126,629 research outputs found

    Cost-Aware Optimisation of Cache Allocation for Information-Centric Networking

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Information-centric networking (ICN) is an emerging paradigm that decouples content from the host to achieve fast and cost-efficient communication and content distribution in the future Internet. A key feature of ICN is the deployment of ubiquitous in-network caching to speed up service delivery and improve network resource utilisation. ICN caching has been widely studied in terms of caching strategies and caching performance. However, the economic aspect of ICN has received marginal consideration so far, although it is vital to understand the potential cost-efficiency of ICN before its wide deployment in service provider network. To address this issue, we propose a cost-aware caching scheme to study the Quality-of-Service (QoS) and cost of ICN and investigate the inner association between them. Two new models are designed to characterise the cost and QoS of ICN with arbitrary topology under heterogeneous bursty content requests. A multi-objective evolution algorithm is adopted to find the optimal cache resource allocation. Numerical results show the effectiveness of the proposed scheme in achieving cost-efficiency and QoS guarantee in ICN caching

    A flexible QoS-aware routing protocol for infrastructure-less B3G networks

    Get PDF
    International audienceCurrent mobile devices support multiple network technolo- gies and network composition via such devices can enable service provisioning across heterogeneous networks. One of the key challenges for realizing this view is inter-domain routing. Indeed, given the diversity of involved network technologies and infrastructures, a exible routing protocol that takes into account their quality properties and dynam- ics is an important requirement. In this paper, we present a exible quality-aware routing protocol for infrastructure-less B3G environments that enables discovery of routes with op- timal bandwidth, delay or cost according to the preference of each client. The protocol is based on the Optimized Link- State Routing (OLSR) protocol and is designed to enable computation of quality-aware routes in multi-network envi- ronments. We detail the protocol, discuss its deployment and provide experimental results

    Demonstration of latency-aware 5G network slicing on optical metro networks

    Get PDF
    The H2020 METRO-HAUL European project has architected a latency-aware, cost-effective, agile, and programmable optical metro network. This includes the design of semi-disaggregated metro nodes with compute and storage capabilities, which interface effectively with both 5G access and multi-Tbit/s elastic optical networks in the core. In this paper, we report the automated deployment of 5G services, in particular, a public safety video surveillance use case employing low-latency object detection and tracking using on-camera and on-the-edge analytics. The demonstration features flexible deployment of network slice instances, implemented in terms of ETSI NFV Network Services. We summarize the key findings in a detailed analysis of end-to-end quality of service, service setup time, and soft-failure detection time. The results show that the round-trip-time over an 80 km link is under 800 µs and the service deployment time under 180 seconds.Horizon 2020 Framework Programme (761727); Bundesministerium für Bildung und Forschung (16KIS0979K).Peer ReviewedArticle signat per 25 autors/es: B. Shariati, Fraunhofer HHI, Berlin, Germany / L. Velasco, Universitat Politècnica de Catalunya, Barcelona, Spain / J.-J. Pedreno-Manresa, ADVA, Munich, Germany / A. Dochhan, ADVA, Munich, Germany / R. Casellas, Centre Tecnològic Telecomunicacions Catalunya, Castelldefels, Spain / A. Muqaddas, University of Bristol, Bristol, UK / O. Gonzalez de Dios, Telefónica, Madrid, Spain / L. Luque Canto, Telefónica, Madrid, Spain / B. Lent, Qognify GmbH, Bruchsal, Germany / J. E. Lopez de Vergara, Naudit HPCN, Madrid, Spain / S. Lopez-Buedo, Naudit HPCN, Madrid, Spain / F. Moreno, Universidad Politécnica de Cartagena, Cartagena, Spain / P. Pavon, Universidad Politécnica de Cartagena, Cartagena, Spain / M. Ruiz, Universitat Politècnica de Catalunya, Barcelona, Spain / S. K. Patri, ADVA, Munich, Germany / A. Giorgetti, CNIT, Pisa, Italy / F. Cugini, CNIT, Pisa, Italy / A. Sgambelluri, CNIT, Pisa, Italy / R. Nejabati, University of Bristol, Bristol, UK / D. Simeonidou, University of Bristol, Bristol, UK / R.-P. Braun, Deutsche Telekom, Germany / A. Autenrieth, ADVA, Munich, Germany / J.-P. Elbers, ADVA, Munich, Germany / J. K. Fischer, Fraunhofer HHI, Berlin, Germany / R. Freund, Fraunhofer HHI, Berlin, GermanyPostprint (author's final draft

    Design issues in quality of service routing

    Get PDF
    The range of applications and services which can be successfully deployed in packet-switched networks such as the Internet is limited when the network does nor provide Quality of Service (QoS). This is the typical situation in today's Internet. A key aspect in providing QoS support is the requirement for an optimised and intelligent mapping of customer traffic flows onto a physical network topology. The problem of selecting such paths is the task of QoS routing QoS routing algorithms are intrinsically complex and need careful study before being implemented in real networks. Our aim is to address some of the challenges present m the deployment of QoS routing methods. This thesis considers a number of practical limitations of existing QoS routing algorithms and presents solutions to the problems identified. Many QoS routing algorithms are inherently unstable and induce traffic fluctuations in the network. We describe two new routing algorithms which address this problem The first method - ALCFRA (Adaptive Link Cost Function Routing Algorithm) - can be used in networks with sparse connectivity, while the second algorithm - CAR (Connectivity Aware Routing) - is designed to work well in other network topologies. We also describe how to ensure co-operative interaction of the routing algorithms in multiple domains when hierarchial routing is used and also present a solution to the problems of how to provide QoS support m a network where not all nodes are QoS-aware. Our solutions are supported by extensive simulations over a wide range of network topologies and their performance is compared to existing algorithms. It is shown that our solutions advance the state of the art in QoS routing and facilitate the deployment of QoS support in tomorrow's Internet

    Quality of Service Provisioning in Manet Using a Cross-Layer Approach for Routing

    Full text link
    Deployment of multimedia applications warrants provisioning of Quality of Service (QoS) in MANET. However, limited battery power, other resource constraints and mobility of nodes make QoS provisioning difficult to achieve in MANET. This difficulty can be overcome by using a cross-layer approach for routing. In [1] Patil et al., proposed a cross-layer routing protocol named Cost Based Power Aware Cross Layer - AODV (CPACL-AODV) which overcomes the limitation of battery power of nodes. Though many similar energy efficient and cross-layer routing protocols have been proposed for MANET, none of them handles QoS. A novel MANET routing protocol, Type of Service, Power and Bandwidth Aware AODV (TSPBA-AODV), which overcomes resource constraints and simultaneously provides QoS guarantees using a cross-layer approach, is proposed in this paper. In addition the effect of variation in nodes' mobility on performance of TSPBA-AODV is compared with that of CPACL-AODV [1] for two different types of network traffic. As shown by the results of simulations performed, TSPBA-AODV performs better than CPACL-AODV for MANET in which nodes move with small speeds (speeds up to 40 Km/hr approx.). In addition the effect of variation in data sending rate of nodes on performance of the protocols is also studied. As shown by the results of simulations performed, TSPBA-AODV performs better than CPACL-AODV for all variations in data sending rate of nodes.Comment: 12 pages, 12 figure

    End-to-end resource management for federated delivery of multimedia services

    Get PDF
    Recently, the Internet has become a popular platform for the delivery of multimedia content. Currently, multimedia services are either offered by Over-the-top (OTT) providers or by access ISPs over a managed IP network. As OTT providers offer their content across the best-effort Internet, they cannot offer any Quality of Service (QoS) guarantees to their users. On the other hand, users of managed multimedia services are limited to the relatively small selection of content offered by their own ISP. This article presents a framework that combines the advantages of both existing approaches, by dynamically setting up federations between the stakeholders involved in the content delivery process. Specifically, the framework provides an automated mechanism to set up end-to-end federations for QoS-aware delivery of multimedia content across the Internet. QoS contracts are automatically negotiated between the content provider, its customers, and the intermediary network domains. Additionally, a federated resource reservation algorithm is presented, which allows the framework to identify the optimal set of stakeholders and resources to include within a federation. Its goal is to minimize delivery costs for the content provider, while satisfying customer QoS requirements. Moreover, the presented framework allows intermediary storage sites to be included in these federations, supporting on-the-fly deployment of content caches along the delivery paths. The algorithm was thoroughly evaluated in order to validate our approach and assess the merits of including intermediary storage sites. The results clearly show the benefits of our method, with delivery cost reductions of up to 80 % in the evaluated scenario
    corecore