10 research outputs found

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF

    Intégration itérative des systèmes avioniques communicants en mode synchrone et asynchrone

    Get PDF
    Les systèmes avioniques modernes sont des systèmes distribués complexes et évolutifs. Ces systèmes sont conçus d’une manière itérative en intégrant à chaque itération une ou plusieurs fonctionnalités. L’ajout de nouvelles fonctionnalités impose des coûts supplémentaires de reconfiguration de telle sorte que l’ensemble du système soit conforme aux exigences temps-réel. Ces systèmes reposent également sur l’adoption d’un protocole de communication déterministe tel que le protocole AFDX. Ce dernier est utilisé dans les avions modernes tels que l’A380 de Airbus et le B787 de Boeing. Il repose sur une communication asynchrone avec limitation de la bande passante. Ce mécanisme permet d’assurer des délais finis de communication. La recherche de plus de déterminisme a poussé la communauté scientifique à chercher d’autres alternatives à AFDX. Le standard Time-triggered Ethernet constitue une bonne alternative. En plus de la communication asynchrone à bande passante limitée, il définit également une communication synchrone. Suivant le type de communication, les approches de vérification des exigences temps-réel diffèrent. Pour analyser les flux asynchrones, on utilise principalement des approches analytiques. Elles assurent un bon compromis entre performance et pessimisme. Pour les flux synchrones, on s’appuie plutôt sur le formalisme de contraintes pour synthétiser un ordonnancement faisable. La combinaison des deux flux constitue un défi en termes de vérification. De plus, les approches de vérification définies ne modélisent ni l’aspect évolutif ni la notion coût.----------ABSTRACT: Modern avionics systems are complex and evolving distributed ones. They are designed iteratively by integrating at each iteration one or more functionalities. Adding new functionality may impose additional reconfiguration costs so that the whole system complies with the realtime requirements. These systems also rely on the adoption of a deterministic communication protocol such as AFDX. The latter is used in modern aircrafts such as the Airbus A380 and the Boeing B787. It relies on asynchronous communication with bandwidth limitations. This mechanism ensures finite communication delays. The search for more determinism encourage the scientific community to look for other alternatives to AFDX. The Time-triggered Ethernet standard is a good alternative. In addition to asynchronous communication with limited bandwidth, it also defines synchronous ones. Depending on the type of communication, verification approaches of real-time requirements differ. To analyze asynchronous flows, we mainly use analytical approaches. They ensure a good compromise between performance and pessimism. For synchronous flows, we rely instead on constraint formalism to synthesize a feasible scheduling. The combination of the two flows is a challenge in terms of verification. In addition, defined verification approaches do not model neither the evolving aspect nor the cost concept

    Model-Based System Engineering Methodology for Implementing Networked Aircraft Control System on Integrated Modular Avionics - Environmental Control System Case Study

    Get PDF
    Integrated Modular Avionics (IMA) architecture host multiple federated avionics applications into a single platform and provides benefits in terms of Size, Weight and Power (SWaP), nonetheless brings a high level of complexity to aircraft control systems. The thesis presents Model-Based System Engineering a novel, structured development methodology to cope efficiently with increased complexity due to IMA. Using ARCADIA methodology and the open source Capella tool, the developed methodology is implemented for a complete design cycle: starting with capturing requirements from the aircraft level to streamlining the development, integration of avionics application in an ARINC 653 platform. The proposed methodology provides effective traceability and management of specification artifacts from aircraft to system to item-level adhering to SAE ARP4754A guideline. Further, the thesis presents the capability of the MBSE framework to effectively address a few technological variants through the proposed methodology. To illustrate the efficiency of the methodology and MBSE approach an Environmental Control System (ECS) case study is presented. The case study focuses on implementing ECS in an IMA architecture using MBSE framework and proposed methodology. However, the derived methodology is also applicable to other systems. Further, the case study also presents a demonstration of integrating Cabin Pressure Control Sub-system (CPCS) into a real-time IMA platform for validation of MBSE approach. In addition, the thesis provides important insights in challenges and advantages of the MBSE process in contrast to the traditional paper-based specification process

    Fully-deterministic execution of IEC-61499 models for Distributed Avionics Applications

    Get PDF
    © 2018 by the authors. The development of time-critical Distributed Avionics Applications (DAAs) pushes beyond the limit of existing modeling methodologies to design dependable systems. Aerospace and industrial automation entail high-integrity applications where execution time is essential for dependability. This tempts us to use modeling technologies from one domain in another. The challenge is to demonstrate that they can be effectively used across domains whilst assuring temporally dependable applications. This paper shows that an IEC61499-modeled DAA can satisfy temporal dependability requirements as to end-to-end flow latency when it is properly scheduled and realized in a fully deterministic avionics platform that entails Integrated Modular Avionics (IMA) computation along with Time-Triggered Protocol (TTP) communication. Outcomes from the execution design of an IEC61499-based DAA model for an IMA-TTP platform are used to check runtime correctness through DAA control stability. IEC 61499 is a modeling standard for industrial automation, and it is meant to facilitate distribution and reconfiguration of applications. The DAA case study is a Distributed Fluid Control System (DFCS) for the Airbus-A380 fuel system. Latency analysis results from timing metrics as well as closed-loop control simulation results are presented. Experimental outcomes suggest that an IEC61499-based DFCS model can achieve desired runtime latency for temporal dependability when executed in an IMA-TTP platform. Concluding remarks and future research direction are also discussed

    Model-based optimization of ARINC-653 partition scheduling

    Get PDF

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen
    corecore