the leased part is sent

back to the Lease-It Corporation. Therefore, a demand during a stock-out may be considered

as a lost sale, and the inventory position for company A (resp. B and E) remains at a constant

level: the base stock level 1 (resp. 0 and 1). These given base stock levels need not be optimal.

It follows that the stochastic process for the number of spare parts on hand is identical

to the process for the number of free servers in an Erlang loss system. We can represent this

situation in our model by letting N = {A,B,E}, SA = 1, SB = 0, SE = 1, λA = 4, λB = 4,

λE = 8, τ = 0.25, h = 10, and p = 520, where we measure time in years and money in

thousands of euros.

To avoid downtimes that occur when, e.g., a plane is down at Company A at a point in time

when Company B has at least one part on hand, the three companies consider cooperating by

fully pooling their spare parts inventories. That is, they consider setting up a single, jointly

operated stock point (the “pool”) near Breda where they will store their shared spare parts.

This pool would face a total demand rate of λ{A,B,E} = 16.

This setup will lead to some additional transportation time of about 1-2 hours to ship

a part from Breda to either Amsterdam, Brussels, or Eindhoven. This, however, does not

pose a problem: gearboxes are heavy components, so substantial time is often needed to

remove a failed gearbox and to prepare the airplane to receive the spare part. During this

unrepairable, and, similarly, for consumable spare parts in case one-for-one procurements are applied.
29Such an arrangement is common in the airline industry when hourly downtime costs are very high (Wong

et al., 2006) and it is in line with the assumptions made in Alfredsson and Verrijdt (1999) and Kranenburg

and van Houtum (2009). Our model is also applicable if, instead of having an exogenous infinite supplier, the

Fix-It Corporation would offer an expedited one-day repair at an additional charge of 20,000 euro.
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time, the transshipment can take place. So, the additional transportation time does not

lead to additional downtime, and thus we can neglect it. We also neglect any additional

transportation costs, as these are small relative to the holding and downtime costs.

We now turn to the question of what the base stock level for the pool will be. As

mentioned, before considering collaboration, Company A (resp. B and E) owns 1 (resp. 0

and 1) spare gearbox. After collaboration, the pool either takes over this entire stock of

repairable parts in full, leaving the total base stock level of 2 unchanged (the case with

fixed numbers of servers), or the pool picks a cost-minimizing base stock level (the case with

optimized numbers of servers).

The assumption of fixed base stock levels might apply when, e.g., the airplanes were

accompanied by a set of repairable gearboxes upon purchase, which cannot be easily produced

or sold afterwards due to their specificity. Although players might reduce their inventory

position by not repairing a failed part, this decision would not strongly affect interest costs

on the initial capital investment (i.e., would not lead to a strong decrease in holding costs);

hence, we disregard this possibility. Stock levels might also be unadjustable if governmental

safety regulations specify a fixed base stock level.

The assumption of optimized base stock levels is appropriate when, e.g., the given stocks

of players can be easily adjusted. This may happen if spare parts are still in production

and/or if there is still a market to sell the parts. Stock levels would also be adjustable if the

initial stocking levels of spare parts would not have been determined yet before considering

pooling. 3

Example 4.2. Consider a manufacturer of advanced office equipment such as 3D printers

and computer mainframes, who offers service contracts for repairs to customers that purchase

a new product. Any such service contract stipulates that, in case of a failure, a repairman

must be immediately available. If the manufacturer cannot immediately send in a repairman,

then the repair is taken over by a separate repair organization. Irrespective of equipment

category, this outside repair comes at a cost of 3000 euro to the manufacturer. Each of the

equipment categories is managed by a separate department. The departments have separate,

limited budgets and can decide for themselves whether or not they wish to run their service

operations separately or pool repairmen with other departments.

Let us consider three departments, named 1, 2, and 3. For each of them, requests for repair

occur according to a Poisson process. Department 1 estimates that it faces 0.1 requests per

day, Departments 2 estimates that it faces 0.1 requests per day, and Department 3 estimates

that it faces 0.8 requests per day. Since these requests originate from failures of different

equipment, the Poisson processes are independent. The time required by any repairman to

solve a problem is the same for each equipment categories, but it is highly variable. The

mean total time to fully execute a repair, including travel time to the customer and back, is

equal to 8 hours. We assume that there are 20 working days per month and that a working

day consists of 8 hours. Equipment failures only occur during those hours because the office
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equipment is not used during weekends or evenings.

Currently, the three departments run their service operations independently. Department

1 employs 1 repairman, Department 2 employs 1 repairman, and Department 3 employs 3

repairmen. The salary of a repairman, including benefits, is 4000 euro per month. We can

represent this situation in our model by letting N = {1, 2, 3}, S1 = 1, S2 = 1, S3 = 3,

λ1 = 0.1, λ2 = 0.1, λ3 = 0.8, τ = 1, h = 4000/20 = 200, and p = 3000, where we measure

time in working days and money in euros.

The three departments consider cooperating by fully pooling their repairmen. This pool

would face a total repair request rate of λ{1,2,3} = 1. Additional training may be needed to

give the repairmen the knowledge to repair all types of products. This will come with some

fixed costs. However, these costs are transient and negligible in the long run.

We now turn to the issue of how many repairmen the three departments will employ. As

mentioned, before considering collaboration, Department 1 (resp. 2 and 3) employs 1 (resp. 1

and 3) repairmen. After collaboration, the pool either employs the 5 repairmen in total (the

case with a fixed number of servers), or the pool picks a cost-minimizing number of repairmen

(the case with an optimized number of servers).

The assumption of a fixed number of servers is appropriate when, e.g., repairmen cannot

be easily hired or fired. The number might also be unadjustable if the departments do not

want to enter a deep, long-term integration with a jointly optimized workforce right from the

start, but rather prefer to build trust by starting with a short-term trial in which only their

current employees are pooled.

The assumption of an optimized number of servers is appropriate when, e.g., repairmen can

be easily hired or fired. If adjustment of the number of servers is allowed, then a natural trade-

off arises between resource costs and penalty costs. Accordingly, the associated cooperative

game will require a substantially different analysis than the game with fixed resource levels. 3

4.3.2 Erlang loss situations

We now formally describe all input parameters of the situation described in the preceding

subsection, while simultaneously generalizing the cost structure. After providing the

definition, we discuss the modeling choices related to this generalization.

Definition 4.2. An Erlang loss situation is a tuple (N,S, λ, τ,H, p), where

• N is the non-empty, finite set of players;

• S ∈ NN0 is the vector of numbers of servers, where Si describes the number of servers

possessed a priori by player i ∈ N ;30

30For the game with optimized numbers of servers, S is in fact superfluous in the tuple, but we leave it in

for consistency and to allow formal comparisons between the two games.
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• λ ∈ RN++ is the vector of arrival rates, where λi describes the rate of the Poisson process

generating arrivals of customers that belong to player i ∈ N ;

• τ ∈ R++ is the mean service time for an arbitrary customer of any player;

• H : N0 → R+ is a concave, non-decreasing function with H(0) = 0 specifying that the

resource costs for holding s servers are H(s) per unit time;

• p ∈ RN++ is the vector of penalty costs, where pi describes the expected penalty costs

that are incurred whenever a customer of player i ∈ N is blocked.

For notational ease, we write SM =
∑

i∈M Si and λM =
∑

i∈M λi for any coalition M ∈ 2N− .

Note that we now allow for concave resource costs. Concavity represents additional

economies of scale that may be exploited by acquiring and maintaining resources collabo-

ratively. Linear costs are an important special case. For clarity, all examples in this chapter

will feature linear resource costs. For notational convenience, we call any Erlang loss situation

(N,S, λ, τ,H, p) a linear Erlang loss situation if there exists an h ∈ R+ such that H(s) = hs

for all s ∈ N0, and we will represent such a situation directly via the tuple (N,S, λ, τ, h, p).

Having the same concave resource cost function H for every coalition is not the only way

to capture synergy due to pooling. We could also have introduced linear resource cost rates

(hM )M∈2N−
that may differ across coalitions such that the resource cost rate does not increase

as a coalition grows. In fact, we do exactly this in Chapter 5; it is an alternative way to model

economies of scale in resource costs. This alternative formulation captures the ability of larger

coalitions to acquire and maintain servers at a reduced cost rate because more players gives

stronger negotiation or buying power. The concave formulation, in contrast, captures the

ability of any coalition to acquire and maintain servers at a reduced cost rate because a larger

total number of servers are bought or maintained simultaneously. Including both perspectives

in the same model would lead to a muddled formulation. We choose to focus on the concave,

yet symmetric cost function H in this chapter because it permits interesting analysis from a

game theoretical perspective.

For our analysis, it will be convenient to extend the domain of the resource cost function

H to all nonnegative reals by a linear interpolation: we let H lin denote the function H lin :

R+ → R+ defined by

H lin(s) = (1− (s− bsc)) ·H(bsc) + (s− bsc) ·H(dse) for all s ∈ R+.

Note that because H is a concave non-negative function, the same holds for its linear

interpolation H lin.

We next discuss the generalization from symmetric penalty costs to asymmetric penalty

costs. This asymmetry allows us to capture the difference in downtime costs or monetary

compensations for blocked customers across the various customer streams. At the same time,



74 Chapter 4. Erlang loss games

it raises the question of which pooling policy is followed. While it is well-known that full

pooling (i.e., each arriving customer is always admitted if there is a free server available and

only denied when there is no free server) is the optimal policy if penalty costs are symmetric,

a partial pooling policy in which some servers are held back for more “critical” customer

classes may be better if penalty costs are asymmetric. We assume full pooling in Sections 4.4

and 4.5, and we consider partial pooling in Section 4.6.

Full pooling is a simple policy that is easy to operationalize in practice. Indeed, partial

pooling can be more difficult to implement because saying “no” to an arriving customer when

he can see that there is still a free server available could make that customer very upset.

Furthermore, full pooling leads to a tractable model in which the blocking probability for any

customer class is described by the Erlang loss function. We also remark that the assumption

of full pooling is common in the spare parts literature (see, for example, Paterson et al., 2011).

4.4 Fixed numbers of servers

In this section, we analyze the setting with fixed numbers of servers. We first define the

characteristic cost function and consider concavity in Subsection 4.4.1. Subsequently, we break

down the effects of full pooling under asymmetric penalty costs into two separate, possibly

conflicting, forces in Subsection 4.4.2. Specifically, we show that full pooling always reduces

the expected number of blocked customers per unit time, but that it may increase the expected

penalty costs of an arbitrary blocked customer. We disentangle these two effects to provide

sufficient conditions for balancedness. In Subsection 4.4.3, we prove that symmetric penalty

costs always leads to a balanced game. Finally, in Subsection 4.4.4, we show population

monotonicity of a simple allocation scheme.

4.4.1 Game

We start by formulating our game.

Definition 4.3. For any Erlang loss situation ϕ = (N, S, λ, τ, H, p), the game (N, cϕ) with

characteristic costs

cϕ(M) = H(SM ) +B(SM , λMτ) ·
∑

i∈M λipi (4.13)

for all M ∈ 2N− is called the associated Erlang loss game with fixed numbers of servers.

First and foremost, we are interested in the existence of a stable cost allocation for this

class of games. If Erlang loss games with fixed numbers of servers would always be concave,

then this existence would have been guaranteed. The following example, however, shows that

such games need not be concave, even if cost parameters are symmetric.

Example 4.3. Reconsider the air carrier companies from Example 4.1 and suppose that

base stock levels are fixed. This results in the 3-player linear Erlang loss situation ϕ =
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Coalition M SM λMτ B̂(SM , λMτ) cϕ(M)

{A} 1 1 1
2 1050

{B} 0 1 1 2080

{E} 1 2 2
3 27831

3

{A,B} 1 2 2
3 27831

3

{A,E} 2 3 9
17 3323 9

17

{B,E} 1 3 3
4 4690

{A,B,E} 2 4 8
13 5140

Table 4.2: The games and parameter values of Example 4.3.

(N,S, λ, τ, h, p) with N = {A,B,E}, SA = 1, SB = 0, SE = 1, λA = 4, λB = 4, λE = 8,

pi = 520 for all i ∈ N , τ = 0.25, and h = 10. The associated Erlang loss game with fixed

numbers of servers is described in Table 4.2.

This game is balanced: for example, the allocation x that assigns xA = 700, xB = 2000,

xC = 2440 is a core element. The nucleolus, equal to (64228
51 , 1948 4

17 , 254911
51), is also in the

core. In fact, the game is totally balanced.31

However, it is not concave as, e.g., c({1, 3}) − c({1}) = 2273 9
17 < 23562

3 = c({1, 2, 3}) −
c({1, 2}). In other words, a player’s marginal cost contribution may increase if he joins a

larger coalition. 3

4.4.2 Beneficial and adverse pooling effects

In this subsection, we consider the performance of full pooling arrangements in terms of the

expected number of blocked customers per unit time and the expected costs of an arbitrary

blocked customer. We are interested in the effects of establishing the full pooling arrangement

of the grand coalition, compared to a balanced combination of full pooling arrangements

between smaller coalitions. With “balanced combination” we mean a combination in which

coalitions are assigned relative weights according to a balanced map. Balanced maps were

introduced in Section 2.3.5.

To formally describe the two effects of full pooling, which may be conflicting when penalty

costs are asymmetric, we introduce the following notation for any Erlang loss situation ϕ =

(N,S, λ, τ,H, p). For a coalition M ∈ 2N− , the expected number of blocked customers per unit

31Total balancedness implies that the game—or equivalently and more conveniently, its cost savings game

(N, vϕ), with vϕ(M) =
∑
i∈M cϕ({i}) − cϕ(M) for all M ∈ 2N−—is a linear production game (Owen, 1975)

associated with its direct linear production situation (as described in, e.g., Borm et al., 2001, Theorem 6.2).

Owen (1975) offers a set of resulting stable allocations, but unfortunately they exhaust the core (Borm et al.,

2001, Proposition 6.3). So, this connection with linear production games is interesting, but does not directly

aid in selecting a core allocation.
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time is

Uϕ(M) = B̂(SM , λMτ) · λM . (4.14)

For a balanced map κ ∈ WN , the weighted number of blocked customers per unit time is

Wϕ
U (κ) =

∑
M∈2N−

κ(M) · Uϕ(M). (4.15)

Here, Wϕ
U (κ) describes the weighted average of the number of blocked customers per unit time

for a number of sub-coalitions combined, where each sub-coalition is weighted according to κ.

We will later compare such values to Uϕ(N), which will help our understanding of whether

full pooling among all players is better or worse than full pooling among smaller coalitions.

Next, for a coalition M ∈ 2N− , the expected penalty costs of an arbitrary blocked customer

are

Eϕ(M) =
∑

i∈M λipi/λM . (4.16)

For a balanced map κ ∈ WN , the weighted penalty costs of an arbitrary blocked customer are

Wϕ
E (κ) =

∑
M∈2N−

κ(M) · Uϕ(M)Eϕ(M)∑
M∈2N−

κ(M) · Uϕ(M)
. (4.17)

To grasp the meaning of Wϕ
E (κ), consider a balanced combination of pooling arrangements

between sub-coalitions, specified by κ. For such an arrangement, the total penalty costs

incurred over an infinite horizon, divided by the total number of blocked customers over that

horizon, is equal to Wϕ
E (κ).

Now, the effects of establishing the full pooling arrangement of the grand coalition are

twofold:

Effect 1: Full pooling changes the weighted number of blocked customers per unit time.

Effect 2: Full pooling changes the weighted costs of an arbitrary blocked customer.

Effect 1 is always beneficial, i.e., it leads to less frequent blocking, as we will show in Lemma

4.12. Effect 2 may be beneficial or adverse, depending on the underlying parameters of the

players. as we will show in Example 4.4.

Lemma 4.12. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation. Then, for all minimally

balanced maps κ ∈ WN , it holds that Wϕ
U (κ) ≥ Uϕ(N).
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Coalition M SM λM B̂(SM , λM ) cϕ(M) cϕ̂(M)

{1} 1 1
5

1
6

1
30 331

3

{2} 1 4
5

4
9 3555

9
16
45

{1,2} 2 1 1
5 160 1

25 40 4
25

Table 4.3: The games and parameter values of Example 4.4.

Proof. Let κ ∈ WN . Then,

Wϕ
L (κ) =

∑
M∈2N−

κ(M) ·B (SM , λMτ) · λM

=
∑
M∈2N−

κ(M)
λM
λN
·B (SM , λMτ) · λN

≥
∑
M∈2N−

κ(M)
λM
λN
·B
(
SM ·

λN
λM

, λNτ

)
· λN

≥ B

 ∑
M∈2N−

κ(M)
λM
λN
· SM ·

λN
λM
·, λNτ

 · λN
= B (SN , λNτ) · λN = Uϕ(N).

The first and last equalities hold by Equation (4.14) and because B is an extension. The

first inequality holds by Theorem 4.5. The second inequality is valid by the combination

of the convexity in the number of servers, as stated in Theorem 4.4, and the fact that∑
M∈2N−

κ(M)λM = λN ; that is, we employ this convexity property of B by using that

the nonnegative convex weights κ(M)λM/λN add up to 1. The penultimate equality holds

because
∑

M∈2N−
κ(M)SM = SN .

Example 4.4. Consider the linear Erlang loss situations ϕ = (N, S, λ, τ, h, p) and ϕ̂ = (N,

S, λ, τ, h, p̂). Both have N = {1, 2}, S1 = S2 = 1, λ1 = 1
5 , λ2 = 4

5 , τ = 1, and h = 0, but

the two situations differ in their penalty costs. For ϕ, p1 = 1 and p2 = 1000. For ϕ̂, these

costs are swapped, i.e., p̂1 = 1000 and p̂2 = 1. The associated Erlang loss games with fixed

numbers of servers are described in Table 4.3.

Although (N, cϕ) has a non-empty core, the core of (N, cϕ̂) is empty. In fact, (N, cϕ̂) has

an empty imputation set. The reason for this is that (N, cϕ̂) is not subadditive.

To explain this, we compare the full pooling arrangement for the grand coalition to the

no-pooling arrangement where all players are acting alone, by considering the balanced map

κ : 2N− → [0, 1] with κ({1}) = κ({2}) = 1 and κ(N) = 0. Effect 1 of full pooling (the

reduction in the weighted number of blocked customers per unit time) is equally beneficial in

both situations. That is, Wϕ
U (κ) = W ϕ̂

U (κ) = 1
6 ·

1
5 + 4

9 ·
4
5 = 7

18 and Uϕ(N) = U ϕ̂(N) = 1
5 ·1 = 1

5 .
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Effect 2, however, affects the situations in a vastly different way. For situation ϕ, the

weighted penalty costs of an arbitrary blocked customer decrease from Wϕ
E (κ) = 1

6 ·
1
5 · 1 +

4
9 ·

4
5 · 1000 = 35553

90 to Eϕ(N) = 1 · 1
5 ·
(

1
5 · 1 + 4

5 · 1000
)

= 160 1
25 . In contrast, for situation

ϕ̂, the weighted penalty costs of an arbitrary blocked customer increase from W ϕ̂
E (κ) = 1

6 ·
1
5 ·

1000 + 4
9 ·

4
5 · 1 = 3331

45 to Eϕ̂(N) = 1 · 1
5 ·
(

1
5 · 1000 + 4

5 · 1
)

= 40 4
25 . 3

This example illustrates Effect 2: compared to a no-pooling arrangement, full pooling may

decrease or increase the expected penalty costs of an arbitrary blocked customer. Intuitively,

a decrease in costs is possible if a customer stream with high penalty costs joins an existing

pooling group whose members own excessively many servers that are infrequently used. In

that case, full pooling not only leads to fewer blocked customers (Effect 1) but also to less

expected penalty costs.

The intuition behind a cost increase, on the other hand, is that full pooling allow customers

with low penalty costs to occupy servers that would have better been saved to guard against

the high penalty costs of another customer stream. The resulting increase in costs may

actually overshadow the reduction in the number of blocked customers (Effect 1), as is the

case for the game (N, cϕ̂) in Example 4.4, which has an empty imputation set. In this game,

no pooling outperforms full pooling. This precludes cooperation.

Example 4.4 showed the existence of non-subadditive, non-balanced Erlang loss games

with fixed numbers of servers, as well as the existence of a subadditive, balanced one. A

natural question is whether subadditivity is sufficient for balancedness. The following example

answer this question negatively by describing a subadditive, non-balanced Erlang loss game

with fixed numbers of servers.

Example 4.5. Consider ϕ = (N,S, λ, τ, h, p), a 3-player linear Erlang loss situation with

N = {1, 2, 3}, S1 = 7, S2 = 1, S3 = 1, λ1 = λ2 = λ3 = 10, τ = 1, h = 0, p1 = 500, p2 = 400,

and p3 = 400. So, player 1 has many servers and high penalty costs, whereas players 2 and 3

have low, identical numbers of servers and low, identical penalty costs.

The characteristic cost function cϕ of the associated game (N, cϕ) is represented in Table

4.4. It is readily verified that this game is subadditive. Thus, there exists an individually

rational allocation. However, this game is not balanced. To see this, consider the balanced

map κ : 2N− → [0, 1] with κ(M) = 1
2 if |M | = 2 and κ(M) = 0 otherwise. For this balanced

map, Wϕ
U (κ) ≈ 21.589 and Wϕ

E (κ) ≈ 429.041. Hence,
∑

M∈2N−
κ(M)cϕ(M) < 9265 < cϕ(N).

Non-balancedness may be observed more clearly in the cost savings game (N, vϕ), with

vϕ(M) =
∑

i∈M cϕ({i})− cϕ(M) for all M ∈ 2N− , as provided in Table 4.4. 3

This example shows that, even if the costs of full pooling for the grand coalition are

lower than the sum of the costs under any partitioning of players, there need not be a stable

cost allocation. This result emphasizes the importance of taking the coalitional costs into

account. We remark, however, that the players in Example 4.5 were vastly asymmetric. The
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Coalition M SM λM B̂(SM , λM ) Uϕ(M) Eϕ(M) cϕ(M) vϕ(M)

{1} 7 10 0.4090 4.0904 500 2045.204 0

{2}, {3} 1 10 0.9091 9.0909 400 3636.364 0

{1,2}, {1,3} 8 20 0.6270 12.5396 450 5642.817 38.751

{2,3} 2 20 0.9050 18.0995 400 7239.819 32.908

{1,2,3} 9 30 0.7127 21.3810 433.3333 9265.106 52.825

Table 4.4: The game and parameter values of Example 4.5 (Values are rounded).

following lemma provides sufficient conditions on the underlying parameters of the players for

balancedness.

Lemma 4.13. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation. If Uϕ(N)/Wϕ
U (κ) ≤

Wϕ
E (κ)/Eϕ(N) for all κ ∈ WN , then the associated Erlang loss game with fixed numbers of

servers (N, cϕ) has a nonempty core.

Proof. If SN = 0, then there are no servers to pool and the allocation x which assigns

xi = λipi to each i ∈ N is trivially stable. If SN > 0, then we let κ ∈ WN , assume that

Uϕ(N)/Wϕ
U (κ) ≤Wϕ

E (κ)/Eϕ(N), and obtain∑
M∈2N−

κ(M)cϕ(M) =
∑
M∈2N−

κ(M)H(SM ) +
∑
M∈2N−

κ(M)Uϕ(M)Eϕ(M)

=
∑
M∈2N−

κ(M)H(SM ) +Wϕ
E (κ)Wϕ

U (κ)

≥
∑
M∈2N−

κ(M)H(SM ) + Uϕ(N)Eϕ(N)

=
∑

M∈2N− :SM>0

κ(M)SM
H lin(SM )

SM
+ Uϕ(N)Eϕ(N)

≥
∑

M∈2N− :SM>0

κ(M)SM
H lin(SN )

SN
+ Uϕ(N)Eϕ(N)

= SN ·
H lin(SN )

SN
+ B̂(SN , λN ) ·

∑
i∈N

λipi = cϕ(N).

The first inequality holds by assumption. The second inequality holds because H lin is concave

with H lin(0) = 0, which by Part (ii) of Theorem 2.1 implies that H lin is elastic.

Intuitively, the condition on the balanced maps in Lemma 4.13 takes the impact of Effect

2 (the possible change in the weighted costs of an arbitrary blocked customer) as a given and

states that the result of Effect 1 (the reduction in the number of blocked customers for the
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grand coalition) should be sufficient to compensate for the possibly adverse impact of Effect

2. Under this condition, a stable cost allocation will exist. For instance, the nucleolus, which

always yields core allocations for any game with a non-empty core, would accomplishes a

stable cost allocation.

4.4.3 Balancedness under symmetric penalty costs

The condition in Lemma 4.13 immediately implies that if Effect 2 is not adverse, then—due

to Lemma 4.12—the game will be balanced. This insight can be used to obtain our main

result on Erlang loss games with fixed numbers of servers.

Theorem 4.14. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation with pi = pj for all

i, j ∈ N . Then, the associated Erlang loss game with fixed numbers of servers (N, cϕ) is

totally balanced.

Proof. Let κ ∈ WN be a balanced map. As all players have equal penalty costs, say P , Effect

2 of full pooling is neutral, i.e., Eϕ(M) = P for all coalitions M ∈ 2N− . Hence, Wϕ
E (κ) = P as

well. So,

Uϕ(N) ≤Wϕ
U (κ) = Wϕ

U (κ) · E
ϕ(N)

Eϕ(N)
= Wϕ

U (κ) ·
Wϕ
E (N)

Eϕ(N)
,

where the inequality holds by Lemma 4.12. Hence, the condition in Lemma 4.13 holds, which

implies that (N, cϕ) is balanced. It is totally balanced because every sub-game of (N, cϕ) is

a game associated with a Erlang loss situation with symmetric penalty costs itself.

Theorem 4.14 states that if all players symmetric equal penalty costs, then the

corresponding Erlang loss game with fixed numbers of servers has a nonempty core. Note that

our extensive Examples 4.1 and 4.2 featured symmetric penalty costs. At the same time, the

player in these examples had different demand rates and base stock levels; these are precisely

the types of asymmetry that are allowed in Theorem 4.14.

The following theorem indicates that, from a theoretical perspective, the symmetry

condition of Theorem 4.14 is tight. In other words, even if the penalty costs of the players

differ only slightly, the associated Erlang loss game with fixed numbers of servers may be

non-balanced.

Theorem 4.15. For every ε > 0, there exists an Erlang loss situation ϕ = (N,S, λ, τ,H, p)

with maxi∈N pi −mini∈N pi ≤ ε for which the associated Erlang loss game with fixed numbers

of servers, (N, cϕ), is not balanced.

Proof. Let ε > 0. We now construct ϕ = (N,S, λ, τ, h, p), a 2-player linear Erlang loss

situation with N = {1, 2}, S1 = 0, S2 = 1, λ1 = λ2 = Λ = 1 + 1/ε, τ = 1, h = 0, p1 = 1, and
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p2 = 1 + ε. Clearly, maxi∈N pi −mini∈N pi ≤ ε, as desired. Then,

cϕ({1}) + cϕ({2}) = B̂(0,Λ) · Λ · 1 + B̂(1,Λ) · Λ · (1 + ε)

= Λ +
Λ

Λ + 1
Λ(1 + ε)

=
Λ

Λ + 1
[Λ + 1 + Λ(1 + ε)]

=
Λ

(Λ + 1)(2Λ + 1)
(2Λ + 1)[Λ + 1 + Λ(1 + ε)]

= Λ
4Λ2 + 2Λ2ε+ 4Λ + 1 + Λε

(Λ + 1)(2Λ + 1)

< Λ
4Λ2 + 2Λ2ε+ 4Λ + 2Λε

(Λ + 1)(2Λ + 1)

= Λ
2Λ(2 + ε)(Λ + 1)

(Λ + 1)(2Λ + 1)

= Λ
2Λ(2 + ε)

2Λ + 1

=
2Λ(2 + ε)

2Λ + 1
[Λ · 1 + Λ · (1 + ε)]

= B̂(1, 2Λ) · [Λ · 1 + Λ · (1 + ε)] = cϕ(N),

where the inequality holds because, by choice of arrival rates, Λε > 1. We conclude that

(N, cϕ) is not balanced.

4.4.4 Cost allocation: stability and population monotonicity

In this section, we prove that Erlang loss games with fixed numbers of servers admit a PMAS

under a reasonable symmetry condition. To describe this condition, let ϕ = (N,S, λ, τ,H, p)

be an Erlang loss situation. For any player i ∈ N , we say that Si/λi is his server-demand

ratio. We now consider situations where all players have equal server-demand ratios. We do

allow for different penalty costs among players.

This equality in server-demand ratios is clearly satisfied when players constitute equally

sized business units, all with the same numbers of servers and arrival rates. It is also satisfied

in the spare parts setting when any player i ∈ N has ni ∈ N0 machines, each with an

individual failure rate of λ̄ ∈ R++ and a corresponding stock of S̄ ∈ N0 spare parts, possibly

based on a per-machine recommendation of the Original Equipment Manufacturer (OEM).

In this case, any player i ∈ N will have a base stock level of Si = S̄ · ni and a total demand

rate of λi = λ̄ · ni, which implies that players have a symmetric server-demand ratio of S̄/λ̄.

For Erlang loss situation ϕ, we now define a proportional allocation scheme. This scheme

is easy to compute and easy to administer for any particular demand realization because it

does not require transfer payments of penalty costs—each player simply incurs the penalty

costs incurred for his own blocked customers. Formally, we define this allocation scheme
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PFIX(ϕ) for all M ∈ 2N− and all i ∈M by

PFIXi,M (ϕ) =
Si
SM

H(SM ) + B̂ (SM , λMτ) · λipi. (4.18)

The following theorem states that, when all players have the same server-demand ratio, this

allocation scheme is population monotonic. The intuition behind this result is that, under this

symmetry condition, the blocking probability does not increase as a coalition grows larger.

Theorem 4.16. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation with Si/λi = Sj/λj

for all i, j ∈ N . Then, PFIX(ϕ) is a PMAS for the associated Erlang loss game with fixed

numbers of servers (N, cϕ).

Proof. Let M,L ∈ 2N− with M ⊆ L and let i ∈ M . If the symmetric server-demand ratio is

zero, then no player has any servers, which implies that PFIXi,M (ϕ) = λipi = PFIXi,L (ϕ), and

the proof is complete. Otherwise, if the symmetric server-demand ratio is positive, then we

obtain

PFIXi,L (ϕ) = Si
H lin(SL)

SL
+ B̂(SL, λLτ) · λipi

≤ Si
H lin(SL)

SL
+ B̂(SM , λLτSM/SL) · λipi

= Si
H lin(SL)

SL
+ B̂(SM , λMτ) · λipi

≤ Si
H lin(SM )

SM
+ B̂(SM , λMτ) · λipi = PFIXi,M (ϕ).

The first inequality follows because the Erlang loss function is subhomogeneous of degree

zero by Theorem 4.3. The subsequent equality holds because SM/λM and SL/λL coincide.

The second inequality holds because H lin is concave with H lin(0) = 0, which by Part (ii) of

Theorem 2.1 implies that H lin is elastic. We conclude that y(ϕ) is indeed a PMAS.

As described in Section 2.3.7, the existence of a PMAS has several implications.

Accordingly, we immediately obtain the following corollary from Theorem 4.16.

Corollary 4.17. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation with Si/λi = Sj/λj for

all i, j ∈ N . Then, the associated game (N, cϕ) is totally balanced and the allocation assigning

PFIXi,N (ϕ) to all i ∈ N is an element of its core.

4.5 Optimized numbers of servers

In this section, we analyze the setting where all coalitions optimize their numbers of servers.

We consider two games: one with a service constraint and one that is purely cost-based. We

first define the characteristic cost functions of both games and consider their concavity in

Subsection 4.5.1. Subsequently, in Subsection 4.5.2, we show that there is no obvious relation
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between the setting with fixed numbers of servers and the setting with optimized numbers

of servers. In Subsection 4.5.3, we show that a simple, proportional allocation scheme is

population monotonic for the cost-based formulation in case of symmetric penalty costs.

Finally, in Subsection 4.5.4, we show that a similar proportional allocation (though not a

scheme) is stable for the service constraint formulation under certain conditions.

4.5.1 Games

We first treat the cost-based formulation. Consider any Erlang loss situation ϕ = (N, S, λ, τ,

H, p) with unbounded32 H and suppose that each coalition picks a cost minimizing number

of servers. Accordingly, the initial vector S has become superfluous as an input parameter,

but we leave the tuple structure intact for consistency reasons. For any particular choice of

the number of servers s ∈ N0 in the joint system of a coalition M ∈ 2N− , the expected relevant

costs per unit time in steady state are given by

KM (s) = H(s) + B̂(s, λMτ) ·
∑

i∈M λipi. (4.19)

Since the image of the Erlang loss function is the interval (0, 1], whereas the resource cost

function H increases unboundedly, there exists an optimal number of servers, which can be

found by, e.g., an enumerative search procedure. In case of a linear resource cost rate h, such

an optimizer is given by the smallest sM ∈ N0 satisfying h ≥ [B̂(sM +1, λMτ)−B(sM , λMτ)] ·∑
i∈M λipi. This follows from the convexity property of Theorem 4.4.

For any coalition M ∈ 2N− , there may be multiple cost minimizing numbers of servers, so

to avoid ambiguity we define a specific optimal number of servers by33

S∗M = min{s ∈ N0 | KM (s) ≤ KM (Š) for all Š ∈ N0}. (4.20)

We can now formulate the corresponding game.

Definition 4.4. For any Erlang loss situation ϕ = (N,S, λ, τ,H, p) with unbounded H, the

game (N, dϕ) with characteristic costs

dϕ(M) = KM (S∗M ) (4.21)

for all M ∈ 2N− is called the associated Erlang loss game with optimized numbers of servers.

The following example shows that Erlang loss games with optimized numbers of servers

need not be concave, even if all players have symmetric cost parameters.

Example 4.6. Reconsider the office equipment departments from Example 4.2 and suppose

that the number of servers is optimized. Scaling the resource cost rate to 1, this results in

32Any non-decreasing function f : N0 → R+ is called unbounded if there does not exist an a ∈ R+ for which

f(x) ≤ a for all x ∈ N0.
33We suppress the dependence of KM and S∗M on ϕ to avoid notational baggage.
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Coalition M λM B̂(1, λM ) B̂(2, λM ) B̂(3, λM ) S∗M dϕ(M) dϕβ(M)

{1},{2} 1
10

1
11

1
221

1
6631 1 1 3

22 1221
672

{3} 8
10

4
9

8
53

32
827 3 3384

827 24135
5248

{1,2} 2
10

1
6

1
61

1
916 1 11

2 161
88

{1,3}, {2,3} 9
10

9
19

81
461

243
4853 3 36561

9706 2810451
899424

{1,2,3} 1 1
2

1
5

1
16 3 315

16 3

Table 4.5: The Erlang loss game with optimized numbers of servers (N, dϕ) for Example 4.6 and the

Erlang loss game with service constraints (N, dϕβ ) for Example 4.7.

the 3-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) with N = {1, 2, 3}, λ1 = 1
10 ,

λ2 = 1
10 , λ3 = 8

10 , τ = 1, h = 1, and pi = 15 for all i ∈ N , and arbitrary S. For player

1 alone, it is optimal to use a single server because K{1}(0) = B̂(0, 1
10) · 1

10 · 15 = 1.5,

K{1}(1) = h+ B̂(1, 1
10) · 1

10 · 15 = 1 3
22 , and K{1}(2) > 2h = 2. In similar fashion, we can find

the optimal numbers of servers and the characteristic costs of all other coalitions. See Table

4.5.

Note that this game is balanced: for example, the allocation proportional to players’

arrival rates, which assigns 1
10d

ϕ(N) = 63
160 to both players 1 and 2 and 8

10d
ϕ(N) = 3 24

160 to

player 3, is a core element. However, this game is not concave, since dϕ({1, 3})− dϕ({3}) =

36561
9706 − 3384

827 < 0.212 < 0.261 < 315
16 − 36561

9706 = dϕ({1, 2, 3})− dϕ({2, 3}). 3

Next up is the service constraint formulation, which is suitable when penalty costs are

hard to quantify. Our approach is as follows: We will let each player incur the penalty costs

for its own blocked customers, and we will look for an allocation of only the resource costs

that ensures that no subcoalition can improve (achieve the same blocking probability at lower

resource cost) by splitting off. We do not consider transfer payments of penalty costs because

the blocking probability for every coalition will be set at the same number; hence, the penalty

costs will represent an additive term, unaffected by collaboration. Moreover, when penalty

costs are hard to quantify, enforcing monetary transfer payments may be difficult in practice.

The blocking probability that each coalition will achieve is exogenously set at a number

β ∈ (0, 1), the service constraint. This number indicates the maximal blocking probability

for any arriving customer. We assume that all players impose the same service constraint for

their customers; this is analogous to assuming that all players have identical penalty costs.

A game will be associated with the combination of an Erlang loss situation ϕ =

(N,S, λ, τ,H, p) and a service constraint β. Determining an adequate β is not trivial: Should

it be 5%, 1%, or something else? It may be easier to think in monetary terms by estimating

that a blocked customer costs a certain number of euros. Even if these penalty costs are hard

to quantify, a good estimate for the penalty costs can induce an adequate service constraint.

We call the service constraint βϕ = B̂(S∗N , λN ), which describes the blocking probability for
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the grand coalition under the cost-minimizing number of servers, natural for ϕ. “Natural”

refers to the equivalence between penalty costs and service level via Lagrange relaxation, as

described in van Houtum and Zijm (2000).

To formulate the service constraint game, we assume that any coalition M ∈ 2N− will

pick the (possibly “mixed”, cf. van Houtum and Zijm, 2000) number of servers that yields

a blocking probability of exactly β.34 That is, M picks the unique s ∈ R++ such that

L(s, λMτ) = β, where L is the linear interpolation as defined in Equation (4.7). We will

denote this number of servers by σM . It is well-defined because L(s, λMτ) as a function of s

on R+ is strictly decreasing and continuous, with image (0, 1]. These properties hold by Part

(iv) of Theorem 4.1 and by nature of being a linear interpolation.

Definition 4.5. For the combination of an Erlang loss situation ϕ = (N,S, λ, τ,H, p) and an

service level constraint β ∈ (0, 1), the game (N, dϕβ) with characteristic costs

dϕβ(M) = H lin(σM ) (4.22)

for all M ∈ 2N− is called the associated Erlang loss game with service constraints.

The following example provides an illustration.

Example 4.7. Reconsider the 3-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) from

Example 4.6. Take the natural service constraint β = B̂(S∗N , λN ) = 1
16 . The associated

Erlang loss game with service constraints (N, dϕβ) is given in Table 4.5. For all M ∈ 2N− , it

holds that

L(σM , λMτ) = (1− (σM − bσMc)) · B̂(bσMc, λMτ) + (σM − bσMc) · B̂(dσMe, λMτ) =
1

16
,

as is easily verified from Table 4.5 by using that dϕβ(M) = hσM = σM .

Note that (N, dϕβ) is concave, in contrast to the Erlang loss game with optimized numbers

of servers (N, dϕ) for Example 4.6. Furthermore, the allocation proportional to players’ arrival

rates, which assigns 1
10d

ϕ
β(N) = 3

10 to both players 1 and 2 and 8
10d

ϕ
β(N) = 22

5 to player 3, is

a core element. 3

4.5.2 Relationship to the game with fixed numbers of servers

In this section, we investigate the relationship between games with fixed numbers of servers

and games with optimized numbers of servers. Because the analogue between the two is clearer

for the cost-based formulation, we do not consider the service level formulation in this section.

To obtain examples with non-balanced games, we consider situations with asymmetric penalty

costs. However, the main conclusions that we will draw, regarding shrinking cores and the

34This approach is similar to the multiplexing of priority disciplines by Garćıa-Sanz et al. (2008) in such a

way that each of them will operate during a desired percentage of time, as mentioned in Footnote 21 on page

51.
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Coalition M λM B̂(1, λM ) B̂(2, λM ) SM cϕ(M) S∗M dϕ(M)

{1} 1 1
2

1
5 0 1 3

10 0 1 3
10

{2} 1 1
2

1
5 0 1 1

10 0 1 1
10

{3} 1 1
2

1
5 1 21

5 1 21
5

{1,2} 2 2
3

2
5 0 22

5 0 22
5

{1,3} 2 2
3

2
5 1 3 7

15 1 3 7
15

{2,3} 2 2
3

2
5 1 31

3 1 31
3

{1,2,3} 3 3
4

9
17 1 43

5 2 446
85

Table 4.6: The parameter values, blocking probabilities, and games for Example 4.8.

lack of an obvious relationship between the two classes of games, would remain valid if we

would limit ourselves to symmetric penalty costs.

We start with an example of an Erlang loss situation for which the associated game

with fixed numbers of servers has an empty core, while the associated game with optimized

numbers of servers has a non-empty core. The intuition behind this is that, if adjustment of

the number of servers is allowed, then the grand coalition will face no higher costs than in

the case with fixed numbers of servers. Such a reduction in the costs of the grand coalition

can annul the core’s emptiness if all other coalitions retain their original costs.

Example 4.8. Consider the 3-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) with

N = {1, 2, 3}, S1 = S2 = 0, S3 = 1, λi = 1 for all i ∈ N , τ = 1, h = 1, p1 = 1 3
10 , p2 = 1 1

10 ,

and p3 = 22
5 . The associated game with fixed numbers of servers, (N, cϕ), and the associated

game with fixed numbers of servers, (N, dϕ), are given in Table 4.6.

Note that (N, cϕ) has an empty core because cϕ(N) = 43
5 > 417

30 = cϕ({2}) + cϕ({1, 3}).
Also note that cϕ(M) = dϕ(M) for all M ⊂ N and that cϕ(N) > dϕ(N). Indeed, the (sum

of the) given numbers of servers are optimal for each singleton and two-player coalition. But

the grand coalition can improve by re-optimizing its number of servers: the grand coalition’s

costs are minimized by two servers instead of one. The game (N, dϕ) has a non-empty core:

e.g., the allocation (1 3
10 , 1

1
10 , 2

12
85) is stable. 3

The following example shows that the converse may also occur: a game with fixed numbers

of servers may have a non-empty core while the corresponding game with optimized numbers

of servers has an empty core. The intuitive explanation for this is that if sub-coalitions can

choose a cost-minimizing number of servers, then they might reduce their costs. The core

will shrink as the result of any such cost reduction if the grand coalition’s cost stay the same.

This example simultaneously shows that optimal numbers of servers need not be monotonic.

Example 4.9. Consider the 3-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) with

N = {1, 2, 3}, S1 = S2 = S3 = 0, λi = 1 for all i ∈ N , τ = 1, h = 1, p1 = 11
2 , p2 = 1

10 , and
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Coalition M λM B̂(1, λM ) SM cϕ(M) S∗M dϕ(M)

{1} 1 1
2 0 11

2 0 11
2

{2} 1 1
2 0 1

10 0 1
10

{3} 1 1
2 0 1 9

10 0 1 9
10

{1,2} 2 2
3 0 23

5 0 23
5

{1,3} 2 2
3 0 32

5 1 3 4
15

{2,3} 2 2
3 0 2 0 2

{1,2,3} 3 3
4 0 31

2 0 31
2

Table 4.7: The parameter values, blocking probabilities, and games for Example 4.9.

p3 = 1 9
10 . The associated game with fixed numbers of servers, (N, cϕ), and the associated

game with fixed numbers of servers, (N, dϕ), are given in Table 4.7.

Since no player possesses a server, there are no gains of cooperation if the number of servers

is unadjustable. Accordingly, (N, cϕ) has a non-empty core: e.g., the allocation (11
2 ,

1
10 , 1

9
10)

is stable. We also observe that cϕ(M) = dϕ(M) for all coalitions M other than {1, 3} and that

cϕ({1, 3}) > dϕ({1, 3}). Indeed, zero servers is optimal for each coalition other than {1, 3}.
But coalition {1, 3} can improve by re-optimizing its number of servers: the costs of coalition

{1, 3} are minimized by one server instead of zero. (Note that the optimal number of servers

is not monotonic in this example: zero servers remains optimal for the grand coalition. So, by

adding player 2 to coalition {1, 3}, the optimal number of servers may decrease.) The game

(N, dϕ) has a non-empty core because dϕ({2}) + dϕ({1, 3}) = 311
30 < 31

2 = dϕ(N). 3

So, when comparing the core of a game with fixed numbers of servers to the core of the

corresponding game with optimized numbers of servers, we cannot draw a general conclusion:

Example 4.8 shows that the core of the former game may be smaller, whereas Example 4.9

shows that it may be larger. Thus, results for the former setting do not directly imply similar

results for the latter setting, or vice versa.

The two effects of full pooling (introduced in Section 4.4.2) are also of no immediate help

in characterizing the class of games with optimized numbers of servers with non-empty cores.

As shown in the following example, the change in the weighted number of blocked customers

(i.e., Effect 1, which is always beneficial for the setting with fixed numbers of servers, cf.

Lemma 4.12) need not be beneficial for the setting with optimized numbers of servers. The

intuition behind this is that, due to the risk pooling effect, fewer servers may suffice to jointly

serve all arrival streams cost-effectively in the grand coalition.

Example 4.10. Reconsider Example 4.9. Suppose that the players had partitioned

themselves into two separate pooling groups: one with player 2 and one with players 1 and 3.

Then, under optimal numbers of servers, the expected number of blocked customers per unit
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time for both groups together would be B̂(0, 1)·1+B̂(1, 2)·2 = 21
3 . Now suppose that the grand

coalition would form and operate under zero servers, which is optimal. Then, resource costs

are considerably reduced compared to the aforementioned arrangement in which players are

partitioned in groups, but the expected number of blocked customers per unit time increases

to B̂(0, 3) · 3 = 3. As 3 > 21
3 , full pooling under optimal numbers of servers may actually

increase the number of blocked customers! This follows from the lack of monotonicity of the

optimal number of servers. 3

Because, for a given Erlang loss situation ϕ, there is no direct relation between

balancedness of (N, cϕ) and (N, dϕ), and because the effects of full pooling cannot be used

to establish intuitive conditions for balancedness of (N, dϕ) either, a separate analysis of

(N, dϕ) is worthwhile. In the next section, we will derive several results for (N, dϕ) under the

assumption that penalty costs are symmetric among players. The reason for that assumption

lies in Example 4.9, which showed that (N, dϕ) need not be balanced when penalty costs are

asymmetric.

4.5.3 The cost-based formulation

For the pure cost model, an easy way of allocating the total costs of the grand coalition—or

any other coalition that may form—is by dividing these costs proportional to the arrival rate

of each player. Formally, we define the resulting allocation scheme rule P for any Erlang loss

situation ϕ = (N,S, λ, τ,H, p) with unbounded H by

Pi,M (ϕ) = dϕ(M) · λi/λM . (4.23)

for all M ∈ 2N− and all i ∈ M . If costs are shared according to this rule, then a player with

more frequent customer arrivals pays a greater share of the costs. The following example

provides an illustration.

Example 4.11. Reconsider the Erlang loss situation ϕ = (N,S, λ, τ, h, p) of Example 4.6.

Recall that λ1 = λ2 = 1
10 and λ3 = 8

10 . The corresponding allocation scheme P(ϕ) is shown in

Table 4.8. Notice that P1,{1,2}(ϕ) = 3
4 >

63
160 = P1,N (ϕ) and similarly P2,{1,2}(ϕ) > P2,N (ϕ),

i.e., the amount that player 1 or 2 has to pay does not increase when player 3 joins them.

This can be verified for the members of all such nested pairs of coalitions as well, implying

that P(ϕ) is population monotonic.

We remark that the associated game (N, dϕ) is a single-attribute game. Indeed, recalling

that h = 1 and pi = 15 for all i ∈ N , we can construct a single-attribute situation γ =

(N,λ, K̃) with K̃(`) = mins∈N0{s + B̂(s, `) · 15`} for each ` > 0 and K̃(0) = 0 such that

the associated single-attribute game (N, cγ) is equal to the Erlang loss game with optimized

numbers of servers (N, dϕ). We remark that K̃, as illustrated in Figure 4.3 on page 90, is

non-decreasing. Indeed, by Part (vi) of Theorem 4.1, K̃ is the minimum of a collection of

non-decreasing functions. 3
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Coalition M dϕ(M) P1,M (ϕ) P2,M (ϕ) P3,M (ϕ)

{1} 1 3
22 1 3

22 * *

{2} 1 3
22 * 1 3

22 *

{3} 3384
827 * * 3384

827

{1, 2} 11
2

3
4

3
4 *

{1, 3} 36561
9706

11893
29118 * 3 3895

14559

{2, 3} 36561
9706 * 11893

29118 3 3895
14559

N 315
16

63
160

63
160 3 24

160

Table 4.8: The values for the allocation scheme Pi,M (ϕ) in Example 4.11.

This population monotonicity that we saw in this example is not a coincidence, as revealed

by the following theorem.

Theorem 4.18. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation with unbounded H and

pi = pj for all i, j ∈ N . Then P(ϕ) is a PMAS of the associated Erlang loss game with

optimized numbers of servers (N, dϕ).

Proof. For any coalition M ∈ 2N− , we extend the domain of the cost function KM , introduced

in Equation (4.19), by a linear interpolation, i.e., we define, for all s ∈ R+,

K lin
M (s) = (1− (s− bsc)) ·KM (bsc) + (s− bsc) ·KM (dse) = H lin(s) + L(s, λMτ) · λMP.

We now fix two arbitrary coalitions Q,R ∈ 2N− with Q ⊆ R, and we let i ∈ Q. Then,

Pi,R(ϕ) =
λi
λR
·KR(S∗R)

≤ λi
λR
·K lin

R

(
λR
λQ

S∗Q

)
=

λi
λR
·H lin

(
λR
λQ

S∗Q

)
+ L

(
λR
λQ

S∗Q, λRτ

)
· λipi

≤ λi
λR
·H lin

(
λR
λQ

S∗Q

)
+ L(S∗Q, λQτ) · λipi

=
λi
λQ
·
λQ
λR
·H lin

(
λR
λQ

S∗Q

)
+ B̂(S∗Q, λQτ) · λipi

=
λi
λQ

[
λQ
λR
·H lin

(
λR
λQ

S∗Q

)
+
λR − λQ
λR

·H lin(0)

]
+ B̂(S∗Q, λQτ) · λipi

≤ λi
λQ
·H lin(S∗Q) + B̂(S∗Q, λQτ) · λipi

=
λi
λQ
·KQ(S∗Q) = Pi,Q(ϕ).
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Figure 4.3: A plot of the function K̃ : R+ → R as defined in Example 4.11.

The first inequality holds because S∗R is a cost minimizing number of servers for coalition

R, so both KR(bS∗QλR/λQc) and KR(dS∗QλR/λQe) are no smaller than KR(S∗R), and the

same holds for the associated linear interpolation. The second inequality holds because L is

scalable (Theorem 4.11) while S∗Q ∈ N0. The subsequent (third) equality holds because L is

an extension. The consecutive (fourth) equality holds because, by assumption, H lin(0) = 0.

The third inequality holds because H lin is concave function and S∗Q = [λQ/λR] · (S∗QλR/λQ)+

[(λR − λQ)/λR] · 0. We conclude that P(ϕ) is a PMAS.

Özen et al. (2011) independently derived the same result as stated in Theorem 4.18,

though for linear Erlang loss situations only. Their proof approach uses single-attribute

games and elasticity of the function K̃ : R+ → R+ defined by K̃(0) = 0 and K̃(`) =

mins∈N0{hs + B̂(s, `τ)`P} for all ` > 0; see Figure 4.3. Our proof approach is different: we

use structural properties of extensions of the Erlang loss function. In our proof, the linear

interpolation L could not have been replaced by the continuous extension B because then,

as shown in the following example, an inequality corresponding to the proof’s first inequality

would not hold anymore.

Example 4.12. Consider the 2-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) with

N = {1, 2}, arbitrary S, λ1 = 0.6, λ2 = 0.4, τ = 1, h = 0.85, and p1 = p2 = 3. For

coalition Q = {1}, the optimal number of servers is S∗Q = 1. For coalition R = {1, 2}, the

optimal number of servers is S∗R = 2 with associated optimal costs KR(S∗R) = 2.3. However,

for s = S∗QλR/λQ = 12
3 , it holds that 0.85s + B(s, λRτ) · 3λR < 2.26 < 2.3 = KR(S∗R). So,

the costs for coalition R under the optimal (integer) number of servers are actually larger

than the costs for this coalition under 12
3 servers when the associated blocking probability
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Figure 4.4: For each of the three extensions of the Erlang loss function and for the Erlang loss function

itself, the corresponding costs hs+ B(s, λRτ) · λRP (thick curve), hs+ L(s, λRτ) · λRP (straight line

segments), hs + X(s, λRτ) · λRP (dashed, discontinuous), and KR(s) (big dots) as functions of s for

the coalition R as described in Example 4.12.

is interpreted via the continuous extension B. This is graphically represented in Figure 4.4,

which simultaneously illustrates validity of the first inequality in the proof of Theorem 4.18

due to the behavior of the extension L. 3

By Sprumont (1990), population monotonicity of P(ϕ) not only signifies the advanta-

geousness of any pooling group’s growth but also implies the following corollary.

Corollary 4.19. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation with unbounded H

and pi = pj for all i, j ∈ N . Then, the associated game (N, dϕ) is totally balanced and the

allocation assigning Pi,N (ϕ) to all i ∈ N is an element of its core.

4.5.4 The service-based formulation

For an Erlang loss situation ϕ = (N,S, λ, τ,H, p) and a service constraint β ∈ (0, 1), we

propose a proportional allocation P(ϕ, β), defined by Pi(ϕ, β) = H lin(σN ) · λi/λN for

each player i ∈ N . The following theorem states that this allocation is stable, provided

that there is an integer in the interval [σNλM/λN , σN ] for all subcoalitions M . This is a

technical requirement that simultaneously illustrates the limitation and allure of scalability.

This requirement is met if σN is a sufficiently large real number and each player is big enough.

It is also met if σN is any integer number.
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Theorem 4.20. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation and let β ∈ (0, 1). If

bσNc ≥ σN · λM/λN for all M ∈ 2N−−, then P(ϕ, β) ∈ C(N, dϕβ).

Proof. Let M ∈ 2N−−. Since β ∈ (0, 1), we must have σN > 0. Assume that bσNc ≥
σN · λM/λN . As σN > 0 and λM/λN > 0, this assumption implies that bσNc > 0. Then,

L(σM , λMτ) = β = L(σN , λNτ) ≤ L(bσNc, λNτ
bσNc
σN

) ≤ L(σN
λM
λN

, λMτ). (4.24)

The equalities hold by definition of σM and σN , respectively. The inequalities hold because

L is scalable (Theorem 4.11), which we can employ because bσNc ∈ N and because σN ≥
bσNc ≥ σNλM/λN .

Moreover, L(s, λMτ) is decreasing in s on R+, by Part (iv) of Theorem 4.1. Hence,

Inequality (4.24) implies that σNλM/λN ≤ σM . This yields∑
i∈M

Pi(ϕ, β) = H lin(σN ) · λM/λN ≤ H lin(σN · λM/λN ) ≤ H lin(σM ) = dϕβ(M).

In the first inequality, we use that H lin is concave and non-negative. In the second inequality,

we use that H lin is non-decreasing. We conclude that P(ϕ, β) is stable.

We remark that it remains an open question whether or not service constraint games

admit a PMAS in general. If L could be proven to satisfy subhomogeneity of degree zero

(as discussed in the concluding paragraph of Section 4.2.3), then this open question could be

answered positively via a straightforward adjustment of the proof of Theorem 4.20.

Under the natural service constraint, σN would be an integer number by definition. Hence,

we immediately obtain the following corollary to Theorem 4.20.

Corollary 4.21. Let ϕ = (N,S, λ, τ,H, p) be an Erlang loss situation. Under the natural

service constraint βϕ, it holds that P(ϕ, βϕ) ∈ C(N, dϕβϕ).

This corollary shows an interesting result for the class of Erlang loss games with service

constraints under the natural service constraint. In this class, each individual player is

associated with a single attribute only: his demand rate. All other parameters are aggregate—

the same for all players. At first glance, this would seem to imply that for a given resource

cost function, given symmetric penalty cost, and given mean service times, the resulting

class of Erlang loss games with service constraints under the natural service constraint would

coincide with the class of all single-attribute games embedded in a specific cost function, so

that Theorem 2.5 applies. This, however, is not the case. The reason is that this specific cost

function would depend, through βϕ, on the value of λN , which is not allowed in the definition

of a single-attribute game. This is illustrated in the following example.

Example 4.13. Reconsider the 3-player linear Erlang loss situation ϕ = (N,S, λ, τ, h, p) from

Example 4.7. Recall that λ1 = 0.1. Taking the natural service constraint β = B̂(S∗N , λN ) =
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1
16 , it holds that dϕβ({1}) = 1221

672 ; see Table 4.5 on page 84. So, if we were to construct a

single-attribute cost function K̃ corresponding to h, p, and τ , then it would need to satisfy

K̃(0.1) = 1221
672 .

Now suppose that we remove player 3 to end up with the Erlang loss situation ϕ̂ =

(N̂ , S, λ̂, τ, h, p) where N̂ = {1, 2} and λ̂1 = λ̂2 = 0.1. For this situation, Table 4.5 reveals

that that the natural service constraint is β̂ = B̂(S∗
N̂
, λN̂ ) = 1

6 . Accordingly, dϕ̂
β̂
({1}) = 11

12 .

So, if we were to construct a single-attribute cost function K̃ corresponding to h, p, and τ ,

then it would need to satisfy K̃(0.1) = 11
12 . As 1221

672 6=
11
12 , we conclude that such a construction

is impossible: a single attribute is not sufficient to capture all required information. 3

4.6 Optimal pooling, rationing, and transshipments

So far, we assumed full pooling: each arriving customer is always admitted if there is a free

server available and only rejected when there is no free server. However, it is sometimes better

to reject arrivals from customers with low penalty costs. This way, servers can be held back

in anticipation of future arrivals from customers with high penalty costs. (This is related to

the discussion that followed Example 4.4 on page 77.)

In this section, we will describe a model that allows for optimization of the pooling policy.

Our objective is not to provide a comprehensive analysis, which is outside the scope of this

chapter, but rather to offer preliminary insights into the impact of some of our assumptions

made so far. In particular, we will show that games that were not balanced under full pooling

can become balanced under an optimal pooling policy.

Although the Erlang loss model allowed for generally distributed service times, we will

assume in this section that the service time for each player is exponentially distributed. This

assumption is not too restrictive because inventory models for low-demand spare parts tend

to be quite insensitive to variability in the lead time (Alfredsson and Verrijdt, 1999). The

assumption is convenient because it facilitates analysis via Markov processes. A Markovian

model formulation permits easy incorporation of positive reassignment or transshipment costs.

Such costs are an interesting feature for, e.g., a network of spare parts stockpoints that reside

at geographically dispersed locations. Because it requires almost no additional modeling

effort, we will expand our model with this interesting feature.

Now, on to the analysis. Consider a linear Erlang loss situation (N,S, λ, τ, h, p) and a

vector r ∈ RN×N+ . The number ri,j describes the reassignment or transshipment costs that

are incurred whenever a customer of player i ∈ N is served by a server of player j ∈ N .

Consider a coalition M ∈ 2N− with server vector s = (si)i∈M ∈ NM0 . The number si describes

the amount of servers that player i will use. It may correspond to the exogenously given

number of servers (i.e., si = Si), or it may be the result of an optimization process. We write

S =
∏
i∈M{0, 1, . . . , si} for the state space, where state (σi)i∈M ∈ S means that player i has

σi available servers.
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A policy, at least in this section, describes for every state what to do with any arriving

customer. Formally, a policy for coalition M in state space S is a function ψ : M × S →
M ∪ {R} with ψ(i,0) = R for every i ∈ M .35 The interpretation of such a policy is that an

arrival for player i ∈ M in state σ ∈ S is served by player j if ψ(i, σ) = j and rejected if

ψ(i, σ) = R. The requirement for state 0 means that a customer is always rejected if there

are no free servers available. Note that these policies are non-preemptive: once a customer

has started service, he cannot be rejected if another customer of a possibly more critical class

arrives. We denote the set of policies for coalition M under server vector s ∈ NM0 by ΨM (s).

Given server vector s ∈ NM0 and policy π ∈ ΨM (s), we focus on the stochastic process

X = (Xt(s, ψ))t∈R+ that takes values in S. State changes can only occur when a customer

arrives or completes service. Since the interarrival and service times are assumed to be

exponentially distributed, X can be represented as a Markov process. The corresponding

transition rate vector q is then described for any pair σ, σ̂ ∈ S with σ 6= σ′ by

qσ,σ̂ =


∑

i∈M :ψ(i,σ)=j λi if σ̂i = σi for all i ∈M \ {j} and σ̂j = σj − 1;

(sj − σj)/τ if σ̂i = σi for all i ∈M \ {j} and σ̂j = σj + 1;

0 otherwise.

(4.25)

As the state space of the Markov process X is finite,36 we can derive its steady-state

probability distribution (πσ(s, ψ))σ∈S via standard linear algebra techniques, e.g., Gaussian

elimination. Using this, the expected costs per time unit in steady state are described by

KM (s, ψ) =
∑
i∈M

hisi +
∑

σ∈S:ψ(i,σ)=R

piλiπσ(s, ψ) +
∑
j∈M

∑
σ∈S:ψ(i,σ)=j

ri,jλiπσ(s, ψ)

 .

We are now ready to formulate two games.

Definition 4.6. Let ϕ = (N,S, λ, τ, h, p) be a linear Erlang loss situation and let r ∈ RN×N+ .

We define the game (N, c̄ϕ) with characteristic costs

c̄ϕ,r(M) = minψ∈ΨM ((Si)i∈M )KM ((Si)i∈M , ψ) (4.26)

for all M ∈ 2N− to be the associated optimal pooling game with fixed numbers of servers.

If h > 0, then we define the game (N, d̄ϕ) with characteristic costs

d̄ϕ,r(M) = mins∈NM0
minψ∈ΨM (s)KM (s, ψ) (4.27)

for all M ∈ 2N− to be the associated optimal pooling game with optimized numbers of servers.

35We tacitly assume that there is no player named R in the player set N .
36The “mandatory” blocking of customers when the state space is finite is responsible for this finiteness. In

case of unlimited waiting space (in a queueing context) or backorders (in an inventory context), no customers

would be rejected, so the state space would become infinite and the derivation of steady-state probabilties is

less straightforward. Accordingly, we do not consider asymmetric penalty costs in the later chapters.
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Optimal policies exist because ΨM (s) is finite for every M ∈ 2N− and every s ∈ NM0 .

Furthermore, the first minimum in Equation (4.27) exists because h > 0 implies that costs

grow unboundedly as the number of servers tends to infinity. We conclude that optimal

pooling games are well-defined.

If r = 0 and pi = pj for all i, j ∈ N , then full pooling, i.e., the policy with ψ(i, σ) = R only

if σ = 0, is optimal for every coalition (Miller, 1969; van Jaarsveld and Dekker, 2009) and,

consequently, an optimal pooling game matches an Erlang loss game. Hence, by Examples

4.3 and 4.6, optimal pooling game with fixed and optimized numbers of servers, respectively,

need not be concave. Nevertheless, optimal pooling games are easily shown to be subadditive

because the policies used by two disjoint coalitions induce a feasible policy (operating two

“separate” pools) for their union with the same costs. We omit the obvious proof.

Theorem 4.22. Both optimal pooling games with fixed numbers of servers and optimal pooling

games with optimized numbers of servers are subadditive.

Since the stochastic process underlying the optimal pooling games is no longer an Erlang

loss system, we can no longer draw upon the analytical properties of the Erlang loss function

to prove, e.g., balancedness. What we can show is that a switch from full pooling to optimal

pooling may turn a non-balanced game into a balanced one. We show this in the following

two examples, respectively for game with fixed and optimized numbers of servers.

Example 4.14. Reconsider the Erlang loss situation ϕ = (N,S, λ, τ, h, p) from Example 4.8.

This situation featured server counts S1 = 0, S2 = 0, and S3 = 1 and penalty costs p1 = 1 3
10 ,

p2 = 1 1
10 , and p3 = 22

5 . Suppose that r = 0.

To determine the associated optimal pooling game with fixed numbers of servers, (N, c̄ϕ,r),

we need to determine the optimal pooling policies. For the singleton coalitions {1}, {2}, and

{3}, this is trivial because there is only one customer stream. For coalition {1, 2}, this is

trivial because the coalition has 0 servers. For coalitions {1, 3} and {2, 3}, we determine by

enumeration that full pooling is optimal. So, for all M ⊂ N , it holds that c̄ϕ,r(M) = cϕ(M),

with cϕ(M) as in Table 4.6.

For the grand coalition, we determine by enumeration that the optimal policy always

accepts customers for players 1 and 3 and always rejects customers for player 2. The

corresponding costs, by Markov chain analysis, are c̄ϕ,r(N) = 317
30 . The game (N, c̄ϕ,r) admits

a stable allocation, e.g., (1 3
10 ,

1
10 , 2

1
6), and thus has a non-empty core. This is in contrast to

the associated Erlang loss game with fixed numbers of servers, which had an empty core. 3

Example 4.15. Reconsider the Erlang loss situation ϕ = (N,S, λ, τ, h, p) from Example 4.9.

This situation featured penalty costs p1 = 11
2 , p2 = 1

10 , and p3 = 1 9
10 . Suppose that r = 0.

To determine the associated optimal pooling game with optimized numbers of servers,

(N, d̄ϕ,r), we need to determine the optimal pooling policies. The singleton coalitions are

again trivial. For coalitions {1, 2} and {2, 3}, enumeration reveals that 0 servers remain
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Conditions Symmetrical p Arbitrary p

Fixed numbers of servers; Balanced (Theorem 4.14); Balanced (Corollary 4.17);

Symmetrical S/λ PMAS (Theorem 4.16) PMAS (Theorem 4.16)

Fixed numbers of servers; Balanced (Theorem 4.14) May be balanced or non-

Arbitrary S/λ balanced (Example 4.4)

Optim. numbers of servers; Balanced (Corollary 4.19); May be balanced or non-

Pure cost formulation PMAS (Theorem 4.18) balanced (Example 4.9)

Optim. numbers of servers; Balanced (Corollary 4.21) Not studied

natural service constraint

Table 4.9: Overview of the main results.

optimal. For coalition {1, 3}, enumeration shows that 1 server under full pooling is optimal.

So, for all M ⊂ N , it holds that c̄ϕ,r(M) = cϕ(M), with cϕ(M) as in Table 4.7.

For the grand coalition, enumeration shows that 1 server is optimal under the policy that

always accepts customers for players 1 and 3 and always rejects customers for player 2. The

corresponding costs, by Markov chain analysis, are d̄ϕ,r(N) = 311
30 . The game (N, d̄ϕ,r) admits

a stable allocation, e.g., (12
5 ,

1
10 , 1

13
15), and thus has a non-empty core. This is in contrast to

the associated Erlang loss game with optimized numbers of servers, which had an empty

core. 3

It remains an open question whether optimal pooling games are balanced in general.

4.7 Conclusion

We presented cooperative games corresponding to a situation where several players pool

their resources into a joint Erlang loss system to serve the union of their individual customer

arrival streams. Although the corresponding Erlang loss games (with either fixed or optimized

numbers of servers) are not concave, balanced, or even subadditive in general, they are

balanced and sometimes even PMAS-admissible when penalty costs are symmetric. Table 4.9

provides an overview of our main results regarding balancedness and population monotonicity.

In the formulation of Erlang loss games, we made several assumptions. In particular, we

assumed a full pooling policy and neglected transshipment/reassingment costs. We analyzed

the impact of relaxing these assumptions in Section 4.6; we found that the corresponding

optimal pooling games are always subadditive. Balancedness remains an interesting, though

mathematically challenging, open question for future research. Alternatively, useful insights

for optimal pooling games may be generated via a numerical experiment that investigates the

stability of various allocation mechanisms in realistic parameter settings.

Another limitation is that we assumed symmetrical service time distributions. We made
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this assumption because customer streams such as repair requests for the same type of failed

component often come with the same repair lead times. However, if customers of different

players would have vastly different mean service times, then full pooling can severely degrade

performance and thus possibly lead to an increase in costs. The intuition behind this is that

customers with long service times can adversely affect the blocking probability for customers

with short service times. The issue may be circumvented by preferential treatment of more

critical classes via partial pooling approaches, in line with Section 4.6. For discussions on the

issue of asymmetric service times (without a game theoretical perspective), we refer to Smith

and Whitt (1981) and Papier and Thonemann (2008). Tackling this asymmetry from a game

theoretical perspective may make for an interesting avenue for future research.

A final direction for future research lies in the formulation and analysis of alternative

Erlang loss games and scalability under heavy traffic formulas with square-root staffing (see,

e.g., Jagerman, 1974; Janssen et al., 2008). Inspiration could be drawn from the queueing

games in the asymptotic Halfin-Whitt regime that were studied by Yu et al. (2007) for the

M/M/s setting. It is important to note, however, that many of the motivating applications

(e.g., spare parts pooling) often feature rather low traffic, such that a single resource is often

optimal and a heavy traffic approximations are unsuitable and unnecessary. Moreover, the

structural results that we proved via the exact Erlang loss formula will also remain valid for

very large arrival rates. Nevertheless, a focus on asymptotic approximations may yield new

insights and results, possibly regarding concavity of the games.





—Everything comes in time to those who can wait.

François Rabelais

5
Erlang delay games

5.1 Introduction

In this chapter, which is based on Karsten et al. (2011b), we formulate and analyze games,

called Erlang delay games, to study the cost allocation problem in multi-server queueing

systems with infinite waiting room. As in the previous chapter, our model features several

service providers, who are associated with their own customer populations. The service

providers can collaborate by sharing their servers and individual customer streams into a

pooled resource system. In contrast to the previous chapter, we will allow waiting in a queue.

Accordingly, we model the service system of any coalition as an Erlang delay system, i.e., an

M/M/s model with infinite waiting room. Resource pooling in this context results in reduced

congestion, as measured by the expected time spent by customers waiting to be served (Smith

and Whitt, 1981).

The M/M/s queueing model has applications to a broad range of service systems in

practice (see, e.g., the literature overview in Kolesar and Green, 1998). One may think

of manufacturers of advanced technical equipment that employ a number of non-branded

repairmen to maintain and repair machines at their customer’s sites. One can also think of call

centers sharing cross-trained telephone agents, airline companies pooling check-in counters,

or clinical hospital departments sharing diagnostic equipment. The key is that customers can

wait in a queue, and that both interarrival and service time distributions are exponential.

Costs consist of linear resource costs for servers and linear, symmetric delay costs for

customers that have to wait before being served. Furthermore, all servers of the different
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players have the same service rate for all incoming work, and all customers require the same

(distribution of) service. We consider both the case of fixed numbers of servers and the case

where the number of servers is optimized to minimize the sum of resource and delay costs.

As mentioned in Section 3.3.3, most of the previous work on cooperative queueing games

(e.g., Anily and Haviv, 2010) has focused on the M/M/1 model, even though the M/M/1

model is not appropriate when service facilities consist of multiple servers whose service speeds

are given. For such settings, the M/M/s model is more accurate. And as we will show in

this chapter, there are essential differences between M/M/1 games and Erlang delay games.

The first difference is due to the fact that if fewer than s customers are present, then

the M/M/1 system can use its total service capacity, whereas the M/M/s system has idle

capacity. We note that as long as all servers are busy, the whole group of waiting customers

in an M/M/s system with service rate µ is served at the same rate as in an M/M/1 system

with service rate sµ, but this only holds when all servers are busy—it doesn’t hold when

fewer than s customers are present. Accordingly, the behavior of the two systems is different.

As a result of this, Erlang delay games with fixed numbers of servers turn out not to admit

a positive core allocation or a PMAS in general. This means that the simple proportional

solution that worked for M/M/1 games with fixed service capacity does not work for Erlang

delay games with fixed numbers of servers.

The second difference is due to the fact that the number of servers (i.e., total capacity)

in an M/M/s system can only be varied in discrete amounts—a limitation that is absent in

M/M/1 systems where the service speed can be set at arbitrary levels. As it turns out, Erlang

delay games with optimized numbers of servers are not balanced in general; we will show that

the underlying reason is the integrality requirement. This means that the balancedness result

that held true for M/M/1 games with optimized service capacity does not extend to Erlang

delay games with optimized numbers of servers.

The integrality requirement leads to another complication, now from an analytical

perspective. To prove that Erlang delay games with fixed numbers of servers are balanced,

we would like to construct Erlang delay systems with fractional numbers of servers, similar to

our approach in Chapter 4. However, the classic Erlang delay function, which describes the

probability that an arrival must wait before beginning service, is not defined for non-integral

numbers of servers, so we again have to dive into domain extensions. We will derive several

new analytical properties of the (standard) continuous extension of the classic Erlang delay

function. The properties that we will derive not only allow us to prove that certain Erlang

delay games are balanced but also generalize and strengthen well-known characteristics of key

performance measures in the M/M/s model.

Altogether, the model, results, and analysis we present in this chapter make three primary

contributions. First, we derive several new analytical properties of the (standard) continuous

extension of the classic Erlang delay function. Second, we introduce Erlang delay games with

fixed numbers of servers and prove that they are totally balanced, despite being markedly
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different from M/M/1 games. Third, for Erlang delay games with optimized numbers of

servers, we establish that the existence of a stable allocation and a PMAS is dependent on

the domain over which optimization takes place. In particular, we show that if each coalition

is required to choose an integer number of servers, this existence is not guaranteed.

The remainder of this chapter is organized as follows. We start in Section 5.2 with an

analysis of the continuous extension of the classic Erlang delay function. Section 5.3 introduces

Erlang delay situations. In Sections 5.4 and 5.5, we analyze the corresponding Erlang delay

games with, respectively, fixed and optimized numbers of servers. We conclude in Section 5.6.

5.2 The continuous extension of the Erlang delay function

Consider an Erlang delay system, i.e., an M/M/s queue. In such a system, as represented in

Figure 2.4 on page 38, customers arrive according to a Poisson process with rate λ > 0. They

are served by a group of s ∈ N homogeneous parallel servers. Service times are independent

and exponentially distributed with rate µ > 0. Customers who find all servers busy wait in

an infinite capacity queue until served by the first available server. We let a = λ/µ denote

the (offered) load.

The steady-state probability of delay (the probability that an arrival must wait before

beginning service) in such a system is described by the classic Erlang delay function, first

published by Erlang (1917). This function Ĉ is defined, for each a > 0 and s ∈ N with s > a,

by

Ĉ(s, a) =

1 +
s−1∑
y=0

s!(1− a/s)
y!as−y

−1

. (5.1)

Another interesting performance measure, also derived by Erlang (1917), is the expected

waiting time (delay before beginning service) experienced by an arbitrary customer in steady

state. For any λ > 0, µ > 0, and s ∈ N with s > λ/µ, this waiting time equals

Ŵq(s, λ, µ) =
Ĉ(s, λ/µ)

sµ− λ
. (5.2)

Equations (5.1) and (5.2) are valid for any non-biased service discipline, i.e., a service

discipline that selects the next customer to be served without taking the waiting customers’

actual service lengths into account (cf. Cooper, 1981, pp. 95–98). Examples of non-biased

service disciplines are service on a first-come first-serve basis, service in random order, or

service on a last-come first-serve basis.

The following example illustrates the behavioral difference between M/M/1 and M/M/s

queues, which we alluded to earlier.

Example 5.1. Suppose that λ = 0.5, s = 2, and µ = 1. Then, by Equation (5.2),

the expected waiting time in an M/M/1 queue with arrival rate λ and service rate sµ is
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[λ/(sµ)]/(sµ − λ) = 1
6 . In contrast, the expected waiting time in an M/M/s queue with

the same arrival rate and service rate µ per server is Ĉ(s, λ/µ)/(sµ − λ) = 1
15 . Moreover,

the service time differs between the two queueing models. So, approximating a multi-server

system by a single-server system can be grossly inaccurate. 3

For analytical purposes, it will be convenient to extend the domain of the Erlang delay

function to non-integral values of s. Jagers and van Doorn (1991) have suggested a confluent

hypergeometric function as a natural continuous extension. This function C is defined, for

each a > 0 and s ∈ R with s > a, by

C(s, a) =

(∫ ∞
0

ae−ax(1 + x)s−1xdx

)−1

. (5.3)

For fixed a > 0, C(s, a) is non-increasing and convex in s for s ∈ (a,∞) (Jagers and van

Doorn, 1991). This analytic extension of the Erlang delay function enables a natural way to

define the expected waiting time in an (artificial) queueing system with a non-integral number

of servers: for any λ > 0, µ > 0, and s ∈ R with s > λ/µ, we define

Wq(s, λ, µ) =
C(s, λ/µ)

sµ− λ
. (5.4)

As observed by Jagers and van Doorn (1991), Equations (5.1) and (5.3) coincide for integer

values of s, i.e., Ĉ(s, a) = C(s, a) for all s ∈ N and a ∈ (0, s). Accordingly, Equations (5.2)

and (5.4) coincide for those cases as well.

The performance measures described above satisfy various interesting structural proper-

ties. The literature dealing with these properties is rich (an excellent overview is provided in

Whitt, 2002), but most research has focused on Ĉ and Ŵq, thereby restricting the analysis

to integer numbers of servers. In what follows, we will show that various well-known

monotonicity, convexity, subadditivity, and subhomogeneity properties of Ĉ and Ŵq are also

valid for C and Wq. Thus, we extend the analysis to non-integral numbers of servers by means

of (5.3).

But given that all real-life queueing systems operate under an integral number of servers,

why the fuss of this extended analysis? First there is the mathematical appeal of a

generalization of known results; in fact, our analysis of the continuous extension (5.3)

will provide simple alternative proofs of classic results in the M/M/s model. But more

importantly, the ensuing properties of the continuous extensions C and Wq will allow us to

derive interesting results for Erlang delay games.

To obtain new structural results for the extensions C and Wq, we exploit a relation between

the continuous extension of the Erlang delay function and the continuous extension B of the

Erlang loss function, as defined in Equation (4.5), and we use a result that has already been

established for the latter. The following lemma shows that the continuous extension of the

Erlang delay function can be expressed in terms of the continuous extension of the Erlang



5.2. The continuous extension of the Erlang delay function 103

loss function, and vice versa. For integer s, this relation is well known (see, e.g., Cooper,

1981, p. 92). For non-integer s, this relation is retained by C and B, as observed by Janssen

et al. (2011). We provide a proof for completeness.

Lemma 5.1. Let a > 0 and s ∈ R with s > a. Then,

C(s, a) =
B(s, a)

1− (a/s)(1−B(s, a))
.

Proof. For notational ease, let C = C(s, a), B = B(s, a), C−1 = 1/C, B−1 = 1/B, and

ρ = a/s. (Note that C > 0 and B > 0.) Then,

C−1 − (1− ρ)B−1 =

∫ ∞
0

ae−ax(1 + x)s−1xdx−
∫ ∞

0
ae−ax(1 + x)s(1− ρ)dx

=

∫ ∞
0

ae−ax(1 + x)s−1[x− (1 + x)(1− ρ)]dx

=

∫ ∞
0

ae−ax(1 + x)s−1[ρ(1 + x)− 1]dx

= −ae−ax(1 + x)s/s
∣∣x=∞
x=0

= ρ.

This implies BC−1 − 1 + ρ = Bρ, which in turn implies BC−1 − 1 = −ρ(1 − B), and thus

C = B/[1− ρ(1−B)]. This completes the proof.

Next, we show that when the load per server is held constant, the probability of delay is

decreased by adding servers. In other words, C is subhomogeneous of degree zero. When the

domain is restricted to integer s, this property has already been proven by Calabrese (1992,

Proposition 1).

Lemma 5.2. Fix a > 0 and s ∈ R with s > a. Then, C(ts, ta) is decreasing in t for t > 0.

Proof. Note that, by assumption, s > 0. Hence, for t > 0, it holds that B(ts, ta) > 0 and, by

Lemma 5.1,

C(ts, ta) =
1

1− a/s
B(ts, ta)

+ a/s

. (5.5)

Now, as shown in Theorem 4.5, B(ts, ta) is decreasing in t for t > 0, given that s > 0. This

result, in combination with Equation (5.5), implies that C(ts, ta) is also decreasing in t for

t > 0.

The following theorem states that when the load per server is held constant again, the

expected waiting time is decreased by adding servers. Benjaafar (1995, p. 377) provides a

proof of this result for integer s.

Theorem 5.3. Fix λ, µ > 0 and s ∈ R with s > λ/µ. Then, Wq(ts, tλ, µ) is decreasing in t

for t > 0.
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Proof. Let t1, t2 > 0 with t1 < t2. Then,

Wq(t1s, t1λ, µ) = C(t1s, t1λ/µ)/[t1(sµ− λ)]

> C(t2s, t2λ/µ)/[t1(sµ− λ)]

> C(t2s, t2λ/µ)/[t2(sµ− λ)] = Wq(t2s, t2λ, µ),

where the first inequality holds by Lemma 5.2. The second inequality is strict as

C(t2s, t2λ/µ) > 0. We conclude that Wq(ts, tλ, µ) is decreasing in t for t > 0.

In the process of proving the next property of the continuous extension of the Erlang delay

function, we will use the following lemma. Although the result is straightforward, we were

unable to find a proof in the literature, and therefore we provide a proof for completeness.

Lemma 5.4. Let f : D → R++ be a positive, non-increasing, convex function on an interval

D ⊆ R. Let g : D → R++ be a positive, decreasing, strictly convex function on the same

domain as f . Then the function h : D → R++, defined by h(s) = f(s)g(s) for all s ∈ D, is

decreasing and strictly convex.

Proof. The case |D| ≤ 1 is trivial. In the remainder of the proof, we will assume |D| > 1. Let

s1, s2 ∈ D with s1 < s2. We first show that h is decreasing. We have

h(s1) = f(s1)g(s1) ≥ f(s2)g(s1) > f(s2)g(s2) = h(s2),

where the first inequality holds because f is non-increasing while g(s1) > 0, and the second

inequality holds because f(s2) > 0 and g is decreasing. We conclude that h is decreasing.

Next, we show that h is strictly convex. Let x ∈ (0, 1). Then,

h(xs1 + (1− x)s2) = f(xs1 + (1− x)s2) · g(xs1 + (1− x)s2)

≤
[
xf(s1) + (1− x)f(s2)

]
· g(xs1 + (1− x)s2)

<
[
xf(s1) + (1− x)f(s2)

]
·
[
xg(s1) + (1− x)g(s2)

]
= x2h(s1) + (1− x)2h(s2) + x(1− x)f(s1)

[
g(s2)− g(s1) + g(s1)

]
+ (1− x)xf(s2)

[
g(s1)− g(s2) + g(s2)

]
= xh(s1) + (1− x)h(s2)

+ x(1− x)
[
f(s1)[g(s2)− g(s1)] + f(s2)[g(s1)− g(s2)]

]
≤ xh(s1) + (1− x)h(s2),

The first inequality holds because f is convex, while g is a positive function. The second

inequality holds because g is strictly convex and f is a positive function. The third inequality

holds because x(1− x) > 0, g(s2)− g(s1) < 0, and f(s1)− f(s2) ≥ 0. We conclude that h is

indeed strictly convex.
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The following theorem says that the expected waiting time is decreasing and strictly

convex in the number of servers. For integer s, these properties have already been proven by

Dyer and Proll (1977).

Theorem 5.5. Let λ, µ > 0. Then, Wq(s, λ, µ) is a decreasing and strictly convex function

of s for s ∈ R with s > λ/µ.

Proof. For the fixed choice of λ and µ, we denote a = λ/µ. Define the set D = {s ∈ R | s > a}.
We next define three functions with domain D. First, the function f : D → R++ with

f(s) = C(s, a) for all s ∈ D. Second, the function g : D → R++ with g(s) = 1/(sµ − λ)

for all s ∈ D. Third, h : D → R++, defined by h(s) = f(s)g(s) = for all s ∈ D. Note

that h(s) = Wq(s, λ, µ) for all s ∈ D. Since, as shown by Jagers and van Doorn (1991), the

continuous extension of the Erlang delay function is positive, non-increasing and convex in

the number of servers, f has the same properties. Moreover, g is positive, decreasing, and

strictly convex. Hence, by Lemma 5.4, h is decreasing and strictly convex.

Next, we consider a subadditivity property that describes the economy-of-scale effect

associated with larger service systems. Specifically, the following theorem states that

combining two separate M/M/s queues with common service rates into a joint system will

lead to a reduction in the average (per-arrival) delay. Smith and Whitt (1981) provide a proof

of this result for integer s, although not with strict inequality.

Theorem 5.6. Let λ1, λ2, µ > 0. Then, for all s1 ∈ R with s1 > λ1/µ and for all s2 ∈ R
with s2 > λ2/µ, it holds that

Wq(s1 + s2, λ1 + λ2, µ) · (λ1 + λ2) < Wq(s1, λ1, µ) · λ1 +Wq(s2, λ2, µ) · λ2.

Proof. Using the convexity property of Theorem 5.5 and subsequently using Theorem 5.3, we

obtain

Wq(s1 + s2, λ1 + λ2, µ) ≤ λ1

λ1 + λ2
Wq

(
λ1 + λ2

λ1
s1, λ1 + λ2, µ

)
+

λ2

λ1 + λ2
Wq

(
λ1 + λ2

λ2
s2, λ1 + λ2, µ

)
<

λ1

λ1 + λ2
Wq(s1, λ1, µ) +

λ2

λ1 + λ2
Wq(s2, λ2, µ),

Multiplying both sides with λ1 + λ2 > 0 completes the proof.

We conclude this section with a comment on linear interpolations. As shown in Chapter

4, the linear interpolation of the Erlang loss function is scalable. Surprisingly, as shown in

the following example, the same does not hold for the linear interpolation of the Erlang delay

function.
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Example 5.2. Consider the linear interpolation C lin of the Erlang delay function, defined

for any a > 0 and s ∈ N with bsc > a by

C lin(s, a) = (1− (s− bsc)) · C(bsc, a) + (s− bsc) · C(dse, a).

Let s = 1, a = 0.5, and t = 1.2. We obtain that C lin(s, a) = C(1, 0.5) = 0.5, whereas

C lin(ts, ta) = 0.8 · C(1, 0.6) + 0.2 · C(2, 0.6) = 0.8 · 3
5 + 0.2 · 9

65 = 33
65 . So, if we start with

an Erlang delay system with 1 server and offered load 0.5, then scaling up by a factor of

1.2 results in an increased delay probability. This is in contrast to Erlang loss systems,

where by Theorem 4.11 the same type of scaling leads to a decreased blocking probability:

L(s, a) = B(1, 0.5) = 1
3 and L(ts, ta) = 0.8·B(1, 0.6)+0.2·B(2, 0.6) = 0.8· 38 +0.2· 9

89 = 57
178 . 3

5.3 Model description

In this section, we introduce Erlang delay situations. Consider several service organizations,

which we will simply refer to as players. Each player witnesses a Poisson arrival process of

customers. The arrival processes of the players are mutually independent. Service times (for

an arbitrary customer of any player) are exponential and i.i.d. Each player has an exogenously

given number of servers to provide service to their customer streams; this number of servers

may be either fixed or adjustable. Either way, servers are costly. An arriving customer who

finds all servers busy upon arrival waits in a queue, incurring delay costs that are proportional

to their waiting time. These delay costs, which are symmetrical across players, represent

customer dissatisfaction, lost goodwill, and/or contractual penalties; they are borne by the

player to whom the customer belongs.

Players are interested in their long-term average costs per unit time, which they may be

able to reduce by collaborating, i.e., pooling their resources to serve their customer streams

together. Our aim is to determine (the existence of) fair allocations of costs to support such

collaboration. To analyze this, we have the following definition.

Definition 5.1. An Erlang delay situation is a tuple (N,λ, µ, S, h, w), where

• N is the nonempty, finite set of players;

• λ ∈ RN++ is the vector of arrival rates, where λi describes the arrival rate of customers

that belong to player i ∈ N ;

• µ > 0 is the rate of the exponential service time distribution;

• S ∈ RN++ is the vector of numbers of servers with Si > λi/µ for all i ∈ N , where Si

describes the number of servers that player i ∈ N brings to any coalition;

• h = (hM )M∈2N−
∈ R2N−

+ is the vector of resource cost rates that satisfies hM ≥ hL for all

M,L ∈ 2N− with M ⊆ L, where hM describes the resource cost incurred per unit time

for each server operated by coalition M ;
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• w > 0 is the delay or waiting cost incurred by any customer for waiting one unit of time

in the queue.

For each coalition M ∈ 2N− , we denote λM =
∑

i∈M λi and SM =
∑

i∈M Si.

In the formulation of a Erlang delay situation, we imposed several requirements. We

discuss four of them.

First, an Erlang delay situation only has a natural interpretation when each player has an

integer number of servers, but our formulation does allow a player to possess a non-integral

number of servers. This simplifies proofs and allows a good fit between Sections 5.4 and 5.5.

Second, the requirement that Si > λi/µ for all i ∈ N means that each player possesses

enough servers to ensure that the expected waiting time in his own service facility is finite.

This assumption is not essential, but allows a clear exposition.

Third, the requirement that hM ≥ hL for all M,L ∈ 2N− with M ⊆ L means that the

resource cost rate does not increase as a coalition grows. Our formulation captures not only

the natural situation in which each coalition has the same resource cost rate but also more

general settings wherein larger coalitions can acquire and maintain servers at a reduced cost

rate because more players gives stronger negotiation or buying power.37

Fourth, we assumed that delay costs are symmetric, for two reasons. First, if delay costs

would not be symmetric across players, then complete pooling of servers need not be superior

anymore; we provide a counterexample in Subsection 5.5.2. This adverse effect is in keeping

with the observations made in Section 4.4.2 for the Erlang loss model. In addition, Anily and

Haviv (2010) analyzed their M/M/1 games under symmetric delay costs. To allow a more

crisp comparison to the M/M/1 games, we assume symmetric delay costs in this chapter.

This model is sufficiently general to cover a wide variety of situations in which a resource

pooling arrangement can arise between independent service providers that operate service

facilities with infinite waiting room. Our model is simple, yet it has all ingredients to capture

a concrete setting. The following example illustrates this and simultaneously highlights the

difference with the Erlang loss model.

Example 5.3. Reconsider the departments of the manufacturer of advanced technical

equipment from Example 4.2, who could pool service technicians to repair failed machines

at their customers’ sites. In Example 4.2, if no repairman was immediately available upon

a failure, then the repair was taken over by a separate repair organization. Instead, we will

now assume that there is no separate repair organization, and that the customer is entitled

to a monetary compensation of 100 euro for every business hour he has to wait for a regular

repairman.

For brevity, consider Departments 1 and 2 only. As before, both departments face repair

requests at a rate of 0.1 per day while employing 1 repairman. The salary of a repairman

37This represents an additional factor that leads to synergy due to pooling. We could also allow a concave

resource cost function, in line with Chapter 4. See the discussion in Section 4.3.2.
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is unaffected by coalition formation and remains 100 euro per day. If the service time is

exponentially distributed with mean 1 day, then the M/M/s model applies. We can represent

this situation as an Erlang delay situation (N,λ, µ, S, h, w) by letting N = {1, 2}, S1 = 1,

S2 = 1, λ1 = 0.1, λ2 = 0.1, µ = 1, hM = 100 for all coalitions M ∈ 2N− , and w = 100 ·8 = 800,

where we measure time in business hours and money in euros. 3

5.4 Fixed numbers of servers

In this section, we consider a setting in which each player brings a predetermined number

of servers to any coalition. This model captures situations where adjusting the number of

servers is practically or legally impossible. We first define the associated game. Subsequently,

we analyze structural properties of this game, identify stable cost allocations, and study the

existence of a PMAS.

5.4.1 Game

Consider any Erlang delay situation ϕ = (N,λ, µ, S, h, w) and an arbitrary coalition M ∈ 2N− .

We assume that the players in this coalition collaborate by complete pooling of their respective

arrival streams and servers into a joint system. Since the superposition of independent Poisson

processes is also a Poisson process, this coalition now faces a combined Poisson arrival process

with aggregate rate λM . The coalition has SM servers at its disposal. We assume that each

server can handle all types of customers with equal ease and that all customers can effortlessly

access the joint service facility. A non-biased service discipline, such as service in order of

arrival, is used.

Based on these assumptions, the pooled system behaves as an Erlang delay system. The

expected waiting time that an arbitrary customer spends in the queue before starting service

is equal to Wq(sM , λM , µ). Multiplying this by λMw, we obtain the delay costs per unit time

in steady state. We can now formulate a game corresponding to Erlang delay situation ϕ.

Definition 5.2. For any Erlang delay situation ϕ = (N,λ, µ, S, h, w), we call the game (N, cϕ)

with

cϕ(M) = hMSM +Wq(SM , λM , µ) · λMw. (5.6)

for all M ∈ 2N− the associated Erlang delay game with fixed numbers of servers.

By Theorem 5.6, cooperation in the context of pooling Erlang delay systems with

symmetric service times and delay costs always leads to a reduction in costs. However, this

does not yet imply the existence of a stable cost allocation or a PMAS. If Erlang delay games

with fixed numbers of servers would be concave, existence of both would be guaranteed. The

following example, however, shows that these games need not be concave. The example also

shows, even stronger, that the Shapley value is not necessarily in the core.
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Coalition M SM λM C(SM , λM/µ) Wq(SM , λM , µ) cϕ(M)

{1} 1 1
2

1
2 1 5

{2} 1 3
4

3
4 3 221

2

{3} 3 1
4

1
452

1
1243

5
2486

{1, 2} 2 11
4

25
52

25
39 8 1

78

{1, 3} 4 3
4

27
3524

27
11453

405
22906

{2, 3} 4 1 1
49

1
147

10
147

{1, 2, 3} 5 11
2

81
4022

81
14077

1215
14077

Table 5.1: The Erlang delay game and expected delay times of Example 5.4.

Example 5.4. Consider the Erlang delay situation ϕ = (N,λ, µ, S, h, w) with player set

N = {1, 2, 3}, service rate µ = 1, resource cost rate hM = 0 for all coalitions M , delay cost

rate w = 10, and

λ1 = 1/2; λ2 = 3/4; λ3 = 1/4;

S1 = 1; S2 = 1; S3 = 3.

The characteristic cost function cϕ of the associated Erlang delay game with fixed numbers

of servers (N, cϕ) is represented in Table 5.1, along with the expected waiting time of an

arbitrary customer in any coalition’s service system. This game has a nonempty core: for

example, the allocation x given by x1 = 2, x2 = 3, and x3 = −412862
14077 is stable. However, this

game is not concave since cϕ({1, 2})− cϕ({2}) = −1419
39 <

5405
295617 = cφ({1, 2, 3})− cφ({2, 3}).

In other words, player 1’s marginal cost contribution may increase if he joins a larger coalition.

Moreover, the game’s Shapley value Φ(N, cϕ), which is approximately equal to Φ1(N, cϕ) ≈
−0.74, Φ2(N, cϕ) ≈ 8.04, and Φ3(N, cϕ) ≈ −7.21 (rounded to 2 decimals), is not in the core

of this game since Φ2(N, cϕ) + Φ3(N, cϕ) > cϕ({2, 3}). 3

We remark that the characteristic cost function in the preceding example is not

monotonically decreasing. In fact, expected waiting times may increase when a new player

joins. For instance, when player 2 joins player 3, the expected delay experienced by a customer

of player 3 increases from 1/1243 to 1/147. This is because player 3 possesses a relatively

large number of servers and, as a result, observes few delays when acting independently.

5.4.2 Cost allocation: stability

In this section, we present general results on the existence and multiplicity of stable cost

allocations for Erlang delay games with fixed numbers of servers. First, we show that any

such game, as well as each of its sub-games, has a strictly stable allocation. The proof is

based on the notion of strict balancedness, cf. Part (i) of Theorem 2.4.
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Theorem 5.7. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation with |N | > 1. The

associated game (N, cϕ) is strictly totally balanced.

Proof. Let κ ∈ WN be an arbitrary minimally balanced map. Then, we have

cϕ(N) = hNSN +Wq (SN , λN , µ) · λNw

= hNSN +Wq

 ∑
M∈B(κ)

κ(M)SM ·
λN
λM
· λM
λN

, λN , µ

 · λNw
≤ hNSN +

∑
M∈B(κ)

κ(M)
λM
λN
·Wq

(
SM ·

λN
λM

, λN , µ

)
· λNw

= hNSN +
∑

M∈B(κ)

κ(M)Wq

(
SM ·

λN
λM

, λN , µ

)
· λMw

< hNSN +
∑

M∈B(κ)

κ(M)Wq (SM , λM , µ) · λMw

=
∑

M∈B(κ)

κ(M) [hNSM +Wq (SM , λM , µ) · λMw]

≤
∑

M∈B(κ)

κ(M) [hMSM +Wq (SM , λM , µ) · λMw] =
∑

M∈B(κ)

κ(M)cϕ(M).

The second and second-to-last equalities are valid because
∑

M∈B(κ) κ(M)SM = SN . The first

inequality holds by the combination of the convexity property of Theorem 5.5 and the fact that∑
M∈B(κ) κ(M)λM/λN = 1; that is, we employ this convexity by using that the nonnegative

convex weights κ(M)λM/λN add up to 1. The second inequality holds by Theorem 5.3. This

inequality is strict because κ is minimally balanced and thus, by definition, every M ∈ B(κ)

is a proper subset of N . The third and final equality holds because hN ≤ hM by assumption.

We conclude that the game (N, cϕ) is strictly balanced. Noting that every sub-game of

(N, cϕ) is a game associated with an Erlang delay situation itself completes the proof.

By Part (ii) of Theorem 2.4, we immediately obtain the following corollary to Theorem

5.7.

Corollary 5.8. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation with |N | > 1. The

associated game (N, cϕ) has infinitely many (strict) core allocations.

By Part (vii) of Theorem 2.4, the nucleolus always accomplishes an allocation in the strict

core if nonempty. Therefore, it accomplishes strictly stable cost allocations for our Erlang

delay games. However, computation of the nucleolus may be difficult (see, e.g., Leng and

Parlar, 2010). In light of this downside and because there are infinitely many core allocations,

one may well ask whether the core contains a simple cost allocation, e.g., proportional with

respect to arrival rates or to numbers of servers. The following example shows that such

(positive) proportional allocations will not necessarily be in the core, as there are instances

in which a player is assigned a negative cost (i.e., a reward) in every core allocation.
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Example 5.5. Consider the Erlang delay game with fixed numbers of servers (N, cϕ) of

Example 5.4 again. For any allocation x in the core of (N, cϕ), it holds that x1 + x3 ≤
cϕ({1, 3}), x2 + x3 ≤ cϕ({2, 3}), and x1 + x2 + x3 = cϕ({1, 2, 3}). Hence,

x3 = x3 +x1 +x2 +x3− cϕ(N) ≤ cϕ({1, 3})+ cϕ({2, 3})− cϕ(N) =
405

22906
+

10

147
− 1215

14077
< 0.

Thus, player 3 is assigned a negative cost in every core allocation. The intuition behind this

is that player 3 should be compensated for the relatively large number of servers that he adds

to any coalition. 3

In the corresponding M/M/1 queueing game (cf. Anily and Haviv, 2010), non-negative

core allocations always existed; thus, in this respect, the multi-server models exhibit different

behavior than their single-server counterparts. So, the simple proportional allocation that

“worked” for M/M/1 games, as discussed in Section 3.3.1, does not work for Erlang delay

games with fixed numbers of servers.

5.4.3 Cost allocation: population monotonicity

As M/M/1 games always admitted a PMAS, we next pose the question whether or not Erlang

delay games with fixed numbers of servers possess a PMAS. The following example answers

this question negatively: Erlang delay games with fixed numbers of servers and four or more

players need not admit a PMAS.38 This non-existence contrasts with results that we will

obtain in Section 5 for Erlang delay games with optimized (real) numbers of servers. Absence

of a PMAS may complicate coalition formation: it implies for any fixed allocation scheme

that under some sequence of adding players one-by-one to a pooling group, there is at least

one player who, at a certain point, becomes worse off when another player is added.

Example 5.6. Consider the Erlang delay situation ϕ = (N,λ, µ, S, h, w) withN = {1, 2, 3, 4},
µ = 1, w = 10, hM = 0 for all coalitions M , and

λ1 = λ2 = 0.1; λ3 = λ4 = 0.9;

S1 = S2 = 2; S3 = S4 = 1.

The associated Erlang delay game with fixed numbers of servers (N, cϕ) is represented in

Table 5.2. To show that this game does not admit a PMAS, we use the dual description of

the class of games with a PMAS, introduced in Norde and Reijnierse (2002). They provide a

set of necessary conditions (their Theorem 8) to determine whether a game has a PMAS or

not. For our 4-player game, one of these conditions — which follows from y2,{1,2,3} ≤ y2,{2,3}

and five similar monotonicity inequalities, combined with efficiency — is given by (cf. p. 331

of Norde and Reijnierse, 2002):

cϕ({1, 2, 3}) + cϕ({2, 3, 4}) ≤ cϕ({1, 3}) + cϕ({2, 3}) + cϕ({2, 4}). (5.7)

38Every balanced game with 3 or fewer players always admits a PMAS; see Sprumont (1990).
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Coalition M SM λM C(SM , λM/µ) Wq(SM , λM , µ) cϕ(M)

{1}, {2} 2 0.1 1
210

1
399

1
399

{3}, {4} 1 0.9 9
10 9 81

{1, 2} 4 0.2 1
17405

1
66139

2
66139

{3, 4} 2 1.8 81
95 4 5

19 7614
19

{1, 3}, {1, 4}, {2, 3}, {2, 4} 3 1 1
11

1
22

5
11

{1, 2, 3}, {1, 2, 4} 5 1.1 161051
28127210

161051
109696119

1771561
109696119

{1, 3, 4}, {2, 3, 4} 4 1.9 130321
867190

130321
1821099 1 655000

1821099

N 6 2 2
111

1
222

10
111

Table 5.2: The Erlang delay game and expected delay times of Example 5.6.

Inequality (5.7) may be interpreted as stating that an arrangement in which players 1, 2, and

3 work one unit of time together, incurring costs cϕ(1, 2, 3) per time unit, and in which player

2, 3, and 4 work one unit of time together, incurring costs cϕ(2, 3, 4) per time unit, generates

lower costs than an alternative schedule in which players work the same amount of time as

before, but in smaller coalitions. As in our game it holds that

cϕ({1, 2, 3})+cϕ({2, 3, 4}) =
1771561

109696119
+1

655000

1821099
>

5

11
·3 = cϕ({1, 3})+cϕ({2, 3})+cϕ({2, 4}),

Inequality (5.7) is not satisfied. We conclude that this game lacks a PMAS.

To make this nonexistence intuitively plausible, notice that there are two types of players:

on the one hand there are players 1 and 2, both with low arrival rates and many servers, and

on the other hand there are players 3 and 4, both with high arrival rates and few servers.

Any two-player coalition containing one player of each type can already attain most of the

benefits of pooling. Combining this fact for three of those two-player coalitions leads to an

incompatibility with the costs that should be paid in two related three-player coalitions. 3

Conditions for existence of a PMAS in our games follow from the characterization result

of Norde and Reijnierse (2002). However, these conditions, when applied to our game, are

technical and do not convey direct insight for our setting. The same problem is encountered

when trying to provide general conditions under which all core allocations are non-negative.

Instead, we will provide a more intuitive sufficient condition for our games to admit a PMAS

and a positive core allocation. To this end, we introduce an allocation scheme under which

the expected waiting cost of any coalition is allocated proportional to the arrival rates of its

members. Under an assumption on the ratios between players’ servers and arrival rates, this

allocation scheme will turn out to be population monotonic.

Allocation scheme PFIX for Erlang delay situation ϕ = (N,λ, µ, S, h, w) is defined, for all

M ∈ 2N− and all i ∈M , by

PFIXi,M (ϕ) = hMSi +Wq(SM , λM , µ) · λiw. (5.8)
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Now, suppose that the ratio of the number of servers to arrival rates is identical among players.

This symmetry condition implies that players with larger arrival rates possess more servers.

This symmetry is also in place when players represent equally sized service providers, all with

the same number of servers and arrival rates. The following theorem states that, under this

symmetry condition, the average delay experienced by an arbitrary customer decreases as a

coalition grows larger and, as a result, the amount a player has to pay under P(ϕ) decreases

when the coalition to which he belongs grows.

Theorem 5.9. Let ϕ = (N,λ, µ, S, h, w) be a Erlang delay situation with Si/λi = Sj/λj for

all i, j ∈ N .

(i) For any two coalitions M,L ∈ 2N− with M ⊂ L, Wq(SM , λM , µ) > Wq(SL, λL, µ).

(ii) The proportional scheme PFIX(ϕ) is an SPMAS for the associated game (N, cϕ).

Proof. Part (i). Let M,L ∈ 2N− with M ⊂ L. Then,

Wq(SM , λM , µ) > Wq

(
SM ·

SL
SM

, λM ·
SL
SM

, µ

)
= Wq(SL, λL, µ),

where the inequality follows by Theorem 5.3 and the equality holds because SM/λM = SL/λL.

Part (ii). Let M,L ∈ 2N− with M ⊂ L, and let i ∈M . Then,

PFIXi,M (ϕ) = hMSi +Wq(SM , λM , µ) · λiw

≥ hLSi +Wq(SM , λM , µ) · λiw

> hLSi +Wq(SL, λL, µ) · λiw = PFIXi,L (ϕ),

where the first inequality follows by assumption on h and the second inequality follows by

Part (i). We conclude that PFIX(ϕ) is indeed an SPMAS.

Recall that, by Part (iii) of Theorem 2.4, the fact that PFIX(ϕ) is an SPMAS immediately

implies the properties stated in following corollary.

Corollary 5.10. Let ϕ = (N,λ, µ, S, h, w) be a Erlang delay situation with Si/λi = Sj/λj for

all i, j ∈ N . Then, the associated game (N, cϕ) is strictly totally balanced and the allocation

assigning Pi,N (ϕ) to all i ∈ N is an element of its strict core.

5.5 Optimized numbers of servers

In this section, we consider a setting in which the number of servers can be jointly optimized

by each coalition. This model captures situations where the number of servers can be easily

adjusted against negligible costs.39 By allowing re-optimization of the number of servers, the

39If there are costs involved (e.g., a cost to shed an existing server or to purchase a new server) then these

will likely be negligible in comparison to resource and delay costs in the long run.
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grand coalition will be no worse off than in the case with fixed numbers of servers. After

all, due to the resource pooling effect, fewer servers may suffice to jointly serve all customer

streams in a cost-effective way. This reduction in the costs of the grand coalition would make

it easier to find a stable allocation. Yet, sub-coalitions will also choose a cost-minimizing

number of servers, reducing their costs and possibly shrinking the core. Due to these two

opposite effects, which are explained in more detail in the context of Erlang loss games in

Section 4.5.2, there is no direct relation between balancedness of Erlang delay games with

fixed and optimized numbers of servers.

In this section, we will investigate whether the balancedness of Erlang delay games with

fixed numbers of servers remain valid when optimization is introduced. To analyze this, we

will define and analyze two corresponding games, which differ in the domain on which this

optimization takes place. Throughout this entire section, we will assume for every Erlang

delay situation (N,λ, µ, S, h, w) that the resource cost rates are positive, i.e., hM > 0 for all

M ∈ 2N− . This assumption will ensure the existence of optimal numbers of servers.

5.5.1 Games

Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation, and consider a coalition M ∈ 2N− . As

before, this coalition will jointly serve customers that arrive according to a Poisson process

with combined rate λM =
∑

i∈M λi. Suppose that this coalition would pick s > λM/µ common

servers. Then, this coalition’s joint service facility behaves as an Erlang delay system, and

the expected costs per unit of time in steady state incurred by coalition M are equal to

Kϕ
M (s) = hMs+Wq(s, λM , µ) · λMw. (5.9)

Figure 5.1 illustrates this cost function. Next, we formulate two different games corresponding

to Erlang delay situation ϕ. In the first game, any coalition M optimizes Kϕ
M (s) over integer

numbers of servers, i.e., over domain N ϕ
M = {s ∈ N | s > λM/µ}. In the second game, the

optimization is taken over real numbers of servers, i.e., over domain Rϕ
M = {s ∈ R | s >

λM/µ}.
We emphasize that our main interest lies in the first game because it represents the exact

discrete optimization problem. The second game will help in understanding the discrete game:

structural properties of the second game will imply structural properties of the first game.

Although a system with a non-integral number of servers as described by the continuous

extension Wq does not lend itself to a natural interpretation, we remark that one might view it

as, e.g., an approximation of a system with a part-time worker. We also point out that Borst

et al. (2004), in dealing with the staffing problem of large call centers, have approximated

costs based on the continuous extension (5.3) to find an approximately optimal number of

servers.

We first define the game with optimization over the integers and subsequently define the

game with optimization over the reals.
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Figure 5.1: The costs Kϕ
M (s) as a function of the number of servers s, for λM = 0.5, µ = 1, hM = 1,

and w = 2.15. This function is defined on domain {s ∈ R | s > λM/µ}. The values Kϕ
M (1) = 2 3

40 and

Kϕ
M (2) = 2 43

600 are identified by black dots.

Definition 5.3. For any Erlang delay situation ϕ = (N,λ, µ, S, h, w), we call the game

(N, d̂ϕ) with

d̂ϕ(M) = min
s∈N ϕ

M

Kϕ
M (s) (5.10)

for all M ∈ 2N− the associated Erlang delay game with N-optimization.

Consider any coalition M ∈ 2N− . When restricted to domain N ϕ
M , the cost function Kϕ

M

is strictly convex (due to Theorem 5.5) and it achieves a minimum (since the costs grow

unboundedly as the number of servers tends to infinity). Hence, an optimal integer number

of servers is given by the smallest s ∈ N ϕ
M satisfying Kϕ

M (s + 1) ≥ Kϕ
M (s), and we denote

this optimizer by ŝ∗M .

Definition 5.4. For any Erlang delay situation ϕ = (N,λ, µ, S, h, w), we call the game

(N, dϕ) with

dϕ(M) = min
s∈Rϕ

M

Kϕ
M (s) (5.11)

for all M ∈ 2N− the associated Erlang delay game with R-optimization.

Consider any coalition M ∈ 2N− . By strict convexity of Kϕ
M and because lims→∞K

ϕ
M (s) =

lims↓λM/µK
ϕ
M (s) =∞, the cost functionKϕ

M (s) achieves a minimum on domain Rϕ
M , implying

that the game is well-defined. Now, the optimal real number of servers is unique (due to the

strict convexity), and we denote it by s∗M .
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The following theorem states that cooperation is beneficial in both games and establishes

a link between the two games.

Theorem 5.11. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation.

(i) Both associated games (N, d̂ϕ) and (N, dϕ) are strictly subadditive.

(ii) Let M ∈ 2N− be a coalition. Then, either ŝ∗M =
⌊
s∗M
⌋

or ŝ∗M =
⌈
s∗M
⌉
. Furthermore,

ĉϕ(M) ≥ cϕ(M), with equality if and only if s∗M ∈ N.

Proof. Part (i). Let M,L ∈ 2N− with M ∩ L = ∅. To show strict subadditivity Erlang delay

game with R-optimization (N, dϕ), we have

dϕ(M ∪ L) = hM∪Ls
∗
M∪L +Wq(s

∗
M∪L, λM + λL, µ) · (λM + λL)w

≤ hM∪L(s∗M + s∗L) +Wq(s
∗
M + s∗L, λM + λL, µ) · (λM + λL)w

≤ hMs∗M + hLs
∗
L +Wq(s

∗
M + s∗L, λM + λL, µ) · (λM + λL)w

< hMs
∗
M +Wq(s

∗
M , λM , µ) · λMd+ hLs

∗
L +Wq(s

∗
L, λL, µ) · λLw

= dϕ(M) + dϕ(L),

where the first inequality holds because s∗M∪L is an optimal number of servers for coalition

M ∪ L, the second inequality is valid because hM∪L ≤ hM and hM∪L ≤ hL by assumption

on ϕ, and the third inequality holds by Theorem 5.6. We conclude that (N, dϕ) is strictly

subadditive. The proof of strict subadditivity of the Erlang delay game with N-optimization

(N, d̂ϕ) goes analogously.

Part (ii). First, the claim that ŝ∗M =
⌊
s∗M
⌋

or ŝ∗M =
⌈
s∗M
⌉

follows immediately from strict

convexity of Kϕ
M (s). The relation between d̂ϕ(M) and dϕ(M) follows from uniqueness of s∗M

and from the observation that in the OPTR game any coalition M ∈ 2N− optimizes over a

larger domain than in the OPTN game, which implies that d̂ϕ(M) = dϕ(M) if and only if

s∗M = ŝ∗M , but that occurs if and only if s∗M ∈ N.

5.5.2 Cost allocation: stability and population monotonicity

In this section, we investigate whether or not cost allocation can be carried out in a stable

and population monotonic way. We start by introducing two simple rules that allocate costs

proportional to arrival rates. The first rule, P̂, divides the costs of the grand coalition

in Erlang delay games with N-optimization. The second rule, P, does this for Erlang

delay games with R-optimization. Formally, they are defined, for any Erlang delay situation

ϕ = (N,λ, µ, S, h, w) and i ∈ N , by P̂i(ϕ) = d̂ϕ(N)λi/λN and by Pi(ϕ) = dϕ(N)λi/λN ,

respectively.

Extending this idea to every coalition, we define the proportional allocation scheme rules P̂
and P, for any Erlang delay situation ϕ = (N,λ, µ, S, h, w), coalition M ∈ 2N− , and player i ∈
M , by P̂i,M (ϕ) = d̂ϕ(M)λi/λM and by Pi,M (ϕ) = dϕ(M)λi/λM , respectively. The following

example illustrates the rules and schemes for Erlang delay games with R-optimization and
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Coalition M s∗M dϕ(M) P1,M (ϕ) P2,M (ϕ) P3,M (ϕ)

{1} 0.75878 1.01675 1.01675 * *

{2} 0.75878 1.01675 * 1.01675 *

{3} 0.50511 0.70489 * * 0.70489

{1, 2} 1.17171 1.50706 0.75353 0.75353 *

{1, 3} 0.97478 1.27524 0.85016 * 0.42508

{2, 3} 0.97478 1.27524 * 0.85016 0.42508

N 1.35662 1.72219 0.68887 0.68887 0.34444

Table 5.3: The Erlang delay game with R-optimization, optimal numbers of servers, and proportional

allocation scheme of Example 5.7. (All values are rounded to 5 decimals.)

Coalition M ŝ∗M d̂ϕ(M) P̂1,M (ϕ) P̂2,M (ϕ) P̂3,M (ϕ)

{1} 1 1.10750 1.10750 * *

{2} 1 1.10750 * 1.10750 *

{3} 1 1.02389 * * 1.02389

{1, 2} 1 1.57333 0.78667 0.78667 *

{1, 3} 1 1.27643 0.85095 * 0.42548

{2, 3} 1 1.27643 * 0.85095 0.42548

N 2 2.07167 0.82867 0.82867 0.41433

Table 5.4: The Erlang delay game with N-optimization, optimal numbers of servers, and proportional

allocation scheme of Example 5.7. (All values are rounded to 5 decimals.)

simultaneously shows that Erlang delay games with N-optimization need not admit a stable

cost allocation.

Example 5.7. Consider the Erlang delay situation ϕ = (N,λ, µ, S, h, w) with player set

N = {1, 2, 3}, arrival rates λ1 = λ2 = 0.2 and λ3 = 0.1, service rate µ = 1, resource cost

rate hM = 1 for all M ∈ 2N− , and delay cost rate w = 2.15. The cost function for the grand

coalition corresponds to the one displayed in Figure 5.1 on page 115. The characteristic cost

functions of the associated games (N, dϕ) and (N, d̂ϕ) are represented in Tables 5.3 and 5.4,

respectively, along with the optimal numbers of servers for each coalition and the proportional

allocation schemes.

For the Erlang delay game with R-optimization, notice that P1,{1,2}(ϕ) > P1,N (ϕ) and

similarly P2,{1,2}(ϕ) > P2,N (ϕ), i.e., the amount that player 1 or 2 has to pay does not

increase when player 3 joins them. This population monotonicity can be verified for the

members of all other nested pairs of coalitions as well, implying that P(ϕ) is population

monotonic. Accordingly, the game (N, cϕ) has a nonempty core containing P(ϕ).
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In contrast, the Erlang delay game with N-optimization (N, d̂ϕ) has an empty core!

Indeed, 2d̂ϕ(N) > 4.1433 > 4.1263 > d̂ϕ({1, 2}) + d̂ϕ({1, 3}) + d̂ϕ({2, 3}), and thus a

necessary balancedness condition is not satisfied. This means that no stable allocation

exists. As an illustration, notice that P̂(ϕ) is not a PMAS because for i ∈ {1, 2} it

holds that P̂i,{1,2}(ϕ) < P̂i,N (ϕ). Accordingly, P̂(ϕ) is not a stable allocation because∑
i∈{1,2} P̂i(ϕ) > d̂ϕ({1, 2}). 3

It is worth pointing out that Yu et al. (2007) gave a (2-player) counterexample indicating

that their games corresponding to server optimization in Erlang delay systems may have an

empty core. However, their counterexample included players with asymmetrical delay costs,

and as a result their game was not subadditive, i.e., complete pooling was detrimental. In

contrast, in our subadditive game (N, d̂ϕ), all customers are homogeneous in delay costs and

full pooling is beneficial. Despite the subadditivity, a stable allocation is lacking.

In Example 5.7, we observed that the proportional allocation scheme rule P accomplished

a population monotonic allocation scheme for the Erlang delay game with R-optimization.

The following theorem shows that this is not a coincidence.

Theorem 5.12. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation. Then, P(ϕ) is a

PMAS for the associated Erlang delay game with R-optimization (N, dϕ).

Proof. Let M,L ∈ 2N− with M ⊆ L, and let i ∈M . Then,

Pi,L(ϕ) =
λi
λL
Kϕ
L(s∗L)

≤ λi
λL
Kϕ
L

(
s∗M

λL
λM

)
= hLs

∗
M

λi
λM

+Wq

(
s∗M

λL
λM

, λL, µ

)
· λiw

≤ hLs∗M
λi
λM

+Wq(s
∗
M , λM , µ) · λiw

≤ hMs∗M
λi
λM

+Wq(s
∗
M , λM , µ) · λiw

=
λi
λM

Kϕ
M (s∗M ) = Pi,M (ϕ),

where the first inequality holds because s∗L is the optimal number of servers for coalition L,

the second inequality is valid by Theorem 5.3, and the third inequality holds because hL ≤ hM
by assumption on ϕ. We conclude that P(ϕ) is indeed a PMAS for game (N, cϕ).

By Sprumont (1990), population monotonicity of P(ϕ) not only signifies the advanta-

geousness of any pooling group’s growth but also, as described in Section 2.3.7, the following

corollary.

Corollary 5.13. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation. Then, the associated

Erlang delay game with R-optimization (N, dϕ) is totally balanced and P(ϕ) ∈ C(N, dϕ).
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The following theorem states sufficient conditions for Erlang delay game with N-

optimization to possess a core allocation and to admit a PMAS.

Theorem 5.14. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation.

(i) If s∗N ∈ N, then the game (N, d̂ϕ) has a non-empty core that contains P̂(ϕ).

(ii) If s∗M ∈ N for all M ∈ 2N− , then P̂(ϕ) is a PMAS for game (N, d̂ϕ).

Proof. Part (i). Assuming s∗N ∈ N, it holds that d̂ϕ(N) = dϕ(N) and d̂ϕ(M) ≥ dϕ(M) for

all M ∈ 2N− , by Part (ii) of Theorem 5.11. Using this in combination with Theorem 5.12, we

obtain P̂(ϕ) = P(ϕ) ∈ C(N, dϕ) ⊆ C(N, d̂ϕ). Thus, P̂(ϕ) is a stable allocation for game

(N, d̂ϕ).

Part (ii). Let M,L ∈ 2N− with M ⊆ L, and let i ∈ M . Note that s∗M and s∗L are, by

assumption, integers. By Part (ii) of Theorem 5.11, d and d̂ coincide. Accordingly, P and

P̂ coincide. So, by Theorem 5.12, we can conclude that P̂(ϕ) is indeed a PMAS for game

(N, d̂ϕ).

Several insights emerge from our analysis thus far. First, Erlang delay game with

R-optimization show nice properties: they have nonempty cores and admit a population

monotonic allocation scheme. These properties are not satisfied by Erlang delay game with

N-optimization in general; the integrality requirement is the sole culprit, as clearly illustrated

by the preceding theorem. Interestingly, the M/M/1 games where coalitions optimize service

capacity to reduce their customers’ system sojourn times (reviewed in Section 3.3.2) as well

as the Erlang loss games with optimized numbers of servers (analyzed in Chapter 4) all had

non-empty cores. As such, Erlang delay game with N-optimization exhibit fundamentally

different behavior.

5.5.3 Approximate stability and population monotonicity

To expand our understanding of potential instability in Erlang delay game with N-

optimization, we will introduce approximate core and PMAS concepts, and we will use these

concepts to derive insights regarding the impact of integrality. The first general concept for

cooperative games that we introduce in this section can be seen as a generalization of the

core. For any vector δ = (δi)i∈N ∈ RN , we define the δ-core of game (N, c) as

Cδ(N, c) =

{
x ∈ RN

∣∣∣∣∣∑
i∈N

xi = c(N) and
∑
i∈M

xi ≤ c(M) +
∑
i∈M

δi for all M ∈ 2N−

}
.

This δ-core is the set of all cost allocations where no coalition M can obtain lower costs

by leaving the grand coalition, if upon leaving it must pay a penalty of δi for member i.

Naturally, the core of a game coincides with its 0-core. For any game (N, c), an allocation in

Cδ(N, c) for some vector δ is called a δ-stable allocation.
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Our δ-core is reminiscent of the weak ε-core (with ε ∈ R) introduced by Shapley and

Shubik (1966), but differs from it by associating a number with each player rather than a

single number with all players. This change allows us to describe a stronger upper bound

on the impact of integrality than is possible with Shapley and Shubik’s concept. In fact, our

δ-core concept encompasses their weak ε-core as a special case by setting δi = ε for all i ∈ N .

We next introduce another new concept analogous to the (vector) δ-core. For any vector

δ = (δi)i∈N ∈ RN , we say that an allocation scheme y for a game (N, c) is a δ-PMAS if

yi,M + δi ≥ yi,L for all coalitions M,L ∈ 2N− with M ⊂ L and i ∈ M . Here, δi may be

interpreted as an exogenous bonus received by player i if the coalition to which he belongs

grows.

The following theorem uses these newly defined notions to capture the influence of the

integrality requirement.

Theorem 5.15. Let ϕ = (N,λ, µ, S, h, w) be an Erlang delay situation.

(i) Fix δ by δi = hNλi/λN for all i ∈ N . Then, the game (N, d̂ϕ) has a non-empty (vector)

δ-core, and P̂(ϕ) is a δ-stable allocation.

(ii) Fix δ by δi = h{i} for all i ∈ N . Then, P̂(ϕ) is a δ-PMAS for the game (N, d̂ϕ).

Proof. Part (i). Let M ∈ 2N− . Clearly,
∑

i∈N P̂i(ϕ) = d̂ϕ(N). Moreover,

∑
i∈M

P̂i(ϕ) = Kϕ
N (ŝ∗N ) · λM

λN

≤ Kϕ
N

(⌈
ŝ∗M

λN
λM

⌉)
· λM
λN

=

(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(⌈
ŝ∗M

λN
λM

⌉
, λN , µ

)
· λNw

)
· λM
λN

≤
(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(
ŝ∗M

λN
λM

, λN , µ
)
· λNw

)
· λM
λN

≤
(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(
ŝ∗M , λM , µ

)
· λNw

)
· λM
λN

≤
(
hN

(
ŝ∗M

λN
λM

+ 1
)

+Wq

(
ŝ∗M , λM , µ

)
· λNw

)
· λM
λN

= hN ŝ
∗
M +

∑
i∈M

δi +Wq

(
ŝ∗M , λM , µ

)
· λMw

≤ hM ŝ∗M +
∑
i∈M

δi +Wq

(
ŝ∗M , λM , µ

)
· λMw = d̂ϕ(M) +

∑
i∈M

δi.

The first inequality holds because ŝ∗N is an optimal number of servers for the grand coalition.

The second inequality holds by the monotonicity property of Theorem 5.5. The third

inequality is due to Theorem 5.3. The final inequality holds since hN ≤ hM by assumption

on ϕ. We conclude that P̂(ϕ) is a δ-stable allocation for game (N, d̂ϕ).
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Part (ii). Let M,L ∈ 2N− with M ⊂ L, and let i ∈M . Clearly,
∑

i∈M P̂i,M (ϕ) = d̂ϕ(M).

Moreover, in line with the proof of Part (i) of this theorem,

P̂i,L(ϕ) = Kϕ
L(ŝ∗L) · λi

λL

≤ Kϕ
L

(⌈
ŝ∗M

λL
λM

⌉)
· λi
λL

=

(
hL

⌈
ŝ∗M

λL
λM

⌉
+Wq

(⌈
ŝ∗M

λL
λM

⌉
, λM , µ

)
· λLd

)
· λi
λL

≤
(
hL

⌈
ŝ∗M

λL
λM

⌉
+Wq(ŝ

∗
M , λM , µ) · λLd

)
· λi
λL

≤
(
hL

(
ŝ∗M

λL
λM

+ 1
)

+Wq(ŝ
∗
M , λM , µ) · λLd

)
· λi
λL

≤ hM ŝ∗M
λi
λM

+ h{i} +Wq(ŝ
∗
M , λM , µ) · λid = P̂i,M (ϕ) + δi,

where the last inequality holds since hL ≤ hM ≤ h{i} by assumption on ϕ and since λi/λL ≤ 1.

We conclude that P̂(ϕ) is a δ-PMAS for game (N, d̂ϕ).

Part (i) of Theorem 5.15 constructively shows that any possible instability disappears if

coalitions would have to pay an amount, no greater than hN , to leave the grand coalition.

Part (ii) of this theorem states a similar conclusion regarding the effect of discrete service

capacity on population monotonicity.40

Altogether, our analysis suggests that Erlang delay game with N-optimization associated

with large service facilities have nonempty δ-cores and a δ-PMAS for relatively small δ, as

the resource cost incurred for a single server is small relative to the total costs faced by any

coalition if the optimal number of servers is large. This is in line with the observation

of Yu et al. (2007) that a variant of Erlang delay game with N-optimization where the

true characteristic costs are approximated via the Halfin-Whitt heavy traffic regime—an

approximation that is asymptotically exact as the arrival rate tends to infinity—always have

nonempty cores.

5.6 Conclusion

In this chapter, we considered multi-server queueing systems with infinite waiting room.

Sharing servers between providers is beneficial from the whole system point of view, and we

analyzed the corresponding games. In both cases considered—fixed and optimized numbers

of servers—we studied (existence of) stable allocations of the resource costs for common

servers and delay costs for waiting customers. Our analysis reveals that collaboration is

40If |N | > 1, our proof approach immediately reveals that a stronger, but less crisp, bound is possible: P̂(ϕ)

is also an δ′-PMAS for game (N, ĉϕ) if we set δ′i = max{hMλi/λM : M ∈ 2N− , |M | = 2, and i ∈ M} for all

i ∈ N . Note that δ′i ≤ h{i}.
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Fixed service capacity Optimized service capacity

M/M/1 games
Proportional allocation stable Stable allocation exists

and reachable via PMAS

Erlang delay games
Stable allocation exists Stable allocation need not exist

but PMAS need not exist

Table 5.5: Comparison between the main results of M/M/1 games and Erlang delay games.

always supportable by a stable allocation if players’ numbers of servers are exogenously given

(in line with the corresponding M/M/1 game of Anily and Haviv, 2010), whereas a stable

allocation need not exist in general if each coalition optimizes over integer numbers of servers

(in contrast to M/M/1 games considered in, e.g., Yu et al., 2009). Table 5.5 provides an

overview.

There are various directions in which our work may be extended. One interesting avenue

is to relax the assumption that delay costs and service times are symmetric across players.

Opposed to the setting considered in this paper, complete pooling of servers need not be

superior anymore if such asymmetries are allowed (see, e.g., Smith and Whitt, 1981). This

issue may be circumvented by preferential treatment of more critical classes via priority

disciplines, although incorporating this is far from trivial in the analysis.

Another direction is on general service time distributions and/or positive switchover times.

To generate preliminary insights for settings with non-exponential service times, one could

start by studying games derived from pooling of M/G/1 queues. To understand resource

pooling in settings where the server incurs a certain setup or traveling time when switching

from one customer class to the next, one could study games derived from polling systems

(see, e.g., the survey of Boon et al., 2011, for an introduction to polling systems).

Finally, we concede that completely pooling service systems is not always feasible,

especially if service facilities of the players are operated at geographically dispersed locations.

Nevertheless, some degree of partial pooling may still be feasible. To study such a setting,

challenging as it may be, one may consider a model variation in which players partition

themselves into separate service groups, in line with Whitt (1999).



—The whole is greater than the sum of its parts.

Aristotle

6
Spare parts games with backordering

6.1 Introduction

In this chapter, which is based on Karsten and Basten (2013), we study the cost sharing

problem that arises when several players, each facing a Poisson demand process for an

expensive, low-usage item, share a stock point that is controlled by an (S − 1, S) base stock

policy under full backordering. The players incur symmetrical holding costs for items on hand

and symmetrical shortage costs for items that are backlogged. Ordering costs are negligible

in comparison, and all players face the same replenishment lead times. The key benefit

of pooling in this setting is that one player’s on-hand part can cancel out against another

player’s backorder, thereby saving both holding and shortage costs. The games that we will

formulate to study the resulting cost sharing problem may have various applications, e.g.,

pooled inventories of expensive, low-demand luxury cars or time-shared aircraft. However,

our main motivating application is the pooling of spare parts between companies in the capital

goods industry. Consequently, the games will be referred to as spare parts games.

We already described examples of spare parts pools and their monetary savings potential

in Section 1.2. We now add a few more. Tram operators in the Netherlands are a good

example. In the Netherlands, the local public transport in the three largest cities (Amsterdam,

Rotterdam, and The Hague, all of which are within an hour’s driving distance of each

other) is operated by a separate company per city. Even though the operators use trams

of different models, there is still a lot of commonality on the component level. Consequently,

the tram operators could gain a lot by pooling their inventories. Another example is that
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of independently managed plants of a large energy company, as described in Guajardo et al.

(2012): the plants currently hold their inventory separately, but annual savings of 44% may

be obtainable if pooling is taken into account. While promising, Guajardo et al. mention

that it does raise the question of how the plants should share these cost savings. This chapter

will answer that question.

The cost and behavior of an inventory system greatly depend on what happens to demands

when the system is out of stock. In practice, there are two common ways to deal with stock-

outs: using emergency procedures or backlogging. An emergency procedure typically refers

to the instantaneous delivery of a part from an alternative supplier. This results in lost sales

for the inventory system under consideration, and it is exactly what we studied in Chapter

4. Under backlogging, there is no such alternative supplier with a negligible lead time—

we simply have to wait for a part to arrive as a regular replenishment. The setting with

backlogging is exactly what we will tackle in the present chapter.

It is well-known in the inventory literature (see, e.g. Feeney and Sherbrooke, 1966) that

results obtained for a model with lost sales need not carry over to a model with backordering,

or vice versa, and that the two models require different analysis. Indeed, in Chapter 4,

we showed the existence of a core allocation by exploiting extensions of the Erlang loss

function. The Erlang loss function has no direct relation to the (S − 1, S) inventory model

with backordering that will be considered in the present chapter, and thus our analysis will

be different from Chapter 4.

The inventory model that our analysis is based on has been studied extensively in the

literature, due to its practical relevance. As a result, the steady-state distributions of the

number of items on hand and on backorder are well-known (see, e.g. Feeney and Sherbrooke,

1966); the same holds for the average long-term costs and the behavior of these costs as a

function of the base stock level (see, e.g. Zipkin, 2000). These results, however, do not directly

help in identifying a suitable cost sharing mechanism for the problem at hand. For that, we

need to understand how the number of items in resupply and the average long-term costs

behave when the demand rate varies (as a result of new players joining the pool). We do

this by deriving several new properties, including new convexity and elasticity properties of

the total costs as a function of the demand rate. These properties allow us to constructively

prove that spare parts games, both under fixed and optimized base stock levels, have a non-

empty (strict) core. For the latter game, the allocation proportional to players’ demand rates

is again stable. The reason why we propose a similar proportional rule in three different

settings (Erlang loss games, Erlang delay games, and spare parts games, all under optimized

numbers of servers) is twofold. First, all come down to a single-attribute game and thus

Theorem 2.5 on the proportional rule applies. Second, all feature Poisson demand processes,

which turns out to ensure that a proportional allocation can be easily implemented.

This question of implementation, which is relevant for both fixed and optimized numbers

of resources, is this: Having found core allocations for the games in expected terms, how to
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allocate the costs that are actually realized in, say, a given year? After all, realized costs may

differ greatly from expected costs. Although the problem of realization vs. expectation is also

present in the models considered in Chapters 4 and 5, we postponed it to the present chapter.

There are two reasons for this postponement. First, in the inventory model of this chapter,

holding costs are only paid for items on-hand, not for items in the replenishment pipeline.

Hence, holding cost payments fluctuate over time depending on the demand realizations; this

yields an enriched setting in which holding costs realizations are also important. Second,

the process that we propose for assigning cost realizations under fixed stocking levels heavily

depends on the structure of this chapter’s inventory model; it does not extend to M/G/s/s

or M/M/s queueing models. That’s why the discussion of cost realizations is contained in

the present chapter. Nevertheless, the process that we propose for assigning cost realizations

under optimized stocking levels exploits properties of Poisson processes only. Consequently,

the idea behind it also works for Erlang loss and Erlang delay games with optimized numbers

of servers.

This chapter makes three main contributions. First, we derive novel structural properties

of the cost function in our (S − 1, S) inventory model. Second, we introduce spare parts

games with fixed base stock levels and identify a (strictly) stable allocation that makes all

players better off in every possible sample path. Third, we introduce spare parts games

with optimized base stock levels and show that the allocation scheme proportional to players’

demand rates is (strictly) population monotonic with appealing properties that enable easy

implementation in practice.

The structure of this chapter is similar to the preceding ones. We first describe and

analyze the inventory model in Section 6.2. Next, in Section 6.3, we formulate the spare

parts situations that induce our games. Sections 6.4 and 6.5 treat the associated games with

fixed and optimized base stock levels, respectively. Finally, we draw conclusions and suggest

directions for future research in Section 6.6.

6.2 Analysis of the (S − 1, S) model with backlogging

In this section we formally describe the inventory model and provide an expression for the

expected costs per unit time. Subsequently, we analyze the behavior of these costs as a

function of the demand rate.

6.2.1 The inventory model

We consider a single location that stocks one item. Initially, there are S ∈ N0 parts on stock.

The demand process is a Poisson process with rate λ > 0. A demand is immediately fulfilled

from stock if a part is available. Otherwise, it is backordered and fulfilled first come first

serve. In either case, an order for a new part is instigated immediately. This means that the
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stock point operates under a continuous-review base stock policy with base stock level S and

one-for-one replenishments.

The stock point orders parts from an external supplier. The time that elapses between

demand occurrence and receipt of the new part is called the lead time. Lead times are assumed

to be i.i.d. according to some general distribution function, and we assume without loss of

generality (by rescaling time) that its mean is 1 time period. Independence of successive lead

times typically means that the supplier has no capacity constraints.

In the remainder, we will analyze the resulting inventory system in steady-state at an

arbitrary point in time. First, we consider the number of parts on order, the so-called pipeline

stock, denoted by X(λ). By Palm (1938), X(λ) is Poisson distributed with mean λ, i.e., for

all x ∈ N0 it holds that

P[X(λ) = x] =
λx

x!
e−λ. (6.1)

We are mainly interested in two related random variables: the number of backorders, B(S, λ),

and the stock on hand, I(S, λ), both as functions of the base stock level S and the demand

rate λ. Backorders exist if the pipeline stock is larger than the base stock level, so B(S, λ) =

max{X(λ)− S, 0}. Similarly, I(S, λ) = max{S −X(λ), 0}. Thus, using (6.1), we can obtain

the distributions and expectations of the number of backorders and the total stock on hand.

For instance, the distribution of the number of backorders, B(S, λ), is given by41

P[B(S, λ) = x] =


∑S

y=0 P[X(λ) = y] if x = 0;

P[X(λ) = x+ S] if x ∈ N.
(6.2)

Accordingly, the expected number of backorders is

EB(S, λ) =
∞∑

x=S+1

(x− S)P[X(λ) = x]

=

∞∑
x=0

x · P[X(λ) = x]−
∞∑
x=0

S · P[X(λ) = x] +

S∑
x=0

(S − x)P[X(λ) = x]

= λ− S +

S∑
x=0

(S − x)P[X(λ) = x]. (6.3)

Similarly, the expected on-hand stock is

EI(S, λ) =
S∑
x=0

(S − x)P[X(λ) = x]. (6.4)

We consider holding costs h > 0 per unit time per spare part in the on-hand stock. These

costs encompass warehousing, insurance, and interest costs on the capital tied up by the

41In Chapters 4 and 5, we used B to denote the continuous extension of the Erlang loss function. In this

chapter, we use B to denote the number of backorders cf. Equation (6.2).
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inventory. Furthermore, we consider penalty costs b > 0 per unit time per backordered

demand. We disregard the part procurement price or holding costs for pipeline stock because

these cost factors would represent constant terms, unaffected by decisions on base stock level

or collaboration. The long-term average costs per unit time are given by

K(S, λ) = h · EI(S, λ) + b · EB(S, λ). (6.5)

Although the above-described model is general and might also apply for, e.g., inventories of

luxury cars, its formulation and underlying assumptions are driven by inventory systems of

expensive, low-demand spare parts meant for technologically advanced capital goods. Indeed,

the critical assumptions (the stationary Poisson demand process, the continuous-review one-

for-one replenishment strategy, and the independence of successive lead times) are justifiable

for this spare parts setting: See Example 4.1 on page 69.

In a typical spare parts setting, demands are triggered by failures of either consumable or

repairable machine components. Although we formulated our model for consumable parts, it

is also applicable for repairable parts if—instead of placing orders for new parts—any failed

component is immediately sent to an uncapacitated repair facility that returns the component

to the stock point as a ready-for-use spare part after an i.i.d. repair lead time whose mean is

scaled to 1 time unit. Again, direct repair costs and holding costs for parts in repair would

represent constant terms and can be disregarded without loss of generality.

6.2.2 Behavior of the costs as a function of the demand rate

In this section we first provide a characterization of the optimal base stock levels and

subsequently derive partial derivatives of the cost function K with respect to the demand

rate. These intermediate results ultimately enable us to analyze how the costs under optimal

base stock levels behave as the demand rate varies on R++. Later on, these properties will

prove helpful for analyzing a spare parts game under optimal base stock levels: we use them

to prove stability and population monotonicity of proportional allocations in Section 6.5.2

and to show which player benefits the most from pooling in Section 6.5.3. The holding and

backorder cost rates, h and b, will remain fixed in the ensuing analysis.

We start by stating several properties of the steady-state probability of having no

backorders, P[B(S, λ) = 0], in Lemmas 6.1 and 6.2. These are useful because, as we will

show in Lemma 6.3, the optimal base stock levels are intricately related to P[B(S, λ) = 0].

Although the properties stated in the following two lemmas are rather straightforward, we

were unable to find a proof in the literature, and therefore we provide a proof for completeness.

Lemma 6.1. Let the demand rate λ > 0 be fixed.

(i) P[B(S, λ) = 0] is increasing as a function of S (for S on N0).

(ii) limS→∞ P[B(S, λ) = 0] = 1.
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Proof. Part (i) follows immediately from (6.2) as P[X(λ) = y] > 0 for all y ∈ N0. Part (ii)

holds because limS→∞ P[B(S, λ) = 0] =
∑∞

y=0 P[X(λ) = y] = 1 as the infinite sum covers the

entire support of the Poisson distribution.

Lemma 6.2. Let the base stock level S ∈ N0 be fixed.

(i) P[B(S, λ) = 0] is continuous and differentiable as a function of λ (for λ on R++).

(ii) P[B(S, λ) = 0] is decreasing as a function of λ (for λ on R++).

(iii) limλ↓0 P[B(S, λ) = 0] = 1 and limλ→∞ P[B(S, λ) = 0] = 0.

Proof. Part (i) follows immediately from the fact that, for each y ∈ N0, P[X(λ) = y] is

continuous and differentiable in λ. For Part (ii), we distinguish between two cases. First, if

S = 0, it holds that
∂

∂λ
P[B(S, λ) = 0] = −e−λ < 0.

Second, if S ∈ N, we obtain

∂

∂λ
P[B(S, λ) = 0] =

∂

∂λ

S∑
y=0

λy

y!
e−λ

= −e−λ +
S∑
y=1

λy−1

(y − 1)!
e−λ −

S∑
y=1

λy

y!
e−λ

= −e−λ +
S−1∑
y=0

λy

y!
e−λ −

S∑
y=1

λy

y!
e−λ

=

S−1∑
y=0

[(
λy

y!
− λy

y!

)
e−λ
]
− λS

S!
e−λ = −λ

S

S!
e−λ < 0.

We conclude that P[B(S, λ) = 0] is decreasing in λ. Part (iii) follows from

lim
λ↓0

P[B(S, λ) = 0] =

S∑
y=0

lim
λ↓0

P[X(λ) = y] = lim
λ↓0

P[X(λ) = 0] +

S∑
y=1

0 = 1,

since λye−λ → 0 as λ ↓ 0 for any y ∈ N, and from

lim
λ→∞

P[B(S, λ) = 0] =
S∑
y=0

lim
λ→∞

P[X(λ) = y] =
S∑
y=0

0 = 0,

since λye−λ → 0 as λ→∞ for any y ∈ N0. This completes the proof.

The following lemma states that the cost function in our model is strictly convex in

the base stock level and provides a standard characterization of the cost-minimizing base

stock level(s) in terms of a newsvendor fractile. This characterization is illustrated in Figure

6.1. Although convexity is relatively well-known for the inventory model under consideration

(see, e.g., Zipkin, 2000, p. 215) we show strict convexity and address the uniqueness and

multiplicity of optimal base stock levels more formally, which will facilitate our analysis.
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Figure 6.1: The probability of having no backorders, P[B(S, λ) = 0], as a function of the demand rate

λ for various base stock levels S. (h = b = 1.)

Lemma 6.3. Let the demand rate λ > 0 be fixed.

(i) K(S, λ) is strictly convex as a function of S (for S on N0).

(ii) There is at least one S ∈ N0 for which P[B(S, λ) = 0] ≥ b/(b + h); let S∗ denote the

smallest such S. Then, S∗ is the unique optimal base stock level unless P[B(S∗, λ) =

0] = b/(b+ h); in that case, both S∗ and S∗ + 1 (and no other) are optimal.

Proof. Part (i). We start by defining the function ∆K : N0 → R by ∆K(S) = K(S + 1, λ)−
K(S, λ) for all S ∈ N0. Consider (6.3) and (6.4), and notice that an equivalent way of writing

them is by letting their summations run to S − 1 instead of S. Using this in combination

with (6.2) and (6.5), we obtain for all S ∈ N0 that

∆K(S, λ) = h · [EI(S + 1, λ)− EI(S, λ)] + b · [EB(S + 1, λ)− EB(S, λ)]

= h

[
S∑
x=0

(S + 1− x)P[X(λ) = x]−
S∑
x=0

(S − x)P[X(λ) = x]

]

+ b

[
−(S + 1) +

S∑
x=0

(S + 1− x)P[X(λ) = x] + S −
S∑
x=0

(S − x)P[X(λ) = x]

]

= h
S∑
x=0

P[X(λ) = x] + b
S∑
x=0

P[X(λ) = x]− b

= (b+ h)P[B(S, λ) = 0]− b. (6.6)
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From (6.6), from Part (i) of Lemma 6.1, and from the fact that b > 0 and h > 0, we conclude

that ∆K is increasing. Therefore, K(S, λ) is strictly convex in S.

Part (ii). By Lemma 6.1, Part (ii), there always exists an S ∈ N0 for which P[B(S, λ) =

0] ≥ b/(b + h). By the convexity result established in Part (i) above, it immediately follows

from (6.6) that the cost K(S, λ) as a function of S achieves a minimum at the smallest S ∈ N0

for which (b+h)P[B(S, λ) = 0]−b ≥ 0, which corresponds to the definition of S∗ in the lemma.

We now distinguish two cases. First, if P[B(S∗, λ) = 0] > b/(b+ h), then ∆K(S∗, λ) > 0,

which implies that S∗ is the unique optimal base stock level. Second, if P[B(S∗, λ) = 0] =

b/(b + h), then ∆K(S∗, λ) = 0, and thus K(S∗, λ) = K(S∗ + 1, λ), which implies that both

S∗ and S∗ + 1 are optimal base stock levels, and these are the only two optimal base stock

levels due to the strict convexity established in Part (i).

We now introduce some additional notation: for any n ∈ N (note that 0 /∈ N), we define

`n to be the unique positive real number that satisfies

P[B(n− 1, `n) = 0] = b/(b+ h),

which is well-defined due to Lemma 6.2. Notice that, by Part (ii) of Lemma 6.3, for any

n ∈ N it holds that `n is the demand rate for which both base stock levels n − 1 and n are

optimal. The following lemma formally establishes several additional properties, which are

illustrated in Figure 6.1.

Lemma 6.4. Let n ∈ N. Then, the following statements hold.

(i) `n < `n+1.

(ii) For any λ in the interval (`n, `n+1), the unique optimal base stock level for the inventory

system with demand rate λ is n.

(iii) limn→∞ `n =∞.

Proof. Part (i). By Lemma 6.1, Part (i), and by definition of `n, it holds that

P[B(n, `n) = 0] > P[B(n− 1, `n) = 0] = b/(b+ h). (6.7)

Because P[B(n, λ) = 0] is decreasing as a function of λ (by Part (ii) of Lemma 6.2) while, by

definition, P[B(n, `n+1) = 0] = b/(b+ h), (6.7) implies that `n < `n+1.

Part (ii). Let λ ∈ (`n, `n+1). Thus, λ < `n+1; this, in combination with Part (ii) of

Lemma 6.2, implies that

P[B(n, λ) = 0] > P[B(n, `n+1) = 0] = b/(b+ h).

Yet, for each S ∈ N0 with S < n, we observe, again by Part (ii) of Lemma 6.2, that

P[B(S, λ) = 0] < P[B(S, `S+1) = 0] = b/(b+ h),
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Figure 6.2: The costs, K(S, λ), as a function of the demand rate λ for various base stock levels S.

Also shown (dashed) are the tangent lines to K(1, λ) and K(2, λ) at λ = `2.

where the inequality holds because λ > `n ≥ `S+1. (To see that `n ≥ `S+1, note that either

S + 1 = n, in which case `n = `S+1, or S + 1 < n, in which case `n > `S+1 by Part (i) of this

lemma.) Hence, by Part (ii) of Lemma 6.3, the unique optimal base stock level is n.

Part (iii). By the monotonicity result established in Part (i) above, there are two

possibilities: limn→∞ `n = ∞ or limn→∞ `n = A for some A ∈ R. Suppose that the latter

is true, aiming for a contradiction, and consider any λ > A. Then, by Lemma 6.1, there

must exist an S ∈ N0 such that P[B(S, λ) = 0] > b/(b + h). Given this S, there must exist

a Λ > λ such that P[B(S,Λ) = 0] = b/(b + h) by virtue of Lemma 6.2. Then, by definition,

`S+1 = Λ. But because `S+1 = Λ > λ > A and because of the monotonicity result from Part

(i), we obtain a contradiction with the assumption that limn→∞ `n = A. We conclude that

limn→∞ `n =∞.

The following lemma considers, for a fixed base stock level greater than zero, the expected

steady-state costs per unit time as a function of the demand rate: the lemma states a simple

expression for its derivative and shows that this cost function is strictly convex. This convexity

is illustrated in Figure 6.2.

Lemma 6.5. Let the base stock level S ∈ N be fixed.

(i)
∂

∂λ
K(S, λ) = b− (b+ h) · P[B(S − 1, λ) = 0].

(ii) K(S, λ) is twice differentiable and strictly convex as a function of λ (for λ on R++).

Proof. Part (i). First, observe that

K(S, λ) = bλ− bS + (b+ h) ·

[
Se−λ +

S−1∑
x=1

(S − x)e−λ
λx

x!

]
.
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Taking the partial derivative with respect to the demand rate,

∂

∂λ
K(S, λ) = b+ (b+ h) · e−λ

[
−S +

S−1∑
x=1

(S − x)
λx−1

(x− 1)!
−
S−1∑
x=1

(S − x)
λx

x!

]

= b+ (b+ h) · e−λ
[
−S +

S−2∑
x=0

(S − x− 1)
λx

x!
−
S−2∑
x=0

(S − x)
λx

x!
− λS−1

(S − 1)!
+ S

]

= b+ (b+ h) · e−λ
[
−
S−2∑
x=0

λx

x!
− λS−1

(S − 1)!

]

= b− (b+ h) ·
S−1∑
x=0

P[X(λ) = x]

= b− (b+ h) · P[B(S − 1, λ) = 0]. (6.8)

Part (ii). This follows upon combining (6.8) with the facts that P[B(S − 1, λ) = 0] is

differentiable and strictly decreasing in λ (cf. Parts (i) and (ii) of Lemma 6.2).

The following lemma provides insightful expressions for the partial derivatives of the cost

function with respect to the demand rate, evaluated at any `n (the demand rate at which

both base stock levels n and n − 1 are optimal). In particular, when this cost function is

considered as a function of λ, the tangent line to K(n, λ) at λ = `n is flat and the tangent

line to K(n− 1, λ) at λ = `n goes through the origin, as illustrated in Figure 6.2.

Lemma 6.6. Let n ∈ N be an arbitrary positive integer.

(i)
∂

∂λ
K(n, λ)

∣∣
λ=`n

= 0.

(ii)
∂

∂λ
K(n− 1, λ)

∣∣
λ=`n

=
K(n− 1, `n)

`n
.

Proof. Part (i). By Lemma 6.5, Part (i), and by definition of `n,

∂

∂λ
K(n, λ)

∣∣
λ=`n

= b− (b+ h) · P[B(n− 1, `n) = 0] = b− (b+ h) · b

b+ h
= 0. (6.9)

Part (ii). We distinguish between two cases. First, if n = 1, then clearly K(n−1, λ) = bλ, and

the result follows trivially. Second, if n > 1, then we define ∆K(λ) = K(n, λ)−K(n− 1, λ)

for all λ > 0. (This ∆K should not be confused with the different ∆K that we considered in

the proof of Lemma 6.3.) Differentiating and evaluating at `n, we obtain

d

dλ
∆K(λ)

∣∣
λ=`n

=
∂

∂λ
K(n, λ)

∣∣
λ=`n

− ∂

∂λ
K(n− 1, λ)

∣∣
λ=`n

=
(
b− (b+ h) · P[B(n− 1, `n) = 0]

)
−
(
b− (b+ h) · P[B(n− 2, `n) = 0]

)
= −(b+ h) ·

(
n−1∑
x=0

P[X(`n) = x]−
n−2∑
x=0

P[X(`n) = x]

)
= −(b+ h)P[X(`n) = n− 1], (6.10)
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where the second equality follows from Part (i) of Lemma 6.5. Combining (6.9) and (6.10),

we obtain

∂

∂λ
K(n− 1, λ)

∣∣
λ=`n

=
∂

∂λ
K(n, λ)

∣∣
λ=`n

− d

dλ
∆K(λ)

∣∣
λ=`n

= (b+ h)P[X(`n) = n− 1]. (6.11)

We will now rewrite Expression (6.11), multiplied by `n. For this, it is convenient

to denote S∗ = n − 1 (as n − 1 is an optimal base stock level) and Z = (b +

h)
(∑S∗

x=0(S∗ − x)P[X(`n) = x]
)

. Then, we obtain

`n(b+ h)P[X(`n) = S∗] = (b+ h)

(
`n · P[X(`n) = S∗]−

S∗∑
x=0

(S∗ − x)P[X(`n) = x]

)
+ Z

= (b+ h)e−`n

(
`n ·

(`n)S
∗

S∗!
− S∗ −

S∗∑
x=1

(S∗ − x)
(`n)x

x!

)
+ Z

= (b+ h)e−`n

(
(`n)S

∗+1

S∗!
+

S∗∑
x=1

(`n)x · x
x!

− S∗ −
S∗∑
x=1

S∗
(`n)x

x!

)
+ Z

= (b+ h)e−`n

(
S∗+1∑
x=1

(`n)x

(x− 1)!
−

S∗∑
x=0

(`n)x

x!
· S∗

)
+ Z

= (b+ h)e−`n

(
S∗∑
x=0

(`n)x

x!
· `n −

S∗∑
x=0

(`n)x

x!
· S∗

)
+ Z

= (b+ h)
S∗∑
x=0

P[X(`n) = x](`n − S∗) + Z

= (b+ h)P[B(S∗, `n) = 0](`n − S∗) + Z

= b(`n − S∗) + Z = K(S∗, `n). (6.12)

The penultimate equality holds because P[B(S∗, `n) = 0] = b/(b+ h) by Part (ii) of Lemma

6.3. By (6.12), we obtain

(b+ h)P[X(`n) = n− 1] =
K(n− 1, `n)

`n
. (6.13)

Combining (6.11) and (6.13) completes the proof.

We finally consider how the cost of an inventory system with optimal base stock levels

behaves as the demand rate varies. To this end, we define the optimal cost function K̃ :

R+ → R by

K̃(λ) =

{
0 if λ = 0;

minS∈N0 K(S, λ) if λ > 0.
(6.14)

This function is well-defined due to Part (ii) of Lemma 6.3. The following theorem states

that this function is elastic, as illustrated in Figure 6.3.
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Figure 6.3: The optimal per-demand costs, K̃(λ)/λ. (h = b = 1.)

Theorem 6.7. The function K̃ is elastic. In particular, K̃(λ)/λ is constant for λ on (0, `1]

and strictly decreasing for λ on [`1,∞).

Proof. First, for any λ ∈ (0, `1], a base stock level of zero is optimal, by the combination of

Part (ii) of Lemma 6.2, Part (ii) of Lemma 6.3, and the definition of `1. Hence, for λ on

(0, `1], K̃(λ) = K(0, λ) = bλ, and thus K̃(λ)/λ is constant.

Next, let n ∈ N. By Part (ii) of Lemma 6.4, for any λ ∈ [`n, `n+1), it holds that K̃(λ) =

K(n, λ). We now fix λ̃ ∈ [`n, `n+1) arbitrarily. Note that, by Part (i) of Lemma 6.4, λ̃ < `n+1.

Using this, we find that

K(n, λ̃) > K(n, `n+1) + (λ̃− `n+1) · ∂
∂λ
K(n, λ)

∣∣
λ=`n+1

= K(n, `n+1) + (λ̃− `n+1) · K(n, `n+1)

`n+1

= K(n, `n+1) · λ̃

`n+1
. (6.15)

The inequality holds because, cf. Part (ii) of Lemma 6.5, K(n, λ) as a function of λ (for λ

on R++) is strictly convex and twice differentiable; consequentially, it lies strictly above its

tangent line through `n+1 at λ̃ < `n+1. The first equality holds by Part (ii) of Lemma 6.6.

Using this, we obtain

∂

∂λ

(
K(n, λ)

λ

)∣∣∣∣
λ=λ̃

=

(
λ̃ · ∂

∂λ
K(n, λ)

∣∣
λ=λ̃
−K(n, λ̃)

)
/λ̃2

<

(
λ̃ · ∂

∂λ
K(n, λ)

∣∣
λ=`n+1

−K(n, λ̃)

)
/λ̃2
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=

(
λ̃ · K(n, `n+1)

`n+1
−K(n, λ̃)

)
/λ̃2

<

(
λ̃ · K(n, λ̃)

λ̃
−K(n, λ̃)

)
/λ̃2 = 0.

The first inequality holds by Part (ii) of Lemma 6.5. The subsequent equality holds by Part

(ii) of Lemma 6.6. The second inequality holds by Inequality (6.15). We conclude that

K̃(λ)/λ is strictly decreasing for λ on [`n, `n+1).

As, by Part (ii) of Lemma 6.3, both n and n+ 1 are optimal base stock levels for demand

rate `n+1, it holds that K̃(`n+1) = K(n, `n+1) = K(n+ 1, `n+1). Furthermore, it follows from

Part (ii) of Lemma 6.5 that both K(n, λ) and K(n + 1, λ) as functions of λ are continuous

at λ = `n+1. We conclude that K̃ is continuous at `n+1.

To summarize, we have established that K̃(λ)/λ is non-increasing for λ on (0, `1] and that,

for arbitrary positive integer n, this function is strictly decreasing on [`n, `n+1) and continuous

at `n+1. Now, since by Part (iii) of Lemma 6.4 it holds that
⋃
n∈N[`n, `n+1) = [`1,∞), this

implies that K̃(λ)/λ is strictly decreasing for λ on [`1,∞). Elasticity of K̃ follows, and the

proof is complete.

This concludes our analysis of the inventory model without a game theoretical perspective.

In the next section, we introduce spare parts situations, which feature multiple players.

6.3 Model description

Consider several players who may pool inventories of a common item. Each player

witnesses a stationary Poisson demand process, and the demand processes of the players

are mutually independent. Each player possesses an exogenously given, unadjustable number

of (repairable) spare parts a priori. The players have the same replenishment lead time

distribution, possibly because they use the same supplier or repair facility, and without loss

of generality we rescale its mean to 1 time unit. The replenishment lead times of the players

are mutually independent. The players face symmetric holding costs and backorder costs,

possibly because they operate in the same industry under similar operating conditions.

Initially, each player has an exogenously given stock of (repairable) spare parts; this

stocking level may be either fixed or adjustable. The players may collaborate by pooling their

spare parts. The following definition captures all relevant parameters.

Definition 6.1. A spare parts situation is a tuple (N,λ, S, h, b), where

• N is the non-empty, finite set of players;

• λ ∈ RN++ is the vector of demand rates, where λi describes the demand rate of customers

that belong to player i ∈ N ;
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• S ∈ NN0 is the vector of stocking levels, where Si describes the number of (repairable)

spare parts that player i ∈ N brings to any coalition;

• h > 0 is the holding cost rate;

• b > 0 is the backorder cost rate.

In line with notation of the preceding chapters, we write λM =
∑

i∈M λi and SM =
∑

i∈M Si

for any coalition M ∈ 2N− .

Example 6.1. Reconsider the air carrier companies from Example 4.1, who could pool spare

gearboxes. In Example 4.1, an emergency procedure (a lease from an exogenous infinite

supplier or an expedited repair process) was instigated upon a stock-out. In contrast, we now

suppose that such emergency procedures are not possible: if a part is not available, then we

simply have to wait for a regular repair to complete. One possible reason for this is that the

parts are no longer in production.

For brevity, consider Airline A only. This airline owned 1 spare gearbox and expected

4 demands per year. Recall that downtime costs were incurred at a rate of 500,000 euro

per grounded aircraft per day, which comes down to 182,500,000 per year. Holding costs

were incurred at a rate of 10,000 euro per on-hand gearbox per year. We can represent this

situation as spare parts situation (N,λ, S, h, b) by letting N = {A}, λA = 4/4 = 1, SA = 1,

h = 10, 000/4 = 2, 500, and b = 182, 500, 000/4 = 45, 625, 000, where we measure time in

quarter years (i.e., the mean repair lead time, which is scaled to 1) and money in euros. 3

6.4 Fixed base stock levels

In this section we consider the game that arises when each coalition maintains the aggregate

of the individual players’ base stock levels. Pooling allows a reduction in backorders and

on-hand stocks. After describing this setting in more detail, we identify a strictly stable cost

allocation.

6.4.1 Game

Consider any spare parts situation ϕ = (N,λ, S, h, b) and any coalition M ∈ 2N− . Coalition

M can set up a single stock point from which the combined demand streams of the coalition

members are fulfilled first-come first-served. Since the superposition of independent Poisson

processes is also a Poisson process, this single stock point would face a Poisson arrival process

with merged rate λM =
∑

i∈M λi. The stock point takes over the stocks of (repairable) spare

parts of the coalition members in full.

Based on these assumptions, the pooled system behaves as an (S − 1, S) inventory model

as described in Section 6.2.1. We assume throughout that players are interested in reducing

their long-term average holding and backorder costs, and that other, smaller effects of setting
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up the pool (e.g., additional transportation costs or economies of scale in warehousing) are

insignificant in comparison. Recalling the expected steady-state costs per unit time K as

defined in (6.5), we can now formulate a game corresponding to spare parts situation ϕ.

Definition 6.2. For any spare parts situation ϕ = (N,λ, S, h, b), we call the game (N, cϕ)

with

cϕ(M) = K(SM , λM ) (6.16)

for all M ∈ 2N− the associated spare parts game with fixed base stock levels.

6.4.2 A strict core allocation

In this subsection, we propose payment rates that depend on the current pipeline stocks. As

we show, these rates make every coalition better off under every realization of the pipeline

stocks and result in a strict core allocation in expectation. First, for a given spare parts

situation (N,λ, S, h, b), we introduce some additional terminology and notation.

A pipeline stock realization is a vector x = (xi)i∈N ∈ NN0 . The number xi should be

interpreted as the total number of replenishment parts in the pipeline, at an arbitrary point

in time, that were triggered by demands for items at player i. If we were to observe the

inventory system of any coalition M ∈ 2N− in steady-state at an arbitrary point in time, then

the number xi for any i ∈M would be drawn from a Poisson distribution with mean λi.
42 We

will, however, not focus on the underlying stochastic process for now. Rather, we consider

the inventory system at an arbitrary point in time, and observe the pipeline stock realization

x. Taking x as a given, we denote xM =
∑

i∈M xi for any coalition M . The total rate at

which costs are incurred per unit time in coalition M as long as the pipeline stock realization

remains x is equal to

Krate
M (xM ) = h ·max{SM − xM , 0}+ b ·max{xM − SM , 0}.

We are particularly interested in xN , the total number of parts in the pipeline for the

grand coalition. If SN > xN , then we say that backorders are scarce. Note that backorders

being scarce need not imply that Si > xi for all i ∈ N . If SN < xN , then we say that on-hand

parts are scarce. And if SN = xN , then we say that nothing is scarce.

Suppose that the grand coalition has formed. For any pipeline stock realization x, we will

propose a way to fully assign Krate
N (x) over the players. Specifically, we propose that any

42This number is thus unaffected by any pooling arrangement. This is a crucial observation; it differentiates

the model in this chapter from the preceding ones! The observation only holds because the supply or repair

process is uncapacitated and corresponds to an M/G/∞ queue. In the Erlang loss or Erlang delay system, the

number of servers is finite, which has an important implication: even if for any sample path the same demands

arrive no matter the coalition structure, the service can differ. For instance, if player i has 5 servers and 0

arrivals over a certain period, while player j has 1 server and 4 arrivals over a certain period, then the number

of servers that are busy with customers of player i (the analogue of our pipeline stock realization xi) would

depend on whether or not the players formed a coalition.
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player i ∈ N should incur net cost at a rate of

Ai(x) =


h(Si − xi) if backorders are scarce;

b(xi − Si) if on-hand parts are scarce;

0 if nothing is scarce.

(6.17)

per unit time. Note that these rates may be negative at some time for some players, and

that
∑

i∈N Ai(x) = Krate
N (x). The following example illustrates these rates, indicates that

they never make anyone worse off, and describes how they may be implemented via concrete

transfer payments.

Example 6.2. Gyro Gearloose has invented a new machine that produces chocolate bars at

a constant rate. He has sold it to several people in Duckburg: besides Gyro himself, Scrooge

McDuck and Launchpad McQuack are also operating a number of these machines.43 The

machine has one critical component that is prone to failures. This component can be bought

for 3000 euros from a supplier, due upon receipt of the component, and there is a fixed lead

time of 1 month. We represent the set of players by N = {G,S, L}. Initially, each player

i ∈ N has Si = 2 spare parts on hand, with nothing in the pipeline. The monthly interest rate

is 1%, i.e., monthly holding costs are h = 30 per part. Downtime costs due to lost chocolate

bar production are b = 10000 per month per broken machine.

The three players store their parts in a joint warehouse, though each puts their own parts

on a separate shelf. Consider the system on a certain day, say January 1. Suppose that up till

today, all players had always been able to satisfy their demands from their own shelves. But

today will be different. At the beginning of the day, Gyro has xG = 2 parts in the pipeline,

Scrooge has xS = 1 part in the pipeline, and Launchpad has xL = 1 part in the pipeline. At

some point during the day, one of Gyro’s machines fails. As always, Gyro immediately orders

a new part. This increases the size of the pipeline triggered by Gyro’s demands to xG = 3.

However, since SG = 2 < 3 = xG, Gyro is unable to fulfill his demand with an on-hand part.

Yet, since SN = 6 > 5 = xN , backorders are scarce and Gyro can obtain the required part

from another player.

Suppose that the players contractually agreed to fully pool their parts and to incur costs

as described by the payment rates A. For convenience of determining transfer payments, the

players agreed that everyone first always incurs the holding and backlogging costs for their own

inventory and backlogs. Since no shortages had arisen in the past, no transfer payments had

been necessary up till now. However, given the current pipeline stock realization x = (3, 1, 1),

the payment rates should be AG(x) = −h, AS(x) = h, and AL(x) = h, and thus transfer

payments are necessary. Gyro calls Scrooge, and the following discussion ensues.

Gyro: Mr. McDuck, I would like to buy your spare part for the regular price of 3000 euros.

43The Dutch reader may recognize these characters more readily as Willie Wortel, Dagobert Duck, and

Turbo McKwek, respectively.
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You will receive and eventually pay for the new part that I just ordered, while rewarding

me at a rate of h = 30 per month as long as that order is in the pipeline.

Scrooge: Curse me kilts. . . I have to give you my spare part and pay you for the privilege as

well? How is that what we agreed to?

Gyro: Gee, Mr. McDuck, lighten up. My proposal indeed lets us implement the payment

rates that we all contractually agreed to. Besides, what’s more important: a few measly

euros, or helping out a friend?

Scrooge: Is this a multiple choice question? Kindness is of little use in this world. Anyway,

this allocation make no sense to me. Why should I pay you?

Gyro: Okay, let me explain why this allocation is reasonable. By giving me your part,

I certainly save downtime costs at a rate of b per month. But you also get money

upfront that I’m sure you can put to good use, i.e., you save on holding costs. However,

Launchpad and I could achieve exactly the same thing. I recently read a paper

by Owen (1975) on linear production games and a paper by Sánchez-Soriano et al.

(2001) on a refinement called transshipment games, which perfectly describe our current

predicament. Indeed, each coalition of two or more players that includes me can save

h + b, while no other coalition can achieve anything. Such a game only has one core

allocation: the one where I get all the benefits.

Scrooge: I guess that makes sense. But what if both Launchpad’s and my own machine

fail tomorrow? Launchpad tends to crash everything he touches, and I have so many

machines that one is bound to fail soon. If that happens, then there will be no spare

part left to fix my machine, and I would regret giving away my part.

Gyro: In that case, on-hand parts become scarce, and the payments are switched. Rather

than you paying me, I will start paying you at a monthly rate of b = 10000 to compensate

you for your downtime. One way or another, you won’t be worse off!

Scrooge: Fair enough. . . although I am still not reaping any positive benefits from this. I had

heard that these pooling arrangements make everyone strictly better off. How about

that? As you know, my favorite hobby is actually increasing my wealth.

Gyro: Well, in the future, if you face a stock-out while I have a part available, I will be happy

to help you out. At that point in time, you will be able to obtain positive benefits from

this collaboration.

Scrooge: Sure, you convinced me. Let’s do this!

In the end, Gyro got his part, and everyone collaborated happily ever after. 3
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The following lemma shows that the above-described rates indeed always never make any

coalition worse off.

Lemma 6.8. Consider a spare parts situation (N,λ, S, h, b). Let x be a pipeline stock

realization. Let M ∈ 2N−− be a subcoalition. The following inequalities hold:

(i)
∑

i∈M Ai(x) = Krate
M (xM ) if backorders are scarce and SM ≥ xM .

(ii)
∑

i∈M Ai(x) < Krate
M (xM ) if backorders are scarce and SM < xM .

(iii)
∑

i∈M Ai(x) = Krate
M (xM ) if on-hand parts are scarce and SM ≤ xM .

(iv)
∑

i∈M Ai(x) < Krate
M (xM ) if on-hand parts are scarce and SM > xM .

(v)
∑

i∈M Ai(x) = Krate
M (xM ) if nothing is scarce and SM = xM .

(vi)
∑

i∈M Ai(x) < Krate
M (xM ) if nothing is scarce and SM 6= xM .

Proof. Part (i). Suppose that backorders are scarce and that SM ≥ xM . Then,
∑

i∈M Ai(x) =

h (SM − xM ) = Krate
M (xM ).

Part (ii). Suppose that backorders are scarce and that SM < xM . Then,
∑

i∈M Ai(x) =

h (SM − xM ) < 0 < b (xM − SM ) = Krate
M (xM ), where the inequalities hold because, by

assumption, SM − xM < 0.

Part (iii). Suppose that on-hand parts are scarce and that SM ≤ xM . Then,∑
i∈M Ai(x) = b (xM − SM ) = Krate

M (xM ).

Part (iv). Suppose that on-hand parts are scarce and that SM > xM . Then,∑
i∈M Ai(x) = b (SM − xM ) < 0 < h (SM − xM ) = Krate

M (xM ), where the inequalities hold

because, by assumption, SM − xM > 0.

Part (v). Suppose that nothing is scarce and that SM = xM . Then,
∑

i∈M Ai(x) = 0 =

Krate
M (xM ).

Part (vi). Suppose that nothing is scarce and that SM 6= xM . Then,
∑

i∈M Ai(x) = 0 <

Krate
M (xM ), where the inequality holds because due to the mismatch in SM and xM , coalition

M either pays holding or backlogging costs at a positive rate.

For any spare parts situation ϕ = (N,λ, S, h, d), we define the vector A (ϕ) ∈ RN by

Ai(ϕ) =
∑
x∈NN0

P
[
(X(λi))i∈N = x

]
Ai(x)

for all i ∈ N , where

P
[
(X(λi))i∈N = x

]
=
∏
i∈N

λxii
xi!

e−λi

represents the probability of observing pipeline stock realization x at an arbitrary point in

time. Using these definitions and Lemma 6.8, we can show that these rates induce a strict

core allocation in expectation, as stated in the following theorem. This theorem focuses on

settings with more than one player who have at least one spare part between them to ensure

that positive pooling benefits are obtainable.
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Theorem 6.9. Consider a spare parts situation ϕ = (N,λ, S, h, b) with |N | ≥ 2 and SN > 0.

Then, A (ϕ) is a strictly stable allocation for the associated spare parts game with fixed base

stock levels (N, cϕ).

Proof. Let M ∈ 2N−− be a subcoalition. Then,∑
i∈M

Ai(ϕ) =
∑
x∈NN0

P
[
(X(λi))i∈N = x

]∑
i∈M

Ai(x)

<
∑
x∈NN0

P
[
(X(λi))i∈N = x

]
Krate
M (xM )

=
∑
y∈N0

∑
x∈NN0 :xM=y

P
[
(X(λi))i∈N = x

]
Krate
M (y)

=
∑
y∈N0

P

[∑
i∈M

X(λi) = y

]
Krate
M (y)

=
∑
y∈N0

P[X(λM ) = y]Krate
M (y) = cϕ(M),

where the inequality holds by Lemma 6.8. The inequality is strict because the case as

described in Part (vi) of Lemma 6.8 occurs with positive probability. Indeed, since SN > 0

by assumption, it holds that SM < xM = xN = SN has a positive occurrence probability if

SM < SN and that, alternatively, xM < SM = xN = SN has a positive occurrence probability

if SM = SN . The penultimate inequality, i.e., P
[∑

i∈M X(λi) = y
]

= P[X(λM ) = y] holds

because the sum of several Poisson distributed random variables is again Poisson distributed

according to the sum of the parameters. We conclude that A (ϕ), if it were an (efficient)

allocation, would be stable.

It remains to check that A (ϕ) is indeed an (efficient) allocation, i.e.,
∑

i∈N Ai(x) = cϕ(N).

This, however, can be proven analogous to the above derivation, except that the inequality

becomes an equality. We conclude that A (ϕ) is a strictly stable allocation for (N, cϕ).

From this theorem, we obtain the next one, which states that pooling the inventory and

demand streams of several spare parts inventory systems (with common lead time and cost

structure) leads to a strict reduction in expected backorders (6.3), expected on-hand inventory

(6.4), and expected costs (6.5). The intuition behind this is that pooling allows one player’s

backorder to cancel against another player’s on-hand part.

Theorem 6.10. Consider a spare parts situation ϕ = (N,λ, S, h, b) with N = {1, 2} and

SN > 0. Then the following strict subadditivity properties hold:

(i) K(S1, λ1) +K(S2, λ2) > K(S1 + S2, λ1 + λ2).

(ii) EB(S1, λ1) + EB(S2, λ2) > EB(S1 + S2, λ1 + λ2).

(iii) EI(S1, λ1) + EI(S2, λ2) > EI(S1 + S2, λ1 + λ2).
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Proof. By Theorem 6.9, it holds that

K(S1, λ1) +K(S2, λ2) = cϕ({1}) + cγ({2}) > cϕ(N) = K(S1, S2, λ1 + λ2), (6.18)

which shows validity of Part (i). Recall that, for any Ŝ ∈ N0 and λ̂ > 0, it holds that

K(Ŝ, λ̂) = b(λ̂− Ŝ) + (b+ h)
∑Ŝ

x=0(Ŝ − x)P[X(λ̂) = x]. So, subtracting b(λ1 + λ2 − S1 − S2)

from both sides of (6.18) and dividing by h+ b > 0, we obtain

S1∑
x=0

(S1 − x)P[X(λ1) = x] +

S2∑
x=0

(S2 − x)P[X(λ2) = x] >

S1+S2∑
x=0

(S1 + S2 − x)P[X(λ1 + λ2) = x].

Comparison with Equations (6.3) and (6.4) completes the proof of Parts (ii) and (iii),

respectively.

6.5 Optimized base stock levels

The previous section showed that it is beneficial to share inventories while maintaining the

aggregate of the base stock levels, but costs can of course be reduced further by re-optimizing

the joint base stock level. After all, due to the risk pooling effect, lower base stock levels

may suffice to jointly serve all demand streams in a cost-effective way. Although such a lower

aggregate base stock level might result in an increase in the expected backorders compared

to the no-pooling situation, this may be counterweighted by the reduction in the expected

on-hand inventory. However, due to the opposite effects explained in Section 4.5.2, there is

no direct relation between games with fixed and optimized based stock levels. In this section

we consider the games corresponding to the setting where base stock levels are optimized.

6.5.1 Game

Let (N,λ, S, h, b) be a spare parts situation, and consider a coalition M ∈ 2N− . We remark

that since base stock levels are adjustable in this section, S has becomes superfluous in the

tuple. For any particular choice of the base stock level s ∈ N0, the behavior of the stock point

would correspond to the model described in Section 6.2, and thus the expected costs per time

unit faced by coalition M would be equal to K(s, λM ). Assuming that any coalition picks an

optimal base stock level, which exists by Lemma 6.3, we formulate the following game.

Definition 6.3. For any spare parts situation ϕ = (N,λ, S, h, b), we call the game (N, dϕ)

with

dϕ(M) = min
s∈N0

K(s, λM ) (6.19)

for all M ∈ 2N− the associated spare parts game with optimized base stock levels.

Before proceeding with our analysis, we discuss our choice to concentrate on a pure cost

model. The reason is that the pure cost model permits adequate comparisons between
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coalitions. To illustrate, suppose that we would instead have chosen to study a service

constraint model where each coalition would minimize the integer base stock level subject

to, say, a 95% fill rate constraint. Then, improvements in service beyond that 95% would

unjustly appear worthless: In such a service model, a player would prefer a coalition in which

he would face 1000 euro/month in holding costs under a 95.0% fill rate over a coalition costing

1001 euro/month for 99.9%. Such unnatural outcomes are avoided by considering backlogging

costs explicitly. We avoided this issue in Section 4.5 by using the linear interpolation of the

Erlang loss function to formulate a service constraint game. For the (S − 1, S) inventory

model with backlogging, however, our analysis in Section 6.2.2 focused on optimal costs

directly, not on linear interpolations. Studying a service constraint model would therefore

require considerable additional analysis of a linear interpolation, which we will not go into

here.

We next propose an allocation rule that divides costs proportional to the demand rate of

each player: the rule P is defined by Pi(ϕ) = dϕ(N) · λi/λN for each i ∈ N in spare parts

situation (N,λ, S, h, b). Extending this idea to every coalition, we define the proportional

allocation scheme rule P by

Pi,M (ϕ) = dϕ(M) · λi/λM (6.20)

for each coalition M and i ∈M in spare parts situation (N,λ, S, h, b). Note that in contrast

to the state-dependent cost rate that we had in the previous section, we now moved to a

constant cost rate. The following example illustrates this proportional allocation scheme rule

numerically and simultaneously shows that the Shapley value is not necessarily in the core.

Example 6.3. Consider three companies in the capital goods industry that wish to pool

common parts. One company expects to face 0.1 demands per month on average. The

monthly demand rates are 0.8005 and ln 2 for the other two companies. The part in question

is very expensive; a single part on hand costs 10,000 euros per month, and a machine that is

down will cost 10,000 euros per month as well.44 This can be modeled as a spare parts situation

ϕ = (N, λ, S, h, b) with player set N = {1, 2, 3}, λ1 = 0.1, λ2 = 0.8005, λ3 = ln 2(≈ 0.6931),

arbitrary S, and h = b = 10000 = 104.

To illustrate the determination of an optimal base stock level and associated costs, consider

the singleton coalition {3}. By Equation (6.1), P[X(λ3) = 0] = 0.5. Combining this with

Equations (6.3), (6.4), and (6.5), we obtain for the case were player 3 would decide to stock

zero parts that EB(0, λ3) = ln 2, EI(0, λ3) = 0, and K(0, λ3) = 104 · ln 2. If player 3 would

decide to use a base stock level of one instead, then EB(1, λ3) = ln 2−1+0.5, EI(1, λ3) = 0.5,

and K(1, λ3) = 104 · ln 2. As K(0, λ3) = K(1, λ3) and this cost function is strictly convex

in the base stock level (by Lemma 6.3), minimal costs are achieved with a base stock level

44We are aware that these downtime costs are rather low relative to the holding costs. We chose these

parameter values because they simultaneously yield a computationally convenient illustration of the costs and

allocations involved, in addition to a game whose Shapley value lies outside the core.
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Coalition M Optimal base stock levels dϕ(M) P1,M (ϕ) P2,M (ϕ) P3,M (ϕ)

{1} 0 1000 1000 * *

{2} 1 6987 * 6987 *

{3} 0 and 1 6931 * * 6931

{1, 2} 1 7132 792 6340 *

{1, 3} 1 6980 880 * 6100

{2, 3} 1 9428 * 5053 4375

N 1 10000 628 5023 4349

Table 6.1: The spare parts game with optimized base stock levels and the proportional allocation

scheme of Example 6.3.

of either 0 or 1, and dϕ({3}) = 104 · ln 2. In the remainder of this example, we will round

monthly cost values to whole euros for notational convenience.

If player 1 would join to form coalition {1, 3}, then it can be verified that a base stock

level of one for their combined stock point is optimal; thus, dϕ({1, 3}) = K(1, λ1 +λ3) ≈ 6980.

Under the proportional allocation scheme rule P, player 3 would have to pay P3,{1,3}(ϕ) ≈
6100 in coalition {1, 3}, which is lower than P3,{3}(ϕ) ≈ 6931 (see Table 6.1). This strict

population monotonicity can be verified for the members of all other nested pairs of coalitions

as well, implying that P(ϕ) is strictly population monotonic. Accordingly, the spare parts

game with optimized base stock levels (N, dϕ) has a non-empty strict core containing P(ϕ).

Although this allocation is stable, it need not make every coalition better off in every

sample path, as opposed to the setting with fixed base stock levels. Indeed, the optimal base

stock level for the grand coalition is less than the sum of the optimal base stock levels in the

partitioning {{1, 2}, {3}}. This implies that in case of unexpectedly high demand in a certain

year, the grand coalition may face higher overall costs. Players have to content themselves

with the knowledge that they get better off in expectation, i.e., in the long run.

The game’s Shapley value Φ(N, cϕ), which assigns Φ1(N, cϕ) ≈ 556, Φ2(N, cϕ) ≈ 4774,

and Φ3(N, cϕ) ≈ 4670, is not in the core of this game because Φ2(N, cϕ) + Φ3(N, cϕ) >

dϕ({2, 3}). Accordingly, the game is not concave; indeed, dϕ({1, 3})−dψ({3}) < 100 < 500 <

dφ({1, 2, 3})− dφ({2, 3}). 3

6.5.2 A strictly population monotonic allocation scheme

In Example 6.3, cost allocation could be carried out in a stable and population monotonic way

via the proportional rules. In this section we prove this by using that each player is associated

with a single attribute. We discern two different proof approaches. The first approach is based

on the elasticity stated in Theorem 6.7 and allows us to show strict stability and population
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monotonicity. The second approach is based on a connection with newsvendor games.

We start off with the first approach. We let

S∗(λ) = min{S ∈ N0 : K(S, λ) = K̃(λ)}

denote the (smallest) optimal base stock level for any demand rate λ > 0. This number is

well-defined by Lemma 6.3. The following theorem shows that the proportional allocation

scheme rule P(ϕ) always results in a PMAS. Moreover, it accomplishes an SPMAS if demand

rates are sufficiently high for each coalition with two or more players to have an optimal base

stock level greater than zero.

Theorem 6.11. Let ϕ = (N, λ, S, h, b) be a spare parts situation. For the associated game

(N, dϕ), the following holds.

(i) P(ϕ) is a PMAS.

(ii) If S∗(λL) > 0 for each L ∈ 2N− with |L| ≥ 2, then P(ϕ) is an SPMAS.

Proof. Part (i). Let M,L ∈ 2N− with M ⊂ L, and let i ∈M . By Theorem 6.7,45

Pi,L(ϕ) = dϕ(L)
λi
λL

= K̃(λL)
λi
λL
≤ K̃(λM )

λi
λM

= dϕ(M)
λi
λM

= Pi,M (ϕ). (6.21)

Part (ii). For arbitrary M,L ∈ 2N− with M ⊂ L, assume that S∗(λL) > 0. This implies

that λL, the collective demand rate of coalition L, is strictly larger than `1, the demand rate

for which both base stock levels 0 and 1 are optimal. Therefore, the inequality in (6.21) is

strict by Theorem 6.7. Accordingly, P(ϕ) is an SPMAS.

From this theorem, we immediately obtain the following corollary.

Corollary 6.12. Let ϕ = (N, λ, S, h, b) be a spare parts situation.

(i) The associated game (N, dϕ) is totally balanced, and its core contains P(ϕ).

(ii) If S∗(λL) > 0 for each L ∈ 2N− with |L| ≥ 2, then (N, dϕ) has a non-empty strict core

containing P(ϕ).

We now turn to the alternative, second proof approach, which is based on two lemmas.

The first lemma is based on the observation that, mathematically, the problem of finding

optimal base stock levels in our (infinite-horizon) inventory model corresponds to a (single-

period) newsvendor problem. Recall that newsvendor games were defined in Section 3.2.3.

Lemma 6.13. Let ϕ = (N, λ, S, h, b) be a spare parts situation. Then, the associated spare

parts game with optimized base stock levels is a newsvendor game.

45This result would also follow upon combining Theorem 6.7 and Theorem 2.5. However, Equation (6.21) is

short and direct, and it requires no invocation of Theorem 2.5.
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Proof. We set oversupply cost co = h, undersupply cost cu = b, and stochastic demand Di

for any player i ∈ N distributed according to a Poisson distribution with mean λi. Then, for

any coalition M , we obtain

dϕ(M) = min
S∈N0

(
h · EI(S, λM ) + b · EB(S, λM )

)
= min

S∈N0

(
h · Emax{S −X(λM ), 0}+ b · Emax{X(λM )− S, 0}

)
= min

S∈N0

(
co · Emax

{
S −

∑
i∈M

Di, 0
}

+ cu · Emax
{∑
i∈M

Di − S, 0
})

= min
s≥0

(
co · Emax

{
s−

∑
i∈M

Di, 0
}

+ cu · Emax
{∑
i∈M

Di − s, 0
})

.

The first equality holds by Equations (6.5) and (6.19). The third equality holds because both

X(λM ) and
∑

i∈M Di are both Poisson distributed with mean λM . The final equality holds

because, even if we allow optimization over the real numbers, there will always be an optimal

integer-valued order size due to the discreteness of the demand distribution. We conclude

that the game (N, dϕ) is a newsvendor game.

The second lemma uses the notion of a single-attribute game, as introduced in Section

2.3.10.

Lemma 6.14. Consider a non-decreasing function f : R+ → R with f(0) = 0, and suppose

that all games embedded in f are newsvendor games. Then, for any player set N and attribute

vector a ∈ RN++, the allocation scheme assigning c(M) ·ai/aM to any i ∈M for each M ∈ 2N−
is a PMAS for the corresponding single-attribute game.

Proof. Newsvendor games are known to have a non-empty core in general—a result that was

derived independently by Müller et al. (2002) and Slikker et al. (2001). The result then follows

upon combination of Parts (i) and (iii) of Theorem 2.5.

These lemmas provide an alternative way to prove Part (i) of Theorem 6.11. We briefly

restate this result for convenience.

Theorem 6.15. Let ϕ = (N, λ, S, h, b) be a spare parts situation. Then, P(ϕ) is a PMAS

for the associated game (N, cϕ).

Proof. Consider the class of all spare parts situations with holding and backorder costs h

and b. All associated spare parts games with optimized base stock levels comprise all single-

attribute games embedded in the optimal cost function K̃, with attributes corresponding to

the players’ demand rates. By Lemma 6.13, all these games are newsvendor games. This

implies, by Lemma 6.14, that the allocation scheme assigning costs proportional to players’

attributes, which is exactly what P prescribes, is a PMAS.
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We conclude this subsection with several remarks. Firstly, even though the class of

spare parts games with optimized base stock levels turned out to coincide with the class

of newsvendor games where all players have Poisson distributed demand, our focus on this

specific subclass of newsvendor games—a subclass that had never been explicitly studied

before—enabled us to find novel results that do not extend to newsvendor games in general.

Secondly, the combination of the connection with newsvendor games and Theorem 2.5 allowed

a short proof for population monotonicity, but it does not provide insights into the structure

of the problem as our analysis in Section 6.2.2 did. Moreover, our structural analysis in

Section 6.2.2 allowed us to identify a strictly stable allocation (Part (ii) of Theorem 6.11) and

it will allow us to identify the player who benefits most from the collaboration (in Section

6.5.3); these additional results do not follow from the alternative proof approach.

The following example illustrates an application of Lemma 6.14 to newsvendor games

beyond the spare parts context. Key in the example, which deals with normally distributed

demands, is that the demand information of any player can be fully represented as a single

real number (i.e., a single attribute) and that the demand distribution of each coalition belong

to the same class.

Example 6.4. For given oversupply cost co ≥ 0, undersupply cost cu ≥ 0, and variance-to-

mean ratio C, consider the function f : R++ → R defined by

f(µ) = min
s≥0

(
co · Emax

{
s−D(µ), 0

}
+ cu · Emax

{
D(µ)− s, 0

})
,

where D(µ) ∼ N (µ, σ2) with σ2 = µC. Then, the set of single-attribute games embedded

in f is comprised of all newsvendor games with oversupply cost co, undersupply cost cu,

and stochastic demand Di ∼ N (µi, σ
2
i ) with σ2

i = µiC and µi > 0 for all players i. It is

known that these games are convex (Özen et al., 2011, Theorem 2). What’s new is that,

by Lemma 6.14, any such newsvendor game (N, c) admits a proportional PMAS that assigns

c(M) · µi/
∑

j∈M µj to any M ∈ 2N− and i ∈M . 3

6.5.3 Who reaps the benefits?

One might wonder who actually reaps most of the benefits of the collaboration. By benefits

we mean the difference between the costs incurred by a player when acting alone and the cost

assigned to this player under rule P. Thus, the benefits for a player with demand rate λ > 0

when participating in a spare parts pool with aggregate demand rate Λ ≥ λ are given by

B(λ,Λ) = K̃(λ)− λ · K̃(Λ)/Λ.

Now, will the smallest player (i.e., the player with the lowest demand rate) always benefit

most, or will the largest player always take the lion’s share? The following example shows

that it could actually be neither of them. Thus, the proportional rule does not favor smaller

or larger players categorically.
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Figure 6.4: The optimal costs K̃(λ) as a solid line, a dotted line through the origin with slope

K̃(λN )/λN , and the benefits B1, B2, and B3 for the players in Example 6.5.

Example 6.5. Reconsider the spare parts situation ϕ as described in Example 6.3. For

this situation, the players’ benefits (rounded to four decimals) are B1 = B(λ1, λN ) = 0.0372,

B2 = B(λ2, λN ) = 0.1964, B3 = B(λ3, λN ) = 0.2582. So, B3 > B2 > B1, even though

λ2 > λ3 > λ1. Hence, a large player (e.g., 2) might reap less benefit than a smaller player

(e.g., 3). Yet, a large player (e.g., 3) might reap more benefit than a smaller player (e.g., 1)

as well. This is represented graphically in Figure 6.4. 3

This example suggests that the largest benefits are typically reaped by a player with

demand rate equal to `n for some n ∈ N, i.e., a demand rate for which two base stock levels

are optimal. To prove that this indeed holds in general, we will use the following lemma.

Lemma 6.16. Let a pooling group’s total demand rate Λ > `1 be fixed.

(i) For all λ ∈ (0, `1), B(λ,Λ) < B(`1,Λ).

(ii) If S∗(Λ) ≥ 2, then for any n ∈ {1, . . . , S∗(Λ)− 1} and λ ∈ (`n, `n+1), at least one of the

following two inequalities hold: B(λ,Λ) < B(`n+1,Λ) and/or B(λ,Λ) < B(`n,Λ).

(iii) For all λ ∈ (`S∗(Λ),Λ], B(λ,Λ) < B(`S∗(Λ),Λ).

Proof. Part (i). For any λ ∈ (0, `1), it holds that S∗(λ) = S∗(`1) = 0, which implies that

K̃(λ)/λ = K̃(`1)/`1 = b. Using this, we find for any λ ∈ (0, `1) that

B(λ,Λ) = λ

(
K̃(λ)

λ
− K̃(Λ)

Λ

)
= λ

(
K̃(`1)

`1
− K̃(Λ)

Λ

)
< `1

(
K̃(`1)

`1
− K̃(Λ)

Λ

)
= B(`1,Λ)

where the inequality holds because K̃(`1)/`1 > K̃(Λ)/Λ by Theorem 6.7.
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Part (ii). Assume that S∗(Λ) ≥ 2, and let n ∈ {1, . . . , S∗(Λ)− 1}. For λ on [`n, `n+1], it

holds that B(λ,Λ) = K(n, λ)− λ · K̃(Λ)/Λ, i.e., the sum of a term that is strictly convex in

λ by Lemma 6.5 and a term that is linear in λ. This means that B(λ,Λ) is strictly convex in

λ for [`n, `n+1]. By convexity, it reaches a maximum at one of the two endpoints, i.e., either

at `n or `n+1. Because the convexity is strict, any λ that is not equal to `n or `n+1 cannot

lead to a maximum.

Part (iii). For λ on [`S∗(Λ),Λ], it holds that B(λ,Λ) = K(S∗(Λ), λ) − λ · K̃(Λ)/Λ is

strictly convex in λ, for the same reason as in Part (ii). Combining this strict convexity

with B(λ,Λ) > 0 for all λ ∈ [`S∗(Λ),Λ), which follows from Part (ii) of Corollary 6.12, and

B(λ,Λ) = 0, we conclude that a unique maximum on [`S∗(Λ),Λ] is achieved at `S∗(Λ). Hence,

B(λ,Λ) < B(`S∗(Λ),Λ) for all λ ∈ (`S∗(Λ),Λ].

The following theorem states that a demand rate for which two base stock levels are

optimal yields maximal benefits, provided that it is not optimal for the grand coalition to

stock zero parts (in which case there would clearly be no pooling benefits at all).

Theorem 6.17. Consider a spare parts pool with total demand rate Λ > `1. Then, there

exists an n ∈ {1, . . . , S∗(Λ)} such that B(`n,Λ) > B(λ,Λ) for all λ ∈ (0,Λ] with λ 6= `n′ for

any n′ ∈ N.

Proof. Let n∗ ∈ argmaxn∈{1,...,S∗(Λ)} B(`n,Λ). Let λ ∈ (0,Λ] with λ 6= `n′ for any n′ ∈ N. If

λ < `1, then

B(λ,Λ) < B(`1,Λ) ≤ B(`n∗ ,Λ),

where the first inequality is due to Lemma 6.16, Part (i), and the second inequality holds by

choice of n∗ as a maximizer. Similarly, if λ > `1, then B(λ,Λ) < B(`n∗ ,Λ) by Part (ii) or

(iii) of Lemma 6.16, and by choice of n∗ as a maximizer.

From this theorem, we immediately obtain the following corollary, which concerns

situations where the grand coalition optimally stocks a single part. This is quite common for

low-demand, expensive spare parts.

Corollary 6.18. Let ϕ = (N, λ, S, h, b) be a spare parts situation with optimized base stock

levels such that S∗(λN ) = 1 and λi = `1 for some i ∈ N . Then, B(λi, λN ) > B(λj , λN ) for

all j ∈ N with λj 6= λi.

6.5.4 A truth-inducing implementation

In this subsection, we show that the proportional allocation rule can be easily implemented

via a simple cost division per realization. Although our games have been formulated in

expected terms to investigate a priori attractiveness of pooling, fair assignments of realized

costs in any finite time period will be required to sustain cooperation in practice. We will

propose a process to do that, and subsequently discuss the implications of this process for
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truthful information disclosure in the context of a non-cooperative game. These issues have

been previously considered in the context of collaborating newsvendors with no inventory

carryover: fair divisions of realized costs are studied by Dror et al. (2008), Chen and Zhang

(2009, Remark 3), and Kemahlıoğlu-Ziya and Bartholdi III (2011, Section 6) while schemes

that induce truthful revelation of private demand information are studied by Norde et al.

(2011). We, in contrast, tackle these issues in an infinite-horizon continuous-review inventory

model. Our approach differs from existing approaches in the newsvendor context because we

exploit the PASTA property of Poisson processes.

To propose a method for assigning realized costs, we make the natural assumption of a

first-in first-out (FIFO) stock discipline: whenever more than one part is available in the

on-hand stock when a demand is placed, the demand is fulfilled by the oldest part in the

on-hand stock. We now propose the following method to allocate costs as they materialize in

an inventory system with any base stock level S ∈ N0 operated by the grand coalition in any

spare parts situation (N, (λi)i∈N , S, h, b).

Process 6.1. Realized costs for the grand coalition are assigned as follows:

• Each player, upon placing a demand when the on-hand stock is positive, pays all holding

costs incurred for the part taken (according to FIFO). That is, if the taken part was

delivered at the stock point at a time τ and the player’s demand occurs at time t, then

this player incur h(t− τ) upon placing his demand.

• Each player, upon placing a demand that is backordered, pays all backorder costs

incurred for this backorder. That is, if the demand occurs at time t and the associated

backorder is later fulfilled via delivery of a new part at time τ , then this player incurs

b(τ − t) over the duration of his backorder.

This process assigns the holding costs incurred for some part in an intuitively fair way

to the player who directly benefits from the part. No holding costs are assigned to a player

who does not benefit from on-hand inventory (as a result of not facing any demands over a

certain time period or due to unfortunate stock-outs at his demand epochs). Additionally,

since players fully incur all costs for their own backorders, the process eliminates the need for

transfer payments of backorder costs, thereby avoiding disputes about their exact magnitude

— this is an important property for the capital goods context wherein backorder costs typically

comprise the downtime costs of a player’s machine due to unavailability of a spare part.

Moreover, as stated in the following lemma, the process can indeed be used to implement46

the proportional allocation.

46Here, we assume that any player takes a part from the pool if and only if he faces a component failure.

Opportunistic behavior (not demanding a part upon a failure, or demanding a part before a failure occurs)

may be prohibited by requiring a failed part in exchange for any part taken from the inventory.
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Lemma 6.19. Under Process 6.1, the share of long-term average costs (of an inventory

system operated by the grand coalition with base stock level S ∈ N0) borne by player i ∈
N is λi/λN . In particular, if the grand coalition optimally stocks S∗(λN ) parts, the long-

term average costs assigned to each player under Process 6.1 coincide with the assignment of

expected costs under the proportional allocation rule P.

Proof. Follows directly from PASTA.

A final appealing property of Process 6.1 is that it removes any incentive for players to lie

about their demand rates a priori. Although thus far we have adhered to the assumption of

full and open information (a standard assumption in cooperative game theory), in reality a

player’s demand rate may be private information, and true demand rates may not be verifiable

as, e.g., there may only be a handful demands over an entire 30-year collaboration.

During initial negotiations, when all cooperating players have to state their demand rate

for the purpose of joint base stock level optimization, a player might lie if the collaboration

would be implemented via an inappropriate cost realization assignment method. For example,

under a method that charges each player a yearly fee based on his stated demand rates

independent of that player’s realized demand volume in that year, a player might have a

reason to understate his actual demand rate a priori. However, under Process 6.1, truth telling

is a Nash equilibrium in the corresponding noncooperative information disclosure game. In

this game, the player set is N ; the strategy set of each player is R++, where strategy λi for

player i should be interpreted as stating demand rate λi; and the payoff to each player for

any strategy profile (λ̂i)i∈N is equal to the long-term average costs assigned under Process

6.1 in the inventory system with base stock level S∗(
∑

i∈N λ̂i).

Theorem 6.20. The strategy profile (λi)i∈N , in which each player i ∈ N states his true

demand rate λi, is a Nash equilibrium in this noncooperative game.

Proof. Consider a player i ∈ N and suppose that all other players j ∈ N \ {i} announce

their true demand rate λj . By lying, i.e., stating any demand rate L ∈ R++ other than λi,

player i can only accomplish a possibly suboptimal base stock level since K(S∗(λN ), λN ) ≤
K(S∗(

∑
j∈N\{i} λj +L), λN ) by definition of S∗. Yet, the fraction of long-term average costs

assigned to player i under Process 6.1 is equal to λi/λN by Lemma 6.19, i.e., is independent

of the demand rate that he states. Thus, player i minimizes his costs by stating λi. This

completes the proof.

6.6 Conclusion

In this chapter we studied the cost allocation problem in a spare parts inventory model

with backordering. We derived new structural properties of the resulting cost function, in

particular concerning its behavior for varying demand rates, which may be relevant beyond
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Fixed base stock levels Optimized base stock levels

Game in expectation Pipeline allocation stable Proportional allocation stable

Implementation
Players get better off Players cannot get better off

in every realization in every realization

Table 6.2: Overview and contrast of the main results.

the context of our games. Using these properties, we were able to show that the associated

cooperative games, both under fixed and optimized base stock levels, have non-empty (strict)

cores. In particular, for the game with fixed based stock levels, an allocation based on pipeline

stock realizations is stable and makes all players better off in every realization. For the game

with optimized base stock levels, the allocation scheme that assigns costs proportional to each

player’s demand rate was shown to be population monotonic whilst being easy to implement

via a truth-inducing process. Table 6.2 provides an overview and contrast.

Possible limitations to the practical implications of the findings are that we assumed

symmetric shortage costs and negligible transshipment costs. Full pooling under a FIFO

discipline may be detrimental if players have different shortage costs, in line with observations

made in Chapter 4, or if there are huge costs for transshipping a part from one player to the

other. That said, Slikker et al. (2005) did show that “generalized” newsvendor games featuring

asymmetric shortage costs and non-negligible transshipment costs are balanced, assuming

that all coalitions operate under optimal ordering and pooling policies. Since we showed that

“basic” spare parts games with optimized base stock levels are “basic” newsvendor games,

it would be interesting to investigate whether or not there is an analogous connection for

their “generalized” variants under optimal policies. A related idea would be to study whether

a newsvendor connection might allow us to extend the results for spare parts games with

Poisson demand processes to spare parts games with general demand processes.

Another possible direction for further research is to extend the model to two echelon levels:

a one warehouse, multiple retailers setting. The spare parts at the central warehouse may

be owned by a coalition of retailers, or by a third party. If this third party is the original

equipment manufacturer, then it may also be interesting to allow this party to exert additional

design effort to improve component reliability. This may be beneficial from the whole system’s

point of view, but it also raises the question of what share of the benefits the manufacturer is

entitled to. Cooperative game theory may provide the tools to determine (existence of) fair

allocations of collective costs.



—Winter is coming.

Eddard Stark

7
Inventory pooling games with non-stationary,

dynamic demands

7.1 Introduction

The previous chapters dealt with stationary infinite-horizon models. That is, we assumed that

the demand rate is constant over time, and we were concerned with steady-state behavior.

Moreover, we assumed that the demand rate is known with certainty, that there are no

correlations over time or between players, and that the cost parameters are stationary as

well. These assumptions enabled us to formulate tractable models. However, the real word

is often not stationary; in reality, things tend to change over time (Silver, 1981, p. 639).

To deal with this the present chapter, which is based on Karsten et al. (2013a), will tackle

inventory pooling games in an environment that is not only stochastic, but possibly non-

stationary and dynamic as well. With non-stationary, we mean that demand distributions and

cost parameters vary over time, though in a way that is known beforehand. With dynamic,

we mean that probabilities and beliefs are related over time—related due to correlations

and/or uncertainty about the true process governing the demands. Before moving towards

the modeling details and the results, let us first try to understand for which kind of settings

the incorporation of non-stationarity and dynamics into an inventory model are important.

For concreteness, we discuss two illustrative (single-player) examples: spare parts and style

goods.

In the spare parts context, demand is never really stationary over the entire life cycle.
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The life cycle of an installed base of machines can be divided into three stages: increment,

steady-state, and retirement (Jin and Tian, 2012, p.157). In the increment stage, which

typically lasts several years to a decade (Jin and Tian, 2012, p.157), a new generation of

machines is released to the market. In this stage, the demand process for spare parts is

non-stationary due to the gradual increase of the installed base (Jin and Tian, 2012). In the

steady-state stage, the installed base remains more or less constant over a period of multiple

decades. Nevertheless, spare parts demands can sometimes be non-stationary due to, e.g.,

changing maintenance policies, changing operating conditions, or reliability growth programs

(van Jaarsveld and Dekker, 2011, p.425). Finally, in the retirement stage, when new models

start to replace the old machines, obsolescence of spare parts is an important issue that leads

to non-stationarity of demand (Pinçe and Dekker, 2011). Accordingly, the number of failures

per year changes over time. Moreover, even if the component failure rate λ remains constant

over time, the value of λ is actually unknown! Especially at the time of initial provisioning,

estimates on the reliability of a component may be quite tentative due to the absence of

operational data (Azoury, 1985; Aronis et al., 2004). The best we can often do is to provide

a prior distribution for λ, based on past experience with similar components or on initial

estimates made by engineers. However, as more failure data is obtained and the component’s

reliability becomes better known, the distribution that we assigned to λ can be updated

dynamically. As shown in the above-mentioned papers, the incorporation of non-stationarity

and dynamics can result in substantially improved stocking policies in settings where the

above-described effects play an important role.

For the next example that illustrates non-stationarity and dynamics, we turn to style

goods such as toys, electronics, sporting goods, or apparel. These goods are usually on the

market for a short amount of time due to rapid shifts in fashion trends or high rates of

technological innovation. Accordingly, they are often sold in a concentrated, short selling

season with a limited number of replenishment opportunities. During this season, demand

first ramps up, then peaks, and eventually dies out. Moreover, there are sales spikes before

Christmas and other seasonal effects (Neale and Willems, 2009, p.388). On top of all that,

the degree of uncertainty regarding an item’s sales appeal varies over time as well. Indeed,

when a new item is introduced, it is difficult to tell whether it will be hot or not; the best

one can do is to make a priori estimates based on history, experience, or intuition (Murray

and Silver, 1966; Popović, 1987). These estimates can then be updated once actual sales roll

in. An excellent account of this is given in Fisher and Raman (1996), who studied inventory

control at Sport Obermeyer, a major fashion skiwear designer and manufacturer. Taking

into account high correlations of demand over time, Fisher and Raman propose the policy

of ordering only a modest amount at first, improving forecasts based on observing the first

20% of the demand, and subsequently placing a second order based on the improved forecasts.

They show that their policy has the potential of doubling profits compared to a policy without

demand updating.
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To summarize, we argued that it is highly likely for demand not to come from a stationary

i.i.d. process. So does this mean that all the models we analyzed thus far are ineffective and

worthless? Of course not. In fact, most of the literature on inventory management assumes

that demand is a stationary process, and for good reasons. We mention three. First of

all, the stationarity assumption allows for easy derivations of the steady-state performance,

e.g., via queueing theory. This simplifies the computations considerably and leads to easily

understandable policies. The second reason, which is a consequence of the first, is that

the relative simplicity of the stationarity models allows us to derive nice subhomogeneity,

convexity, and elasticity properties that improve our theoretical understanding of inventory

systems. The more bells and whistles we add to a model, the less tractable the analysis

becomes. Finally, even though the demand process is rarely truly stationary, there are many

settings where it is sufficiently close to stationary, at least within the planning horizon for

which the model is intended to aid. Especially for, e.g., the steady-state stage in the lifecycle

of a capital good, the demand process for spare parts will likely fluctuate only very little.

Relative to inventory models with stationary i.i.d. demand processes, much less work

exists on models with non-stationary, unknown, and/or correlated demand processes. Still,

the need to address these factors has been recognized by a number of authors, including

many of the founding fathers and early pioneers of stochastic inventory theory. Early works

that incorporate non-stationarity in inventory models, though assuming known demand

distributions, are Karlin (1960) and Hadley and Whitin (1962). They propose stochastic

dynamic programming as the method for deriving an optimal ordering policy. Early works on

inventory models where the demand parameters are unknown, though stationary over time,

are Dvoretzky et al. (1952) and Scarf (1959). They propose Bayesian updating as the method

for learning about future demand from past observations. Inventory models featuring the

combination of non-stationarity, unknown demand processes, and correlations over time—

which require both stochastic dynamic programming and Bayesian updating—are studied

by, e.g., Fisher and Raman (1996), Eppen and Iyer (1997), Petruzzi and Dada (2001), and

Treharne and Sox (2002). All consider a periodic-review, finite-horizon model with known

linear ordering, holding, and penalty costs.

All of the above-mentioned papers consider models with a single decision maker who is

responsible for all inventories. However, as argued before, inventories (and information) may

often be shared between multiple self-interested players. One can think of tram operators

that pool spare parts, independent retailers that pool style goods, or different municipalities

that share snow salt. This chapter deals with the corresponding inventory pooling games in

a non-stationary, dynamic environment. In line with most of the above-mentioned papers,

we will consider a periodic-review, finite-horizon model with known linear ordering, holding,

and backlogging costs. Our focus will be on the resulting cost sharing problem.

While tackling this problem, we run into two interesting questions that were not relevant

for the papers above, because they only come to the fore when collaborating over time in a
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dynamic, uncertain environment. First, how does the ability of a player to observe demand

realizations of other players—even if those players do not participate in an inventory pool—

influence the game? Second, would it be beneficial for an opportunistic player to stay solitary

at first and only try to join a pooling group after observing a sudden demand spike? The

answers we will provide to these questions may be interesting not only in our inventory model

but also in other contexts with dynamic uncertainties.

Altogether, the model, results, and analysis we present in this chapter make three

primary contributions. First, we introduce stochastic dynamic inventory pooling games,

a rich modeling framework that extends basic newsvendor games and that incorporates

the impact of being able to observe other players’ demand realizations. Second, we prove

that these games are always balanced and, despite their inherent complexity, have a simple

proportional allocation—proportional to the players’ mean demands—in their cores under

certain assumptions. Third, we show for two players that if demand realizations of one player

are always observable by the other, then it is never beneficial to strategically join late.

The remainder of this chapter is organized as follows. We start by defining stochastic

dynamic inventory pooling situations in Section 7.2 and the associated stochastic dynamic

inventory pooling games in Section 7.3. In Sections 7.4 and 7.5, we study the balancedness of

these games and the stability of proportional cost allocations, respectively. The combination of

multiple players, multiple periods, stochastic demands, correlations, dynamics, and strategic

behavior culminates in the notational nightmare that is Section 7.6, in which we analyze

settings where players may strategically join late. We conclude in Section 7.7.

7.2 Model description

Consider a number of players that are all facing stochastic demands for a particular item over

a finite time horizon. They may collaborate by coordinating orders and pooling inventories.

Definition 7.1. We define a stochastic dynamic inventory pooling situation γ as a tuple of

input parameters (N, Ω, P, I0, T , D, p, b, h), where

• N is the nonempty, finite set of players;

• Ω is the nonempty sample space (i.e., the set of scenarios or possible futures), which is

assumed to be either finite or countably infinite;

• P is the probability measure on Ω, i.e., a function P : Ω→ [0, 1] with
∑

ω∈Ω P(ω) = 1;

• I0 = (I0
i )i∈N ∈ RN is the initial inventory vector specifying that player i owns I0

i

products at the beginning of the first period;
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• T = {Tstart, Tstart + 1, . . . , Tend} is a non-empty, finite set47 of consecutive integers that

represent the periods in the planning horizon;

• D = (Dt
i)i∈N,t∈T is the sequence of demand vectors, where Dt

i : Ω→ R is the stochastic

demand faced by player i in period t with E[Dt
i ] <∞;

• p = (pt)t∈T > 0 is the vector of production cost vectors, where pt is the cost to produce

or order one item in period t;

• b = (bt)t∈T ≥ 0 is the vector of backlogging cost vectors, where bt is the cost incurred

for every unit of backlogged demand at the end of period t;

• h = (ht)t∈T ≥ 0 is the vector of holding cost vectors, where ht is the cost incurred for

every unit of on-hand inventory at the end of period t.

We remark that his chapter’s focus on a finite-horizon model with a fixed number of periods

differs from the infinite-horizon models of the preceding chapters: In preceding chapters, a

coalition aimed to minimize the expected costs per unit time in steady-state; in the present

chapter, a coalition will aim to minimize the total expected costs over the horizon. A period

in our model can represent any granularity: a day, a month, or a decade, depending on the

application.

We next describe the sequence of events. Within each period, events for any coalition occur

in the following order. First, a replenishment order is placed, which arrives immediately. This

order is used to satisfy any outstanding backlog and to increase the coalition’s inventory level.

Next, demand realizes. (As costs among players are identical, there is no question of which set

of demands to satisfy.) Unsatisfied demand is backlogged. At the end of the period, backlogs

and inventories are observed, and penalty and holding costs, respectively, are incurred. The

inventory is carried, as usual, to the next period.

Example 7.1. Imagine two farmers, Alice and Bob, each possessing a field of grain at different

geographical locations. Each farmer owns a Harvester 2000X, a sophisticated machine that

is used to harvest crops in the summer. Both farmers desire to harvest in July and August.

Weather conditions are not in their favor, however: meteorologists have determined that a

huge storm is going to occur, although the meteorologists are not sure when or where. Due

to peculiar meteorological conditions, this storm will occur either on July 1 over the field of

Alice, or on August 1 over the field of Bob. The former scenario is twice as likely as the

latter. A storm destroys all harvesting equipment in its path.

Destroyed harvesting equipment leads to a monthly production loss of 250K euros in both

July and August. From September on, no crops can be harvested anymore, and any Harvester

2000X machine, destroyed or not, is depreciated and worthless.

47Customarily, T = {1, 2, . . . , T } for some T ∈ N. However, we also allow more general sets, such as

T = {3, 4, 5}, to allow comparisons to collaborations that start at a later time period.
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To guard against the impact of this upcoming storm, the farmers can buy a set of service

parts, which can be used to repair any destroyed Harvester 2000X. This set of service parts

costs 60K euros and can only be bought at a store that is open only on the last day of June

and the last day of July. Neither of the farmers currently owns any service parts. Warehouse

space where the heavy service parts can be stored can be rented at a monthly fee of 3K euros.

Unused service parts are worthless and can be freely disposed of on August 2. Parts cannot

be discarded before that date due to environmental regulations.

The farmers could prepare for the storm separately. Alternatively, they could collaborate

by jointly purchasing and pooling service parts. This situation may be modeled as a stochastic

dynamic inventory pooling situation γ = (N, Ω, P, I0, T , D, p, b, h), where

• N = {A,B};

• Ω = {ω1, ω2};

• P(ω1) = 2
3 ; P(ω2) = 1

3 ;

• I0
1 = I0

2 = 0;

• T = {1, 2};

• D1
A(ω1) = 1; D2

A(ω1) = 0; D1
A(ω2) = 0; D2

A(ω2) = 0;

• D1
B(ω1) = 0; D2

B(ω1) = 0; D1
B(ω2) = 0; D2

B(ω2) = 1;

• p1 = 60; p2 = 60;

• b1 = 250; b2 = 250;

• h1 = 3; h2 = 0.

This farmer story was devised to illustrate concepts throughout in a setting that is as simple

as possible; we will treat a more realistic setting later on. 3

7.3 Observation possibilities and games

In this section, we describe how the cooperation between players may take place. Given any

stochastic dynamic inventory pooling situation, we will formulate various associated games

that differ in the degree to which coalitions can observe the demand realizations of players

outside the coalition. Before defining our games, we need to introduce additional concepts

and notation.

Consider any stochastic dynamic inventory pooling situation γ. For any coalition M ∈
2N− , period t ∈ {Tstart + 1, . . . , Tend}, and scenario ω ∈ Ω, we systematically denote that

coalition’s previous demand realizations (Dτ
i (ω))i∈M,τ∈{Tstart,...,t−1} more succinctly as DtM (ω).
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Additionally, we denote DTstart
M (ω) = ∅. Using this notation, we define for any coalition

M ∈ 2N− and period t ∈ T the set D t
M = {DtM (ω) | ω ∈ Ω}. This set contains all possible

demand realizations for coalition M in periods Tstart, . . . , t− 1.48 Note that DTstart
M = {∅}.

We call any function O : 2N− → 2N− with M ⊆ O(M) for all M ∈ 2N− an observation

possibility. Such a function O describes the extent to which coalitions can observe the demand

realizations of other players; O(M) = L should be interpreted as saying that coalition M can

always observe the demand realizations of all players in the set L, where by assumption

M ⊆ L. The observation possibilities that we are most interested in are the one where

everything can be observed, i.e., O(M) = N for all M ∈ 2N− , and the one where nothing

can be observed outside any coalition, i.e., O(M) = M for all M ∈ 2N− . Monotonicity in

O, i.e., the property that O(M) ⊆ O(L) for all M,L ∈ 2N− with M ⊆ L, is a seemingly

natural property, but we do not impose it a priori. Irrespective of O, the sample space Ω and

probability measure P is common knowledge among players.

A policy π = (πt)t∈T for a coalition M ∈ 2N− under observation possibility O is a collection

of functions πt : D t
O(M) → R+ for all periods t ∈ T . The value πt(D) for any D ∈ D t

O(M)

signifies the number of products that coalition M will order in period t, given the previously

observed demands D for all players in the set O(M).49 Let Πγ,O
M denote the set of all such

policies for a coalition M ∈ 2N− under observation possibility O in situation γ.

Example 7.2. Recall the farmers Alice and Bob. As an illustration of the demand observation

sets, we have D2
{A} = {(1), (0)}, D2

{B} = {(0)}, and D2
{A,B} = {(1, 0), (0, 0)}.

Suppose that the farmers decide not to form a coalition. Then, a question arises: when

Bob makes his independent ordering decision on July 31, does he know whether the storm

has hit Alice on July 1 or not? Knowledge of the “demand” realization of Alice gives full

information because the storm will hit Bob if and only if it did not hit Alice. However, if Bob

was unable to observe what happened to Alice, then all he knows is that there is a probability

of P(ω2) = 1
3 that the storm will hit him on the next day.

At first glance, it seems reasonable to assume that the farmers would be able to observe

each other’s “demand” realization, simply by tuning in to the Weather Channel or by driving

by the other farmer’s field. Under this assumption, captured by the observation possibility

O with O(M) = {A,B} for all coalitions M , the (unique) optimal policy π{B} for Bob alone

is described by π1
{B}(∅) = 0, π2

{B}((1, 0)) = 0, and π2
{B}((0, 0)) = 1.

If, however, Bob would live exactly as people did in 1900, without a car or electricity—

Ward (2008) chronicles his interesting experience of doing just that in today’s world—then he

48This set may contain demand histories under scenarios that occurs with zero probability. We allow this

because it will simplify notation later on.
49Coalition M ’s ordering decision in period t is also influenced by its previous ordering decisions and by the

current inventory position, of course, but that dependence is captured implicitly by including the previously

observed demands in the domain of πt and by letting coalitions coordinate (πt)t∈T , i.e., all decisions in all

periods simultaneously.
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would have no way of knowing what had happened to Alice. If Alice in the meantime would

enjoy the luxuries of the present century, then this would correspond to O({B}) = {B},
O({A}) = {A,B}, and O({A,B}) = {A,B}. In this case, the (unique) optimal policy π{B}

for Bob alone is described by π1
{B}(∅) = 0 and π2

{B}((0)) = 1. Indeed, the expected total costs

when ordering the service parts on August 1, p2, is lower than the expected total costs when

ordering nothing, P(ω2)b2, and ordering anything on July 1 is not optimal because it leads to

unnecessary holding costs.

The two other ordering possibility functions can be analyzed in similar fashion, but we

disregard them for brevity. 3

We will refer to any pair (γ,O), where γ is a stochastic dynamic inventory pooling situation

and O a corresponding observation possibility, as an environment. We next describe what

happens under a specific policy.

Consider environment (γ,O), coalition M ∈ 2N− , scenario ω ∈ Ω, and policy π ∈ Πγ,O
M .

For any period t ∈ T , the net inventory at the end of period t is given by

ItM (π, ω) =
∑
i∈M

I0
i +

∑
τ∈{Tstart,...,t}

(
πτ (DτO(M)(ω))−

∑
i∈M

Dτ
i (ω)

)
,

with a negative value of ItM (π, ω) signifying backorders. The total realized costs in period

t ∈ T for coalition M under scenario ω and policy π is given by

Kγ,t
M (π, ω) = ptπt(DtO(M)(ω)) + ht(ItM (π, ω))+ + bt(ItM (π, ω))−.

where x+ = max{0, x} and x− = max{0,−x} for any x ∈ R. The total realized costs over the

time horizon for coalition M under scenario ω and policy π is given by

Kγ
M (π, ω) =

∑
t∈T

Kγ,t
M (π, ω).

Finally, the total expected costs over the time horizon for coalition M under policy π is given

by

Kγ
M (π) =

∑
ω∈Ω

P(ω)Kγ
M (π, ω).

This number is precisely what coalition M aims to minimize by picking an optimal policy.

Using the notation introduced above, we are now ready to define our games, one per

environment.

Definition 7.2. Consider any environment (γ,O). The game (N, cγ) with characteristic costs

cγ,O(M) = min
π∈Πγ,OM

Kγ
M (π) (7.1)

for all M ∈ 2N− is called the associated stochastic dynamic inventory pooling game.
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M cγ,O(M) when O({B}) = {A,B} cγ,O(M) when O({B}) = {B}
{A} 61 61

{B} 20 60

{A,B} 61 61

Table 7.1: The collection of games corresponding to the situation of Example 7.3.

An optimal policy indeed exists by the combination of two facts. First, for every scenario,

the realized cost is continuous in any period’s order quantity; hence, the same holds for the

expected costs. Second, because pt > 0 for any t ∈ T , we can restrict attention to orders in a

compact, non-empty set; indeed, above a certain order quantity in any period, the production

cost alone already becomes larger than the total remaining costs-to-go under an order of, say,

zero. This implies that the game is well-defined.

We illustrate (collections of) stochastic dynamic inventory pooling games in the following

example.

Example 7.3. Recall the farmers Alice and Bob. First, consider coalition {B}, for whom

the optimal policies in different observation possibilities were already described in Example

7.2. When O({B}) = {A,B}, Bob faces expected costs P(ω2)p2 = 20. When O({B}) = {B},
Bob faces expected costs p2 = 60.

For coalition {A}, the expected costs are unaffected by the observation possibility, as Alice

already learns the true scenario on July 1. It is easy to verify that Alice should order 1 item

on June 30, with corresponding expected costs p1 + P(ω2)h1 = 61.

For the grand coalition {A,B}, which always fully observes all demand realizations, it is

easy to verify that ordering 1 item on June 30 is optimal, with corresponding expected costs

p1 + P(ω2)h1 = 61.

The games (N, cγ,O) for each observation possibility O are described in Table 7.1. Note

that all of these games are balanced. Also, note that additional information is beneficial:

“enlarging” the observation possibility for Bob reduces his expected costs, as it should. 3

This example dealt with demands that were correlated across periods and across players.

If demands of a player are independent of earlier demands of other players, then preceding

demand observations of other players cannot inform ordering decisions. If that independence

holds for all players and all periods, then each observation possibility will obviously lead to

the same game.

7.4 Balancedness

First and foremost, we are interested in the existence of a stable cost allocation for stochastic

dynamic inventory pooling games. If these games would always be concave, then this existence
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would be immediate. However, newsvendor games need not be concave.50 Since any stochastic

dynamic inventory pooling game with a single period is a newsvendor game, concavity is

not guaranteed. Instead, we follow another approach: we make use of the Bondareva-

Shapley theorem. The gist of the idea behind the proof is as follows. First, for every

balanced map, we construct a feasible policy for the grand coalition out of the corresponding

balanced combination of optimal policies of subcoalitions. Then, we show that the costs of

this constructed policy for the grand coalition does not exceed the corresponding balanced

combination of the optimal costs for the subcoalitions. Consequently, it is possible to allocate

the expected costs of an optimal policy for the grand coalition in a stable way.

The construction is straightforward. Consider an arbitrary environment (γ,O), an

arbitrarily balanced map κ : 2N− → [0, 1], and an arbitrary optimal policy πM ∈
argmin

π∈Πγ,OM
Kγ
M (π) for each coalition M ∈ 2N− . Using these policies, we construct a feasible

policy πκ for the grand coalition, which attempts to mirror the orders that subcoalitions

would place. It is defined by πtκ(DtN (ω)) =
∑

M∈2N−
κ(M)πtM (DtO(M)(ω)) for all periods t ∈ T

and all scenarios ω ∈ Ω. Note that this indeed represents a policy, for two reasons. First, for

all t ∈ T and all ω ∈ Ω, we stay in the domain of πtκ, i.e., DtN (ω) ∈ D t
O(N) = D t

N . Second,

DtM (ω) for each M ∈ 2N− is fully determined by DtN (ω). We illustrate the construction of this

policy in the following example.

Example 7.4. Recall the farmers Alice and Bob. Suppose that O({A}) = {A,B}, O({B}) =

{B}, and O({A,B}) = {A,B}. In this case, let π{A} and π{B} be the optimal policy for Alice

and Bob, respectively, when acting separately. Recall that π1
{A}(∅) = 1, π2

{A}((1, 0)) = 0, and

π2
{A}((0, 0)) = 0 for Alice, while π1

{B}(∅) = 0 and π2
{B}((0)) = 1 for Bob. For the balanced

map κ : 2N− → [0, 1] described by κ({A}) = κ({B}) = 1 and κ({A,B}) = 0, the policy πκ is

constructed by

• π1
κ(∅) = π1

{A}(∅) + π1
{B}(∅) = 1;

• π2
κ((1, 0)) = π2

{A}((1, 0)) + π2
{B}((0)) = 1;

• π2
κ((0, 0)) = π2

{A}((0, 0)) + π2
{B}((0)) = 1.

The expected costs of this policy would be 121. This matches the balanced combination of

the optimal costs for the subcoalitions, i.e.,
∑

M∈2N−
κ(M)cγ,O(M) = 1 · 61 + 1 · 60 = 121. 3

In the process of proving that stochastic dynamic inventory pooling games are balanced,

we will use the following lemma. This lemma states that, for every demand realization,

the balanced combinations of the on-hand inventories (resp. backlogs) associated with the

optimal policies for subcoalitions are at least as large as the number of on-hand inventories

(resp. backlogs) under the constructed policy πκ.

50This follows from Özen et al. (2011). They consider newsvendor games in profit rather than cost terms,

but their results carry over straightforwardly.



7.4. Balancedness 163

Lemma 7.1. Consider an environment (γ,O), a balanced map κ : 2N− → [0, 1], and an

optimal policy πM ∈ argmin
π∈Πγ,OM

Kγ
M (π) for each M ∈ 2N− . Let t ∈ T and let ω ∈ Ω.

(i)
∑

M∈2N−
κ(M)(ItM (πM , ω))+ ≥ (ItN (πκ, ω))+.

(ii)
∑

M∈2N−
κ(M)(ItM (πM , ω))− ≥ (ItN (πκ, ω))−.

Proof. We will split up each of the two parts of the lemma into two mutually exclusive cases

that are exhaustive of all possibilities, and subsequently show that each desired inequality

holds in both cases.

Part (i) - Case ItN (πκ, ω) > 0. Then,∑
M∈2N−

κ(M)(ItM (πM , ω))+ ≥
∑
M∈2N−

κ(M)ItM (πM , ω)

=
∑
M∈2N−

κ(M)

 ∑
τ∈{Tstart,...,t}

(
πτM (DτM (ω))−

∑
i∈M

Dτ
i (ω)

)
=

∑
τ∈{Tstart,...,t}

(
πτκ(DτN (ω))−

∑
i∈N

Dτ
i (ω)

)

= ItN (πκ) = (ItN (πκ))+.

The second equality holds by definition of πκ and because κ, as any balanced map, satisfies∑
M∈2N−

κ(M)
∑

i∈M f(i) =
∑

i∈N f(i) for all functions f : N → R.

Part (i) - Case ItN (πκ, ω) ≤ 0. Then,∑
M∈2N−

κ(M)(ItM (πM , ω))+ ≥ 0 = (ItN (πκ, ω))+.

Part (ii) - Case ItN (πκ, ω) < 0. Then,∑
M∈2N−

κ(M)(ItM (πM , ω))− ≥ −
∑
M∈2N−

κ(M)ItM (πM , ω)

= −ItN (πκ) = (ItN (πκ))−,

where the first equality holds as shown in the first case of Part (i) above.

Part (ii) - Case ItN (πκ, ω) ≥ 0. Then,∑
M∈2N−

κ(M)(ItM (πM , ω))− ≥ 0 = (ItN (πκ, ω))−.

This completes the proof.

The following theorem implies that every stochastic dynamic inventory pooling game has

a nonempty core.

Theorem 7.2. Stochastic dynamic inventory pooling games are balanced.
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Proof. Consider an environment (γ,O), a balanced map κ : 2N− → [0, 1], and an optimal

policy πM ∈ argmin
π∈Πγ,OM

Kγ
M (π) for each M ∈ 2N− . Then, we find∑

M∈2N−

κ(M)cγ,O(M)

=
∑
M∈2N−

κ(M)Kγ
M (πM )

=
∑
M∈2N−

κ(M)
∑
ω∈Ω

P(ω)
∑
t∈T

(
ptπtM (DtO(M)(ω)) + ht(ItM (πM , ω))+ + bt(ItM (πM , ω))−

)

=
∑
ω∈Ω

P(ω)
∑
t∈T

ptπtκ(DtN (ω)) +
∑
M∈2N−

κ(M)
(
ht(ItM (πM , ω))+ + bt(ItM (πM , ω))−

)
≥
∑
ω∈Ω

P(ω)
∑
t∈T

(
ptπtκ(DtN (ω)) + ht(ItN (πM , ω))+ + bt(ItN (πM , ω))−

)
= Kγ

N (πκ)

≥ Kγ
N (πN ) = cγ,O(N).

The second equality holds by definition of Kγ
M . The third equality holds by interchanging

terms, where we use that by construction of πκ, its production costs always match the balanced

combination of production costs for the subcoalitions. The first inequality holds by Lemma

7.1. The subsequent equality holds by definition of Kγ
N . The final inequality holds because πκ

is merely a feasible policy for the grand coalition, whereas πN is an optimal (cost-minimizing)

policy for the grand coalition. We conclude that the game (N, cγ,O) is balanced.

An observation possibility is called monotonic if O(M) ⊆ O(L) for all M,L ∈ 2N− with

M ⊆ L. For an environment (γ,O) with a monotonic observation possibility, it holds that

every sub-game of (N, cγ,O) is a game associated with an environment with a monotonic

observation possibility as well. Hence, we immediately obtain the following corollary to

Theorem 7.2.

Corollary 7.3. Let (γ,O) be an environment with a monotonic observation possibility. The

associated stochastic dynamic inventory pooling game (N, cγ,O) is totally balanced.

If the observation possibility is not monotonic, then the game is still balanced (by Theorem

7.2), but not necessarily totally. This is illustrated in the following example.

Example 7.5. Recall the farmers Alice and Bob. We now add a third farmer, Claire, who

faces a stochastic demand in June that completely reveals the true state of the world: if Claire

has demand of exactly 1 in June, which occurs with probability 2
3 , then the storm will hit

Alice; otherwise, it will hit Bob. Suppose that O({A}) = {A,C}, O({B}) = {B,C}, and

O({A,B}) = {A,B}. So, if Alice and Bob act independently, then each can observe Claire’s
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demand realization. However, once Alice and Bob form a coalition, Claire will close her fence

and won’t reveal anything.

Since coalitions {A} and {B} can now use perfect information in their ordering decisions,

their characteristic costs become 2
3 ·60 = 40 for {A} and 1

3 ·60 = 20 for {B}. At the same time,

the characteristic cost for {A,B} remains 61—the same as in Example 7.3. Since 20+40 < 61,

the sub-game for {A,B} is not balanced. 3

7.5 Cost allocation

The previous section taught us that stochastic dynamic inventory pooling games are balanced.

Hence, we can propose the nucleolus, which is guaranteed to be in the core of any balanced

game, as a solution to the cost allocation problem. However, calculating the nucleolus is not

easy, especially when the number of players is large. In previous chapters, we found that a

simpler proportional rule was frequently stable, too. In this section, we investigate whether

or not such a rule would “work” for stochastic dynamic inventory pooling games as well. We

start with the definition: the demand-proportional rule P is defined by allocating

Pi(γ,O) =

∑
t∈T E[Dt

i ]∑
j∈N

∑
t∈T E[Dt

j ]
cγ,O(N)

to player i ∈ N in environment (γ,O). This rule assigns more costs to players with higher

expected total demands over the horizon, but disregards important information such as the

variance or specific timing of demands. The following example shows that the demand-

proportional rule does not accomplish stable allocations in general.

Example 7.6. Recall the farmers Alice and Bob and the games described in Table 7.1 on page

161. The nucleolus is given by (51, 10) if O({B}) = {A,B} and by (31, 30) if O({B}) = {B}.
So, if expected costs are always split according to the nucleolus, then Alice has an economic

incentive to convince Bob to live exactly as people did in 1900. Also, note that even though the

allocation (51, 10) was derived under the assumption that O({B}) = {A,B}, this allocation is

still in the core of the game corresponding to the observation possibility with O({B}) = {B}.
The demand-proportional rule assigns (402

3 , 201
3), irrespective of the observation possibil-

ity. This allocation is not in the core when O({B}) = {A,B}. 3

In this example, a stable allocation remained stable when the observation possibility

was “narrowed.” The intuition is that subcoalitions’ costs do not decrease upon such a

”narrowing,” as we observed in Example 7.3. The following theorem, which relates allocations

for different environments to each other, formalizes this in general.

Theorem 7.4. Consider two environments (γ,O) and (γ, Õ) with O(M) ⊆ Õ(M) for all

M ∈ 2N− . Then, C(N, cγ,O) ⊇ C(N, cγ,Õ).
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Proof. Let x ∈ C(N, cγ,Õ). This represents an efficient allocation for the game (N, cγ,O)

because
∑

i∈N xi = cγ,Õ(N) = cγ,O(N), where the first equality holds because x ∈ C(N, cγ,Õ)

and the second equality holds because the grand coalition’s cost is the same in both

environments as O(N) = Õ(N) = N .

The allocation x is stable for the game (N, cγ,O) because
∑

i∈M xi ≤ cγ,Õ(M) ≤ cγ,O(M),

where the first inequality holds because x ∈ C(N, cγ,Õ) and the second inequality holds because

an optimal policy πM ∈ argmin
π∈Πγ,OM

Kγ
M (π) merely induces a feasible policy π̃M ∈ Πγ,Õ

M

which does the same as πM by “disregarding” demand information from players in Õ(M) \
O(M). This completes the proof.

The following theorem presents a sufficient condition for stability of the demand-

proportional allocations. The proof is based on single-attribute games, similar to the approach

described in Section 6.5.2 for spare parts games with optimized base stock levels.

Theorem 7.5. Let (γ,O) be an environment, let a ∈ RN+ , and let G ∈ RT+. If I0
i = 0 for

all i ∈ N and Dt
i ∼ Poi(aiGt) for all i ∈ N and all t ∈ T , with all Dt

i independent, then

Pi(γ,O) ∈ C(N, cγ,O).

Proof. Fix the time horizon T , the vector G, and the cost parameters p, b, and h. Define the

function K̃ : R+ → R+ by setting K̃(λ), for all λ ∈ R+, equal to the expected optimal costs

faced by a stock point that starts with zero inventory, faces independent Poisson distributed

demands with parameter λGt in any period t ∈ T , while incurring costs cf. the inventory

model as described in Section 7.2 according to the cost vectors p, b, and h.

Our game (N, cγ,O) is a single-attribute game embedded in K̃. Indeed, cγ,O(M) =

K̃(
∑

i∈M ai) because the sum of independent Poisson distributed random variables is itself

Poisson distributed according to the sum of the parameters and because Dt
i is independent of

Dτ
j for all i, j ∈ N and t, τ ∈ T . For analogous reasons, all single-attribute games embedded

in K̃ are stochastic dynamic inventory pooling games and, hence, have a non-empty core by

Theorem 7.2. This implies that K̃ is elastic by Part (iii) of Theorem 2.5. Consequently,

Pi(γ,O) ∈ C(N, cγ,O) by Part (i) of Theorem 2.5.

The following example provides an illustration of this theorem.

Example 7.7. Imagine three independent wind turbine farms, named player 1, player 2, and

player 3. On January 1, 2014, player 1 owns 5 wind turbines, player 2 owns 10, and player

3 owns 15. Due to a governmental renewable energy decree, each player will have to double

their installed base on January 1, 2015. Each wind turbine consists of exactly one critical

component, whose lifetime is exponentially distributed with mean 20 years.

A failure must be resolved by either replacing the failed component with an available spare

part or by sending a team of specialized repairmen who fix the component on-site. The latter

option, which comes at a cost of 1000 euro, can be considered as an emergency procedure

because it doesn’t require a spare part.
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The manufacturer of the spare part offers only two ordering possibilities: an initial

production run on January 1, 2014, and an alternative run on January 1, 2015. The unit

purchase price is 200 euro in the initial production run and 300 euro in the alternative run.

Holding and warehousing costs are negligible. All wind turbines will be replaced by newer

models on January 1, 2016; accordingly, the spare parts are only useful in 2014 and 2015. All

cost and demand parameters are common knowledge.

This situation may be modeled as an environment (γ,O), with

• N = {1, 2}; T = {1, 2};

• D1
1 ∼ Poi(1

4); D2
1 ∼ Poi(1

2);

• D1
2 ∼ Poi(1

2); D2
2 ∼ Poi(1);

• D1
3 ∼ Poi(3

4); D2
3 ∼ Poi(3

2);

• I0
1 = I0

2 = 0;

• p1 = 200; p2 = 300;

• b1 = 700; b2 = 1000;

• h1 = 0; h2 = 0.

The observation possibility O is arbitrary because demands are independent between periods

and between players. Note that we transformed the cost for an emergency procedures into a

cost for a backlog. This modeling trick is only possible because the lead time is zero and the

purchase cost is lower than the backlogging cost; hence, in any optimal policy, a backlog is

always immediately resolved and only leads to a one-time cost: b1 + p2 in case of a stock-out

in period 1 and b2 in case of a stock-out in period 2.

Any coalition has to pick an ordering policy. The standard approach for finding the best

decisions in a sequential decision problem such as this one is known as stochastic dynamic

programming. We illustrate the approach for coalition {3}. As holding costs are zero, we

focus on backlogging and production costs only. We will round all values to whole euros.

We start the analysis in period 2. Let C2(S) denote the expected backlogging costs for

{3} in period 2 under a post-order inventory of S ∈ N0 parts, i.e., C2(S) = b2 ·E[(S −D2
3)−].

Then, we find that C2(0) = 1500, C2(1) = 723, and C2(2) = 281. Combining this with the

ordering cost of p2 = 300, we conclude that ordering up to 2 parts is optimal. We denote this

optimal order-up-to level by S∗{3}.

We use this optimal policy for period 2 to determine the optimal order in period

1. We let C1(q) denote the expected ordering and backlogging costs for {3} over the

horizon when starting with an order of q ∈ N0 parts in period 1, i.e., C1(q) = p1q +

E
[
b1(q −D1

3)− + p2
(
S∗{3} − (q −D1

3)
)+

+ C2(S∗{3})
]
. Enumerating, we find that C1(0) =
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M q∗M S∗M cγ,O(M)
∑

i∈M Pi(γ,O)

{1} 1 1 402 247

{2} 1 2 651 494

{3} 3 2 863 741

{1,2} 3 2 863 741

{1,3} 4 3 1079 988

{2,3} 5 3 1282 1235

{1,2,3} 6 4 1482 1482

Table 7.2: For every coalition M , The optimal order quantities q∗M in period 1, the optimal order-

up-to-levels S∗M in period 2, the characteristic costs cγ,O(M), and the total costs to be paid under the

allocation P(γ,O) (rounded to whole euros) in Example 7.7.

1631, C1(1) = 1161, C1(2) = 940, C1(3) = 863, C1(4) = 907, and C1(q) > 1000 for all

q ≥ 5. Hence, an order of 3 parts is optimal.

In similar fashion, we find that the optimal policy for any coalition M ∈ 2N− is to order

a (unique) amount q∗M in period 1 and then order up to S∗M in period 2. These optimal

numbers51 and each coalition’s costs in the corresponding stochastic dynamic inventory

pooling game (N, cγ,O) are described in Table 7.2.

The demand-proportional rule P assigns (247, 494, 741), rounding to whole euros. Table

7.2 shows that this allocation is stable. Although this allocation is in expected terms, it can

be implemented for any cost realization by assigning a fraction Pi(γ,O)/
∑

j∈N Pj(γ,O) of

the realized costs in any period to player i ∈ N . 3

7.6 Strategically joining late

In this section, we study what might happen if a player doesn’t show up immediately, but

arrives belatedly after some periods of demand have already been realized. In particular,

would it be beneficial for an opportunistic player to stay solitary for a while and only try to

join a pooling group after facing a demand spike? Such a strategic late arrival is analogous

to buying medical insurance only after getting sick. Note that this is about strategic, not

cooperative, behavior: We can contract the future, but not the past.

So, strategic late arrival is a risk that could happen, but it requires extensive,

comprehensive analysis if considered in full generality. In this section, we take a preliminary,

explorative first step to analyze this risk in a restricted setting. We make three main

assumptions throughout this section. First, there are only two players, i.e., |N | = 2. Second,

51More formally, the optimal policy πM for any coalition M ∈ 2N− is described by π1
M (∅) = q∗M and

π2
M ((d1

i )i∈O(M)) =
(
S∗M − (q∗M −

∑
i∈M d1

i )
)+

for all (d1
i )i∈O(M) ∈ D2

O(M).
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the benefits of collaboration will always be split equally, i.e., the Shapley value or nucleolus

is used. Third, all demand realizations are fully observable, i.e., O(M) = N for all coalitions

M . We discuss the impact of these assumptions at the end of this section.

To determine how costs will be shared when a player shows up late, say in period t, we

aim to construct a stochastic dynamic inventory pooling game corresponding to the situation

that captures the relevant setting from periods t onwards.

Definition 7.3. Consider any stochastic dynamic inventory pooling situation γ = (N, Ω,

P, I0, T , D, p, b, h), period t ∈ T , demand observations D = (dτi )i∈N,τ∈{Tstart,...,t−1} ∈ D t
N ,

and a net inventory vector Î0 ∈ RN . (The origination of Î0 is arbitrary.) The corresponding

sub-situation γ̂ = (N, Ω, P̂, Î0, T̂ , D̂, p̂, b̂, ĥ) is the stochastic dynamic inventory pooling

situation for which:

• P̂ is obtained via straightforward Bayesian updating: using the set of possible scenarios

ΩD = {ω ∈ Ω | Dτ
i (ω) = dτi for all τ ∈ {Tstart, . . . , t− 1} and all i ∈ N}, we get

P̂(ω) =


P(ω)∑

ω′∈ΩD P(ω′)
if ω ∈ ΩD;

0 otherwise.

(7.2)

• Î0 is the net inventory vector that was given.

• T̂ = {T̂start, T̂start + 1, . . . , T̂end} with T̂start = t and T̂end = Tend is the planning horizon

that is restricted to start at period t.

• D̂ = (Dτ )τ∈T̂ , p̂ = (pτ )τ∈T̂ , b̂ = (bτ )τ∈T̂ , and ĥ = (hτ )τ∈T̂ are obtained by merely

restricting the original parameters to start at period t.

The following example provides an illustration.

Example 7.8. Recall the farmers Alice and Bob. Suppose that O(M) = N for all M ∈ 2N− .

Bob cunningly ponders the following strategy: say no to the coalition at the start, order

π1
{B}(∅) = 0 items, but always ask to form the coalition at the beginning of period 2. Is this

worthwhile? Suppose that Alice, in the meantime, orders π1
{A}(∅) = 1 for herself at the start

of period 1. (These numbers π1
{B} and π1

{A}, which represent our assumption on the policies

followed by the farmers as long as they stay solitary, are chosen for illustrative purposes.)

If the demand observation in period 1 would be (0, 0), then this would lead to the sub-

situation described by

• N = {A,B};

• Ω = {ω1, ω2};

• P̂(ω1) = 0; P(ω2) = 1;
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M cγ̂(0,0),O(M) cγ̂(1,0),O(M)

{A} 0 0

{B} 60 0

{A,B} 0 0

Table 7.3: The games corresponding to the two sub-situations in Example 7.8.

• Î0
1 = 1; Î0

2 = 0;

• T = {2};

• D2
A(ω1) = 0; D2

A(ω2) = 0;

• D2
B(ω1) = 0; D2

B(ω2) = 1;

• p2 = 60;

• b2 = 250;

• h2 = 0.

We will denote this sub-situation by γ̂(0, 0). If the demand observation in period 1 would be

(1, 0) instead, then this would lead to a similar sub-situation, denoted by γ̂(1, 0), which has

Î0
1 = 0 and P̂(ω1) = 1.

The games corresponding to both sub-situations are listed in Table 7.3. Recall that we

assume that the Shapley value Φ is always used for cost allocation. For the “original” game,

described in Table 7.1 on page 161, Φ(N, cγ,O) = (51, 10). For the games associated with the

sub-situations, Φ(N, cγ̂(0,0),O) = (−30, 30) and Φ(N, cγ̂(1,0),O) = (0, 0).

Although Alice might feel uneasy about Bob getting cold feet after rejecting the coalition

at the start, it is still always in her interest to form the coalition at the beginning of period

2 because ΦA(N, cγ̂(0,0),O) ≤ cγ̂(0,0),O({A}) and, likewise, ΦA(N, cγ̂(1,0),O) ≤ cγ̂(1,0),O({A}).
Bob’s opportunistic strategy leads to the same expected costs that he would have to pay

if coalition {A,B} had formed right away:

P(ω1)[p1π1
{B}(∅)+ΦB(N, cγ̂(1,0),O)]+P(ω2)[p1π1

{B}(∅)+ΦB(N, cγ̂(0,0),O)] = 10 = ΦB(N, cγ,O).

So, it is in Bob’s best interests to join right from the start. 3

In the preceding example, opportunistically joining late did not pay off. To analyze

whether that holds in general, we formulate a non-cooperative game. In this game, a strategy

of a player is the combination of a policy to follow while alone and, for every period, a

collection of demand histories that entice the player to say “yes” to coalition formation. Once

both players say “yes” at the beginning of a period, they join (i.e., form the coalition) and

stay together for the remainder of the horizon.
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Definition 7.4. Consider an environment (γ,O) with N = {1, 2} and O(M) = N for all

M ∈ 2N− . The corresponding strategic join game (N,S, f) is defined by

• Si =
{(
π{i},

(
D t,join
{i}

)
t∈T

) ∣∣∣π{i} ∈ Πγ,O
{i} and D t,join

{i} ⊆ D t
O({i}) for all t ∈ T

}
for all i ∈

N ;

• fi(s) =
∑

ω∈Ω P(ω)
[∑Tjoin(ω)−1

t=Tstart
Kγ,t
{i}
(
π{i}, ω

)
+ Φi

(
N, cγ̂(ω),O)] for all strategy profiles

s =
(
π{i},D

join
{i}

)
i∈N
∈ S, where

– For each ω ∈ Ω, Tjoin(ω) represents the first period t ∈ T at which for both i ∈ N
it holds that DtN (ω) ∈ D t,join

{i} , if such a period exists; otherwise, Tjoin(ω) = Tend +1

and Φ(N, cγ̂(ω),O) = 0.

– For each ω ∈ Ω, γ̂(ω) represents the sub-situation derived from γ by restricting

the time horizon and the cost parameters to start at period Tjoin(ω), by updating

the probability distributions given observations DTjoin(ω)−1
N (ω), and by setting the

starting inventory of player i ∈ N equal to Î0
i = I

Tjoin(ω)−1

{i}
(
π{i}, ω

)
.

The following lemma states that if one player goes for an opportunistic strategy while the

other adheres to an optimal policy for as long as he stays solitary and is always ready to join

in each period, then the expected costs incurred by the opportunistic player are no smaller

than the expected costs that he would pay if the grand coalition had formed at the beginning

of the time horizon.

Lemma 7.6. Consider environment (γ,O) with N = {1, 2} and O(M) = N for all M ∈ 2N− .

Suppose that player 2 adheres to an arbitrary strategy
(
π{2},D

join
{2}

)
while player 1 adheres to

a strategy
(
π∗{1},D

join
{1}

)
with π∗{1} ∈ argmin

π∈Πγ,O{1}
Kγ
{1}(π) and D t,join

{1} = D t
N for all t ∈ T .

Then, f2

(
π∗{1},D

join
{1} , π{2},D

join
{2}

)
≥ Φ2(N, cγ,O).

Proof. We start by fixing a number of policies. For situation γ, let π∗{2} ∈ argmin
π∈Πγ,O{2}

Kγ
{2}(π)

and let π∗N ∈ argmin
π∈Πγ,ON

Kγ
N (π). For sub-situation γ̂(ω) under any ω ∈ Ω, let πω,∗{2} ∈

argmin
π∈Π

γ̂(ω),O
{2}

K
γ̂(ω)
{2} (π) and let πω,∗N ∈ argmin

π∈Π
γ̂(ω),O
N

K
γ̂(ω)
N (π).

Further, for sub-situation γ̂(ω) under any ω ∈ Ω, let πω,∗{1} be the policy in Π
γ̂(ω),O
{1} that

coincides with π∗{1} from periods Tjoin(ω) on. That is, given that we arrived in sub-situation

γ̂(ω) via demands DN = (Dt
i(ω))i∈N,t∈{Tstart,...,Tjoin(ω)−1} and given any possible subsequent

demand observations Dt = (dτi )i∈N,τ∈{Tjoin(ω),...,t}, we determine πt,ω,∗{1} (Dt) = πt,∗{1}(D,D
t)

in every period t ∈ T̂ . The policy πω,∗{1} is an element of argmin
π∈Π

γ̂(ω),O
{1}

K
γ̂(ω)
{1} (π) by the

combination of O({1}) = {1, 2}, optimality of π∗{1} within Πγ,O
{1} , and Î0

i = I
Tjoin(ω)−1

{1} (π∗{1}, ω).

Next, for situation γ, let πfeas
{2} be the policy in Πγ,O

{2} that coincides with π{2} before

joining, i.e., such that πt,feas
{2} = πt{2} for all t ∈ {1, . . . , Tjoin(ω) − 1}, and that always orders
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the same amount as πω,∗{2} afterwards, i.e., such that πt,feas
{2} (D,Dt) = πt,ω,∗{2} (Dt) in every period

t ∈ T̂ , using the same notation as before. Note that πfeas
{2} indeed represents a policy because

O({2}) = {1, 2}.
Finally, for situation γ, let πfeas

N be the policy in Πγ,O
N that always orders the same

total amount as π∗{1} and π{2} before joining, i.e., such that πt,feas
N = πt,∗{1} + πt{2} for all

t ∈ {1, . . . , Tjoin(ω)−1}, and that coincides with πω,∗N afterwards, i.e., such that πt,feas
N (D,Dt) =

πt,ω,∗N (Dt) in every period t ∈ T̂ , using the same notation as before. We then obtain

f2

(
π∗{1},D

join
{1} , π{2},D

join
{2}

)
=
∑
ω∈Ω

P(ω)

Tjoin(ω)−1∑
t=Tstart

Kγ,t
{2}(π{2}, ω) + Φ2(N, cγ(ω),O)


=
∑
ω∈Ω

P(ω)

Tjoin(ω)−1∑
t=Tstart

Kγ,t
{2}(π{2}, ω) +

cγ̂(ω),O({2})− cγ̂(ω),O({1}) + cγ̂(ω),O(N)

2


=
∑
ω∈Ω

P(ω)

Tjoin(ω)−1∑
t=Tstart

Kγ,t
{2}(π{2}, ω) +

Tend∑
t=Tjoin(ω)

K
γ̂(ω),t
{2} (πω,∗{2}, ω)−K γ̂(ω),t

{1} (πω,∗{1}, ω) +K
γ̂(ω),t
N (πω,∗N , ω)

2


=
∑
ω∈Ω

P(ω)

Tjoin(ω)−1∑
t=Tstart

(
Kγ,t
{2}(π{2}, ω)−Kγ,t

{1}(π
∗
{1}, ω)

2
+
Kγ,t
{2}(π{2}, ω) +Kγ,t

{1}(π
∗
{1}, ω)

2

)

+

Tend∑
t=Tjoin(ω)

K γ̂(ω),t
{2} (πω,∗{2}, ω)−K γ̂(ω),t

{1} (πω,∗{1}, ω)

2
+
K
γ̂(ω),t
N (πω,∗N , ω)

2


=
∑
ω∈Ω

P(ω)

[
Tend∑

t=Tstart

Kγ,t
{2}(π

feas
{2} , ω)−Kγ,t

{1}(π
∗
{1}, ω)

2

+

Tjoin(ω)−1∑
t=Tstart

Kγ,t
{2}(π{2}, ω) +Kγ,t

{1}(π
∗
{1}, ω)

2
+

Tend∑
t=Tjoin(ω)

K
γ̂(ω),t
N (πω,

∗

N , ω)

2


≥
∑
ω∈Ω

P(ω)

[
Tend∑

t=Tstart

Kγ,t
{2}(π

∗
{2}, ω)−Kγ,t

{1}(π
∗
{1}, ω)

2

+

Tjoin(ω)−1∑
t=Tstart

Kγ,t
{2}(π{2}, ω) +Kγ,t

{1}(π
∗
{1}, ω)

2
+

Tend∑
t=Tjoin(ω)

K
γ̂(ω),t
N (πω,

∗

N , ω)

2


≥
∑
ω∈Ω

P(ω)

[
Tend∑

t=Tstart

Kγ,t
{2}(π

∗
{2}, ω)−Kγ,t

{1}(π
∗
{1}, ω)

2
+

Tend∑
t=Tstart

Kγ,t
N (πfeas

N , ω)

2

]

≥
∑
ω∈Ω

P(ω)

Tend∑
t=Tstart

Kγ,t
{2}(π

∗
{2}, ω)−Kγ,t

{1}(π
∗
{1}, ω) +Kγ,t

N (π∗N , ω)

2

= Φ2(N, cγ,O)
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The fifth equality holds by construction of the policies πfeas
{2} and πω,∗{1}. The first inequality

holds because the expected costs of a feasible policy are never lower than the expected costs

of an optimal policy. The second inequality holds for two reasons. First, in periods in periods

Tstart, . . . , Tjoin(ω)− 1, the ordering cost under πfeas
N always matches the sum of the ordering

costs of π∗{1} and π{2}, whereas the holding and backlogging cost under πfeas
N never exceeds

those of π∗{1} and π{2} together, as demonstrated by Lemma 7.1. Second, since by construction

I
Tjoin(ω)−1

{1} (π∗{1}, ω) + I
Tjoin(ω)−1

{2} (π{2}, ω) = I
Tjoin(ω)−1
N (πfeas

N , ω) while πt,feas
N and πt,ω,∗N coincide

for t ∈ {1, . . . , Tjoin(ω)− 1}, the total post-joining costs of the policies πfeas
N and πω,∗N match.

The third inequality holds because the expected costs of a feasible policy are never lower than

the expected costs of an optimal policy. This completes the proof.

The following theorem states that the strategy profile where both players are always

ready to join, while “threatening” to operate under an optimal policy otherwise, is a Nash

equilibrium. Hence, formation of coalition {1, 2} at the beginning of the time horizon is a

natural outcome.

Theorem 7.7. Consider environment (γ,O) with N = {1, 2} and O(M) = N for all

M ∈ 2N− . Any strategy profile in which each player i ∈ N plays (π∗{i},D
join
{i} ) with

π∗{i} ∈ argmin
π∈Πγ,O{i}

Kγ
{i}(π) and D t,join

{i} = D t
N for all t ∈ T is a Nash equilibrium for the

corresponding strategic join game.

Proof. By Lemma 7.6, the strategy of player 2 is a best reply to the one of player 1 and, by

symmetry, vice versa. Hence, the strategy profile is a Nash equilibrium.

We conclude this section with some comments on the three key assumptions: equal split

of benefits, two players, and full observability. First off, the assumption of an equal split of

benefits can be justified on fairness grounds because it corresponds to both the Shapley value

and the nucleolus in a two-player game.

Next, the two-player assumption. It is restrictive, but extending our analysis to more

than two players would result in additional notational burden and modeling complexities. To

illustrate some of these issues, suppose that player 1 would show up belatedly to a situation

in which players 2 and 3 had already formed a coalition. Is player 2 then allowed to break

away and form a coalition with player 1 only? If so, how to split up the joint inventory that

is currently shared by players 2 and 3? And which cost allocation rule to use? Answering

these questions to study dynamic coalition formation for more than two players is outside the

scope of this chapter.

Our final assumption was full observability. This is not restrictive if both players’

demands are independent of previous demands of the other. However, extending our analysis

to settings with dependent demands and incomplete observability would again result in

additional notational burden and modeling complexities. In particular, upon (belated)

coalition formation, do players fully share previous demand histories before signing cost
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sharing agreements, or after? The resulting cost allocations are different. To illustrate,

suppose that Bob can only observe his own demands and that Alice was hit by the storm. If

Bob shows up late at the start of period 2, he would not want to pay more than 0 if he learns

that Alice was hit by the storm before signing a cost sharing agreement, but would accept

paying 60 if he only learns Alice’s history after signing a cost sharing agreement. It is easy

to check that in the former case, strategically joining late can be beneficial.

7.7 Conclusion

In this chapter, we presented cooperative games corresponding to a situation where several

players face stochastic demands over a finite time horizon. We allowed demands to be non-

stationary and correlated. We analyzed the cost sharing problem, which arises when players

coordinate orders and pool inventories, by applying concepts from cooperative game theory.

An important insight is that information matters: different observation possibilities for the

historical demands lead to different games. Accordingly, if you don’t keep track of what

people know, it is worth extending effort to do so.

Our focus was not on solution algorithms. Earlier, we described stochastic dynamic pro-

gramming as the standard method for finding optimal policies in sequential decision problems.

However, we should mention that this method runs into computational intractability and

the curse of dimensionality when dealing with large-scale problems. Approximate dynamic

programming (see, e.g., Powell, 2011) is capable of handling larger problems, though often at

the cost of optimality.

Our model’s inherent complexity did not deter us from proving that a stable cost allocation

exists. We expect this result to extend to more general settings with, e.g., infinite sample

spaces, asymmetric costs, nonzero lead times, costly transshipments, market signals that help

explain future demand, and/or capacity restrictions. The idea behind the proof approach

described in Section 7.4, i.e., constructing a feasible policy for the grand coalition out of a

balanced combination of optimal policies of subcoalitions, can act as a guidance to prove

balancedness for those more general models. However, our proof approach does not directly

extend to non-linear costs, such as concave production costs, because the resulting policy

that would be constructed for the grand coalition might lead to higher costs than for the

subcoalitions.

In Section 7.6, we showed that, under certain assumptions, we need not worry about

players gaming the allocation by strategically arriving late. Future research might extend

our explorative analysis to a more general dynamic coalition formation problem with three or

more players. Some of the resulting challenges and hurdles were discussed at the end of that

section.



—Equals should be treated equally, and unequals unequally in

proportion to relevant similarities and differences.

Artistotle

8
Allocation rules on elastic single-attribute situations

8.1 Introduction

In the previous chapters, we frequently found that a proportional rule, which simply divides

the collective cost of the grand coalition proportional to players’ arrival or demand rates,

was guaranteed to result in stable allocations. This was shown to be true for, e.g., spare

parts games with optimized base stock levels in Section 6.5.2. Indeed, for given holding and

backlogging costs, the class of spare parts games with optimized numbers of servers coincides

with all single-attribute games embedded in a specific elastic cost function. Due to this

elasticity, stability of the allocation prescribed by the proportional rule was guaranteed by

Theorem 2.5.

A proportional rule is easy to understand and is computationally attractive. Additionally,

as we showed in Section 6.5.4, when the arrival or demand process is a Poisson process, then

the proportional allocation of expected infinite-horizon costs can be easily implemented in

practice via a simple process for cost realizations. Moreover, as we will show in Section 8.2,

the proportional rule can be axiomatically characterized (on the domain of single-attribute

situations with elastic cost functions) as the unique continuous rule that is immune to

manipulations of the players via artificial splitting or merging. This means that if a small

change in players’ attributes can only cause a small change in the allocation and if no group

of players can have an incentive to artificially represent themselves together as a single player,

or vice versa, then we cannot escape the proportional rule.

The proportional rule has a downside as well: a player with a lower attribute may
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reap more benefits (defined as the costs a player would incur when acting alone minus the

cost assigned to this player when collaborating with everyone) than a player with a higher

attribute. Although, as we showed in Chapter 6, a larger player might receive more benefits

than a smaller player, this is by no means guaranteed. For instance, as we will show in more

detail in Example 8.2, a “small” player with attribute 9 may reap a benefit of 1.2 under the

proportional rule, while a “large” player with attribute 16 only reaps a benefit of 0.8 as a

result of collaboration. Then, the large player may feel like he is treated unfairly. Even if the

allocation may be stable, the small player is almost free-riding on the large attribute that the

large player brought in.

In this chapter, which is based on Karsten et al. (2013b), we study various alternative

allocation rules to see if we can do “better” than the proportional rule, in particular with

regard to this benefit ordering issue. It would be nice to have an allocation rule that always

accomplishes core allocations and always gives larger benefits to players with larger attributes.

This, however, turns out to be impossible: there is no rule on the class of elastic single-

attribute situations that satisfies both requirements simultaneously!

After relaxing our requirements to compatible ones, we introduce new allocation rules

on elastic single-attribute situations and evaluate their performance with respect to core

inclusion and benefit ordering of their allocations. Here, we are inspired by existing cost

allocation rules from various strands of literature, including such seminal works as Shapley

(1953) on the Shapley value, Shapley (1971) on marginal rules, and Moulin and Shenker

(1992) on the serial cost sharing rule. The new rules we study explicitly take into account

the specific shape of the cost function, as opposed to the proportional rule.

The main contribution of this chapter is that it constitutes the first comparison of cost

allocation rules on the domain of elastic single-attribute situations. Our main motivation for

considering this domain is that it includes the inventory situations with optimized numbers of

servers from Chapters 4 and 6 in which each player was associated with his demand rate only.

Hence, the advantages and disadvantages of the proportional rule and alternative allocation

rules that we will analyze in the present chapter teach us more about cost allocation in

those resource pooling games. The domain of elastic single-attribute situations also includes

symmetric M/M/1 optimized situations, as argued in Section 3.3.2. Moreover, it contains

EOQ situations. Indeed, in any EOQ situation (N, (m2
i )i∈N , a), as defined in Section 3.2, each

player has an attribute m2
i ∈ R++, and the costs for any coalition depend on its members’

attributes only through its sum: under total attribute ` > 0, the cost is 2a`1/2. This cost

function is concave, hence elastic, in `.

The remainder of this chapter is organized as follows. We start in Section 8.2 with the

axiomatic characterization of the proportional rule based on non-manipulability. Section 8.3

presents our impossibility result saying that benefit ordering and coalitional rationality are

not compatible in general. Subsequently, we introduce and analyze several new allocation

rules: Section 8.4 proposes the serial cost sharing rule, Section 8.5 discusses the rule
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that assigns benefits proportionally, and Section 8.6 forms the main part of our work by

introducing variants of marginal allocations based on concavicated single-attribute situations.

We conclude in Section 8.7.

8.2 An axiomatic characterization of the proportional rule

In this section, we show that there is only one continuous allocation rule on elastic single-

attribute situations that is immune to manipulations of the players via splitting or merging:

the proportional rule. We start with two definitions, which are based on elasticity of a function

(introduced in Section 2.2.2) and on single-attribute situations (introduced in Section 2.3.10).

Definition 8.1. A single-attribute situation (N, K̃, λ) is called elastic if K̃ is elastic.

The set of all elastic single-attribute situations with finite but variable N is denoted by

E .

Definition 8.2. An allocation rule on elastic single-attribute situations (or rule for short)

is a mapping F on E such that for every (N, K̃, λ) ∈ E it holds that F (N, K̃, λ) ∈ RN and

that
∑

i∈N Fi(N, K̃, λ) = K̃(λN ).

So, a rule F assigns to any elastic single-attribute situation ϕ = (N, K̃, λ) an allocation

for the associated single-attribute game (N, cϕ).

The following definition formally describes the proportional rule. This rule is often referred

to as “average pricing” in the cost sharing literature (e.g., Moulin and Shenker, 1992).

Definition 8.3. The proportional rule P on the class of elastic single-attribute situations E is

defined by allocating Pi(N, K̃, λ) = K̃(λN )·λi/λN to player i ∈ N in situation (N, K̃, λ) ∈ E .

Non-manipulability means that no group of players has an incentive to artificially represent

themselves together as a single player, or vice versa. The following two definitions describe

this concept more formally.

Definition 8.4. Two elastic single-attribute situations (N, K̃, λ) and (N̄ , K̃, λ̄) are said to

be manipulations if

• |N̄ \N | = 1;

•
∑

i∈N\N̄ λi =
∑

i∈N̄\N λi; and

• λ̄i = λi for all i ∈ N̄ ∩N .

It may be helpful to think of N \N̄ as the set of players that is merged into the single element

of N̄ \N , while N̄ ∩N is the set of unaffected players that N and N̄ have in common.
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Definition 8.5. A rule F satisfies non-manipulability (NM) on E if, for any two elastic

single-attribute situations that are manipulations, say ϕ = (N, K̃, λ) and ϕ̄ = (N̄ , K̃, λ̄) with

N̄ \N = {j}, it holds that Fj(ϕ̄) =
∑

i∈N\N̄ Fi(ϕ).

The following example illustrates these definitions.

Example 8.1. Consider the 3-player single-attribute situation ϕ = (N, K̃, λ) with N =

{1, 2, 3}, λ1 = 1, λ2 = 9, λ3 = 16, and K̃(`) = 12 for all ` ∈ R+. If players 2 and 3 would

artificially represent themselves together as a single player, say 4, then this is described by

the manipulation ϕ̄ = (N̄ , K̃, λ̄) with N̄ = {1, 4}, λ̄1 = 1, and λ̄4 = 25.

To illustrate manipulability, consider the rule U on E that assigns costs proportional to

the square root of the players’ attributes. This rule assigns U2(ϕ) = 4.5, U3(ϕ) = 6, and

U4(ϕ̄) = 10. So, under U , players 2 and 3 have an incentive to merge. Hence, U does not

satisfy non-manipulability. 3

The following property says that a small change in the attributes can only cause a small

change in the allocation.

Definition 8.6. A rule F is called continuous in attributes (CA) on E if F (N, K̃, λ) is

continuous in λ for every (N, K̃, λ) ∈ E .

The following lemma states that the proportional rule satisfies NM and CA.

Lemma 8.1. The rule P on E is non-manipulable and continuous in attributes.

Proof. Let ϕ = (N, K̃, λ) and ϕ̄ = (N̄ , K̃, λ̄) be two elastic single-attribute situations that

are manipulations with N̄ \N = {j}. Because they are manipulations,

Pj(ϕ̄) = K(λN̄ ) · λ̄j/λ̄N̄ = K(λN̄ ) ·
∑

i∈N\N̄

λi/λ̄N̄ = K(λN ) ·
∑

i∈N\N̄

λi/λN =
∑

i∈N\N̄

Pi(ϕ).

Hence, P satisfies non-manipulability.

To establish continuity, observe that λi > 0 for all i ∈ N , and thus λN > 0. Accordingly,

by Theorem 2.2, K̃(λN ) is continuous in the vector λ. This implies that P is continuous in

attributes as well.

The following lemma states that the costs assigned to any player by a non-manipulable

rule can only depend on the vector of attributes through that player’s own attribute and

an aggregate parameter. The lemma also states that these costs are independent of the

total number and names of participating players. We let E denote the set of all elastic,

non-decreasing functions mapping R+ to R+.

Lemma 8.2. Let F be a non-manipulable rule on E. Then there exists an associated function

g : R++ × R++ × E → R such that Fj(N, K̃, λ) = g(λj , λN , K̃) for all (N, K̃, λ) ∈ E and all

j ∈ N .
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Proof. Let j be a player name. Our proof will proceed as follows. First, we show that Fj(ϕ)

for ϕ = (N, K̃, λ) ∈ E with j ∈ N can only depend on the vector λ through the numbers λj

and λN and can only depend on the player set N through the name of player j. Second, we

show that Fj(ϕ) for ϕ = (N, K̃, λ) ∈ E with j ∈ N does not depend on the name of player j

either.

For the first part, let ϕ̂ = (N̂ , K̃, λ̂) ∈ E such that j ∈ N̂ , λj = λ̂j , and λN = λ̂N̂ . We will

show that Fj(ϕ) = Fj(ϕ̂) and distinguish two cases.

Case 1: N = {j}. Then, N̂ = {j} as well, so clearly ϕ = ϕ̂, and thus Fj(ϕ) = Fj(ϕ̂).

Case 2: |N | ≥ 2. Merge the set N \ {j} into a player k 6= j to obtain the manipulation

ϕ̄ = (N̄ , K̃, λ̄) with N̄ = {j, k}. By the combination of assumptions on ϕ and ϕ̂, situation ϕ̄

is a manipulation of ϕ̂ as well. Hence, λN = λ̂N̂ = λ̄N̄ . We then obtain

Fj(ϕ) = K̃(λN )−
∑

i∈N\N̄ Fi(ϕ) = K̃(λ̄N̄ )−
∑

i∈N\N̄ Fi(ϕ) = K̃(λ̄N̄ )−Fk(ϕ̄) = Fj(ϕ̄),

where the third equality holds because F satisfies non-manipulability. Analogously, we can

also show Fj(ϕ̂) = Fj(ϕ̄), and thus Fj(ϕ) = Fj(ϕ̂).

Combining both cases, we conclude that Fj(ϕ) can only depend on the vector λ through

λj and λN and does not depend on the size of N or on the names of players other than j.

It remains to prove that Fj(ϕ) does not depend on the name of player j either. Again,

we distinguish two cases.

Case 1: N = {j}. Then, by efficiency, Fj(ϕ) = K̃(λN ), independent of player j’s name.

Case 2: |N | ≥ 2. Consider the elastic single-attribute situation ϕ′ that is obtained from

ϕ by merely relabeling player j to j′ in the entire tuple. Because ϕ′ is a manipulation of ϕ,

we obtain Fj(ϕ) = Fj′(ϕ
′).

Combining both cases, we conclude that Fj(ϕ) does not depend on the name of player j.

This completes the proof.

We are now ready to state this section’s main result.

Theorem 8.3. The proportional rule P is the unique allocation rule on the class of elastic

single-attribute situations E satisfying both non-manipulability and continuity in attributes.

Proof. Let F be a non-manipulable rule that is continuous in attributes, which exists by

Lemma 8.1. Take an associated function g as in Lemma 8.2. We will show that F = P.

Let ϕ = (N, K̃, λ) ∈ E . Keeping λN and K̃ fixed, we define the function ĝ : (0, λN ] → R by

ĝ(`) = g(`, λN , K̃).

We first show that ĝ is linear. To this end, let `1, `2 ∈ (0, λN ] be such that `1 + `2 ≤ λN .

Consider an elastic single-attribute situation ϕ′ = (N ′, λ′, K̃) such that N ′ = {1, 2, . . . , n} for

some integer n ≥ 2, λ′N ′ = λN , λ′1 = `1, and λ′2 = `2. Merging players 1 and 2 into a player

j, we define the manipulation ϕ̄′ = (N̄ ′, λ̄′, K̃) with N̄ ′ = {j} ∪ {3, . . . , n}. Then,

ĝ(`1 + `2) = ĝ(λ′1 +λ′2) = ĝ(λ̄′j) = Fj(ϕ̄
′) = F1(ϕ′) + F2(ϕ′) = ĝ(λ′1) + ĝ(λ′2) = ĝ(`1) + ĝ(`2).
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The second equality holds since ϕ̄′ is a manipulation of ϕ′, and hence λ′1 + λ′2 = λ̄j . The

third and fifth equalities hold by Lemma 8.2, and the fourth equality holds because F is a

non-manipulable allocation rule. Hence, ĝ is an additive function.

Moreover, ĝ is a continuous function because, for any ` ∈ (0, λN ], there exists an elastic

single-attribute situation ϕ̂ = (N̂ , λ̂, K̃) such that j ∈ N , λ̂j = `, and λ̂N̂ = λN , while

by Lemma 8.2 it holds that ĝ(λj) = Fj(ϕ). Thus, continuity in attributes of F implies

continuity of ĝ. As ĝ is both continuous and additive, we conclude in line with Cauchy (1821,

Chapter 5) that ĝ is linear.

To finish the proof, we return to our original situation ϕ. As Fi(ϕ) = ĝ(λi) for all i ∈ N
and ĝ is linear, it holds that

∑
i∈N Fi(ϕ) = λN · C for some C ∈ R. Since

∑
i∈N Fi(ϕ) =

K̃(λN ), we find that C = K̃(λN )/λN . Hence, Fi(ϕ) = K̃(λN ) ·λi/λN = Pi(ϕ) for all i ∈ N .

We conclude that P is the unique rule satisfying both non-manipulability and continuity in

attributes.

Similar axiomatic characterizations have appeared in the literature. For example,

Mosquera et al. (2008) and Garćıa-Sanz et al. (2008) uniquely characterize a proportional

allocation rule for, respectively, EOQ situations and (symmetric) M/M/1 queueing situations

with optimized numbers of servers. Likewise, Banker (1981), O’Neill (1982), Chun (1988),

and de Frutos (1999) uniquely characterize a proportional allocation rule for bankruptcy

situations. (In a bankruptcy situation, each player has a non-negative claim over an amount

of money, which is similar to an attribute.) These authors use axioms that are in the same

spirit of non-manipulability; however, they consider situation classes that differ from our class

of elastic single-attribute situations.

All employ a secondary axiom to accomplish a unique characterization. Banker (1981)

assumed that attributes are elements of Q; de Frutos (1999), Mosquera et al. (2008), and

Garćıa-Sanz et al. (2008) assumed that cost allocations are non-negative; and O’Neill (1982)

assumed a continuity property. We chose continuity for the characterization on our specific

domain because we view exclusion of irrational-valued attributes or negative cost allocations

a priori as unnatural. For example, the allocation (−1, π, 13 − π) for the single-attribute

game (N, cϕ) of Example 8.1 is individually rational52 and should not be excluded a priori.

We view continuity as more natural. In fact, continuity in at least one point would already

have enough bite, cf. O’Neill (1982), but it would have a less natural interpretation.

Although we gave our axiomatic characterization for the entire class of single-attribute

situations with elastic cost functions, our axiomatization could just as well have been carried

out on a class induced by a specific elastic cost function (e.g., the optimal cost function in

an Erlang loss model for given resource and penalty costs) or on a more general class of

52This allocation is not stable, as it must be. For any single-attribute situation (N,λ, K̃), every allocation

x for the single-attribute game (N, cϕ) with xi < 0 for some i ∈ N is not stable because
∑
j∈N\{i} xj =

c(N) − xi > c(N) = K̃(λN ) ≥ K̃(λN\{i}) = cϕ(N \ {i}), where the first inequality holds because xi < 0 and

the second inequality holds because K̃ is non-decreasing.
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single-attribute situations with continuous cost functions. Indeed, the only time we used any

property of the cost function K̃ at all is in Lemma 8.1, where we merely required continuity

of K̃ on R++.

8.3 An impossibility result

In the previous section, we showed that the proportional rule P is not manipulable on E . So

in a collaboration between, e.g., company A with a single business unit and company B with

two business units, the costs assigned to company A by P are unaffected by whether the

business units comprising company B claim they should be treated as one player together or

two players separately. For such situations, P may be compelling. In other situations, non-

manipulability may be of less importance. Then, we have to consider other fairness criteria.

One such criterion is described in the following definition.

Definition 8.7. A rule F on E is said to have the coalitional rationality property (CR) if

F (ϕ) ∈ C(N, cϕ) for any elastic single-attribute situation ϕ = (N,λ, K̃).

Coalitional rationality says that a rule should always generate stable allocations, i.e., a

core element for the associated single-attribute game. Stability of allocations is important

in our resource pooling context since a coalition could credibly threaten to split off and set

up a separate pooling group. Hence, in this context, any reasonable rule should satisfy the

coalitional rationality property.

The following example describes a disadvantage of P.

Example 8.2. Suppose that player 1 (with demand rate 9 per month) and player 2 (with

demand rate 16 per month) aim to set up a joint service system, whose total monthly costs

increase concavely according to the square root of the total demand rate served. This may

be modeled via the elastic single-attribute situation ϕ = (N, K̃, λ) with N = {1, 2}, λ1 = 9,

λ2 = 16, and K̃(`) =
√
` for all ` ∈ R+. The single-attribute game associated with this

situation, (N, cϕ), is given by cϕ({1}) = 3, cϕ({2}) = 4, and cϕ(N) = 5.

Clearly, P1(ϕ) = 5 · 9/25 = 9/5 and P2(ϕ) = 5 · 16/25 = 16/5. This means that the cost

savings allocated to player 1 by the proportional rule, cϕ({1})−P1(ϕ) = 6/5, are larger than

the cost savings allocated to player 2, cϕ({2})−P2(ϕ) = 4/5. So, even though collaboration

under P does in fact produce a small saving for player 2, he gets less out of the collaboration

than player 1. One could argue that this is unfair because the total savings were only made

possible because player 2 allowed player 1 to piggyback on his large attribute. 3

The following definition formalizes the idea that an allocation rule should avoid the issue

described in Example 8.2.

Definition 8.8. A rule F on E is said to have the benefit ordering property (BO) if, for every

elastic single-attribute situation ϕ = (N, K̃, λ) and every i, j ∈ N with λi ≤ λj , we have that

cϕ({i})−Fi(ϕ) ≤ cϕ({j})−Fj(ϕ).
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Figure 8.1: A plot of the function K̃ in Example 8.3.

Benefit ordering means that a player with a larger attribute should always reap at least

as much benefit (allocated cost savings) from the collaboration as a player with a smaller

attribute. As shown in Example 8.2, the proportional rule does not satisfy the benefit

ordering property. However, by Theorem 2.5, the proportional rule does satisfy the coalitional

rationality property. A natural follow-up question is whether there is a rule on E that satisfies

both the benefit ordering property and the coalitional rationality property. The following

example, however, proves that such a rule does not exist: no rule on E can satisfy both CR

and BO simultaneously. This is a remarkable impossibility result.

Example 8.3. Consider the single-attribute situation ϕ = (N, K̃, λ) with N = {1, 2, 3},
λ1 = λ2 = 2.5, λ3 = 5, and cost function K̃ described by

K̃(x) =


0 if x = 0;

5 if x ∈ (0, 5];

x if x > 5.

We showed that this function is elastic in Example 2.2 on page 20. For convenience, this

function is graphically represented in Figure 8.1. The associated single-attribute game (N, cϕ)

is given by

cϕ(M) =


5 if |M | = 1 or M = {1, 2};
7.5 if M = {1, 3} or M = {2, 3};
10 if M = N .
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This game’s core has only one element: C(N, cϕ) = {(2.5, 2.5, 5)}.53 The benefits for player 3

under the core allocation are zero, while the benefits to players 1 and 2 are (strictly) positive.

Since the attributes of players 1 and 2 are smaller than the attribute of player 3, we conclude

that any rule satisfying the coalitional rationality property cannot satisfy the benefit ordering

property.54 3

Example 8.3 shows that the properties CR and BO are incompatible on E . If we want

to arrive at properties that are compatible, then we have to relax some of our requirements.

The following two definitions propose relaxations of CR and BO, respectively.

Definition 8.9. A rule F is said to have the individual rationality property (IR) on E if

F (ϕ) ∈ I(N, cϕ) for any elastic single-attribute situation ϕ.

Definition 8.10. A rule F on E is said to have the benefit ordering property under concavity

(BOC) if, for every elastic single-attribute situation ϕ = (N, K̃, λ) with concave K̃ and every

i, j ∈ N with λi ≤ λj , we have that cϕ({i})−Fi(ϕ) ≤ cϕ({j})−Fj(ϕ).

It is easy to see that CR implies IR and that BO implies BOC. Indeed, CR extends the

rationality requirement of IR from single players to coalitions, and BO extends the ordering

requirement of BOC from concave cost functions to arbitrary cost functions. These relaxations

help to illustrate the extent to which CR and BO are incompatible. In Section 8.5, we

construct a rule on E satisfying both IR and BO. In Section 8.6, we construct a rule on E
satisfying both CR and BOC.

We remark that in many situations, the cost function is concave, e.g., EOQ situations and

symmetric M/M/1 queueing situations with optimized numbers of servers. However, even in

such concave situations, the proportional rule P is not guaranteed to dish out larger benefits

to larger players, as shown in Example 8.2 on page 181. This implies that P does not satisfy

BOC. Accordingly, a rule that does satisfy BOC can be rightfully said to do “better” than

P with regard to the ordering of players’ benefits. In the next three sections, we introduce

several new rules and analyze their properties.

8.4 The serial rule

Single-attribute situations have the same mathematical structure as so-called cost sharing

situations, which are well-studied in the literature. Indeed, a cost sharing situation is a tuple

(N, q, C), with a given set N = {1, . . . , n} of users who have demands q ∈ RN+ and who share

53To see this, first note that (2.5, 2.5, 5) is a stable allocation, so the core is non-empty. Let x be a core

allocation. This implies that x3 ≤ c({3}) = 5, x1 + x2 ≤ c({1, 2}) = 5, and x1 + x2 + x3 = 10, which together

yield x3 = x1 + x2 = 5. Stability of x in combination with x3 = 5 yields x1 ≤ cϕ({1, 3}) − x3 = 2.5 and

x2 ≤ cϕ({1, 3})− x3 = 2.5. But since we established that x1 + x2 = 5, we must have x1 = x2 = 2.5.
54The same incompatibility would occur if, e.g., K̃ =

√
5` on [0, 5]. The discontinuity of the cost function

at 0 in the example does not drive the incompatibility; it is merely for expositional ease.
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a joint production process described by a cost function C : R+ → R+. The argument of C is

interpreted as the sum of demands to be served.

The typical story behind cost sharing situations differs from our single-attribute situations,

however. In a cost sharing situation, there is only one production process that is jointly owned

by all the players, and they are basically forced to collaborate with each other. Applications

range from distributing the total production costs for output produced on a single advanced

machine, setting fees for the use of a common parking facility in a shopping mall, to sharing the

joint costs of a shared water supply transportation network. See, e.g., Moulin and Shenker

(1992). In particular, no group of users can get their desired output if they split off and

act independently. This different interpretation means that certain considerations which are

natural for resource pooling situations, such as individual rationality or stability, do not apply

to cost sharing situations.

The literature on cost sharing situations, however, contains interesting cost sharing

mechanisms. We translate the serial rule (Moulin and Shenker, 1992), one of the most-

studied mechanisms, to a rule on E . This rule takes into account some of the intermediate

behavior of the cost function, as opposed to the proportional rule which entirely ignores the

behavior of the cost function between zero and the total demand of the grand coalition.

Definition 8.11. The serial rule S on E is defined by allocating

Si(N, K̃, λ) =

σ(i)∑
j=1

K̃(Λj)− K̃(Λj−1)

|N |+ 1− j

to player i ∈ N in the elastic single-attribute situation (N, K̃, λ), where σ is an ordering on

N such that λσ−1(1) ≤ λσ−1(2) ≤ . . . ≤ λσ−1(|N |), which orders the players from small to large

attributes55, where Λ0 = 0, and where

Λj = (n+ 1− j)λσ−1(j) +

σ(j)−1∑
k=1

λσ−1(k)

for any j ∈ {1, . . . , |N |}. Note that Λ1 ≤ Λ2 ≤ . . . ≤ Λ|N |.

To illustrate, suppose for notational ease that N = {1, 2, . . . , n} and that λ1 ≤ λ2 ≤ . . . ≤
λn. Then, serial cost sharing says that player 1, with the lowest attribute λ1, pays (1/n)th of

the cost of Λ1 = nλ1, i.e., the total costs if everyone would have player 1’s attribute. Player 2,

with the next lowest attribute λ2, pays player 1’s cost share plus 1/(n−1)th of the incremental

cost from Λ1 = nλ1 to Λ2 = (n− 1)(λ2 − λ1) + nλ1, i.e., to the total costs if everyone except

for player 1 would have player 2’s attribute. Player 3, with the next lowest attribute λ3 pays

player 2’s cost share, plus 1/(n−2)th of the incremental cost from Λ2 = (n−1)(λ2−λ1)+nλ1

to Λ3 = (n− 2)(λ3 − λ2) + (n− 1)(λ2 − λ1) + nλ1. And so on.

55If several players have the same attribute, then all such orderings lead to the same allocation.
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The serial rule S is clearly continuous in attributes and thus, by Theorem 8.3,

manipulable. The following theorem deals with two more properties.

Theorem 8.4. The serial rule S on E satisfies the individual rationality property and the

benefit ordering property under concavity.

Proof. Let ϕ = (N, K̃, λ) ∈ E . Without loss of generality, assume for notational convenience

that N = {1, 2, . . . , n} and that λ1 ≤ λ2 ≤ . . . ≤ λn. Let i ∈ N . Then,

Si(ϕ) =
i∑

j=1

K̃(Λj)− K̃(Λj−1)

n+ 1− j

=
K̃(Λi)

n− i+ 1
−

i−1∑
j=1

K̃(Λj)

(n− j + 1)(n− j)

=
Λi

n− i+ 1
· K̃(Λi)

Λi
−

i−1∑
j=1

Λj
(n− j + 1)(n− j)

· K̃(Λj)

Λj

≤ Λi
n− i+ 1

· K̃(max{Λ1, . . . ,Λi−1, λi})
max{Λ1, . . . ,Λi−1, λi}

−
i−1∑
j=1

Λj
(n− j + 1)(n− j)

· K̃(max{Λ1, . . . ,Λi−1, λi})
max{Λ1, . . . ,Λi−1, λi}

=
K̃(max{Λ1, . . . ,Λi−1, λi})

max{Λ1, . . . ,Λi−1, λi}
·

Λ1

n
+

i∑
j=2

Λj − Λj−1

n+ 1− j


=
K̃(max{Λ1, . . . ,Λi−1, λi})

max{Λ1, . . . ,Λi−1, λi}
·

λ1 +

i∑
j=2

(λj − λj−1)


=
K̃(max{Λ1, . . . ,Λi−1, λi})

max{Λ1, . . . ,Λi−1, λi}
· λi

≤ K̃(λi)

λi
· λi = cϕ({i}),

where both inequalities hold by elasticity of K̃. In the first inequality, we use that

Λi ≥ max{Λ1, . . . ,Λi−1, λi}, while Λj ≤ max{Λ1, . . . ,Λi−1, λi} for any j ∈ {1, . . . , i − 1}.
In the second inequality, we use that λi ≤ max{Λ1, . . . ,Λi−1, λi}. We conclude that

S (ϕ) ∈ I(N, cϕ).

To study benefit ordering under concavity, assume that K̃ is concave. Suppose that

i ∈ {1, 2, . . . , n − 1}. By assumption, λi ≤ λi+1. It suffices to prove that cϕ({i}) −Si(ϕ) ≤
cϕ({i+ 1})−Si+1(ϕ). To this end, we first derive that

K̃(λi+1)− K̃(λi) =
K̃(λi + λi+1 − λi)− K̃(λi)

λi+1 − λi
· (λi+1 − λi)

≥
K̃
(
Λi + (n− i)(λi+1 − λi)

)
− K̃(Λi)

(n− i)(λi+1 − λi)
· (λi+1 − λi)
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=
K̃
(
Λi + (n− i)(λi+1 − λi)

)
− K̃(Λi)

n− i

=
K̃(Λi+1)− K̃(Λi)

n− i
,

where the inequality holds because K̃ is concave and thus the difference quotient obtained

when adding an amount (in particular, λi+1 − λi) to λi is at least as large as the difference

quotient obtained when adding an amount (in particular, (n − i)(λi+1 − λi)) to Λi, since

λi ≤ Λi.

Subtracting K̃(λi+1) from both sides and multiplying by −1 yields

K̃(λi) ≤ K̃(λi+1)− K̃(Λi+1)− K̃(Λi)

n− i
.

Using this inequality, we obtain

cϕ({i})−Si(ϕ) = K̃(λi)−
i∑

j=1

K̃(Λj)− K̃(Λj−1)

n+ 1− j

≤ K̃(λi+1)−
i+1∑
j=1

K̃(Λj)− K̃(Λj−1)

n+ 1− j
= cϕ({i+ 1})−Si+1(ϕ).

We conclude that S satisfies the benefit ordering property under concavity.

The following example shows that S neither satisfies the coalitional rationality property

nor the benefit ordering property.

Example 8.4. Consider the single-attribute situation ϕ = (N, K̃, λ) with N = {1, 2, 3},
λ1 = 1, λ2 = 4, λ3 = 5, and the elastic, but not concave, cost function K̃ as in Example 8.3.

The associated single-attribute game (N, cϕ) is given by

cϕ(M) =

{
5 if |M | = 1;∑

i∈M λi otherwise.

The serial rule allocates S1(ϕ) = K̃(3)/3 = 5/3, S2(ϕ) = K̃(3)/3+(K̃(9)− K̃(3))/2 = 11/3,

and S3(ϕ) = 14/3. Since S1(ϕ) + S2(ϕ) = 16/3 > 5 = cϕ({1, 2}), we conclude that

S (ϕ) /∈ C(N, cϕ). Hence, S does not satisfy the coalitional rationality property.

Furthermore, since cϕ({1})−S1(ϕ) = 10/3 and cϕ({2})−S2(ϕ) = 4/3, player 1 obtains

a larger cost saving than player 2, which implies that S does not satisfy the benefit ordering

property either. 3

We conclude that S satisfies CA, IR, and BOC, but lacks NM, CR, and BO.
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8.5 The benefit-proportional rule

Our next alternative allocation rule is a variation on the proportional rule. Rather than

allocating the total costs proportional to the attribute of each player, we allocate the benefits

proportionally instead.

Definition 8.12. The benefit-proportional rule B on E is defined by allocating Bi(N, K̃, λ) =

K̃(λi)−
[∑

k∈N K̃(λk)− K̃(λN )
]
· λi/λN to player i ∈ N in situation (N, K̃, λ) ∈ E .

The following example illustrates this rule and shows that it does not satisfy the coalitional

rationality property.

Example 8.5. Reconsider the single-attribute situation ϕ = (N, K̃, λ) of Example 8.3. The

allocation of the benefit-proportional rule B(ϕ), which is given by (3.75, 3.75, 2.5), differs

from the unique core allocation, (2.5, 2.5, 5); hence B(ϕ) is not in the core of the associated

single-attribute game. This implies that it does not satisfy the coalitional rationality property.

We remark that for this situation, B(ϕ) assigns less costs to player 3 than to player 2,

even though player 3 has a larger attribute. 3

The benefit-proportional rule is clearly continuous in attributes and thus, by Theorem

8.3, manipulable. The following theorem deals with two more properties.

Theorem 8.5. The benefit-proportional rule B satisfies the benefit ordering property and the

individual rationality property.

Proof. Let ϕ = (N, K̃, λ) ∈ E . Let i, j ∈ N with λi ≤ λj . Then,

cϕ({i})−Bi(ϕ) = K̃(λi)− K̃(λi) +
[∑

k∈N K̃(λk)− K̃(λN )
]
· λi/λN

=
[∑

k∈N K̃(λk)− K̃(λN )
]
· λi/λN

≤
[∑

k∈N K̃(λk)− K̃(λN )
]
· λj/λN

= K̃(λj)− K̃(λj) +
[∑

k∈N K̃(λk)− K̃(λN )
]
· λj/λN

= cϕ({j})−Bj(ϕ),

where the inequality holds because λi ≤ λj . Hence, B satisfies BO. Furthermore, B satisfies

IR because
∑

j∈N K̃(λj) ≥ K̃(λN ) by Theorem 2.5; hence, by definition, Bi(ϕ) ≤ cϕ({i}) for

each i ∈ N .

We conclude that B shows that the properties IR and BO are compatible.

8.6 Concavicated marginal rules

This section introduces and analyzes two new rules on elastic single-attribute situations: the

concavicated increasing marginal rule and the concavicated average marginal rule. Section



188 Chapter 8. Allocation rules on elastic single-attribute situations

8.6.1 focuses on marginal allocations and the Shapley value in single-attribute situations with

concave cost functions. Section 8.6.2 describes how to construct an order-specific concave

function under an elastic function. Section 8.6.3 defines the two concavicated rules and

analyzes their properties.

8.6.1 Concave single-attribute situations

This subsection considers single-attribute situations with concave cost functions. For the

corresponding single-attribute games, we will study marginal allocations and the Shapley

value (introduced in Section 2.3.6). We remark that these are rules on games, not on elastic

single-attribute situations. We start with a simple preliminary result.

Lemma 8.6. Let ϕ = (N, K̃, λ) be a single-attribute situation with concave K̃. Then,

(i) (N, cϕ) is concave.

(ii) For all orderings σ on N , mσ(N, cϕ) ∈ C(N, cϕ).

(iii) Φ(N, cϕ) ∈ C(N, cϕ).

Proof. (i). Let i ∈ N and let M,L ⊆ N \ {i} with M ⊆ L. Then,

cϕ(M ∪ {i})− cϕ(M) = K̃(λM + λi)− K̃(λM )

≥ K̃(λM + λL\M + λi)− K̃(λM + λL\M )

= cϕ(L ∪ {i})− cϕ(L),

where the inequality holds because K̃ is concave. This means that (N, cϕ) is concave.

(ii). Follows from Part (i) since, by Shapley (1971), any marginal vector is in the core of

a concave game.

(iii). Follows from Part (ii) since the Shapley value is the average of the marginal vectors

and the core is a convex set.

We next describe a restriction on orderings.

Definition 8.13. Given an elastic single-attribute situation ϕ = (N, K̃, λ) ∈ E , the set Θ(ϕ)

is defined as the set of all orderings on N for which players are ordered in non-decreasing

order of their attributes, i.e., Θ(ϕ) = {σ ∈ Π(N) | λσ−1(1) ≤ λσ−1(2) ≤ . . . ≤ λσ−1(|N |)}.

The following theorem considers such orderings and states that any corresponding

marginal allocation yields a proper ordering of the players’ benefits.

Theorem 8.7. Let ϕ = (N, K̃, λ) be a single-attribute situation with concave K̃. Let σ ∈
Θ(ϕ). Then, cϕ({i})−mσ

i (N, cϕ) ≤ cϕ({j})−mσ
i (N, cϕ) for each i, j ∈ N with σ(i) ≤ σ(j).
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σ−1 mσ
1 (N, cϕ) mσ

2 (N, cϕ) mσ
3 (N, cϕ)

(1,2,3) 1
√

2− 1 2−
√

2

(1,3,2) 1 2−
√

3
√

3− 1

(2,1,3)
√

2− 1 1 2−
√

2

(2,3,1) 2−
√

3 1
√

3− 1

(3,2,1) 2−
√

3
√

3−
√

2
√

2

(3,1,2)
√

3−
√

2 2−
√

3
√

2

Sum 5−
√

3 5−
√

3 2 + 2
√

3

Average 5
6 −

1
6

√
3 5

6 −
1
6

√
3 1

3 + 1
3

√
3

Table 8.1: All marginal allocations and their average for the game in Example 8.6.

Proof. Let i, j ∈ N with σ(i) ≤ σ(j), which implies that λi ≤ λj . Then,

cϕ({i})−mσ
i (N, cϕ) = cϕ({i})− c(P σi ∪ {i}) + c(P σi )

= K̃(λi)− K̃(λPσi + λi) + K̃(λPσi )

≤ K̃(λi + (λj − λi))− K̃(λPσi + λi + (λj − λi)) + K̃(λPσi )

≤ K̃(λi + (λj − λi))− K̃(λPσj + λi + (λj − λi)) + K̃(λPσj )

= cϕ({j})−mσ
j (N, cϕ),

where the first inequality holds because K̃ is concave, the second inequality because σ(i) ≤
σ(j) and consequently P σi ⊆ P σj .

The following example provides an illustration and shows that a marginal allocation need

not assign the same costs to players with identical attributes.

Example 8.6. Consider the concave single-attribute situation ϕ = (N, K̃, λ) with N =

{1, 2, 3}, λ1 = 1, λ2 = 1, λ3 = 2, and K̃(`) =
√
` for all ` ∈ R+. The associated single-

attribute game (N, cϕ) is described by

cϕ(M) =


1 if M = {1} or M = {2};√

2 if M = {1, 2} or M = {3};√
3 if M = {1, 3} or M = {2, 3};

2 if M = N .

Note that this game is concave. All marginal allocations and their average (i.e., the Shapley

value) for this game are described in Table 8.1. Note that they are in the core of (N, cϕ).

The set Θ(ϕ) contains two orderings: one whose inverse is (1, 2, 3) and one whose inverse

is (2, 1, 3). Let us consider the first-mentioned one and denote it by σ. So, player 1 is in

first position, player 2 is in second position, and player 3 is in last position. The marginal
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allocation mσ(N, cϕ) according to this ordering is given by (1,
√

2 − 1, 2 −
√

2). Note that

even though players 1 and 2 have identical attributes, they get a different cost assignment.

Due to the ordering, player 1’s benefit of cϕ({1})−mσ
1 (N, cϕ) = 0 is smaller than player 2’s

benefit of cϕ({2}) −mσ
2 (N, cϕ) = 2 −

√
2, which in turn is smaller than player 3’s benefit of

cϕ({3})−mσ
3 (N, cϕ) = 2

√
2− 2. 3

This example raised the issue that an arbitrary marginal allocation corresponding to an

ordering in Θ(ϕ) treats identical players differently. This can be avoided by averaging over

Θ(ϕ), as shown in the following theorem.

Theorem 8.8. Let ϕ = (N, K̃, λ) ∈ E with concave K̃. Then,

cϕ({i})− 1

|Θ(ϕ)|
∑

σ∈Θ(ϕ)

mσ
i (N, cϕ) ≤ cϕ({j})− 1

|Θ(ϕ)|
∑

σ∈Θ(ϕ)

mσ
j (N, cϕ)

for each i, j ∈ N with λi ≤ λj.

Proof. Let i, j ∈ N with λi ≤ λj . We distinguish between two cases.

Case 1: λi < λj . Then, σ(i) < σ(j) for each σ ∈ Θ(ϕ). The desired inequality then holds

by Theorem 8.7.

Case 2: λi = λj . Then, obviously, cϕ({i}) = cϕ({j}). Moreover, players i and j are

symmetric, and thus for every ordering σ̌ ∈ Θ(ϕ) with σ̌(i) = a and σ̌(j) = b there exists

another ordering σ̂ ∈ Θ(ϕ) with σ̂(i) = b, σ̂(j) = a, and σ̂(k) = σ(k) for all k ∈ N \ {i, j}.
For these orderings, mσ̌

i (N, cϕ) = mσ̂
j (N, cϕ), so

∑
σ∈Θ(ϕ)m

σ
i (N, cϕ) =

∑
σ∈Θ(ϕ)m

σ
j (N, cϕ).

Hence, the desired inequality holds with equality.

Remarkably, the average of all marginal allocations (i.e., the Shapley value) also has the

players’ benefits ordered in the same way as their attributes.

Theorem 8.9. Let ϕ = (N, K̃, λ) ∈ E with concave K̃. Then,

cϕ({i})− Φi(N, c
ϕ) ≤ cϕ({j})− Φj(N, c

ϕ)

for each i, j ∈ N with λi ≤ λj.

Proof. Define α(M) = (|M |)! · (|N | − |M | − 1)! for all M ⊂ N . (This number α(M) may

be interpreted as follows: given a fixed player k ∈ N \M , α(M) is the number of different

orderings of N where positions 1 through |M | are are taken by players in M , position |M |+ 1

is taken by player k, and any remaining positions are taken by players in N \ (M ∪ {k}). So,∑
M⊆N\{k} α(M) = |N |!)
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Let i, j ∈ N with λi ≥ λj . Recalling the alternative definition of the Shapley value from

Section 2.3.6, we obtain

cϕ({i})− Φi(N, c
ϕ)

= cϕ({i})−
∑

M⊆N\{i}

α(M)

|N |!

[
cϕ(M ∪ {i})− cϕ(M)

]
=

1

|N |!
·
∑

M⊆N\{i}

α(M)
[
cϕ({i})− cϕ(M ∪ {i}) + cϕ(M)

]
=

1

|N |!
·
[ ∑
M⊆N\{i}:j /∈M

α(M)
(
K̃(λi)− K̃(λM + λi) + K̃(λM )

)
+

∑
M⊆N\{i}:j∈M

α(M)
(
K̃(λi)− K̃(λM + λi) + K̃(λM )

) ]
≤ 1

|N |!
·
[ ∑
M⊆N\{i}:j /∈M

α(M)
(
K̃(λi + (λj − λi))− K̃(λM + λi + (λj − λi)) + K̃(λM )

)
+

∑
M⊆N\{i}:j∈M

α(M)
(
K̃(λi)− K̃(λM + λi) + K̃(λM )

) ]
≤ 1

|N |!
·
[ ∑
M⊆N\{i}:j /∈M

α(M)
(
K̃(λj)− K̃(λM + λj) + K̃(λM )

)
+

∑
M⊆N\{i}:j∈M

α(M)
(
K̃(λj)− K̃(λM + λi) + K̃(λM − λj + λi)

) ]
= cϕ({j})− 1

|N |!
·
[ ∑
M⊆N\{i}:j /∈M

α(M)
(
cϕ(M ∪ {j})− cϕ(M)

)
+

∑
M⊆N\{i}:j∈M

α(M)
(
cϕ(M ∪ {i})− cϕ((M \ {j}) ∪ {i})

)]
= cϕ({j})− 1

|N |!
·
[ ∑
M⊆N\{j}:i/∈M

α(M)
(
cϕ(M ∪ {j})− cϕ(M)

)
+

∑
M⊆N\{j}:i∈M

α(M)
(
cϕ(M ∪ {j})− cϕ(M)

)]
= cϕ({j})− 1

|N |!
·

∑
M⊆N\{j}

α(M)
(
cϕ(M ∪ {j})− cϕ(M)

)
= cϕ({j})− Φj(N, c

ϕ),

where both inequalities hold by concavity of K̃. In the first inequality, we use that λi ≤ λj .

In the second inequality, we also use K̃(λM − λj + λj)− K̃(λj) ≤ K̃(λM − λj + λi))− K̃(λi),

which implies that K̃(λi) + K̃(λM ) ≤ K̃(λj) + K̃(λM − λj + λi).

The following example provides an illustration of Theorems 8.8 and 8.9.
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Example 8.7. Reconsider the elastic single-attribute situation ϕ = (N, K̃, λ) of Example

8.6. The allocation
∑

σ∈Θ(ϕ)m
σ(N, cϕ)/|Θ(ϕ)| is given by (1

2

√
2, 1

2

√
2, 2 −

√
2). Under this

allocation, the benefit to player 1, 1 − 1
2

√
2 ≈ 0.29, is the same as the benefit to player 2,

which in turn is smaller than the benefit to player 3, 2
√

2− 2 ≈ 0.83.

The Shapley value of the game (N, cϕ) is given by (5
6 −

1
6

√
3, 5

6 −
1
6

√
3, 1

3 + 1
3

√
3); see Table

8.1. Under the Shapley value, the benefit to player 1, cϕ({1})−Φ1(N, cϕ) = 1
6(1+

√
3) ≈ 0.46,

is the same as the benefit to player 2, which in turn is smaller than the benefit to player 3,

cϕ({1})− Φ1(N, cϕ) =
√

2− 1
3(1 +

√
3) ≈ 0.50. 3

We now know that when the cost function is concave, players with larger attributes get

larger benefits under the Shapley value. Since the Shapley value is the average of all marginal

vectors, a natural question is whether or not this result extends to all marginal vectors. The

following example shows that this is not the case.

Example 8.8. Reconsider the elastic single-attribute situation ϕ = (N, K̃, λ) of Example

8.6. Consider the ordering σ on N described by σ−1 = (3, 2, 1). So, player 3 is in first

position, player 2 is in second position, and player 1 is in last position. The marginal allocation

mσ(N, cϕ) according to this ordering is given by (2−
√

3,
√

3−
√

2,
√

2). We see that cϕ({1})−
mσ

1 (N, cϕ) = −1 +
√

3 > 0 = cϕ({3})−mσ
3 (N, cϕ) even though λ1 < λ3. 3

Marginal allocations for single-attribute games are not guaranteed to be stable if the cost

function is merely elastic (as opposed to concave). Indeed, in Example 6.3, we saw that the

Shapley value can lie outside the core in such a case. In the remainder, we aim to remedy

this.

8.6.2 Concave functions under elastic functions

The preceding subsection focused on concave cost functions. We now return to elastic cost

functions. Given the positive results of Theorems 8.8 and 8.9 for concave cost functions, we

next propose a number of ways—one per ordering of the players—to approximate an elastic

function with a concave function.56 Our ultimate goal is to use marginal allocations on the

single-attribute games induced by these concave functions. Any marginal allocation depends

on the cost function only through the value of that function at |N | distinct arguments, and

we will construct a concave function that approximates the original elastic function as closely

as possible at these |N | arguments. These arguments may differ across marginal allocations.

However, no marginal allocation depends on the cost function beyond the maximum argument

λN , which allows us to restrict ourselves to constructing a function with domain [0, λN ].

Hence, we will construct a concave function on [0, λN ] for every possible ordering of the

players. This function will be made up of straight, consecutive line segments.

56Sometimes there is only one way. Take spare parts games, for example. As shown in Figure 6.1 on page

129, if multiple base stock levels are optimal for the grand coalition, then there is no flexibility: the relevant

tangent line goes through the origin, as shown in Lemma 6.6.
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Definition 8.14. For any λ, µ, q, r ∈ R+ with λ < µ and q ≤ r, we define the function

L
(µ,r)
(λ,q) : R→ R by

L
(µ,r)
(λ,q)(x) =

r − q
µ− λ

(x− µ) + r for all x ∈ R .

This function should be interpreted as the straight line through the points (λ, q) and (µ, r).

We next describe how to draw an order-specific concave function under an elastic function.

Figure 8.2 may prove helpful as an illustration.

Procedure 8.1. We are given an elastic single-attribute situation (N, K̃, λ) and an ordering

σ on N . For notational ease, write n = |N |. Define Λσ0 = 0 and Λσi = λσ−1(1) + . . .+ λσ−1(i)

for all i ∈ {1, 2, . . . , n}. Note that Λn = λN . We now aim to construct a continuous function

that is made up of line segments between points (Λσ0 , Q
σ
0 ), (Λσ1 , Q

σ
1 ), . . . , (Λσn, Q

σ
n) such that

the resulting function is non-negative, concave, non-decreasing, and not above K̃ on [0,Λσn].

We now present the procedure for determining the numbers Qσ0 , Q
σ
1 , . . . , Q

σ
n.

We start from the right and set Qσn = K̃(Λσn). We then fix Qσn−1 by drawing the highest

possible line from (Λσn, Q
σ
n) to (Λσn−1, Q

σ
n−1) that is non-negative and not above K̃ on the

interval [Λσn−1,Λ
σ
n]. That is, we take

Qσn−1 = max
{
q ∈

[
L

(Λσn,Q
σ
n)

(0,0) (Λσn−1), K̃(Λσn−1)
] ∣∣∣L(Λσn,Q

σ
n)

(Λσn−1,q)
(`) ≤ K̃(`) ∀ ` ∈ [Λσn−1,Λ

σ
n]
}
.

The number Qσn−1 is well-defined because K̃ is elastic.57

For j ∈ {0, . . . , n − 2}, recursively, we then fix Qσj by drawing the highest possible line

from (Λσj+1, Q
σ
j+1) to (Λσj , Q

σ
j ) that is non-negative and not above K̃ on the interval [Λσj ,Λ

σ
j+1]

and, moreover, that is at least as steep as the previous line. That is, we take

Qσj = max
{
q ∈

[
L

(Λσj+1,Q
σ
j+1)

(0,0) (Λσj ), L
(Λσj+2,Q

σ
j+2)

(Λσj+1,Q
σ
j+1)(Λ

σ
j )
] ∣∣∣L(Λσj+1,Q

σ
j+1)

(Λσj ,q)
(`) ≤ K̃(`) ∀ ` ∈ [Λσj ,Λ

σ
j+1]

}
,

The number Qσj is well-defined because, again, K̃ is elastic.58

Given the numbers Qσ0 , Q
σ
1 , . . . , Q

σ
n as defined above, the σ-concavication K̃conc

σ : [0, λN ]→
R+ is given by

K̃conc
σ (`) = L

(Λσj ,Q
σ
j )

(Λσj−1,Q
σ
j−1)(`) for j ∈ {1, . . . , n} with ` ∈ [Λσj−1,Λ

σ
j ].

for all ` ∈ (0, λN ] and K̃conc
σ (0) = 0.

57The set over which we take the maximum is non-empty because if we would take q = L
(Λσn,Q

σ
n)

(0,0) (Λn−1),

then the resulting line is not above K̃ on [Λσn−1,Λ
σ
n] by Theorem 2.2. The maximum actually exists because

if n > 1 then K̃ is continuous on [Λσn−1,Λ
σ
n] by Theorem 2.2; otherwise, if n = 1 then Q0 = 0 because the

interval from which we are to pick q only includes 0.
58The set over which we take the maximum is non-empty, for two reasons. First, the interval from which

we are to pick q is non-empty because, by construction, L
(Λσj+2,Q

σ
j+2)

(0,0) (Λj+1) ≤ L(Λj+2,Qj+2)

(Λj+1,Qj+1)(Λj+1); this implies

that L
(Λj+1,Qj+1)

(0,0) is steeper than L
(Λj+2,Qj+2)

(Λj+1,Qj+1). Second, by construction, Qσj+1 ≤ K̃(Λσj+1); hence, if we would

take q = L
(Λσj+1,Q

σ
j+1)

(0,0) (Λj), then on [0,Λj+1] the resulting line is not above L
(Λσj+1,K̃(Λσj+1)

(0,0) , which in turn is not

above K̃ by Theorem 2.2. The maximum actually exists because if j ≥ 1 then K̃ is continuous on [Λσn−1,Λ
σ
n]

by Theorem 2.2; otherwise, if j = 0 then K̃(0) = 0 implies Qj = 0.
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Figure 8.2: The function K̃ from Example 8.9 and a σ-concavication (dashed).

The following lemma collects several properties of a σ-concavication, which follow directly

from its definition.

Lemma 8.10. Let (N, K̃, λ) ∈ E, and let σ be an ordering on N .

(i) K̃conc
σ is concave.

(ii) K̃conc
σ (`) ≤ K̃(`) for all ` ∈ [0, λN ) and K̃conc

σ (λN ) = K̃(λN ).

(iii) If K̃ is concave, then K̃conc
σ (Λσi ) = K̃(Λσi ) for all i ∈ {0, 1, . . . , n}.

(iv) K̃conc
σ (0) = 0.

The following example illustrates the construction of a σ-concavication.

Example 8.9. Consider the single-attribute situation ϕ = (N, K̃, λ) with N = {1, 2, 3},
λ1 = 1, λ2 = 1.5, λ3 = 2.5, and elastic cost function K̃ equal to the function considered in

Example 8.3, which is for convenience represented again in Figure 8.2. For the ordering σ

with σ−1 = (1, 2, 3), the σ-concavication K̃conc
σ : [0, 5]→ R corresponding to attribute vector

λ is given by

K̃conc
σ (`) =

{
5` if ` ∈ [0, 1];

5 if ` ∈ (1, 5].

See Figure 8.2. For other orderings, the construction is similar.
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If, however, we would change the situation by increasing one player’s attribute by ε > 0,

then it is easily inferred from Figure 8.2 that for every ordering σ on N , the resulting σ-

concavication K̃conc
σ : [0, 5 + ε]→ R is given by K̃conc

σ (`) = ` for all ` ∈ [0, 5 + ε]. So, a small

change in the attribute vector may lead to a large change in the σ-concavication. 3

The following example illustrates the construction of a σ-concavication for a more

complicated situation.

Example 8.10. Consider the elastic single-attribute situation (N, K̃, λ) with N = {1, 2, 3},
λ1 = 1, λ2 = 4, λ3 = 6, and cost function K̃ : R+ → R+ defined by

K̃(`) =



4` if ` ∈ [0, 1];

4 if ` ∈ (1, 3];

2 + ` · 2/3 if ` ∈ (3, 6];

6 + ((`− 6)/4)2 if ` ∈ (6, 10];

7 if ` > 10;

This function and each of its σ-concavications are graphically represented in Figure 8.3. The

function K̃ is elastic because

• for ` on (0, 1], K̃(`)/` = 4;

• for ` on (1, 3], K̃(`)/` = 4/` is decreasing in ` and ranges from 4 to 4/3;

• for ` on (3, 6], K̃(`)/` = 2/3 + 2/` is decreasing in ` and ranges from 4/3 to 1;

• for ` on (6, 10], K̃(`)/` = 6/`+ (`− 12 + 36/`)/16 is decreasing59 in ` and ranges from

1 to 7/10;

• for ` > 10, K̃(`)/` = 7/` is decreasing in ` with a maximal value of 7/10.

We illustrate the construction of a σ-concavication for two orderings. First, consider

the ordering σ with σ−1 = (2, 3, 1). So, player 2 is in first position, player 3 is in second

position, and player 1 is in third position. Hence, Λσ1 = 4, Λσ2 = 10, and Λσ3 = 11. Obviously,

Qσ3 = 7, Qσ2 = 7, and Qσ0 = 0. Consider Qσ1 , i.e., the largest q ≤ K̃(Λσ1 ) = 42
3 such that

L
(10,7)
(4,q) (`) ≤ K̃(`) for all ` ∈ [4, 10]. Since the derivative of 6 + ((`−6)/4)2 evaluated at ` = 10

is equal to 0.5, any q > K̃(Λσ2 ) − 0.5 · (Λσ2 − Λσ1 ) = 4 would result in going above the graph

of K̃. Yet, q = 4 would not take us above the graph of K̃, so Qσ1 = 4.

Next, consider the ordering σ with σ−1 = (3, 1, 2). So, player 3 is in first position, player

1 is in second position, and player 2 is in third position. Hence, Λσ1 = 6, Λσ2 = 7, Λσ3 = 11.

Obviously, Qσ3 = 7 and Qσ0 = 0. Consider Qσ2 , i.e., the largest q ≤ K̃(Λσ2 ) = 6 1
16 such

that L
(11,7)
(7,q) (`) ≤ K̃(`) for all ` ∈ [7, 11]. For q ∈ [5, 6 1

16 ], standard optimization techniques

59Indeed, its derivative (1− 132/`2)/16 is negative for ` on (6, 10].
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Figure 8.3: The function K̃ from Example 8.10 and all its σ-concavications (dashed).
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reveal that 6 + ((` − 6)/4)2 − L(11,7)
(7,q) (`) as a function of ` on [7, 11] has a unique minimizer

`∗(q) = 20−2q. Consequently, 6+((`∗(q)−6)/4)2 = L
(11,7)
(7,q) (`∗(q)) if and only if q = 6. Hence,

Qσ2 = 6. Finally, the line L
(11,7)
(7,6) is not above K̃ on [6, 7], so Qσ2 = L

11,7)
(7,6) (6) = 5.75.

The construction of the σ-concavication for the other orderings is similar; see Figure

8.3. 3

8.6.3 Two concavicated rules

Based on σ-concavicated situations, we will introduce two allocation rules on elastic single-

attribute situations.

Definition 8.15. For an elastic single-attribute situation ϕ = (N, K̃, λ) and an ordering σ

on N , we call ϕ(σ) = (N, K̃conc
σ , λ) the corresponding σ-concavicated situation.

We remark that although the domain of K̃conc
σ is [0, λN ] and not R+, this does not pose a

problem for the two allocation rules that we define next, as they do not depend on the cost

function beyond λN .

Definition 8.16. The concavicated increasing marginal rule M on E assigns to each elastic

single-attribute situation ϕ = (N, K̃, λ) the allocation M (ϕ) =
∑

σ∈Θ(ϕ)m
σ(N, cϕ(σ))/|Θ(ϕ)|.

Definition 8.17. The concavicated average marginal rule A on E assigns to each elastic

single-attribute situation ϕ = (N, K̃, λ) the allocation A (ϕ) =
∑

σ∈Π(N)m
σ(N, cϕ(σ))/|Π(N)|.

The following lemma states that if the cost function is concave, then marginal allocations

are unchanged by concavicated situations.

Lemma 8.11. Let ϕ = (N, K̃, λ) ∈ E with concave K̃.

(i) For all orderings σ on N and all i ∈ N , it holds that mσ
i (N, cϕ) = mσ

i

(
N, cϕ(σ)

)
.

(ii) M (ϕ) =
∑

σ∈Θ(ϕ)m
σ(N, cϕ)/|Θ(ϕ)|.

(iii) A (ϕ) = Φ(N, cϕ).

Proof. For Part (i), let σ ∈ Π(N) and i ∈ N . by Part (iii) of Lemma 8.10, K̃conc(Λσσ(i)) −
K̃conc(Λσσ(i)−1) = K̃conc(λPσi +λi)−K̃conc(λPσi ), which implies thatmσ

i (N, cϕ) = mσ
i

(
N, cϕ(σ)

)
.

Part (ii) and (iii) follow immediately from Part (i).

The concavicated rules only evaluate a σ-concavication at the arguments Λσ0 , Λσ1 , . . . ,

Λσn. The intermediate behavior of the σ-concavication, however, is still important because it

affects the corresponding game. Despite not taking into account this intermediate behavior,

our concavicated rules still accomplish core allocations. Before proving this, we provide an

illustration.
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M λM cϕ(M)
∑

i∈M Mi(ϕ)
∑

i∈M Ai(ϕ)

{1} 1 1 22
3 1 7

72

{2} 4 42
3 22

3 25
9

{3} 6 6 12
3 325

72

{1, 2} 5 51
3 51

3 347
72

{1, 3} 7 6 1
16 41

3 432
72

{2, 3} 10 7 41
3 565

72

N 11 7 7 7

Table 8.2: The game and concavicated marginal allocations in Example 8.11.

σ−1 mσ
1

(
N, cϕ(σ)

)
mσ

2

(
N, cϕ(σ)

)
mσ

3

(
N, cϕ(σ)

)
(1,2,3) 22

3 22
3 12

3

(1,3,2) 3 1 3

(2,1,3) 2
3 42

3 12
3

(2,3,1) 0 4 3

(3,2,1) 0 2 5

(3,1,2) 1
4 1 53

4

Sum 6 7
12 151

3 20 1
12

Table 8.3: The marginal allocations corresponding to all σ-concavicated situations in Example 8.11.

Example 8.11. Reconsider the single-attribute situation ϕ = (N, K̃, λ) from Example 8.10.

The associated single-attribute game (N, cϕ) is described in Table 8.2. For any ordering σ on

N , the cost function for the corresponding σ-concavicated situation ϕ(σ) = (N, K̃conc
σ , λ) is

given in Figure 8.3, and the corresponding marginal allocation is described in Table 8.3.

The concavicated increasing marginal allocation M (ϕ) is given by (22
3 , 2

2
3 , 1

2
3) because

Θ(ϕ) only consists of the ordering σ with σ−1 = (1, 2, 3). The concavicated average marginal

allocation M (ϕ) is obtained by averaging all marginal vectors in Table 8.3, which results in

(1 7
72 , 2

5
9 , 3

25
72). Note that A is not the Shapley value of a “straightforwardly” derived game

because each marginal allocation is based on a different σ-concavicated situation and thus on

a different game.

It is easy to infer from Table 8.2 that both M (ϕ) and A (ϕ) are stable allocations for

(N, cϕ). 3

Theorem 8.12. Both M and A satisfy the coalitional rationality property on E.

Proof. Let ϕ = (N, K̃, λ) be an elastic single-attribute situation, and let σ be any ordering

on N . Then, by Part (i) of Lemma 8.6, the single-attribute game associated with the
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σ-concavicated situation ϕ(σ) is concave. By Part (ii) of Lemma 8.6, it follows that

mσ
(
N, cϕ(σ)

)
∈ C

(
N, cϕ(σ)

)
. By Part (ii) of Lemma 8.10, it holds that C

(
N, cϕ(σ)

)
⊆

C(N, cϕ). Hence, mσ
(
N, cϕ(σ)

)
∈ C(N, cϕ) as well. Since M (ϕ) and A (ϕ) are defined

as averages of marginal allocations for games associated with concavicated situations, their

coalitional rationality is immediate.

Both M and A lack the benefit ordering property because, by Theorem 8.12, they

prescribe the unique core allocation for the situation of Example 8.3, which described our

impossibility result. However, both rules satisfy the relaxation BOC.

Theorem 8.13. Both M and A satisfy the benefit ordering property under concavity.

Proof. Let ϕ = (N, K̃, λ) be any elastic single-attribute situation with concave K̃, and let σ

be any ordering on N . By Part (i) of Lemma 8.10, K̃conc is concave. Hence, Lemma 8.11

applies. Benefit ordering under concavity of M then follows from Theorem 8.8 and from Part

(ii) of Lemma 8.11, while benefit ordering under concavity of A follows from Theorem 8.9

and from Part (iii) of Lemma 8.11.

The following example shows that both concavicated rules lack non-manipulability and

continuity in attributes.

Example 8.12. Reconsider the single-attribute situation ϕ = (N, K̃, λ) from Example 8.9.

Here, M (ϕ) = (5, 0, 0), while A (ϕ) =
(

5
3 ,

5
3 ,

5
3

)
. We remark that the smallest player does not

get any benefits at all under M , whereas A does not exhibit such extreme behavior.

By merging players 1 and 3 into player 4, we obtain the manipulation ϕ̄ = (N̄ , K̃, λ̄) with

N̄ = {2, 4}, λ̄2 = 1.5, and λ̄4 = 3.5. Then, M conc
2 (ϕ̄) = 5, M conc

4 (ϕ̄) = 0, A conc
2 (ϕ̄) = 2.5,

and A conc
4 (ϕ̄) = 2.5. So, under both rules, players 1 and 3 have an incentive to merge, which

means that neither satisfies non-manipulability.

By taking the sequence of attribute vectors (Lk)∞k=1 and corresponding situations ϕ(k)

as described in Example 8.9, we observe that limk→∞M1(ϕ(k)) = 1 6= 5 = M1(ϕ) and

limk→∞A1(ϕ(k)) = 1 6= 5
3 = A1(ϕ). So, neither M nor A satisfy continuity in attributes. 3

We conclude that both M and A satisfy CR, IR, and BOC, but lack NM, CA, and BO.

8.7 Conclusion

Table 8.4 presents an overview of our main results and a legend for our abbreviations. We

have shown that P is the unique rule satisfying the combination of NM and CA. We have also

shown that CR and BO are incompatible. At the same time, we have found two rules that

satisfy the combination of CR and BOC: M and A . Accordingly, if we desire to improve on

the proportional rule with regard to the ordering of players’ benefits, while keeping coalitional

rationality intact, then these rules would be appealing solutions. Remarkably, A coincides
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Rule NM CA CR IR BO BOC

P
√ √ √ √

X X

S X
√

X
√

X
√

B X
√

X
√ √ √

M X X
√ √

X
√

A X X
√ √

X
√

Table 8.4: Overview of the various rules and their properties. Legend for rules: P is the proportional

rule, S is the serial rule, B is the benefit-proportional rule, M is the concavicated increasing

marginal rule, and A is the concavicated average marginal rule. Legend for properties: NM is

non-manipulability, CA is continuity in attributes, CR is the coalitional rational property, IR is the

individual rationality property, BO is the benefit ordering property, and BOC is the benefit ordering

property under concavity.

with the Shapley value — one of the most celebrated solutions for cooperative games — when

the cost function is concave. Yet, A remedies the possible non-stability of the Shapley value

when the cost function is merely elastic.

We close out by providing three directions for future research. A first direction would be

on alternative concavications. Indeed, the collection of functions described in Definition

8.1 are not the only concave functions that fit under an elastic function. Although we

believe that the procedure of Definition 8.1 is compelling because of the property described in

Part (iii) of Lemma 8.10 and because, from a computational perspective, it merely requires

the determination of |N | straight line segments, future research may look for alternative

concavications that retain these nice properties while being continuous in the attribute vector.

A second direction for future research is on other fairness properties and other allocation

rules. There are, of course, many other allocation cost rules possible for elastic single-

attribute situations beyond the ones that we considered. The decreasing serial rule proposed

in de Frutos (1998) might be an interesting one. At the same time, we have not exhausted

the list of reasonable fairness criteria. For example, population monotonicity (cf. Sprumont,

1990) might be interesting.

A third and final possible research direction is on a study of the properties exhibited by

rules on a restricted domain. Indeed, all the properties we have considered deal with the

domain of elastic single-attribute situations. If we would restrict the domain of a rule to a

specific class of situations (e.g., whose cost function represents the optimal costs in an Erlang

loss model) then it is possible that a rule would exhibit specific behavior on that restricted

domain.



—Essentially, all models are wrong, but some are useful.

George Box

9
Conclusion

9.1 Game over?

In this thesis, we studied the cost allocation problem that arises in stochastic inventory and

queueing systems with pooled resources. Our general research problem, described in Section

1.3, was to identify (existence of) stable allocations of the total costs—stable in the sense

that all service providers are motivated to join forces, i.e., such that no subset of players has

an incentive to split off and form a separate pooling group. To do this, we formulated new

classes of resource pooling games and derived structural properties of these games.

In this concluding chapter, we tie things together by discussing key results, insights, and

common threads: We first describe and illustrate the main results by means of examples in

Section 9.2, subsequently summarize a number of important lessons and surprises in Section

9.3, and close out with future research directions in Section 9.4.

9.2 Description and illustration of the main results

Tables 9.1 and 9.2 present an overview of the main stability results for Chapters 4, 5,

and 6 under optimized and fixed numbers of resources, respectively. To illustrate these

results, we revisit the two examples from the introductory chapter. We will first discuss

and illustrate results for optimized numbers of resources and subsequently deal with results

for fixed numbers of resources.
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Queueing problem Inventory problem

No waiting allowed Proportional allocation stable Proportional allocation stable

Waiting possible Stable allocation need not exist Proportional allocation stable

Table 9.1: Main results of Chapters 4, 5, and 6 under optimized numbers of resources.

Queueing problem Inventory problem

No waiting allowed Stable allocation exists Stable allocation exists

Waiting possible Stable allocation exists Pipeline allocation stable

Table 9.2: Main results of Chapters 4, 5, and 6 under fixed numbers of resources.

Example 9.1. (Optimized numbers of resources.) Reconsider the two airlines from

Example 1.1. This setting can be accurately modeled using the Erlang loss game with

optimized base stock levels from Chapter 4. For this model, we showed in Section 4.5.3 that

the allocation of expected costs proportional to the players’ demand rates is always stable

and reachable through a population monotonic allocation scheme (PMAS). Note that this

concerns a proportional allocation of the costs, not the benefits. And that the allocation is in

proportion to the demand rates, not in proportion to the individual optimal costs, individual

optimal base stock levels, or anything else.

Stability means that if player A faces λA demands per year and player B faces λB demands

per year (in expectation, of course), then both players are guaranteed to become better off in

expecation if they join forces and player A would pay a fraction λA/(λA + λB) of the total

costs and player B would pay a fraction λB/(λA + λB).

Population monotonicity means that if a player C would join and the resulting new costs

would still be shared in proportion to demand rates, then players A and B would get better

off. Moreover, players A, B, and C would get better off if a player D would join. And so on.

This yields a snowball effect that stimulates growth of the pool.

None of the above results depend on the numerical values of the demand rates or cost

parameters; these are general results that follow from structural characteristics of the Erlang

loss model. 3

This example illustrated the result that, when each coalition uses an optimal number

of resources, proportional allocations “work” in the (S − 1, S) inventory model with lost

sales. This is also true in several other models with optimized numbers of resources, but

not all. As shown in Sections 4.5.3 and 6.5.2, proportional allocations are also stable and

PMAS-reachable in the M/G/s/s queueing model and in the (S−1, S) inventory model with

backlogging, respectively. However, as shown in Section 5.5, the proportional allocation is

merely close to stable in the M/M/s queueing model. Table 9.1 provides a summary.
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There are two important common threads through our models with optimized numbers

of resources. First, all of them featured Poisson demand processes, which ensures that

proportional allocations are easily implemented via a simple process for cost realizations,

as shown in Section 6.5.4. Second, stability of a proportional allocation is guaranteed only

when players are associated with a single attribute and the optimal cost function satisfies the

elasticity property—a property that only the M/M/s queueing model lacked.

Example 9.2. (Fixed numbers of resources.) Reconsider the service departments from

Example 1.2. This setting can be accurately modeled using the Erlang delay game with fixed

numbers of servers that we studied in Chapter 5. For this model, we showed in Section 5.4

that if all players have the same resources-to-demand ratio, then a proportional allocation

“works”. However, if the characteristics of a player cannot be adequately captured in a single

real number, e.g., when a player brings in a large number of resources but a relatively low

demand rate, then a proportional cost allocation may fall outside the core.

Nevertheless, a stable allocation of expected costs is always guaranteed to exist,

irrespective of how many players there are, how many servers everyone brings in, or what their

demand rates are. Given this result, certain allocation rules from cooperative game theory,

such as the nucleolus, are then guaranteed to transform the cost figures of all coalitions into

a stable allocation. 3

Under fixed numbers of resources, this example illustrated the result that that a stable

allocation always exists in the M/M/s queueing model. A stable allocation was also

guaranteed to exist for the M/G/s/s queueing model and for the (S − 1, S) inventory model

with lost sales. We went beyond existence in Section 6.4 for the (S − 1, S) inventory model

with backlogging, where we showed that an allocation based on pipeline stock realizations is

stable. Table 9.2 provides a summary.

In Chapter 7, we considered resource pooling games derived from a more general

inventory model featuring non-stationary, dynamic demand processes. Despite their inherent

complexity, we proved that these games still always admit a stable allocation.

In Chapter 8, we analyzed allocation rules on the class of elastic single-attribute

situations, which includes, e.g., the setting of Example 9.1. We showed that the proportional

rule is axiomatically characterized by continuity and non-manipulability (see Section 8.2).

Proportional allocations do come with the downside that a smaller player might reap more

benefits than a bigger player (see Section 8.3). To avoid this issue, we introduced concavicatied

marginal rules in Section 8.6 and proved that, when the underlying cost function is concave,

they accomplish a stable allocation that assigns larger benefits to larger players.

All these are elegant, arguably beautiful, results from a theoretical perspective. Yet, they

also have an important practical implication: for the settings considered, resource pooling

arrangements are not only beneficial for the society as a whole, but can also be supported by

a stable cost allocation. This means that more collaborations could take place in practice.
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Currently, there are many places where resources are not shared (e.g., because people are

afraid a shared resource will not available at a time they need it) but this thesis has shown

that as long as an adequate cost allocation rule is used, resource pooling is often a valid

solution that makes everyone better off. This insight, when combined with the appealing cost

allocation mechanisms that we devised, should pave the way for sustainable collaborations in

practice.

9.3 Lessons and surprises

The following list provides a collection of lessons learned and surprises faced. Although they

are based on the scientific content of this thesis, they are written from a personal perspective:

interspersed are opinions, recollections, and musings.

Proportional allocations are often stable: At the start, the identification of an allo-

cation rule satisfying a number of requirements (stability, population monotonicity,

etcetera) seemed like a daunting task, especially given the complexity of the underlying

queueing or inventory systems. Surprisingly, however, a very simple proportional

allocation turned out to satisfy all the desired properties in many models! It was not

obvious that such an allocation would always keep every possible coalition happy, but

in most models the optimal cost function satisfied the essential elasticity property. The

importance of this property was nicely described in the work of Özen et al. (2011),

who independently and simultaneously derived some of the same results as I did.

Interestingly, the expected cost allocations prescribed by the proportional rule coincide

with many common practices, e.g., charging a fixed fee per flight hour for participation in

an aircraft component pool (assuming that all costs are fully shared and that component

failure rates per flight hour are the same across players). Thus, the results in this thesis

provide support for these flight-hour charges and other similar pricing schemes from a

game theoretical perspective.

Integrality makes life difficult: If only it would always be possible to set resources levels

at arbitrary real numbers. Alas, resources can typically only be varied in discrete

amounts, and the difference between placing one or two spare parts in a warehouse or

between employing one or two service engineers in a repair shop can be massive. This

integrality complicated the analysis substantially, as we often wanted to construct a

queueing system with 1.5 servers in our proofs, but 1.5 is not an admissible number of

servers with a well-defined waiting time. As a result, we frequently found ourselves in

deep analytical waters, as we had to dive into extensions of the Erlang loss and delay

functions. Under optimized numbers of servers, we were still able to prove balancedness

of Erlang loss games, but Erlang delay games turned out to be non-balanced in general,

in contrast to M/M/1 games. The key lesson is that analysis of games often becomes
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substantially more complex when the optimization domain is the set of integers rather

than the set of real numbers.

Difference between M/G/s/s and M/M/s: Under optimized numbers of servers, Erlang

loss games turned out to exhibit different properties than Erlang delay games: The

former class of games always had a non-empty core, whereas the latter class contained

counterexamples. The sole culprit in the M/M/s setting was the integrality requirement

on the number of servers. Surprisingly, this integrality requirement is also present in

the M/G/s/s setting, but somehow doesn’t pose an adverse enough effect there. Why

does this integrality requirement affect the two settings differently, especially when there

exists a tight link between the Erlang delay and Erlang loss functions? I could offer

some mathematical tautologies as an explanation (e.g., saying that the optimal cost

function in the Erlang delay model is not elastic, or that the linear interpolation of the

Erlang delay function is not subhomogeneous of degree zero), but that doesn’t really

advance our understanding. I still find this difference quite peculiar, and I am not even

sure what is more surprising: the fact that everything did work for M/G/s/s, or the

fact that it didn’t for M/M/s.

Seemingly unrelated problems are related after all: At first glance, a single-period

problem seems far removed from an infinite-horizon problem. Nevertheless, the problem

of finding optimal base stock levels in the infinite-horizon spare parts model with

backlogging corresponds to the single-period newsvendor problem, at least from a

mathematical point of view. But that is a known correspondence. What was more

surprising, at least to me, was that the spare parts games with backlogging under

fixed base stock levels are closely linked to linear production games via the pipeline

stock realizations at an arbitrary point in time. This perspective offered a very simple,

intuitive, and constructive proof of balancedness. This easy proof superseded an earlier,

nonconstructive proof with complex inequalities involving the exponential function’s

Taylor expansion that gave no insight at all. The key lesson here is that spotting a

connection with a known problem can often lead to a nicer proof and new insights.

When demands are correlated, information matters: While working on Chapter 7, at

some point I had both a counterexample and a proof for the statement that joining late

is never beneficial. Clearly, that is impossible, so something was wrong. After a careful

check, I discovered the mistake in my analysis: I had not properly kept track of the way

information on previous demands is revealed. Such information is essential if demands

are correlated between periods and between players. This inspired me to extend the

model with observation possibilities. Interestingly, if I had not made the initial mistake,

I might never have thought of this feature. This serves to illustrate that research is filled

with mistakes, surprises, and unexpected detours.
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The concavicated average marginal allocation works: In Chapter 8, we built up con-

cavicated allocation rules for elastic single-attribute situations from marginal alloca-

tions. For a certain class of marginal allocations, we found that the benefits of the

players are always ordered in the same way as their attributes. This also held for the

average of all marginal allocations. But it didn’t hold for all marginal allocations! In

this light, it was quite a surprise that the average did work.

And finally, two more general musings on research and writing based on my own

experiences; basically, two philosophies that I embraced as my PhD project progressed.

Formal models are limited, but powerful: While focusing on deep, mathematical struc-

tures, it is easy to lose track of what we are really trying to accomplish. Our

ultimate goal was not to develop cost allocation mechanism that can be applied in

practice directly, but to generate insights that improve our understanding of cooperation

in stochastic service systems. We did that by formulating and analyzing formal

models, which admittedly are nothing more than tales. Tales, to borrow terminology

from Rubinstein (2012), that provide intellectual entertainment and useful insights,

but tales nonetheless. To spin nice tales, we often adopted a model that was

mathematically tractable at the expense of some realism. For example, we commonly

assumed symmetric and linear cost parameters, free transshipments, identical service

requirements, and Poisson demand processes; we did not concern ourselves with the

difficulty of estimating parameters from data; and we disregarded the issue that resource

pooling may lead to an additional administrative burden. These are limitations, but

they were conscious choices; we never intended for our models to capture reality

perfectly. Our goal was to expand our knowledge. And by simplifying, we can grasp the

world around us. In this way, the limitations of our models are their greatest strength.

A simple example is worth a thousand theorems: Writing this thesis reinforced my

belief that simple examples can already convey most of the information with only a

fraction of the difficulty. I like how illustrative examples keep us from getting lost

in a morass of abstractions and that they can actually present results in themselves,

e.g., an impossibility. Moreover, I consider examples, stories, colloquial language, and

anecdotes to be more friendly to a reader than complex, general models and dry,

impenetrable theorems. Funky examples are concrete and can create an emotional

investment that makes it easier to generate, understand, and remember new scientific

knowledge. Basically, as I progressed in my PhD project, I started clamoring for more

fun and more examples in research papers. Nevertheless, we would never have good

examples without underlying theorems. A theorem provides a result that an example

can actually illustrate, and that is invaluable.
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9.4 Game on!

In the concluding sections of each chapter, we already discussed chapter-specific directions

for future research, usually on the analysis of more general models with less symmetry

assumptions. Next to this, there are several other, more generic future research directions,

all motivated by the work in this thesis.

Risk averse players: Throughout this entire thesis, we assumed that players are risk

neutral. That is, they are only interested in their expected costs. In reality, players

often have a certain degree of risk averseness. Risk averse players would value not

only a reduction in their expected costs but also a reduction in the variance thereof.

Consequently, any decision taken by a coalition would also have to take this variance

into account. To tackle resource pooling between risk averse players, the work of Suijs

et al. (1999) may provide guidance.

Adjustable server speeds: Currently, two streams of queueing games have been considered

in the literature: Erlang loss and Erlang delay games (which feature multiple servers in

parallel with exogenously given speeds) and M/M/1 games (which feature a single server

with an adjustable speed). It would also be interesting to study queueing games that

include both aspects, i.e., multiple servers and adjustable speed. The different speeds

could represent, e.g., the efficiency of alternative types of equipment. Any coalition

would then simultaneously optimize the number of servers and their service rates over a

certain domain, taking into account different operating costs for each of the alternative

speeds. It would be interesting to analyse the resulting cost allocation problem.

Multi-item setting with setup costs: Throughout this thesis, we considered models with

a single item. We do not mean to suggest that capital goods such as airplanes are only

comprised of a single component, of course. The idea underlying our choice for single-

item models is that resource pools for multiple items can often be simply considered as

the sum of separate single-item games. This is indeed true when there are no economic

dependencies across items. However, in the presence of high setup costs for maintenance

activities, the multi-item perspective becomes relevant. As described in Section 3.2.1,

several authors have used cooperative games to analyze sharing of joint setup costs,

though in the context of economic lot sizing problems with deterministic demands. For

stochastically deteriorating components, the synchronization of maintenance activities

to reduce setup costs has been considered in Dekker et al. (1997), Zhu et al. (2012), and

references therein. However, they did not study the resulting cost allocation problem;

there is a research opportunity here.

Empirical validation: This thesis has dealt solely with mathematical models. Conse-

quently, all aspects of real life that could not be formally captured as part of an
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inventory or queueing model were left out. This includes the human factor. To assess

the quality and usability of this thesis’ models, assumptions, and solutions, the proposed

cost allocation mechanisms should be tested in real life. For example, by attempting to

implement them in practice and subsequently observing all the resistance and problems

that arise. Although such empirical validation may be time consuming because it will

likely involve the participation of several companies, it can result in valuable feedback.

Separate pooling provider: Incorporating the OEM or a third-party pooling provider into

the model is also an interesting extension. Especially in competitive environments where

it is important that private information does not fall in the hands of competitors, the

involvement of a trustworthy third party may be essential for the implementation of

a pool. This third party would be provided with all necessary information and would

advise everyone how much stock to carry, without revealing competitor’s information

directly. Of course, this leads to the question of which fraction of the pooling benefits

such a third-party pooling provider would be entitled to.

Contract design: Another interesting direction is to relax the assumption that binding

agreements can be made. In case all players can select their resource levels and

pooling policies for themselves, we can run into the problem of how everyone can be

motivated to act such that the central optimal solution is achieved. Such coordination

might be achieved via incentive-compatible contracts, though it is unclear how to

design those contracts for our resource pooling settings. We remark that, after players

have independently chosen resource levels, the remaining problem can be seen as a

cooperative game with fixed numbers of resources. We refer the interested reader to

Anupindi et al. (2001) and Özen et al. (2008), who hybridized non-cooperative and

cooperative approaches in a newsvendor context. Finally, one can also think about a

more detailed investigation of contracts that are offered by an OEM or a third-party

pooling provider to its customers.

Games for other settings: This thesis showed the value of the cooperative game theoret-

ical approach for research pooling situations. However, resource pooling only makes

sense as long as there are actually some resources around. And our planet’s resources

are finite. This ties in to some of the upcoming problems that humanity is facing this

century. For example, the looming ecological disasters chronicled in, e.g., Catton (1982)

and Diamond (2006) and the colonization of outer space that is required to tap into the

vast resources available there, as advocated in, e.g., Szklarski (2011). The perspective

of cooperative game theory may yield useful insights for international collaboration on

these upcoming problems.
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Summary of Resource Pooling Games

Consider a number of neighboring companies whose primary business processes are all

based around a certain type of resource. These resources (which could be inventories for

retailers, repairmen or spare parts for maintenance organizations, production equipment for

manufacturing firms, medical staff for hospital departments, and so on) are meant to fill

demands of arriving customers. Each company has its own, fixed customer base, but there is

uncertainty: customers for each company arrive according to a stochastic process, and their

service times are generally unpredictable. For example, if the companies are maintenance

organizations, each responsible for maintaining trains and railway infrastructure in different

geographical regions, then demands for their key resources (repairmen and spare parts) are

driven by unpredictable equipment failures, and failure occurrences and repair completion

times cannot be predicted with certainty in advance.

Due to this inherent uncertainty, the number of available resources at a company will

fluctuate over time, and a customer may even arrive to a company to find all resources

occupied. In the maintenance example, sometimes the shelf with spare parts is empty or all

repairmen are busy. In that case, the customer demand cannot be served immediately, and

the shortage may result in costly delays, emergency procedures, lost revenue, or contractual

fines. Meanwhile, a neighboring company may very well have the required resource available.

If companies would be acting separately, then the end result would be one company with

a shortage and another with a surplus—a clear mismatch. If, however, companies would

have joined forces and be sharing their resources, which is referred to as resource pooling,

then they can help each other out in case of a shortage. Moreover, they may be able to re-

optimize their total number of resources, which may lead to additional savings. Altogether,

such collaborations offer the opportunity to benefit from large (statistical) economies of scale.

Nevertheless, independent companies or players are usually not interested in the benefits

of pooling for society as a whole, but in the consequences for their own bottom line. Whether

or not collaboration is beneficial for every individual player depends on who pays for the

shared resources. Hence, a key question is how the collective costs of the pooled system

are allocated amongst the players, and whether or not this is done in a fair way. This cost

allocation problem can be daunting when multiple players are involved.

That’s where this thesis comes in. To shed some light on this problem, we follow the

methodology of quantitative modeling and apply concepts from cooperative game theory.

Assuming that binding agreements and side payments are allowed, we simplify reality into

the mathematical model of a cooperative game, which is essentially a list of the costs that any

coalition (subgroup of players) would have to pay when acting separately. When those costs

represent the total resource and shortage costs of setting up a pooled inventory or queueing

system, we obtain resource pooling games.
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For these games, we examine (existence of) stable allocations of the costs of the pooled

system with all players. Here, “stable” means that no subset of players is allocated more

costs than they would face when acting separately. So, if all players collaborate and the total

resource and shortage costs of their resource pool is split according to a stable allocation,

then no subset of players has an incentive to split off and act separately—all players will be

motivated to join forces.

To determine the cost figures for all coalitions from input parameters (such as the customer

arrival or demand rate, service or lead times, resource costs, and shortage costs), we represent

the pooled systems as inventory or queueing models and determine their performance via

mathematical formulas from inventory theory or queueing theory.

Whereas previous literature on cooperative inventory/queueing games focused on restric-

tive newsvendor andM/M/1 models, this thesis extends the analysis to multi-period inventory

systems and multi-server queueing systems: we study games derived from pooling of M/G/s/s

queues (i.e., Erlang loss systems), M/M/s queues (i.e., Erlang delay systems), and (S− 1, S)

inventory systems. Assuming that players face identical shortage costs, we formulate two

game variants for each of these settings: one in which the total number of resources for any

coalition is optimized and one in which each player brings a fixed number of resources to every

coalition. We also study games derived from inventory pooling in a finite-horizon model with

non-stationary, stochastic demands with arbitrary correlations over time.

For all of these games, we examine the existence of a stable allocation. We prove that,

except for the Erlang delay game with optimized numbers of resources, the existence of a

stable allocation is always guaranteed. In the process of proving structural results for our

games, we run into a technical obstacle: the integrality in the number of resources complicates

the analysis. We tackle this by deriving and exploiting several new analytical properties of

(extensions of) the classic Erlang loss and Erlang delay functions and of the cost function in

the (S − 1, S) inventory model.

Additionally, for the Erlang loss game and the (S − 1, S) game, both under optimized

numbers of resources, we identify a simple allocation that is stable: the one proportional to

players’ demand rates. In proving this, we use that the per-demand optimal cost is elastic

(i.e., non-increasing in the total demand served) and that every player is characterized by a

single attribute (his demand rate) only.

In the final chapter of the thesis, we study general situations in which every player has a

single attribute and the underlying cost function is elastic. For the resulting class of games,

we look beyond stability and propose a new fairness property called benefit ordering, which

says that larger players should reap larger benefits than small players. We prove that this

property is incompatible with stability in general. Afterwards, we relax our fairness properties

into compatible ones, introduce several new cost sharing mechanisms, and show whether or

not they satisfy (relaxations of) stability and benefit ordering in general.
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As an illustration of the types of models and results in the thesis, we conclude this

summary with brief description of one model—the Erlang loss game with optimized numbers

of servers—and one theorem for that model. Formally, we have a set of players N , and

customer arrivals for any player i ∈ N are governed by a Poisson process with rate λi.

Customers are served by servers (on average, service takes one unit of time) and resource costs

for servers amount to h per server per unit of time. If a customer finds no free server upon

arrival, he is lost and a penalty cost p is incurred. So, if any coalition of players M ⊆ N would

set up an optimal Erlang loss system for their joint arrival rate λM =
∑

i∈M λi, then their

long-term average costs per unit time would be c(M) = mins∈{0,1,...} {hs+B(s, λM )λMp},
where B(s, λM ) is the probability that an arriving customer is lost when the system has s

servers and faces arrival rate λM .

Analysis of (an extension of) the Erlang loss function B yields the following theorem: if all

players collaborate, facing total costs c(N), then a relatively simple proportional allocation,

which assigns xi = c(N)λi/λN to every player i ∈ N , is stable. In other words,
∑

i∈M xi ≤
c(M) for all coalitionsM ⊆ N . This means that resource pooling, at least under this allocation

mechanism for the Erlang loss setting, is beneficial for all parties involved. It should be

stressed that this is only one theorem for one model, included for illustration only. Many

other results and models, some with a similar flavor, are contained in this thesis as well.
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