
Model-Based System Engineering Methodology for
Implementing Networked Aircraft Control System on
Integrated Modular Avionics - Environmental Control

System Case Study

Prince George Mathew

A Thesis

in

The Department

of

Mechanical, Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Mechanical Engineering) at

Concordia University

Montréal, Québec, Canada

March 2019

c© Prince George Mathew, 2019

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Prince George Mathew

Entitled: Model-Based System Engineering Methodology for Implement-

ing Networked Aircraft Control System on Integrated Modular

Avionics - Environmental Control System Case Study

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Ivan Contreras

External Examiner
Dr. Ferhat Khendek

Examiner
Dr. Youmin Zhang

Supervisor
Dr. Susan Liscouët-Hanke

Approved by
Martin D. Pugh, Chair
Department of Mechanical, Industrial and Aerospace En-
gineering

2019
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Model-Based System Engineering Methodology for Implementing Networked
Aircraft Control System on Integrated Modular Avionics - Environmental

Control System Case Study

Prince George Mathew

Integrated Modular Avionics (IMA) architecture host multiple federated avionics

applications into a single platform and provides benefits in terms of Size, Weight and Power

(SWaP), nonetheless brings a high level of complexity to aircraft control systems. The thesis

presents Model-Based System Engineering a novel, structured development methodology to

cope efficiently with increased complexity due to IMA. Using ARCADIA methodology and

the open source Capella tool, the developed methodology is implemented for a complete

design cycle: starting with capturing requirements from the aircraft level to streamlining the

development, integration of avionics application in an ARINC 653 platform. The proposed

methodology provides effective traceability and management of specification artifacts from

aircraft to system to item-level adhering to SAE ARP4754A guideline. Further, the thesis

presents the capability of the MBSE framework to effectively address a few technological

variants through the proposed methodology. To illustrate the efficiency of the methodology

and MBSE approach an Environmental Control System (ECS) case study is presented. The

case study focuses on implementing ECS in an IMA architecture using MBSE framework

and proposed methodology. However, the derived methodology is also applicable to other

systems. Further, the case study also presents a demonstration of integrating Cabin Pressure

Control Sub-system (CPCS) into a real-time IMA platform for validation of MBSE approach.

In addition, the thesis provides important insights in challenges and advantages of the MBSE

process in contrast to the traditional paper-based specification process.

iii

Acknowledgments
Today marks the day, after two years of hard work I am completing my thesis with this
thanking note. These two years helped me grow both academically and personally. I want
to take this opportunity to express my gratitude to those wonderful people who supported
me directly or indirectly throughout this journey.

Dr. Susan Liscouët-Hanke, my supervisor, gave me this research opportunity and provided
me with an excellent work environment and the necessary industrial contacts needed for my
research. I am very grateful for the unparallel support, understanding and useful guidance
she has provided me with, in these two years.

I am very grateful to Yann Le Masson and Jean-Richard Coté from Bombardier Aerospace for
providing me with the opportunity to conduct this project and support my visions. I thank
Jean-Richard who provided me with resources on Avionics and further with enthusiastic
encouragement to think out of the box. My special thanks to Yann Le Masson for his patient
guidance and valuable suggestions that mould this project to great success.

I also extend my thanks to Sandro Fagundes, Issa Ibrahim, Vincent Saluzzi and Gustave
Nfonguem from Bombardier for their timely support and valuable advice. Their willingness
to provide their time so generously has been much appreciated.

A special thanks go to my admirable friends in the lab Andrew Jeyaraj, Ezhil Shakti, Hasti
Jahanara, Florian Sanchez, Noah Sadaka, Abdul Malik and many others who were patient
enough to bear my long presentations during lab meetings and support me with constructive
suggestions and ideas throughout the period of work. I also wish to thank Seyyede Shahrzad,
Mahdi Riazat for the moral support they gave me to finish writing this thesis.

I wish to offer special thanks to my friends: Ajay Prasad, Amith Krishnan, Prabjout Kaur,
Angitha Maria Thomas, Linda Kevin, Aneesh Raj, Alen Davis, Lalet Scaria, Jibin John
Joseph, Denny Mathew and others for your understanding and endless support.I thank my
friends from XDIMA team: Khadietou Ndiya, Mohammedreza Sadri for making my eight
months at Bombardier memorable.

I wish to express my deepest gratitude to my friend: Dony Joseph Augustine, who supported
and guided me from my university application till this thesis completion.

Finally, I thank my parents Mathew and Mary, my brother Blessen and my sister Angel for
believing in me and supporting me unconditionally since childhood. I am very grateful to my
parents for helping me study thousands of miles away from home and chasing my dreams.
Therefore, I dedicate this thesis to my dearest family.

iv

Contents

List of Figures ix

List of Tables xiii

Nomenclature xiv

1 Introduction 1

1.1 Background and motivation . 1

1.2 Integrated modular avionics systems . 5

1.3 Towards model-based systems engineering 9

1.4 ECS case study overview and thesis objectives 14

1.5 Organization of the thesis . 18

2 Model-Based System Engineering: State of the Art 19

2.1 MBSE approach and ARCADIA methodology 19

2.2 ECS DIMA implementation . 29

3 Methodology 33

3.1 Methodology overview . 33

3.2 MBSE methodology aligned with ARP4754A and DO-178C 34

3.2.1 MBSE for ARP4754A . 35

3.2.2 MBSE for DO-178C . 41

3.2.3 Multi-level approach . 46

3.2.4 Management of variants . 47

v

3.3 Summary . 50

4 Specification Model Implementation 52

4.1 Aircraft-level specification . 53

4.2 System-level specification . 54

4.2.1 Operational analysis level . 55

4.2.2 System analysis level . 58

4.2.3 Logical architecture level . 62

4.2.4 Physical architecture level . 66

4.3 Item-level specification . 67

4.4 Architecture validation . 69

4.5 Transverse modelling . 74

4.6 Capella viewpoints . 76

4.7 Summary . 83

5 Integration and Demonstration 85

5.1 Plant model development . 87

5.2 The CPCS application . 90

5.3 The ECS HMI . 90

6 Conclusion and Future Works 92

6.1 Future works . 94

List of publications 96

Bibliography 97

A Capella diagrams 106

vi

A.1 Operational Analysis (OA) . 106

A.1.1 Operational Entity Diagram [OEBD] 106

A.1.2 Operational Capability diagram [OCB] 107

A.1.3 Operational Activity Breakdown diagram [OABD] 107

A.1.4 Operational Activity Interaction diagram [OAIB] 108

A.1.5 Operational Activity Scenario [OAS] 108

A.1.6 Operational Architecture diagram [OAB] 109

A.1.7 Operational Exchange Scenario diagram [OES] 110

A.2 System Analysis (SA) . 110

A.2.1 System Contextual Actor diagram [CSA] 111

A.2.2 Mission diagram [MB] . 111

A.2.3 System Functional Breakdown diagram [SFBD] 112

A.2.4 System Functional Dataflow diagram [SDFB] 113

A.2.5 Functional Scenario [FS] . 113

A.2.6 System Architecture diagram [SAB] 114

A.2.7 System Exchange Scenario diagram ES 114

A.3 Logical Architecture (LA) . 115

A.3.1 Logical Functional Breakdown diagram [LFBD] 115

A.3.2 Logical Functional Dataflow diagram [LDFB] 116

A.3.3 Functional Scenario [FS] . 116

A.3.4 Logical Component Breakdown diagram [LCBD] 117

A.3.5 Logical Architecture diagram [LAB] 117

A.3.6 Logical Exchange Scenario diagram [ES] 118

A.4 Physical Architecture (PA) . 119

A.4.1 Physical Functional Breakdown diagram [PFBD] 119

vii

A.4.2 Physical Functional Dataflow diagram [PDFB] 119

A.4.3 Functional Scenario [FS] . 120

A.4.4 Physical Component Breakdown diagram [PCBD] 121

A.4.5 Physical Architecture diagram [PAB] 121

B Logical architecture for the bleed-driven ECS 122

C Physical architecture for the CPCS 125

D Data class for cabin pressure controller 127

E Example for logical scenario 128

F Logical architecture for the bleedless ECS 129

viii

List of Figures
Figure 1.1 Historical schedule trends with complexity by DARPA [11] 3

Figure 1.2 The traditional ‘V- model’ for aircraft development showing an estima-
tion of the introduction, detection, and cost of removal of faults adapted from
ref [16–18] . 4

Figure 1.3 Federated avionics systems vs integrated avionics architecture concept,
adapted from ref [22,23] . 6

Figure 1.4 An example of the paper-based systems engineering process 10

Figure 1.5 Model-based process . 13

Figure 1.6 Environmental Control System (ECS) overview 15

Figure 1.7 (a) Bleed ECS and (b) bleedless ECS architectures inspired from [42] 17

Figure 2.1 Equivalent functional decompositions in Capella and SysML [57] . . . 23

Figure 2.2 Overview of ARCADIA methodology adapted from [56] 24

Figure 2.3 Architecting process for an aircraft system: traditional document-based
method compared to an MBSE approach using the ARCADIA method . . . 27

Figure 2.4 DIMA concept [27] . 29

Figure 3.1 Multi-level engineering specification 34

Figure 3.2 SAE ARP4754A aircraft/system development process adapted from [12] 36

Figure 3.3 ARCADIA implementation of SAE ARP4754A 39

Figure 3.4 Software development process defined by DO-178C 42

Figure 3.5 Model-Based checking process inspired by [76] 45

Figure 3.6 A multi-level process for MBSE implementation 46

Figure 3.7 Horizontal adaptation of generic architecture 48

Figure 3.8 The vertical transition method for variability management 49

Figure 3.9 Comparison between vertical transition and horizontal adaptation method 50

ix

Figure 4.1 ECS case study implementation overview in Capella 52

Figure 4.2 Example of the aircraft-level logical architecture 54

Figure 4.3 Operational capabilities of users (operational capability – OCB) . . . 56

Figure 4.4 Operational activities of users (OABD – Operational Activities Break-
down Diagram) . 56

Figure 4.5 Interactions between ECS operational activities - (OAIB) diagram . . 57

Figure 4.6 Operational architecture for the ECS (operational architecture –OAB) 58

Figure 4.7 ECS mission with system capabilities (mission capabilities -MCB) . . 60

Figure 4.8 System analysis for the ECS (system architecture – SAB) 61

Figure 4.9 Logical generic architecture for the ECS (logical architecture LAB) . 64

Figure 4.10 System analysis obtained after transition – functional system architec-
ture diagram for the conventional bleed-driven ECS (SAB)) 65

Figure 4.11 Item-level logical architecture for the cabin pressure controller (LAB) 68

Figure 4.12 Logical data-flow diagram for cabin-pressure control functions (LDFB) 69

Figure 4.13 Requirement management and allocation 71

Figure 4.14 Entity scenario [ES] for temperature control at SA 73

Figure 4.15 Mode diagram for pressurization control (MSM) 74

Figure 4.16 Illustration of the benefits of using data classes for exchange items . . 76

Figure 4.17 Engineering activities supported by Capella extensions 77

Figure 4.18 ECS model HTML document generated using viewpoint 78

Figure 4.19 Non- functional mass analysis using Capella viewpoint 79

Figure 4.20 Performance analysis using Capella viewpoint 80

Figure 4.21 Timing properties defined using Tideal 81

Figure 4.22 Quality viewpoint developed using Capella studio 82

Figure 5.1 Integration and demonstration overview 86

Figure 5.2 CPCS Simulink model output . 89

x

Figure 5.3 Simulink model for the CPCS . 89

Figure 5.4 Overview of ARINC 661 implementation presented by Presagis [87] . 91

Figure A.1 [OEBD]- Operational Entity Breakdown Diagram 106

Figure A.2 [OCB]- Operational Capabilities Blank diagram 107

Figure A.3 [OABD]- Operational Activity Breakdown diagram 107

Figure A.4 [OAIB]- Operational Activity Interaction Blank diagram 108

Figure A.5 [OAS]- Operational Activity Scenario diagram 108

Figure A.6 [OAB]- Operational Architecture Blank diagram 109

Figure A.7 [OES]- Operational Entity Scenario diagram 110

Figure A.8 [CSA]- System Contextual Actor diagram 111

Figure A.9 [MB]- Mission Blank diagram . 112

Figure A.10 [SFBD]- System Functional Breakdown diagram 112

Figure A.11 [SDFB]- System Functional Dataflow Blank diagram 113

Figure A.12 [FS]- System Functional Scenario Blank diagram 113

Figure A.13 [SAB]- System Architecture Blank diagram 114

Figure A.14 [ES]- System Entity Scenario diagram 115

Figure A.15 [LFBD]- Logical Functional Breakdown diagram 116

Figure A.16 [LDFB]- Logical Functional Dataflow Blank diagram 116

Figure A.17 [FS]- Logical Functional Scenario diagram 117

Figure A.18 [LCBD]- Logical Component Breakdown diagram 117

Figure A.19 [LAB]- Logical Architecture diagram 118

Figure A.20 [ES]- Logical Entity Scenario diagram 118

Figure A.21 [PFBD]- Physical Functional Breakdown diagram 119

Figure A.22 [PDFB]- Physical Functional Dataflow Blank diagram 120

Figure A.23 [FS]- Physical Functional Scenario diagram 120

xi

Figure A.24 [PCBD]- Physical Component Breakdown diagram 121

Figure A.25 [PAB]- Physical Architecture diagram 121

Figure B.1 Logical architecture for the bleed ECS 124

Figure C.1 Physical architecture for the CPCS 126

Figure D.1 Data class for cabin pressure controller 127

Figure E.1 Logical scenario for automatic-to-manual pressurization control for the
electric system . 128

Figure F.1 Electric air conditioning system adapted from [88] 129

Figure F.2 Logical architecture for the bleedless ECS 131

xii

List of Tables
Table 1.1 Benefits of IMA implementation over federated system [24] 7

Table 1.2 Comparison of the effect of integrating additional application [25,26] . 7

Table 1.3 Characteristics of a model . 12

Table 2.1 List of Capella diagrams [59] . 26

Table 3.1 Verification of outputs of the software design process (adapted from
DO-178C) [67] . 44

Table 4.1 List of aircraft level function for ECS use case 53

Table 4.2 Transition of OA elements to SA . 59

Table 4.3 Capella validation rules [78] . 70

xiii

Nomenclature
ACS Air Conditioning System

ARCADIA Architecture Analysis & Design Integrated Approach

ARINC Aeronautical Radio, Incorporated

ARP Aerospace Recommend Practices

BITE Built In Test Equipment

CDS Cockpit Display System

CPCS Cabin Pressure Control System

CSA System Contextual Actor

DARPA Defense Advanced Research Projects Agency

DIMA Distributed Integrated Modular Avionics

ECS Environmental Control System

ECUs Electronic Control Units

EICAS Engine Indication and Crew Alerting System

ES Exchange Scenario

FAA Federal Aviation Administration

FCC Flight Control Computer

FCS Flight Control System.

FMS Flight Management System

FS Functional Scenario

HLR High-level Requirements

HMI Human-Machine Interface

HTML Hypertext Markup Language

xiv

HX Heat Exchanger

IC Integrated Circuit

IDE Integrated Development Environment

INCOSE International Council on Systems Engineering

ISA International Standard Atmosphere

LA Logical Architecture

LCBD Logical Component Breakdown Diagram

LDFB Logical Dataflow Flow Blank

LFBD Logical Functional Breakdown Diagram

LRM Line Replacement Module

LRU Line Replacement Unit

MARTE Modeling and. Analysis of Real-Time Embedded systems

MBSE Model-based System Engineering

MB Mission Blank

MCB Mission Capabilities Blank

MDE Model Driven Engineering

MSM Mode State Machine

MTBF Mean Time Between Failures

NextGen Next Generation

NIST National Institute of Standards and Technology

OABD Operational Activity Breakdown Diagram

OAB Operational Architecture Blank

OAIB Operational Activity Interaction Blank

OAS Operational Activity Scenario

OA Operational Analysis

xv

OCB Operational Capabilities Blank

OEBD Operational Entity Breakdown Diagram

OES Operational Entity Scenario

PAB Physical Architecture Blank

PA Physical Architecture

PCBD Physical Component Breakdown Diagram

PDFB Physical Functional Dataflow Blank

PFBD Physical Functional Breakdown Diagram

R&D Research and Development

RDC Remote Data Concentrator

SA2GE Smart Affordable Green Efficient Phase 2

SAB System Architecture Blank

SAE Society of Automotive Engineers

SA System Analysis

SDFB System Functional Dataflow Blank

SE Systems Engineering

SFBD System Functional Breakdown Diagram

SRATH System Requirements Allocated to Hardware

SRATS System Requirements Allocated to Software

SWaP Size, Weight, and Power

SysML Systems Modeling Language

TRD Technical Requirement Document

TTETHERNET Time Triggered Ethernet

UA User Application

UML Unified Modeling Language

xvi

VLSI Very-large-Scale Integration

VVI Integration, Verification and Validation

WCET Worst-Case Execution Time

xvii

Chapter 1

Introduction
Challenging industry targets for reduction in fuel burn and emission drive the aircraft manu-

facturers to provide better performance with reduced environmental impact. Therefore, they

develop new technologies such as advanced avionics systems, high-efficiency engines, compos-

ite, or advanced materials to reduce the overall Size, Weight and Power (SWaP). To tackle

the competition in the market, aircraft manufactures try to come up with a breakthrough

in technologies within a short development period. However, the system engineering process

for complex system-of-systems1, like aircraft, is not well developed and is one of the reasons

why aircraft development programs are time-consuming and resulting in high product de-

velopment cost and period. Wherefore, manufactures research on methodologies and tools

to improve the efficiency and effectiveness of their development methodologies processes, to

address the new complex technologies.

1.1 Background and motivation

An average period to develop and deploy a new aircraft into the market can range from 7 to

10 years. For instance, from the feasibility study to end product took approximately ten years

for the Airbus 220 (former CSeries) and Boeing 787 Dreamliner [1–3].The urge to provide

a more capable and efficient product lead to high complexity in aerospace systems and the

development process. The term complexity is broad and lacks a single definition. Reference

[4]provides a few examples of complexity that apply to the aerospace industry. The degree

1A set of systems assigned with a task that none of the systems can accomplish on its own.

1

of interaction between systems in aerospace exhibits the coupling complexity. The higher

the degree of complexity, the higher the difficulty in predicting the interaction behaviour.

For example, modern aircraft have a high degree of coupling complexity due to a highly

coupled large-scale system-of-systems with distributed software sub-systems. Moreover, a

rapid growth in complexity can be seen in the beginning of millennium where more than 1000

interconnected Electronic Control Units2 (ECUs) are integrated into the civil aircraft [5].

Further, the complex distributed international supply chains in aerospace create business

system complexity. The A380, largest of all the passenger aircraft have more than 120 sub-

systems which account for almost 5000 ECUs supplied from over 20 countries [6] is an example

of business system complexity. Moreover, there exist cognitive complexity because of the

depth of details and the complex interfaces in aerospace systems. For instance, A350 and

B787 two of the most modern aircraft have approximately 4000 input/outputs (I/O) units

integrated into the avionics systems [7]. In summary, the different kinds of complexity tend

to extend the development duration in the aerospace industry.

Figure 1.1 shows historical trends of product development time as a function of measured

“complexity” for three key industries namely aerospace systems, automobile and integrated

circuits (IC) industries. The aerospace industry shows a linear increase in the development

period with an increase in complexity. The aerospace industry requires innovation in design,

integration, and testing to reduce the development period and catch up with the automobile

industry. One of the main reasons for the long development time is the strict certification

process that requires the aircraft manufacturer to show compliance with regulations and

standards while meeting the customer requirements. That is, the authorities need to be

satisfied that each element is validated and verified against its intended function and should

be fault proof and deterministic [8–10].

2ECU is an embedded system that controls electrical systems or sub-systems

2

Figure 1.1: Historical schedule trends with complexity by DARPA [11]

The SAE APR4754A, “Guidelines For Development Of Civil Aircraft and Systems” is the

governing guideline for aerospace to cope with the complexity [12]. The development process

is graphically represented by the so called V-cycle or V-model [13]. The early phase of the

process consists of design and specification and validation of the artifacts. Validation is the

determination that the requirements for a product are correct and complete [12].That is,

Validation ensures that the design and specification are for developing the right product.

The later phases consist of development, and implementation, integration and testing with

verification. Verification is the evaluation of an implementation of requirements to determine

that they have been met [12]. That is, verification establishes whether the product is built

right. Faults can be introduced at any stage of the aircraft program. Figure 1.2 depicts the

cost of the late detection of faults during software development has been characterized by

Lewis and Feiler [14,15]. The later the faults are discovered in the development process, the

costlier they are to correct, and the more significant is their impact on the schedule of the

development program. Further, the V-model shows how a wrong decision made in system

design affects the software development, thus the whole system.

3

However, the majority (70%) of the faults are introduced in the early design and analysis

phase and are caused by errors in requirements and system interaction or interface definitions.

Moreover, 80 % of these errors are detected in the verification phase which requires fifty-

five times more nominal cost for fault removal than in the design phase. The reason for

these costly errors is mainly because of challenges in the validation process as the aerospace

industry has failed to adequately address the increase in complexity during design and early

analysis.

Figure 1.2: The traditional ‘V- model’ for aircraft development showing an estimation of the
introduction, detection, and cost of removal of faults adapted from ref [16–18]

From the previous paragraph, it is clear that the faults increase the development time. Fur-

ther, the faults are more likely to occur in complex system design due to the coupling and

cognitive complexity. A fair share of complexity is due to the integration and optimization

efforts known as “IMA (Integrated Modular Avionics) or open architecture concepts,” in air-

craft control systems to make the aircraft more efficient.The following section presents the

IMA architecture.

4

1.2 Integrated modular avionics systems

The Federal Aviation Administration (FAA) definition of IMA is “a shared set of flexible,

reusable, and interoperable hardware and software resources that create a platform that

provides services designed and verified to a defined set of safety and performance requirements

to host applications that perform aircraft functions” [19]. Boeing 777, one of the early user

of IMA spend forty-seven percent of it is development cost for systems only; out of which

30% was used for hardware development, Validation, Verification, and Integration (VVI)

and seventy percent for software development and VVI [20, 21]. That is, 33% of overall

development cost was spend on IMA software. Hence, it is clear that the 8 to 12 % increase

in development cost and five times increase in the development period of aerospace systems

as depicted in Figure 1.1 is also because of complexity introduced by IMA. Compared to the

traditional federated avionics systems, the IMA promise to increase the overall functionality

of the aircraft by increasing integration as shown in Figure 1.3.

In a federated avionics architecture, each aircraft function has a standalone controller unit,

called Line Replacement Unit (LRU) composing of application software, hardware board, and

operating system and dedicated wiring for each connection. That is, from the landing gear to

the Environmental Control System (ECS), from flight controls to the electric system, every

aircraft system is equipped with its own control logic (function) and physical boxes. The

impact during the loss of an aircraft function determines the criticality. Higher the impact

hazard higher will be criticality. The benefit of the traditional system is that each aircraft

function has assured access to the processors. Further, the federated system provides critical

functional separation, that is a low-critical aircraft function cannot corrupt critical functions

as they are separate LRUs that are loosely coupled. However traditional architecture cannot

optimize the use of resources. Present processing units have advanced capability than LRU

needs and limit many processors with lower utilization. Furthermore, each LRU requires

multiple power supplies, networks, and I/O connectors. The rapid increase in the number

of subsystems designed to provide a specific solution; this means more LRUs and increase in

total weight, power, and wiring. As a result, the cost of operation for an airline to support

5

modifications and maintenance logistics is more significant in federated systems.

Figure 1.3: Federated avionics systems vs integrated avionics architecture concept, adapted
from ref [22,23]

These control systems, as well as their size, weight, and cost could be significantly optimized

6

if they shared a common hardware platform called Line Replacement Module (LRM). An

IMA host multiple mixed critical aircraft functions in a single module by effective sharing of

resources as shown in Figure 1.3.

The IMA implementation provides benefits in Mean Time Between Failures (MTBF)3, the

number of electronic systems reduced, percentage volume reduction, percentage power re-

duction, and weight reduction as shown in Table 1.1.

Table 1.1: Benefits of IMA implementation over federated system [24]

Impact factor Benefits compared to federated architecture

MTBF 1.67 times to 4 times increase

Reduction in the number of

electronic systems

14 to 145 electronic systems eliminated

Impact on avionics weight Up to 350 pounds weight saving (2000 pounds for Boeing

787 using Common Core System)

Impact on space utilization Up to 50 percent volume reduction

Impact on power consumption 25 to 50 % power savings

Further, Boeing observed the effect of integrating the additional software applications4 in

B777 compared to former federated architecture as shown in Table 1.2.

Table 1.2: Comparison of the effect of integrating additional application [25,26]

Related hardware cost (%) Related software complexity

(%)

IMA enclosure +

1st application

Each additional

application

IMA enclosure +

1st application

Each additional

application

Federated 100 % 100 % 100 % 100%

Integrated 155 % 25 % 110 % 60 %

3MTBF is a quantitative measure of hardware or component reliability.
4In the assumption that integration of related functions of equal size & complexity is carried out; 25%

error margin

7

An IMA is characterized by three key attributes:

1. Integration: Integration of information leads to high operational effectiveness. More-

over, system reliability is increased through the integration of resources (shared re-

sources) reducing duplication.

2. Modularity: Modularity replaces Line Replacement Unit (LRU) with Line Replace-

ment Module (LRM). LRM decreases the Size, Weight and Power (SWaP) through

hosting multiple LRU applications in a single hardware. These multiple applications

share common resources through space and time partitioning. While the space parti-

tioning guarantees the integrity of the allocated program & data memory space and

registers, the time partitioning guarantees timely access to processing and communica-

tion resources. Further, robust partition provides benefits to host multiple applications

with mixed criticality. Modularity also brings flexibility through the addition or re-

moval of functions or hardware without affecting the functionality of other systems.

Furthermore, LRMs can be reconfigured or changed in architecture and expanded to

accommodate future requirements by adding more modules. Thus, modularity also

supports incremental certification process.

3. Standardization: Standardization of IMA implementation brings a generic architecture

that can be adapted for various applications or functions. Also, standardization brings

less unique designs and parts that help logistics with increased supportability and

reduced documentation, test equipment and configuration management.

The DIMA (Distributed Integrated Modular Avionics) concept an advanced IMA proto-

type that defines a networked and real-time computing architecture for airborne systems,

aiming to streamline the development, integration, and maintenance processes of avionics

software and hardware. With DIMA, application modules share computing and hardware

resources, a communication network, and lower-level software layers, which allows system

suppliers to focus on the application layer, enables reconfiguration in the presence of faults

and significantly decreases the weight of avionics systems compared to traditional federated

8

architectures. Shared computing resources have so far been mainly used for primary avion-

ics functions in modern aircraft. As part of the Smart Affordable Green Efficient phase 2

(SA2GE) consortium project, a concept of highly integrated control systems using IMA is be-

ing studied at Bombardier Product Development Engineering, Aerospace [27]. DIMA reflects

a highly complex system with a considerable number of interfaces and inter-dependancies.

Integration issues and defects realized during downstream lifecycle phases are some of the

challenges faced by system engineering process when implementing complex systems avionics

systems [28]. The following section presents the systems engineering process in aerospace

industry.

1.3 Towards model-based systems engineering

A broad definition of systems engineering (SE) by INCOSE is as follows. “Systems engi-

neering is an interdisciplinary approach and means to enable the realization of successful

systems. It focuses on defining customer needs and required functionality early in the de-

velopment cycle, documenting requirements, and then proceeding with design synthesis and

system validation while considering the complete problem: operations, cost and schedule, per-

formance, training and support, test, manufacturing, and disposal. SE considers both business

and technical needs of all customers with the goal of providing a quality product that meets the

user needs” [29]. Therefore, systems engineering methodologies are considered appropriate

to deal with the complexity and to design specification from stakeholders5 needs. NASA has

been using and developing SE methods since 1995 [30]. For instance, NASA applied systems

engineering (SE) approach for the design, construction, and validation process of a lunar

excavation prototype (Lunabot) and the project was able to achieve all the stakeholder and

subsequent derived requirements [31]. SE has been used in the software development process

prior to its application in aerospace systems development [32,33].

5Stakeholder can include users, operators, acquirers, owners, suppliers, developers, builders, and main-
tainers of a system

9

The artifacts of systems engineering are information such as stakeholder requirements defini-

tions, requirement analysis, architectures, interface definition documents, test cases, scenarios

and more. Although the system engineers deploy various models to deal with the aspects of

functional, behavioural, safety, cost, mass and power, the majority relies on a paper-based ap-

proach to capture the artifacts. In a paper-based approach, information is stored in multiple

documents as shown in Figure 1.4 (a).

Figure 1.4: An example of the paper-based systems engineering process

The fact that in DIMA platforms resources are shared, makes the development and certifi-

cation of individual real-time applications much more challenging. The initial engineering

phases of such systems are critical. These early phases condition the aptitude of the ar-

chitecture used to answer the needs of the clients, as well as the proper distribution of the

requirements toward the components. The process is iterative between stakeholders and

engineers in different disciplines until the design specification is matured. However, when

information is spread across different documents in a paper-based approach, engineers face

the following challenges such as [33]:

10

1. Requirements consistency: Systems engineering is a multi-level, multi-stage process

dealing with the various degree of information. Consistency is the uniformity or con-

formity of requirements throughout the design process. Although consistency in re-

quirements is necessary to develop a quality product that meets user needs, it is often

difficult to maintain in document-based process. For instance, the system engineer

could interpret stakeholder’s requirements differently due to ambiguity. This ambigu-

ity may introduce unintended capability and as a result diversion from stakeholders

needs leading to high production cost.

2. End-to-end traceability: The by-product information at each level or stages should be

maintained without losing up-, down- and horizontal traceability. In the document-

based process, it is time-consuming to keep up the end-to-end traceability.

3. Changes: Additional resources and the workforce is required to track the changes in

multiple separate documents at a different level or stages. Each change should be

processed manually to account for end-to-end traceability and consistency.

4. Integration: When dealing with a system of systems or a system with multiple sub-

systems, integration of information as a whole system is difficult

For the aerospace industry, where systems are highly complex and critical, the maturity or

completeness of the specifications or artifacts are essential. Moreover, being an iterative pro-

cess, document-based systems engineering for complex aircraft systems makes it challenging

to determine the requirements consistency, changes, end-to-end traceability, validation and

integration than usual systems. Because of the lack of tools to analyze and design complex

and highly integrated aircraft systems, engineers must resort to time-consuming simulations,

and multiple redesigns and testing phases before the performance of a system can be judged

as adequate. Moreover, simulation-based methods do not typically provide rigorous perfor-

mance or stability guarantees, and the result is that critical functions are usually implemented

on a separate dedicated network, increasing the platform complexity, cost, and weight. Fur-

ther, the current aircraft are developed by distributed suppliers spread across the world,

and it is challenging to determine consistency and traceability. For instance, the design,

11

engineering, manufacturing of Boeing 787 Dreamliner distributes to a global network of 700

suppliers [34] and came across several delays as aircraft failed to meet stakeholders needs [34].

The paper-based approach hardly supports the current distributed and multi-disciplinary sys-

tem engineering. Therefore, a novel system-engineering framework needs to be defined and

evaluated to advance state of the art in system engineering practices and methodology and

to cope with the increasing complexity. The model-centric Model-Based System Engineering

(MBSE) seems promising to address the challenges named above [35,36].

A model in an MBSE is a self-explanatory representation that is used to explain the process

behind a real-world system or event. In other words, an abstraction of a system, aimed at

understanding, communicating, define or design some aspects of this system [37]. A model to

be used for engineering purpose should have the characteristics expressed in Table 1.3.

Table 1.3: Characteristics of a model

Abstract Highlight relevant aspects

Understandable Represented in a way that is readily understood by the viewer

Accurate Reliably represents the actual or modelled system

Predictive Can be used to answer questions about modelled systems

Inexpensive Must be low-cost to construct and study

MBSE is a formalized application of modelling to support system requirements, design, anal-

ysis, verification and validation activities beginning in the conceptual design phase and con-

tinuing throughout development and later life cycle phases [38]. Characteristics of the model

described in Table 1.3 helps to provide an overview of the whole system, its interfaces and

eliminates ambiguity to the highest level. Modelling has been used to support certain aspects

of early analysis and design phases such as safety and performance. However, MBSE intro-

duces standardized modelling languages that can be utilized to represent a system through

unified information models. Moreover, MBSE tools provide the capability to integrate differ-

ent models and maintain a centralized architecture definition. Figure 1.5 shows the MBSE

approach.

12

Figure 1.5: Model-based process

To conclude, aircraft development is one of the most complex and challenging processes due

to the overall design complexity and because of the lack of proper tools to support the early

design and analysis phases. However, MBSE can address the challenges faced during the

early design and analysis of highly complex aircraft systems.

This thesis is a part of a larger research and development (RD) activity at Bombardier

Aerospace called XDIMA [39]. The overall objective of the RD activity is to increase the

maturity level in several facets of the management of the complexity induced by the architec-

tures and development through MBSE. However, transitioning from traditional SE to MBSE

environment comes with the following challenges:

• The modelling language should be able to express the complex domain-specific models

or should be able to provide an extension.

• The tools to build and manipulate models should be efficient for use and ease for

13

learning.

• The MBSE environment should be able to support the methodology in the domain

specific guidelines and standards.

• The framework should be compatible with existing design support tools. However,

sometimes the organization needs to spend resources in developing the bridge between

tools or to enhance the modelling capability.

• The widespread adoption of MBSE should be implemented to facilitate a unified rep-

resentation of artifacts.

• The organization should be developing internal manuals or guidelines to avoid any

ambiguity between the MBSE expression or terminologies with the former process.

Moreover, these manuals should also include how the model should be interpreted

depending upon the scope of the stakeholder.

• The environment should support real-time collaboration and track all the projects,

versions, libraries, and dependence.

Therefore, to address some of the above challenges, this thesis provides a case study on

implementing the complete design cycle of a complex system in the DIMA platform using an

MBSE framework.

1.4 ECS case study overview and thesis objectives

The Environmental Control System (ECS) is selected as the ideal candidate for the case

study. As presented in Figure 1.6 ECS is networked aircraft control system with complex

interfaces and interdependencies.

Aircraft encounter an extensive range of flight and ground conditions, and it is essential that

crew and passengers be kept in safe and comfortable conditions with the equipment in an

14

operating enclosure. Within the operational limit, aircraft experiences extreme conditions

[40,41]. For instance, even though outside temperature is sub-zero (up to -800 C) the internal

temperature should be maintained at 210 C - 250 C. At the same time, the outside pressure

decreases with increasing flight altitude. For example, the outside pressure at 41000 ft is

approximately 2.59 psi which would cause hypoxia. The maximum cabin altitude6 allowed

without causing distress to occupants is 8000 ft. In other words, the differential pressure

must be controlled.

The three main functions of ECS are as follows:

1. Provide and control ventilation (implemented by the air-conditioning sub-system)

2. Control pressurization (implemented by the pressurization sub-system)

3. Provide equipment cooling (implemented by the equipment cooling sub-system)

Figure 1.6: Environmental Control System (ECS) overview

6Pressurization inside the aircraft is defined either in cabin altitude or in terms of the differential pressure
between the atmosphere and the cabin pressure.

15

An overview of ECS and its interface with other aircraft system is depicted in Figure 1.6.

The primary users of ECS are flight crew, cabin crew, passengers and maintenance crew.

For the ECS to perform its intended functions effectively, it needs to interact with other

aircraft systems such as: doors, Flight Management System (FMS), landing gear system and

emergency oxygen system. For efficient communication between the flight crew and ECS,

Human-Machine Interface (HMI) requirements are essential. The ECS case-study focuses on

the air conditioning controller and a cabin pressure controller.

Generally, an ECS includes an air-conditioning subsystem, a cabin pressure control subsys-

tem, and equipment-cooling systems. There are two main technological categories for ECS

as shown in Figure 1.7: the so-called conventional bleed air-driven ECS and a more-electric,

so-called bleedless ECS (such as in the Boeing 787 [42]). In bleed ECS, the bleed air from

the engine is the source of cabin air. Whereas, in bleedless ECS, ram air will be the only

source. The ram air is compressed through a compressors. The compressors are rotated using

motors, which is electrically powered by generator.

Electro-pneumatic and electric technologies for pressure control are variants in pressurization

control. Electro-pneumatic pressurization technology uses both electric and pneumatic power

to control the outflow valves. Electric pressurization operates entirely on electrical resources,

and as a result, an aircraft with electric pressurization needs to include a safety pressure-

relief function or redundancy to cope with electrical malfunctions. The equipment cooling

system is required to provide suitable operating conditions for the safety-critical equipment.

Generally, an ECS features two types of equipment cooling systems: (a) Equipment bay

cooling provides cooling for avionics systems and (b)In-system cooling provides cooling for

the ECS subsystem.

16

Figure 1.7: (a) Bleed ECS and (b) bleedless ECS architectures inspired from [42]

The “aircraft energy source” (in Figure 1.6) is a container for any system providing electrical

or pneumatic power to the ECS. For the case study, the aircraft engines, the auxiliary power

unit (APU), batteries, and airport facilities are considered. The only exception is for bleedless

implementation, wherein pneumatic power generation is part of the ECS.

To summarise, the ECS is a complex networked aircraft control system with a higher number

of interfaces and interdependencies. Therefore, for the case study, the ECS will be imple-

mented on an IMA platform using SA2GE consortium project resources under the XDIMA

project. The case study will investigate and evaluate the capability of MBSE framework

through the following objectives.

1. Develop a practical, reusable MBSE methodology for the aerospace industry for IMA

implementation of networked aircraft control systems.

17

2. Develop an ECS case study to evaluate the developed methodology

3. Integrate the cabin pressure controller into an IMA demonstrator for the validation and

verification of the pressure controller specification.

1.5 Organization of the thesis

In order to achieve the objectives, the presented work is organized in the following way.

The state of the art of MBSE is presented in chapter 2. The early design and analysis

phase problems for implementing ECS in an IMA configuration are outlined. Next, the

selected MBSE framework to address the challenges faced when implementing the case study

is presented.

In Chapter 3 the methodology to address the challenges is outlined in chapter 2. The method-

ology considers the multi-level system engineering process and the aircraft system develop-

ment process described by guidelines in the aerospace industry.

Chapter 4 includes the specification models developed using the defined methodology. Var-

ious viewpoints that enhance the model properties are checked to analyze the potential on

tool infrastructure. Chapter 5 presents the integration into the XDIMA demonstration plat-

form.

The conclusion to the research work is presented in Chapter 6 along with future work and

improvements. Additionally, Appendix A provides an overview of Capella (MBSE framework)

diagrams. Appendix B, C, D, E provide examples of specifications defined in Capella and

Appendix F gives a short description of an electric air conditioning system modelled in

Capella.

18

Chapter 2

Model-Based System Engineering: State

of the Art
Implementing an IMA configuration for networked control system would increase the system

reliability and fault tolerance. Further, adopting a controlled, disciplined, and consistent

system engineering process like MBSE would enhance fault avoidance. In this section, the

state of the art of model-based system engineering and IMA case study is discussed.

2.1 MBSE approach and ARCADIA methodology

The MBSE method helps to eliminate challenges faced by document-based systems en-

gineering. At present, there are methods available that can be divided into three cata-

logues [43,44]:

1. Modeling Language and Frameworks: These standards are used to express and commu-

nicate models. The models provide better understanding and interpretation by users

and can be used for analysis and processing by programs. Some of the examples for

this category are modelling language (SysML - Systems Modeling Language [45], UML-

Unified Modelling Language [46]), model exchange format (XMI), representation model

(diagram definition, documents).

2. Mapping Specifications: These standards are used for the integration of models across

multiple domains and communities. That is, these specifications helps to map, integrate

19

and provide interoperability across multiple sources and forms of models. For instance,

the SysML-Modelica transformation specification provides a bi-directional mapping

between SysML and Modelica [47].

3. Problem-specific frameworks, models and reference data: These are generated and

shared for a particular system, and problem types. An example would be Architec-

ture Modeling Language (UPDM - Unified Profile for DoDAF/MODAF [48]) or Hard-

ware/Software Systems (MARTE -Modeling and Analysis of Real-time and Embedded

systems [49])

The UML is a collection of diagrams that depict software structures graphically. UML is a

modelling language that helps to cope with complex structures by specifying, designing and

documenting the artifacts graphically. Further, UML is object-oriented and focus mainly on

data, interaction and evolution. Data is modelled using class diagrams while the interactions

are depicted through a collaboration or sequence diagram. Evolution focuses more on the

states of the system and their transition. However, each diagram is developed as separate

entities1, and UML does not fully define a relationship between them. Moreover, from a

software point of view, the same impact of UML can be obtained through informal, box and

line diagrams drawn in standard drawing or diagram software. One reason is that software

engineers do not prefer complexity or formality at an architectural level.UML is specifically

used for software analysis. However, the UML profile is suitable for system engineering of

complex systems if additional concerns of stakeholders can be addressed. From this idea,

SysML was created.

SysML is a modelling language and an extension of UML 2 that supports the specifica-

tion, analysis, design, verification, and validation of systems that include hardware, software,

data, personnel, procedures, and facilities [45]. SysML provides two new diagram types

called requirements diagram and parametric diagram. The requirements diagram provided

the capability to support requirements and traceability. Furthemore, the parametric dia-

gram provides the capability to define the mathematical relationship between software and

1Entities are something capable of an independent existence that can be uniquely identified

20

environment for verification. For example, parametric diagrams can be used check if the

software can control the environment or the required parameters. However, the parametric

diagram analysis is suitable for the only the ideal model, and when transformed into real

executable software the validity of the analysis is threatened. To overcome this problem

specific framework MARTE was developed.

MARTE is also an extension of UML. MARTE provides modelling capabilities to verify the

schedulability, performance and time. The profile supports the modelling of three aspects

in the real-time embedded systems. They are a software resource model, hardware resource

model and the allocation of the software model to the hardware model [50]. There exist

several MBSE tools that facilitate systems engineering using modelling mentioned above

standards. Some of them are Rational Rhapsody, Papyrus, Microsoft Visio, MagicDraw,

MARTE Profile for Rational Software Architect and MagicDraw.

The evolution of UML to MARTE was to address specific concerns set by the stakeholders.

The segregation of these concerns is called viewpoint in systems engineering. Viewpoint “ is

a systems engineering concept that describes a partitioning of concerns in the characteriza-

tion of a system [51]”. The viewpoints help to identify the design concerns and problems in

a particular aspect. Functional viewpoint, physical viewpoint, information viewpoint, tech-

nology viewpoint, enterprise viewpoint and engineering viewpoint are some of the concerns

specified in ref [52]. The functional viewpoint focus on functions, interaction, behaviour and

interfaces. Further, the physical viewpoint focuses on the link or physical connection, com-

ponents and connectivity to functional aspects. The information viewpoint deals with the

flow of information and how information is managed. For instance, a sequence or collabo-

ration diagram is a subset to this viewpoint. Further, the enterprise viewpoint deals with

requirements management and organizational aspects. Finally, the engineering viewpoint

deals with the design, allocation of functions, validation and verification of system [53]. Each

viewpoint contributes an augment to capture such as performance, structure, mass, thermal

and more. The combination of these viewpoints provide a complete architecture description

of a system [54]. One of the primary objectives of an MBSE framework is to support the

designing of architectural models that meet the stakeholder’s concerns.

21

Although there exist several modelling standards, for implementing an MBSE framework

in the aerospace industry, a significant effort is required to establish a proper model-based

approach, requiring resources, considering a learning curve. The industry has addressed the

complexification of aircraft systems through the establishment of an industry-wide design

guideline ARP4754A [12], a system engineering guide for aerospace systems. However, the

ARP4754A states only the principles and not the practical “how-to,” and it is generally

implemented via a paper-based approach, using requirements documents rather than models

to define, evaluate, validate, and verify the architecture. The main factors of choosing a

useful MBSE framework will depend on the capability to allows engineers to implement

principles specified in ARP4754A, follow other relevant standards, and adequately address

the complexity and configuration of the system under consideration. Airbus Operations have

implemented a model-based approach for the A350 program with great success [55]. However,

being a new approach model-based was limited as certification requested for a specification

understandable for all and the final format was new and time consuming for system engineers

to adapt.

ARCADIA (Architecture Analysis & Design Integrated Approach) methodology [56] devel-

oped by Thales and open source Capella tool was chosen to implement the MBSE framework

in this thesis. One of the reasons was that the de facto modelling language SysML and

MARTE are object-oriented and often there is difficulty regarding comprehension and use

due to lack of appropriate trained highly qualified personnel. Further, instead of focusing

on modelling languages like SysML or UML, ARCADIA focuses on the method and as a

result systems engineers are not required to be a modelling expert. ARCADIA is a struc-

tured engineering method for defining and verifying the architecture of complex systems.

Capella is the tool that implements the ARCADIA methodology. Unlike SysML or UML,

ARCADIA/Capella supports functional analysis. That is, ARCADIA represents functional

requirements in terms of system functions with well-defined inputs and outputs [57]. The

ARP4754A requires functional analysis for complex system development and to determine

the safety aspects. However, SysML does not strictly support concepts of functions and

functional hierarchy but instead implement a function-oriented approach through activity

22

diagrams. Further, SysML also uses blocks to represent functions, and the conceptual differ-

ence between structural element and functions is lost in this process. Furthermore, in SysML

information flow is restricted between activities at the same level as shown in Figure 2.1.

Therefore, it is difficult to realize the information flow at multiple levels of decomposition.

On the contrary, ARCADIA/Capella realize only exchange between leaf functions and only

leaf functions be allocated to the structure. Moreover, Capella recommends to first create

functional flows independently from components architecture, then to allocate functions to

components, and finally to deduce components interfaces from functional exchanges and their

contents [58].

Figure 2.1: Equivalent functional decompositions in Capella and SysML [57]

As illustrated in Figure 2.2, the ARCADIA method defines four different working levels for

the architecting process:

1. Operational Analysis (OA) defines what the customer and users of the system need to

accomplish. The primary objective is to identify the so-called “actors” that interact

with the system, and their associated needs towards the system (e.g., the flight crew,

or cabin crew, performs the activities to regulate the cabin temperature). OA defines

use cases or needs through operational capability2.

2. System Analysis (SA) defines what the system has to do for the user/actor3. This
2Capability of an organization to provide a high-level service leading to an operational objective being

reached.
3Any user or entities that is external to the system.

23

process helps to determine the functions that are needed by the system, such as control

pressurization. SA also perform functional analysis by developing information flow

between functions. The system starts to appear at this working level, and requirements

are consolidated and formalized. SA defines the use cases or needs through system

capability4.

3. Logical Architecture (LA) defines how the system works to achieve the required perfor-

mance. Along with developing functions, this process also identifies the components

that perform these functions. The resultant is a logical architecture. Here, component

exchanges are also justified by allocating functional exchanges. The LA provides a

logical solution to the needs specified in SA and OA.

4. Physical Architecture (PA) defines how the system will be developed and built. This

process sheds light on the architecture’s physical components, such as turbines or com-

pressors, along with the logical functions they perform

Figure 2.2: Overview of ARCADIA methodology adapted from [56]

4Capability of the System to provide a high-level service allowing it to carry out an operational objective.

24

This 4-level process makes sure that the needs of the customer are respected, and require-

ments are accurately allocated towards the components. As a result, the system specification

should be consistent with customer needs. Further, ARCADIA/Capella provides most of the

viewpoint specified in ref [52] through the four working levels. For instance, LA specifies

functional viewpoint and PA specifies physical viewpoint. The framework also supports in-

formation and engineering viewpoints. All levels support the enterprise viewpoint through

requirements management. In ARCADIA/Capella each level transition is an automatic pro-

cess with traceability possible at any level.

First, in the OA the operational capabilities are defined for the actors5 or entities6. For

instance, the pilot, or the cabin crew should have the capability to control or regulate in-

ternal ambient temperature. Then activities and interaction of activities and actors/entities

are specified to meet the operational capability. The second working level is the System

Analysis or the Functional Analysis. Like in the OA, first the system capabilities are de-

fined. For example, “provide acceptable thermal comfort” will be the system capability to

fulfil the pilot’s operational capability of regulating internal temperature. All such system

capabilities together form the mission of the system. The SA also defines the functional

need requirements as functions. Further, SA also supports functional analysis by developing

information flow between the functions. The system starts to conceptualize at this working

level, and requirements are consolidated and formalized. The first two levels provide the need

for the system. SA also perform functional analysis by developing information flow between

functions.

The next working level is the Logical Architecture which specifies how the system must

work to fulfil expectations. At this level, new developed logical functions are allocated to

the realized logical components. The outcome of logical architecture contains all the logical

solution possible for the needs specified in OA and SA. Then the additional analysis is

performed to select a suitable solution.

5Actors are particular case of a (human) non-decomposable operational entity.
6Entity belonging to the real world (organization, existing system, etc.) whose role is to interact with the

system being studied or with its users.

25

Table 2.1: List of Capella diagrams [59]

Diagram Description

Breakdown diagram The component/function/users/activity hierarchy through

a graphical tree.

Capability diagram Provides the needs or use-case of the system and aids in

organizing the functional analysis.

Dataflow diagram Provides information flow between functions or activities.

Capabilities can be highlighted using process chains or func-

tional chains. The chains are sub-routes of dataflow dia-

gram.

Architecture diagrams This diagram shows the allocation of activities to actors

in OA and allocation of functions to components or system.

The diagram also shows the allocation of a dataflow diagram

to interfaces and within the component.

Scenarios Provides the process chains or functional chains that execute

sequentially to fulfil a specific capability. The scenario can

have actors, system and component interaction.

Modes and State Ma-

chine

Provides the working type of a function or actor or system.

For instance, a process or task in an application can have

Dormant, Waiting, running or terminating modes. Alterna-

tively, application management can have a cold start, warm

start, normal or idle. (Flight phases are also an example).

It is used for representing behaviour as the state history of

an object in terms of its transitions and states.

Class diagrams Often, data-class diagrams compress of exchange items or

data parameters utilized in a system

The last working level, the Physical Architecture shows how the system will be developed

26

and built. All the transitions to the next working level are an automated process. Several

diagrams are available in Capella as listed in Table 5 that help to create a centralized ar-

chitecture definition. These diagrams are available to use in all working level. Appendix A

presents the diagrams available at each working level.

As discussed in section 1.3, the specification of aircraft systems is conducted via a paper-

based process. This paper-based process uses aircraft-level requirements, typically called

aircraft-level requirements documents (ARD) and derived system-level requirements, also

called technical requirements documents (TRD). The ARCADIA/Capella provides an en-

hanced view of the specification through OA, SA, LA and PA as shown in Figure 2.3.

Figure 2.3: Architecting process for an aircraft system: traditional document-based method
compared to an MBSE approach using the ARCADIA method

Capella has been tested and proven for aerospace systems engineering. For instance, the

ARCADIA method and the Capella tool have been used for the optimization of a DIMA

architecture in ref [60]. Here, Capella was used to defining functional requirements and

systems constraints and automatically extract for optimization techniques. However, this

prior work was focused mainly on software functions, not the overall system. Therefore,

ARCADIA helps to address the key challenges in the early analysis and design phase for

DIMA architecture.

27

There are commercial tools for variants management, such as pure::variants [61] available

and can be used in Capella. Thales has used pure::variants to deal with large scale variabil-

ity management for flight control computer test means [62]. However, The work shows that

pure::variants provide the system variant7 by fading the design elements that are not part of

the variant. The main problem is that all those faded elements still exist in the model and

is visible to anyone authorized to view only a particular variant. Moreover, the commercial

tools are expensive and therefore effective ways to manage a few variants in Capella should

be defined. Further, ref [63] explored the feasibility of using Capella for flight control sys-

tem architecture exploration in conceptual design. The work also explored development of

reusable catalog of actuator architecture for use and synthesis of FCS architecture.

Bombardier Aerospace has been collaborating with universities to conduct a feasibility study

on ARCADIA/Capella for aerospace systems. One of the prior work is about MBSE approach

for the conceptual design of aircraft high-lift system architectures [64]. This feasibility study

focused on both top-down and bottom-up approaches. The top-down approach was used

to develop a generic high-lift system at OA, SA, LA, and PA levels. Several iterations

were carried out to determine what level of details is sufficient to represent the system.

The bottom-up approach was used to represent an existing architecture graphically. Both

approaches were carried out separately and then compared to demonstrate the effectiveness of

an MBSE approach using the ARCADIA/Capella framework in conceptual design. Another

prior work included a top-down approach for developing landing gear system specification in

a DIMA architecture [65]. The work focused on the detailed design of the physical system

interfaced to a DIMA controller. However, the prior works focused on less complex systems

and parts of the development process. To understand completely how ARCADIA/Capella

can be implemented in an effective manner, a complete development cycle needs to be carried

out. The here presented ECS DIMA implementation case study covers this gap. The next

section presents an overview of the implementation.

7System variant is a variant of a system derived from possible set of solutions.

28

2.2 ECS DIMA implementation

The case study of this thesis mainly focuses on the MBSE approach for effective early analysis

and design phase for implementing ECS in a DIMA architecture. However, it is required to

strictly follow the standards and guidelines to develop an airworthy IMA implementation.

Figure 2.4 presents the DIMA implementation of ECS.

Figure 2.4: DIMA concept [27]

1. SAE ARP4754A: Aerospace Recommended Practices provides systems engineering

guideline for the development of complex aircraft systems [12]. By adopting a suitable

MBSE approach, it is possible to adapt and tailor guideline implementation suitable

to complex architecture like DIMA.

2. RTCA DO - 297: Integrated Modular Avionics (IMA) development and guidance and

certification considerations provides objectives, processes and activities for those in-

volved in the development and integration of IMA modules, applications, and systems

to incrementally accumulate design assurance toward the installation and approval of

IMA system on an approved aviation product [66].

29

3. DO – 178C : Software considerations in airborne systems and equipment certification

standard provides required software development plans and process, and verification

process for approval of software-based aerospace systems. Philosophy is such that

standard will result in fewer errors and equal importance is given to requirement-based

software testing and analyses such as safety and software [67].

4. DO – 331: Model-based development and verification supplement to DO-178C and DO-

278A is supplement that contains modifications and additions to DO-178C and DO-

278A objectives, activities, explanatory text and software life cycle data that should

be addressed when model-based development and verification are used as part of the

software life cycle. Therefore, this supplement also applies to the models developed in

the system process that define software requirements or software architecture [68].

5. ARINC 651: The design guidance for IMA by Aeronautical Radio Inc (ARINC) is

for the definition of the generic hardware architecture with the design philosophy and

recommended practices concerning the design of IMA [69].

6. ARINC 653: Avionics Application Software Standard Interface defines a general-purpose

APEX (APplication/EXecutive) interface between the Operating System (O/S) of an

avionics computer resource and the application software. Included within this speci-

fication, are the interface requirements between the application software and the O/S

and the list of services which allow the application software to control the scheduling,

communication, and status information of its internal processing elements [70]. AR-

INC standards define the central idea of IMA as effective resource sharing and robust

partitioning.

7. ARINC 661: Cockpit display system interfaces to user systems describes the concept of

operation for the standard protocol used between avionic-equipment user applications

(UAs) and the cockpit display system (CDS) [71]. A display unit consists of a window

managed by the CDS. Each window can have multiple layers owned by the UAs, and

each layer can have multiple widgets defined with regard to the UAs.

30

8. SAE AS6802 : Time-Triggered Ethernet (TTETHERNET) standard defines a fault-

tolerant synchronization strategy for building and maintaining synchronized time in

Ethernet networks, for critical integrated applications, IMA and integrated modular

architectures [72]. This standard helps to develop a deterministic Ethernet suitable for

time-critical applications creating a unified data network.

9. ASHRAE Standard 161-2013 : Air quality within commercial aircraft looks at the

factors affecting air quality, ANSI/ASHRAE Standard 161-2013 addresses guidance for

temperature, moisture, pressure, and ventilation. It also greatly takes into account

contaminants, including de-icing fluid, exhaust fumes, fuel, ozone, and bacteria [73].

To transition from federated to a DIMA configuration with effective early analysis and design

phase using MBSE, the following key challenges are addressed in this thesis:

1. Generic architecture: A generic architecture will need to be developed to comprise

all the logical solution possible for an ECS. The question is how to develop a generic,

reusable system architecture, valid for the implementation of various technologies, in-

cluding generic controllers.

2. Variant technological implementations: The case study will efficiently derive vari-

ants of physical systems from this generic system specification without losing upward,

downward, or horizontal traceability.

3. IMA controller architecture: The case study will efficiently develop controller ar-

chitecture for a subsystem. This architecture includes the application or software ar-

chitecture and hardware architecture.

4. ECS HMI architecture: The ECS HMI architecture will be developed for a generic

flight deck specification.

The state-of-the-art shows that a methodology needs to be defined for the model-based sys-

tems engineering process to be reliable and re-useable for multiple aerospace projects. There-

fore, the necessary step is to understand how ARCADIA methodology along with Capella

31

tool can be utilized with aerospace guidelines and standards to define a methodology for

aerospace use-case. Next chapter focuses on aerospace guideline and standards compatibility

with Arcadia/Capella to define the methodology.

32

Chapter 3

Methodology
The thesis aims to develop an MBSE methodology for the aerospace industry for IMA imple-

mentation of complex aircraft control systems. In this chapter, the developed methodology

for ARCADIA/Capella framework is presented.

3.1 Methodology overview

The methodology for the model-based development process of any control system that will

be integrated into an IMA platform needs to comply with the aerospace standards. As

introduced in section 2.2, the following two guidelines define the development process needed

for IMA.

1. SAE ARP4754A: Guidelines for Development of Civil Aircraft

2. DO – 178C: Software Considerations in Airborne Systems and Equipment Certification

The herein proposed methodology addresses three aspects:

1. Mapping between the MBSE steps and the development steps in the ARP4754A and

the DO-178C

2. Implementation of the multi-level approach in the MBSE framework, including a bridge

between the ARP4754A and DO–178C

3. Management of the architecture variants and reusability of the specification model

33

The scope of the methodology is presented in Figure 3.1. The methodology covers the

complete development cycle from aircraft to airborne software.

Figure 3.1: Multi-level engineering specification

The multi-level development process mapped to ARCADIA/Capella is presented in the fol-

lowing section.

3.2 MBSE methodology aligned with ARP4754A and

DO-178C

This section presents the aerospace guideline and how the guideline can be implemented

using proposed methodology.

34

3.2.1 MBSE for ARP4754A

ARP4754A

As its name says, the ARP4754A is the recommended practice to develop complex aircraft

systems. This document is intended to be a guide for both the certification authorities and

applicants for certification of highly-integrated or complex systems. As mentioned in Section

1.1, the ARP4754A is based on the V-model of the development process and identifies three

main engineering levels of specification namely aircraft-level, system-level and item-level as

shown in Figure 3.1.

Aircraft-level: The aircraft-level is the first level, where high-level functions form the idea

of the aircraft. Here, each system is a high-level block to meet aircraft requirements. For

instance, the system such as the ECS, landing gear, and the primary flight-control system

contains only aircraft-level functions without any subsystems. For instance, ECS aircraft-level

function can be “Provide a controlled environment,” and that of landing gear can be “Provide

landing solution and Provide ground maneuvering solution.” The aircraft-level model contains

all the systems required to meet stakeholders’ needs and aircraft-level requirements.

System-level: The second level gives a top-down view with subsystems. It includes in-

terfaces and functions necessary for subsystems to achieve their potential. Here, the ECS

subsystems, such as the air-conditioning system, the pressurization system is defined.

Item-level: The third level gives a detailed view of the software and hardware components.

Here, ECS subsystem components, IMA hardware components and applications or software

are defined. The lowest system-level requirements become (a) system requirements allocated1

to software (SRATS) and (b) system requirements allocated to hardware (SRATH) at the

item-level. For the scope of the thesis, the item-level corresponds to the software application

level (ARINC 653 software-based), where the emphasis is on the required controller software

code or application. At item-level, the development is handed over to software developers.
1Allocation is the process of linking or assigning a detail such as functions or requirements to enable

traceability

35

The software developers will develop the application following the DO-178C.

For each level, one should follow the development process as specified in the ARP4754A

guideline and depicted in Figure 3.2

The development process should start with function development (step 4.2). In this process

step, the functions for the engineering level in question are developed. In the aircraft-level,

the aircraft-level functions are developed by aircraft-level engineers. These functions give

the overall capability of an aircraft. In the system-level, firstly the predefined aircraft-level

functions for a system are acquired, and then the required functions for conceptual design

are developed. In item-level, first item or component functions will be acquired, and then

required functions are developed for the application to perform fault free.

The next step in the process is the allocation of functions (step 4.3). In this step, the

developed functions from step 4.2 in ARP4754A are allocated to the system or subsystems.

It needs to be identified which system performs which functions.

Figure 3.2: SAE ARP4754A aircraft/system development process adapted from [12]

36

With the functions developed and allocated to systems, the development of architecture (step

4.4) is carried out. The definition of architecture establishes the interfaces between systems

or components. Therefore, by revealing the interdependencies, early validation of the system

architecture can be obtained. Furthermore, the optimization of the architecture, as well as

the validation, verification and integration (VVI) is possible.

Allocation of requirements (step 4.5) is an essential step of the process in the early design

and analysis phase. Throughout the development, process requirements are captured and

allocated to the functions or component that are developed. This capturing and allocation

will provide end-to-end traceability and consistency in requirements. The resulting archi-

tecture together with allocated requirements will constitute the specification. In addition to

the functional requirements, this specification also contains requirements regarding safety,

performance, mass, cost etc. The analysis of artifacts such as functions, failure and safety in-

formation might result in need of a new functions and requirements to make the system fault

tolerant. In such, situations the new requirements are called derived requirements and the

development process is repeated until the system complies with the safety requirements.

The next step in the process is system implementation (step 4.6). This step deals with three

aspects: (1) the information flow from higher engineering level to lower engineering level

and vice versa, (2) system design and built, and (3) system integration. The information

flow process includes the exchange of artifacts such as requirements, functions, constraints,

descriptions, interface definitions, safety analysis reports and anything that is particular to

the system or component. The artifacts transferred through information flow from higher

level support the development of lower engineering level specification. If a derived require-

ment is formed at the item level, then the new requirement is shared with the system-level

team for impact analysis and eventually an update of the associated requirements. The final

design and build of the system and its components are a part of system implementation.

Further, with the integration of the components and systems, a verified integrated system

with acceptance2 is the end product of system implementation.

2 Acknowledgement by certification authority that module, application, or system complies with its defined
requirements

37

Data & Documentation. The ARP4754A also recommends that every step in the development

process along with the data should be documented. The documents carry artifacts, and as

mentioned in the 1.1, the documentation process mostly is paper-based. As a result, during

system implementation, it is challenging to determine the traceability and consistency of

artifacts. Therefore, documentation should be an integral process and support multi-level

engineering.

ARCADIA/Capella mapping to ARP4754A

This section presents the proposed MBSE methodology for developing complex aircraft sys-

tems with DIMA architecture with ARP4754A.

The first step of the proposed methodology consists of mapping the ARCADIA/Capella

against the ARP process shown in Figure 3.2. Each working level can implement the

ARP4754A process 4.2 to 4.6 as shown in Figure 3.3.

The first phase 4.2 is function development where the functions for the working level in

question are developed. This phase is defined as “Refine System/logical/physical functions,

describe functional exchanges” in Capella activity browser. First, the functions are developed

from the requirements. Then a breakdown of the function is carried out. The breakdown

helps to realize the leaf functions and parent functions. Next, the dataflow between functions

is defined. The flow definition helps to identify the relationship between functions and the

exchange happening between them. With the dataflow realized a functional scenario can be

created to check the completeness of functions. Any missing function can be developed and

update the dataflow diagram.

The next phase 4.3 is the allocation of functions. At this step the process is to define the actors

that are interacting with the system of interest. The actors can be other systems, or users

and are defined as per specified in requirements. Additionally, in LA and PA components

are also defined, and a breakdown of components is carried out to realize any leaf component

that exists. Finally, the functions are allocated to the components

38

Figure 3.3: ARCADIA implementation of SAE ARP4754A

Next, the development of architecture is carried out by defining the interface between the

functions and components. While architecture in OA, SA gives the need for the system, ar-

chitecture in LA and PA provides the logical solution and final implementation of the system.

Once the architecture is created an “exchange scenarios” can be defined to validate specific

use cases. The scenarios help to identify any missing components or actors or functionality.

Also, scenarios can realize any element that will not contribute to the needs specified in re-

quirements. Further, Capella also provides architecture validation that ensures every element

has up and down traceability in all working levels and follows the architecture specification

rules. The validation rules are a set of rules that can include strict naming conventions,

interface definitions or user-specified rules.

Capella provides the capability to import requirements files as in step 5.3 from reference-

management software such as IBM Doors and also to feed the requirements manually. The

39

latter manual feeding helps the user to enter requirements in each working level as text man-

ually. This is much needed when a derived requirement is created. Further, the requirements

are allocated to the specific functions, components, and interfaces in each working level. This

validation ensures that every element is justified to the requirements. The requirements that

are not allocated can be realized and also any requirements specified at the wrong level can

be identified.

The third phase 4.6 is system implementation. System implementation process deals with

information flow from higher engineering level to lower engineering level and vice-versa,

system design and built, and system integration. However, system implementation in Capella

is carried out after each working class. The process is automatic and thus maintain the

traceability and consistency in upper and lower working levels. Moreover, the PA working

level provides the final system design and built specification.

Further, ARP4754A recommends parallel documentation and data handling, and there are

several ways documentation can be integrated into Capella:

1. Using Capella add-ons, which can generate documents of the specification [74] “HTML

Document Generation,” creating an HTML document of the whole model with each

working level and a simple description or “M2doc,” [75] which generates documents

using a Microsoft Word template defined by the engineer.

2. Using Capella’s integrated summary and simple description features to attach as much

as information as possible to a function or component or interface, allowing the model

to pack any level of description and thereby enriching the architecture.

3. Data-class diagrams are a data structure that stores the information needed in SA.

For example, a temperature-data class can have the unit “Degree Celsius,” the data

parameter “temperature,” and the range “[-2,36].” These diagrams help keep track of

the data parameters or exchange items.

Each engineering level (aircraft-level, system-level, item-level) has four working levels of AR-

CADIA (OA, SA, LA, PA). Therefore, ARCADIA/Capella implementation creates triple

40

times more traceability, consistency and validation for aircraft-level, system-level and item-

level specifications. Moreover, during system implementation, the artifacts including re-

quirements are passed on through each level and become system requirements allocated to

software (SRATS) and system requirements allocated to hardware (SRATH) at the item

level. Aircraft-level forms the base for system-level, and the system-level forms the base for

item-level. Transition to the next engineering level is called a subsystem transition for future

reference in the thesis. Thus, the development process is adapted to each ARCADIA working

level in every engineering level.

The ARP4754A does not include specific coverage of detailed software or electronic hardware

development/design or safety assessment processes, which is further detailed in the DO-

178C.

3.2.2 MBSE for DO-178C

DO-178C

DO-178C covers the development process within the lower level or item-level design and

implementation of software. Modern airborne software provides capabilities that reduce the

flight crew effort to a minimum. As a result, failures are undesirable in airborne software,

and a proper engineering process should be applied in the software development cycle. Figure

3.4 depicts the software development process defined in DO-178C and recommended by the

certification authorities.

The system specification drives software development. Hence, the first step in the software

development process is to acquire the system requirements that are allocated to software

(SRATS). SRATS are then analyzed, and High-Level Requirements (HLR) are developed.

HLR specifies what the software must do for the system. The HLRs shows the major func-

tionalities that the software must perform. The HLR includes data flow, software components

and their decomposition, behaviour, and physical components such as hardware, network,

41

and interfaces. The next step is the software design based on Low-Level Requirements (LLR)

and software architecture definition. LLRs are developed from HLR, derived requirements

and other safety analysis. The LLRs specify how the software works to fulfil its expecta-

tion and how to carry out the implementation. For instance, the LLR contains operational

scenarios, I/O data, a data dictionary, algorithms, health monitoring, configuration details,

communication links and many more. In short, the documentation of the LLRs provides all

the necessary information to proceed to the software coding.

Figure 3.4: Software development process defined by DO-178C

The software architecture provides “the structure of the software selected to implement the

software requirements” [67]. The architecture must be clear, consistent, and compatible with

requirements, ensuring traceability. The software design step contains all the information

needed for software coding. Next, the software is coded according to design specification and

integrated into the hardware.

The DO-331 is the Model-based development supplement guideline which is a supplement to

DO-178C for implementing MBD. The guideline defines a model as: “An abstract representa-

tion of a set of software aspects of a system that is used to support the software development

42

process or the software verification process” [68]. In a model-based approach, software require-

ments are called specification model and software design artifacts are called design model.

The guidelines strictly prohibit the existence of specification and design in the same model

as there should be a clear differentiation between “what” (requirements) and “how” (design)

aspects. The specification model should only point out the functionality of the software, not

its implementation. Whereas, the design model should point out the software components,

data structure, data, and control flow. The guideline states that the model should have the

capability to be validated through coverage analysis for correctness and completeness. The

coverage analysis will help to find out if any requirements or design elements are left out.

Moreover, the analysis also helps to identify those model elements that do not contribute to

requirements or implementation [68].

The ANNEX A in DO-178C gives a set of tables that point to the process objectives and

outputs by software level. Table 3.1 shows an overview of verification of outputs of software

design in Table A-4 in ANNEX. To proceed to the software coding phase, the objectives

should be satisfied with or without independence depending upon the critical nature of the

software.

The aerospace industry usually follows two design approaches for software design: structu-

red-based and object-oriented. Structure-based is the traditional approach and is flow-

oriented. The flow-oriented diagrams show the flow of information or data through the

system and how the information is transformed from input to output when moved through

the system. In short, structure-based focus on the action and logic required to manipulate

data. As a result, programs are a long piece of code containing the logic and data.

On the other hand, the Object-Oriented (OO) approach gives importance to the object and

data that needed to be manipulated, not to the logic required to manipulate. Objects are

a group of variables and functions that are related to a unit or class. For instance, a class

called “aircraft characteristics” will have variables such as “length, height, speed” and function

may be “calculate take off length.” Then an object can be different models of Boeing 787

such as “787-8, 787-9, 787-10”. Further, each model will have variables defined in aircraft

43

characteristics class, and each model can use the function calculate take off the length to

determine the required runway length. In OO, the program is split into objects, and each

object represents a part of the application and contains its own data and logic. As a result,

OO programs are usually modular and easy to analyze.

Table 3.1: Verification of outputs of the software design process (adapted from DO-178C) [67]

Objective Description

A-4.1 Compliance Low-level requirements comply with high-level re-

quirements

A-4.2 Accuracy & consistency Low-level requirements are accurate and consistent

A-4.3 Hardware compatibility Low-level requirements are compatible with the target

computer

A-4.4 Verifiability Low-level requirements are verifiable

A-4.5 Conformance Low-level requirements conform to standard

A-4.6 Traceability Low-level requirements are traceable to high-level re-

quirements

A-4.7 Algorithm accuracy Algorithms are accurate

A-4. 8 Architecture compati-

bility

Software architecture is compatible with high-level re-

quirements

A-4.9 Consistency software architecture is consistent

A-4.10 Hardware compatibility Software architecture is compatible with the target

computer

A-4.11 Verifiability Software architecture is verifiable

A-4.12 Conformance Software architecture conforms to standards

A-4.13 Partition integrity Software partitioning integrity is confirmed

44

ARCADIA/Capella mapping to DO-178C

For a DIMA architecture, the item-level (the application/software/controller level) specifi-

cation is essential. For the scope of the thesis, more focus is given on the software aspects

than hardware. The working levels also match with the software development process defined

in DO-178C guideline. When using ARCADIA/Capella for software specification, SA deals

with the first phase of process, software requirements. In SA, SRATS will be imported, and

HLRs will be developed along with high-level functions and architecture. Next, an automatic

transition is performed to LA to define the software design. First LLRs are defined, and then

software components and functions are developed. Next, the software architecture is created,

and LLRs are allocated to elements. The LA can contain a set of logical solutions, and

after analysis, the solution is forwarded to PA to define the software design implementation.

Moreover, Capella supports the process objectives and outputs by software level as shown in

Figure 3.5 through its features and additional tools.

Figure 3.5: Model-Based checking process inspired by [76]

Thus, Capella supports software development process through DO-178C implementation and

providing object-oriented design and structural design diagrams.

45

3.2.3 Multi-level approach

As mentioned in shown in Figure 3.1, function development needs to be performed at multiple

engineering levels. The organization of the aircraft development process has three levels

as mentioned in 3.2.1. The ARCADIA method focuses on the relationship between the

various levels in the system architecting process3. However, the complexity of the aircraft

development necessitates a common aircraft reference (such as functions, requirements, etc.),

which becomes the starting point for (sub-)system architecting. Figure 3.6 gives a detailed

view of how it is proposed to implement a multi-level engineering process with Capella for

the example of the ECS system development. However, this method is also applicable to any

other aircraft system.

Figure 3.6: A multi-level process for MBSE implementation

The green arrow shows the level transition, and the yellow ones show the traceability. Capella

can also define scenarios and data structures needed for early validation and verification. To

inherit effectively the interfaces, requirements, and interdependencies, a subsystem transition

is carried out from LA to SA. This method chooses a component in LA and makes it the
3System architecting is the specification process to derive a solution at each engineering level

46

system of interest at SA in a new model. For the case study, the ECS SA for the system-level

is obtained by performing a subsystem transition from the aircraft-level LA. Then, the ECS

functions, capabilities, actors, and entities are defined, requirements are allocated, and the

architecture is specified. Similarly, at the item level (software/hardware), the SA is generated

from the system-level LA. The inherited requirements are then divided into requirements

allocated to software or hardware, which are high-level requirements (HLRs) specifying what

is to be implemented. The HLRs are then used to develop low-level requirements (LLR) and,

in turn, the software/hardware architecture, according to the Radio Technical Commission

for Aeronautics (RTCA).

3.2.4 Management of variants

The case study investigates how few variants can be efficiently managed within the MBSE

environment using Capella. In the herein presented work, a generic ECS architecture is

presented, and the creation of two architecture variants are investigated: a conventional

bleed-driven ECS and a bleedless ECS variant as presented in Figure 1.7. Two approaches

are investigated: the so-called horizontal adaptation and vertical transition.

Figure 3.7 presents a horizontal adaptation method. This adaption is performed at LA

level to define variants of a specific aircraft-level function. Using the principle of horizontal

adaptation, multiple technological implementations can be derived. For example, Figure 19

presents a horizontal adaption of aircraft-level function “Provide fresh air” to derive two

different technological implementations of ECS namely bleed ECS and bleedless ECS. The

implementations are defined as leaf dataflow diagrams. As a result, no subcomponents are

present. Here, the focus is on the air-conditioning subsystem and not on the subsystem

components. Thus, both diagrams co-exist at LA level.

This method provides insights into solutions without losing sight of the overall picture. That

is, a conventional ECS and a bleedless ECS air-conditioning process can be defined in a

single parent aircraft-level function with two distinct, “unsynchronized” data-flow models.

47

Capella facilitates the creation of new diagrams within the same working level by preventing

synchronization. However, when synchronized, the leaf data-flow diagrams merge and result

in unrealized interactions for a specific implementation.

Figure 3.7: Horizontal adaptation of generic architecture

To conclude, Horizontal adaptation is the process of using generic architecture for system

specifications to maintain abstraction while defining the process of subsystems through en-

capsulation. That is, without emphasizing subcomponents, the functions of the subsystem

are encapsulated in the form of leaf data-flow diagrams into the parent functions of the main

components. For effective system engineering, each subsystem requires a separate model.

Therefore, horizontal adaptation is not suitable for sub-system specifications. Horizontal

adaptation is only used when the specification of subcomponents or behaviour is not neces-

sary. In the ECS case study, this method is applied only for the controller and aircraft-energy

specifications.

The next, and more suitable, method is vertical transition. Figure 3.8 shows the vertical tran-

sition method. As the name suggests, the transition enable a top-down approach to move

from higher engineering level to lower engineering level. Using the vertical transition method,

a detailed specification of a sub-system can be derived. For instance, the “Air-conditioning

means” component along with the function “Provide fresh air” is selected to derive detailed

48

bleed ECS and bleedless ECS subsystem specification. As a result, the sub-system speci-

fication realizes subcomponents such as compressors, heat exchangers, and turbines in the

air-conditioning system.

The Capella subsystem-transition add-on is used for this purpose, and the selected subsystem

is transformed into the system of interest in the SA. From there, LA and PA are defined with

realized subcomponents. The vertical transition (LA to SA) method defines in detail the low-

level architecture for the main components by realizing the subcomponents. The advantage

of vertical transition is that the main sibling components (components in the LA that directly

interact with the selected subsystem) become system actors. In this way, each subsystem

can be modelled with subcomponents and only realize the input-output interfaces. Thus,

interdependencies and interfaces are inherited in the new model. Furthermore, the vertical

transition method renders the model clean and efficient. The vertical transition is more

suitable for specifying a subsystem because only the sibling subsystem, component, or actor

is realized, which allows for more focus on the subsystem and its interfaces.

Figure 3.8: The vertical transition method for variability management

49

Figure 3.9 presents a comparison between the vertical transition and horizontal adaptation

method. In vertical transition, an overview of the entire ECS system is not possible. This

method also requires the definition of an additional interface in the generic architecture be-

fore creating the vertical transition in order to be consistent with the new implementation.

On the other hand, horizontal adaptation provides insight to the solution without losing

system overview. However, for effective system engineering, each subsystem requires a sep-

arate model. Therefore, horizontal adaptation is not suitable for sub-system specifications.

Horizontal adaptation is only used when the specification of subcomponents or behaviour

is not necessary. In the ECS case study, this method is applied only for the controller and

aircraft-energy specifications.

Figure 3.9: Comparison between vertical transition and horizontal adaptation method

3.3 Summary

This Chapter presented the proposed methodology for developing complex aircraft systems

using MBSE Framework. The methodology is based on two main aerospace guidelines:

ARP4754A and DO-178C. Hence, the proposed methodology addresses the ARP4754 devel-

opment process with multi-level engineering and DO-178C development process with DO-331

50

model-based supplement. To support the variability aspect two methods are defined: hori-

zontal adaptation and vertical transition. The horizontal adaptation can provide an insight

to the solution without losing the overview of the system. The vertical transition provides

a detailed low-level view of the sub-system. Although the methodology is defined for AR-

CADIA/Capella, any MBSE framework can adopt the methodology for aerospace system

development.

In sum, the effectiveness presented methodology of dealing with generic and variant models

needs to be explored. However, subsystem engineers are required to not miss any incon-

sistencies on the system level. In the following Chapter, the vertical transition method is

implemented for sub-system specification, and horizontal adaption is implemented to specify

certain aspects of sub-systems.

51

Chapter 4

Specification Model Implementation
This chapter describes the MBSE implementation for the ECS case study following the

methodology described in Chapter 3. As depicted in Figure 4.1, all system architecting

levels are covered in this case study, but the emphasis is on system-level and item-level

modelling.

Figure 4.1: ECS case study implementation overview in Capella

The process begins at aircraft-level at which all systems are in a model and represent the

context to the ECS. Then, a vertical transition is performed to obtain modelling artifacts

specific to the ECS system at system-level. Next, the ECS generic architecture is developed.

52

From the generic architecture, the ECS HMI specification, bleed and bleedless ECS variants

and the cabin pressurization system specification are developed. Further, a vertical transition

is performed on the controller component to obtain system SRATS at the item level. Finally,

the cabin pressure controller specification is developed from SRATS.

4.1 Aircraft-level specification

For the ECS case study, the relevant aircraft-level functions and requirements developed

by the Bombardier aircraft-level engineers were reviewed. The functions were formulated

using company internal manuals and were specified in spreadsheets. Moreover, the require-

ments were handled through word documents and reference management add ons. Table 4.1

provides an insight into the aircraft-level functions adapted from [77].

Table 4.1: List of aircraft level function for ECS use case

Aircraft-Level functions

1 Provide operational awareness

1.a Provide HMI for flight crew

1.b Provide HMI for cabin crew

1.c Provide HMI for Maintenance crew

2 Provide centralized computing and data sharing capabilities

3 Generate and distribute power

3.1 provide pneumatic power generation and distribution

3.2 provide electric power generation and distribution

4 Provide a controlled environment

4.a Control internal ambient temperature

4.b Control internal ambient pressure

4.c Provide and control air quality

4.d Provide equipment cooling

53

There exist a full aircraft-level architecture model in Capella. However, this model was not

matured enough to perform a vertical transition, as described in Figure 3.6. Therefore, it

was decided to obtain aircraft-level functions and requirements from aircraft-level team and

start modelling at system-level. The data from aircraft-level will be specified at OA and SA

as a need analysis for ECS. The reason is that the scenario will be the same if a vertical

transition of the ECS aircraft-level component was performed. The transition will result in

ending up of logical aircraft-level ECS functions in system-level SA. The additional task will

be to define the operational analysis.

Figure 4.2: Example of the aircraft-level logical architecture

Figure 4.2 representative to an aircraft-level logical architecture with aircraft as a system of

interest and ECS as a component. When the vertical transition is performed on the ECS

component, the resulting SA will be the same as presented in subsection 4.2.2

4.2 System-level specification

In this section, model specification using ARCADIA/Capella at system-level is presented.

54

4.2.1 Operational analysis level

The objective of the operational analysis (OA) is to identify the operational needs and ob-

jectives of users of the system, such as the pilot, maintenance engineers, and passengers.

The aim is to capture all user needs to guarantee the adequacy of the system. An OA must

define the activities of the users and the operational scenario in which they perform the

activity.

According to the multi-level methodology presented in Figure 3.6, the OA for the system-level

(ECS) is derived from the aircraft level to ensure traceability, by using the vertical transition.

If a complete aircraft-level is not available in the MBSE environment, the OA is based on

aircraft-level specification documents and reviews with stakeholders.

The first step is to define the operational actors and operational entities of the system with

reference to aircraft-level requirements. For the ECS case study, flight crew, cabin crew,

maintenance crew and passengers are the identified actors. Whereas aircraft, aircraft en-

ergy source, internal environment, equipment bay, environment, other systems, and airport

facilities are the identified operational entities. The next step is to define the operational

capabilities of the identified actors/entities. The operational capabilities define the capabil-

ity of an actor or entities to deliver a high-level service to fulfil an operational need. For

example, for ECS case study the flight crew should have the capability to regulate internal

ambient temperature and pressure. The operational capabilities of the users and entities

can be captured in an Operational Capability Blank diagram (OCB), as shown in Figure

4.3. These capabilities help users provide high-level services to achieve operational need of

providing a comfortable internal ambient atmosphere.

For the users or entities to achieve their capability, the users and entities are required to

perform some operational activities. Operational activities are actions carried out by the

user to deliver a high-level service. Therefore, the next step is to define the activities of

users/entities. The list of activities is captured in the Operational Activities Breakdown

Diagram (OABD), as shown in Figure 4.4.

55

Figure 4.3: Operational capabilities of users (operational capability – OCB)

Figure 4.4: Operational activities of users (OABD – Operational Activities Breakdown Dia-
gram)

Further, the interaction between activities is specified. This specification helps to understand

how the activities perform together to deliver the operational need. One way is to specify the

operational process for a specific capability. The operation process defines all the operational

56

activities and interactions that contribute to a specific process or capability. The interactions

are defined using the Operational Activity Interaction Blank diagram (OAIB) and shown in

Figure 4.5.

Figure 4.5: Interactions between ECS operational activities - (OAIB) diagram

The OAIB highlights the identified operational process. The next step is to allocate the

activities to concerned users to complete the operational architecture. An example of the

operational architecture block diagram for the generic ECS is presented in Figure 4.6. The

activity “Provide internal environmental control capability” represents the ECS system. The

OA focuses on the DIMA use case for the CPCS. In Figure 4.6, the blue line shows the pres-

surization control process chain that needs to be carried out to meet the required operational

objective of cabin pressure control. The flight crew initiate the activity “ambient control

pressure (1)”. The activity “provide advanced aircraft communication (2)” accounts for the

HMI and controller aspects. The activity “Provide internal environmental capability (3)”

completes the operational objective. The final step is to validate the diagram. Validation

makes sure that the architecture followed all the system architecting rules. The validation

rules are explained in section 4.4. When performed for the first time, Capella validation will

57

give warning that the model elements are not realized in the higher working level (SA). Once

the SA is completed the systems engineer is supposed to come back to OA and validate the

diagram to make sure every element is traced.

Figure 4.6: Operational architecture for the ECS (operational architecture –OAB)

4.2.2 System analysis level

The SA reflects the aircraft-level logical ECS functions. At SA the first process is to acquire

the operational needs defined in OA through the automated transition. Therefore, the op-

erational activities, operational entities, actors and requirements are acquired. During the

transition the activities are converted to functions. This is to maintain the traceability of

operational needs and support aircraft-level functional analysis. Also, the operational actors

and entities are transformed into system actors. The reason is that in a system engineering

58

perspective anything other than the system of interest are actors. A representative transition

is shown in Table 4.2.

Table 4.2: Transition of OA elements to SA

Operational Analysis System Analysis

Operational actors System actors

Flight crew Flight crew

Cabin crew Cabin crew

Passengers Passengers

Maintenance crew Maintenance crew

Operational entities

Aircraft Aircraft

Aircraft energy source Aircraft energy source

Equipment bay Equipment bay

Internal environment Internal environment

Environment Environment

Airport facilities Airport facilities

Activities Actor functions

Control ambient temperature (CC) Control ambient temperature (CC)

Respond to feedback (CC) Respond to feedback (CC)

Control ambient temperature Control ambient temperature

Control air supply Control air supply

Provide advanced aircraft communication Provide advanced aircraft communication

Provide acceptable environmental conditions Provide acceptable environmental conditions

Provide ambient operational environment Provide ambient operational environment

Control ambient pressure Control ambient pressure

Control air supply Control air supply

Respond to feedback Respond to feedback

Operational interactions Function exchanges

59

In SA, the system of interest appears for the first time and also begin the functional analysis

stage. The second step is to define the mission for the ECS system along with the actors and

capability of the system to accomplish the mission. For instance, the actors accomplish the

ECS mission, which is to provide a comfortable internal ambient atmosphere. The actors use

their identified capabilities to fulfil the mission, as shown in Figure 4.7.

Figure 4.7: ECS mission with system capabilities (mission capabilities -MCB)

System capabilities provide the objectives for use case. In Capella, the use case or capability

is expressed mainly through functional chains and scenarios. More about functional chains

and scenarios have been presented in Section 4.4. The aircraft-level functions obtained are

controlling pressurization, providing and controlling ventilation, providing equipment cooling,

and controlling internal ambient temperature. These functions will be leaf functions to the

function “Provide internal environmental control capability”. Apart from aircraft-level ECS

functions, functions obtained through the automatic transition from the OA as shown in

Table 4.2 are also present. The information flow between the aircraft-level functions and

actors is defined as data-flow diagrams and is categorized into control, energy, and feedback

flows. Then functions are allocated to their respective actors and ECS system, and the ECS

system architecture is created as shown in Figure 4.8.

60

Figure 4.8: System analysis for the ECS (system architecture – SAB)

In system architecture diagram 4.8, the ECS is the system of interest in dark blue. The

functions within reflect what the ECS has to do for the users. The users are flight crew,

cabin crew, maintenance crew and passengers that are interacting with ECS. They interact

with the system through the flight deck. Further, the aircraft energy source provides the

required pneumatic and/or electrical power. The need for IMA is expressed through the

function “Provide centralized computing and data sharing capabilities.” The blue line shown

in Figure 4.8 is the functional control chain to express cabin pressure control functionality.

As numbered, the first function in the functional chain is the command by the flight crew

to “Control ambient pressure (1)”. The HMI provides an interface with the ECS system

(2). Then, the function “Provide centralized computing and data sharing capabilities (3)”

processes the command and forwards it to the function “Control internal ambient pressure

(4)”. To summarize, the functional chain shows the pressurization control flow and what the

system has to do for flight crew is to control internal ambient pressure.

61

The final step of SA is to validate the system architecture. The process makes sure that every

model element has traceability to the operational need specified in OA. After validation, the

process can proceed to LA.

4.2.3 Logical architecture level

The aim of the LA is to define a generic architecture for ECS that can be used to define

variants. In general, LA aims to define logical components and conduct a functional analysis

inside the system. While functions in SA defines the need in terms of what ECS has to

do; the functions in LA defines the solution in terms of how the has to perform. First, the

artifacts from SA are transitioned through Capella automated transition. As a result, all the

elements in SA are available in LA as logical elements. This helps to define how the system

works to fulfil the expectations. Next, the technical TRD requirements are imported into

the LA through requirements management add ons as presented in 4.4. As mentioned in 2.1,

the TRD documents provide derived system-level requirements needed for defining logical

elements. Further, the TRD level requirements help identify all the actors interacting with

the system. Some of these actors are generalized in SA as “other systems.”

The next step is updating the logical functions, and all functions necessary to describe how

the system works must be present. In this stage, more system specific functions are devel-

oped. Then, a dataflow diagram is developed to define the interaction between functions.

Next, functional chains are defined to highlight control, feedback, and resource flows. The

data flow diagrams provide consequence loops help determine the safety aspects and hazard

levels. Finally, all the logical components are developed to represent the sub-systems. With

the defined functions allocated to components, the generic ECS architecture is created. The

generic ECS architecture includes a generic controller component, air-conditioning compo-

nents, pressurization components, distribution components, and emergency components, as

shown in Figure 4.9.

To account for a real-time operating system that hosts the system application software, a

62

generic controller model is adapted and introduced as a controller component to the LA as

highlighted with the red box in Figure 30. The controller has three subcomponents:

1. Operational interface component: The operational interface acts as an interface between

the controller and other systems. The data needed for control and feedback are often

delivered through the operational interface.

2. Control and management component: This component executes the management of the

ECS and controls the system components.

3. Physical interface component: This component provides an interface between the con-

troller and the physical system being actuated or controlled (PA level).

The subcomponents are processes or tasks defined in software that can be allocated to dif-

ferent host platforms. It is a realization of the ARINC 653 implementation of allocation,

assigning pieces of software to different applications in a distributed system. For instance,

the physical interface can be allocated to a host platform close to sensors, or the operational

interface close to the cockpit. The red container in Figure 4.9 also contains an ECS HMI

component, which again is a controller component that manages the HMI functionality.

The blue line in Figure 4.9 shows the functional chain for control. The function chain presents

the functions and interactions that contribute to control cabin pressurization. As numbered,

the chain starts with flight crew giving the command to “control ambient pressure (1)”. The

flight deck provides an interface between crew and system (2). The ECS HMI component

provides an operational definition to the crew command (3). Further, the command is for-

warded to the ECS controller. The controller processes the command (5) and performs the

control algorithm (6). Finally, the controller sends the actuation signal to the CPCS (7) and

pressurization means control the cabin pressure.

63

Figure
4.9:

Logicalgeneric
architecture

for
the

EC
S

(logicalarchitecture
LA

B
)

64

Finally, the generic ECS system is validated to make sure that system architecting rules are

followed. One of them is traceability to the SA. The validation helps to identify the elements

that do not contribute to the needs specified in SA.

For detailed system-level design, a vertical transition is performed in each sub-system com-

ponents defined in brown box. Through the vertical transition, system-level specifications

for bleedless ECS architecture, bleed-driven ECS architecture, cabin pressure control sub-

system architecture, and bleedless ECS HMI specifications are defined for the system level.

During the transitions, only sibling actors and components are transitioned. Sibling com-

ponents or actors are elements that have a direct interface with the system of interest. For

instance, Figure 4.10 shows the SA obtained through the vertical transition for a bleed-driven

ECS.

Figure 4.10: System analysis obtained after transition – functional system architecture dia-
gram for the conventional bleed-driven ECS (SAB))

An automatic transition to the logical level is performed, and logical functions are developed.

Then, the principal components are identified. Finally, the bleed-driven ECS and bleedless

ECS LA is defined by allocating functions to the identified components. A sample bleed-

driven ECS logical architecture is presented in Appendix B and that of bleedless ECS in

65

Appendix F.

Aircraft energy sources are defined through the horizontal adaptation method, which helps

maintain the abstraction of the energy sources and the encapsulation of energy-source pro-

cesses in the functions “provide electrical power generation and distribution” and “provide

pneumatic power generation and distribution.”

By subsystem-transitioning the ECS HMI, the SA is obtained. The HMI is defined for the

bleedless ECS and consists of physical panel definitions and widget-layer definitions. There

are two physical panels for the bleedless ECS: (1) the air-conditioning panel definitions and

(2) the pressurization panel definitions. Regarding the widget-layer definitions, there is (1)

the bleedless ECS synoptic layer with an air-parameter widget and a synoptics widget, (2)

the EICAS ECS layer with an air-parameter widget, and (3) the cabin-crew temperature

layer with a temperature-setting widget.

4.2.4 Physical architecture level

The PA provides insights into how the system is built and developed. The physical working

level provides the most detailed representation of the system and its associated components.

Logical elements are transformed into behavioural components and allocated to physical

components. Sometimes, logical components and elements may appear to belong together,

but in the PA, they need to be allocated to different physical components depending on

various factors, such as latency, budget, or configuration efficiency. For the ECS case study,

the PAs for the bleedless and bleed-driven configurations and the cabin pressure system have

been developed.

An example of a high-level PA developed for the CPCS is shown in Appendix C. Electrical

outflow valves have been incorporated into the model. The system has two sets of valves to

account for any electrical failure.

66

4.3 Item-level specification

One of the primary objectives of this thesis is to investigate the MBSE approach for the

software aspects of the controller. Primarily, two specification models have derived in item

level namely platform architecture and application software architecture. The platform ar-

chitecture contains components related to target computers such as processors, memory, and

networks. Further, the application software architecture contains software components such

as threads and subprograms, the dynamic behaviour of the components and the communi-

cation between components.

The vertical transition method is carried out to reach the item level. The requirements

are divided into two categories: (1) SRATS and (2) SRATH. Through the transition, the

system-level requirements are inherited and then allocated to software functions (SRATS)

and hardware components (SRATH). At SA, the HLR is developed from the SRATS as a

part of the software-requirement process. The HLRs specify what is to be implemented

in the application. For instance, the activity “provide pressurization control” is an HLR

of the controller, as is the “verification of sensor data.” The SA provides the specification

model. The next phase is that software design was design model is defined. As mentioned in

subsection 3.2.2, the design model consists of software architecture and LLRs. The software

architecture is developed from the HLRs. Software functions are developed and allocated

to generic-controller parent functions. A sample data-flow diagram (application software

architecture) is defined and embedded in the parent function through horizontal adoption

and can be found in Figure 4.12. Figure 4.11 shows the LA for the cabin pressure controller.

A detailed LLR model is also specified for CPCS controller at Bombardier.

Once the system architecting is complete, the validation of the diagram is performed. The

validation helps in model checking process as specified in subsection 3.2.2. The following

section presents other validation capabilities available in Capella.

67

Figure 4.11: Item-level logical architecture for the cabin pressure controller (LAB)

68

Figure 4.12: Logical data-flow diagram for cabin-pressure control functions (LDFB)

4.4 Architecture validation

The validation of an architecture defines the maturity of the specification. Each working

level is validated for traceability through various model validation features:

1. Validation rules: The validation rules are rules defined in Capella to support effective

design, integrity, quality and transition at each working level. Any element that does

not follow the rule will be tagged with a warning sign and warning message. Table 4.3

gives an overview on Capella validation rules. The rules can be enabled or disabled

according to the scope of the model. However for the thesis work all rules were enabled.

69

Table 4.3: Capella validation rules [78]

Validation rules Examples

Design Consistency Check if element is up to date compared to orig-

inal

Design Completeness Makes sure a capability is always involved in

scenario or an interaction/ functional exchange

is not connected to parent function.

Design Coverage Check if a capability is involved by at least one

actor. Or a port is present without any ex-

change or link

Design Well-

formedness

Checks if use case, capabilities, interfaces, com-

ponents, data, state machines, dataflows and

scenarios are well-formed.

Integrity Integrity Ensure realizations or traceability in upper and

lower working levels

Quality Quality Check if each element has a description or sum-

mary and is reviewed or not.

Transition Consistency Ensures there is consistency in components,

dataflows, interfaces, scenarios and state ma-

chines at all working levels

Transition Justification Ensures realization or traceability of LA, PA,

and SA elements during transition.

2. Requirements allocation: Once the bleedless ECS and the conventional ECS architec-

ture are defined, requirements are allocated to the developed functions. This process

validates whether the developed functions are sufficient to fulfill the requirements. The

Capella requirement management wizard aids in the process of allocating requirements

to functions as shown in Figure 4.13. The process of importing requirements is ex-

plained in section 4.6.

70

Figure 4.13: Requirement management and allocation

3. Functional chains: The functional chain helps to designate or highlight a specific path.

It consists of a combination of functions and functional exchanges related to a specific

task. In the case of the ECS, functional chains are divided into command, feedback,

and resource paths. For the DIMA case study, the pressurization control system and

feedback are defined as functional chains. Functional chains also enrich the specifi-

cations with constraints such as latency, particularly crucial for the specifications of

the DIMA platform. Moreover, the basic performance viewpoint is used to define the

required function-execution time and then map it to the allocated budget.

4. Scenarios: Scenarios are sequential diagrams describing how interactions between func-

tions or logical components or actors are executed to accomplish a capability. The

71

difference between a scenario and a functional chain is that a scenario is a closed-loop

sequence made up of different functional chains. For instance, in the ECS pressuriza-

tion scenario is a combination of a control chain, a feedback chain, and a resource-flow

chain. Scenarios are created for early validation to confirm that the identified func-

tions can support the system to fulfil the system capabilities. Any missing function or

interaction to complete a capability can be identified through scenarios. Modes and

states, explained in section 4.5 also help give deep meaning to scenarios. The transition

between operational modes is also depicted as a scenario. An example scenario of au-

tomatic to manual pressurization is presented in Appendix E. This scenario is defined

in LA and shows a detailed solution for transition.

Also, a representative scenario of temperature control defined at SA is shown in the

Figure 4.14.The scenario is divided into two sections. The first section is feedback loop,

where the the temperature is updated to the user in fixed intervals. The second section

is control sequence, where the flight crew or cabin crew can control the temperature

alternately.

(a) The feedback loop: The ECS sense temperature from internal temperature and

forwards the information to user. The HMI supports the ECS to convey information

to user.

(b) The control sequence (alternative) : (1) Flight crew set the required temperature.

The HMI convey user requirement to ECS. The ECS controls the internal ambient

temperature to provide acceptable environmental conditions to user. (2) Cabin crew set

the required temperature. The HMI convey user requirement to ECS. The ECS controls

the internal ambient temperature to provide acceptable environmental conditions to

user.

72

Figure 4.14: Entity scenario [ES] for temperature control at SA

Further, the time duration can be defined between two exchanges in scenario to represent

the performance and timing constraints.

73

4.5 Transverse modelling

Transverse modelling features can be utilized throughout all four working levels of ARCADIA.

These transverse modelling techniques are important to increase the effectiveness of the

model-based specifications. In the following section, the two main features of transverse

modelling available in Capella and applied in the ECS use case are presented.

1. Modes and states diagram

Figure 4.15: Mode diagram for pressurization control (MSM)

As part of the architecture maturing, the modes and states of components and actors are

specified. The ARCADIA definition of modes and state is different from usual INCOSE

definition. System modes are definition of the expected behavior of the system (or of

its actors, or of its components) in situations foreseen at design time [79]. However, A

state represents an operating condition or status on structural elements of the system:

operational, failed, degraded, absent, etc [79]. The definition of the modes and states

74

starts at the operational level (here with the definition of flight phases, for example)

and is continuously enriched throughout the specification process. For instance, the

flight mode contains parking, taxis, take-off, climbing, cruising, descent, and landing

modes. Similarly, the air-conditioning means have automatic, standby, and manual

modes. Pressurization also has modes that depend on the flight phase, as shown in

Figure 4.15. States and modes are also important to analyze failure scenarios and plan

specific test scenarios.

2. Data-class diagrams

Data-class diagrams include all the data structures needed to complete the specifications

of each subsystem. Often, data-class diagrams compress of exchange items or data

parameters utilized in a system. The data includes the following items:

• Time factors: duration, data update rate, etc.

• Data factors: properties of data; accuracy, range, and scale of data

• Interface factors: cockpit control and display factors

• System factors: Status, modes, and availability

• Type: control (commands), feedback, or resources (air, electrical)

• Exchanged data: cabin temperature, cockpit temperature, differential pressure

• Units: Degree Celsius, voltage

An instance of a cabin pressure controller is presented in Appendix D. The benefit of

the data structure is the significant reduction of the model complexity on the interface

level. The number of exchange items between two functions in a DIMA system is huge.

Furthermore, increased exchange links between functions render the model difficult to

understand.

75

Figure 4.16: Illustration of the benefits of using data classes for exchange items

A sample class diagram for cabin pressure controller is presented in Appendix D.

In this context, a data structure minimizes the link to one direction by allocating exchange

items between two functions to a single link and thus reducing the overall complexity, as

shown in Figure 4.16.

4.6 Capella viewpoints

Capella viewpoints are extension or add on infrastructures to perform additional engineering

activities on the models [74]. Capella viewpoints are different from viewpoints specified in

section 2.1. However, Capella viewpoints are extensions that facilitates the same services as

76

the viewpoints in system engineering. The engineering activities involve creating a shared

environment for models, automatic generation of documents, management of requirements

and properties, multi-level transition, and assessment of safety, performance, cost, mass and

scheduling.

For the thesis, it was important to have extension to other engineering activities. The idea is

to slowly incorporate Capella model as a replacement or complement to current specifications.

Therefore, automatic document generation extension was explored. The methodology also

needed an extension to support importing requirements. Further, the DIMA case study

required to have an extension to MARTE to perform the timing analysis at item-level. As

mentioned in section 3.2.4, the vertical methodology is carried out with the sub-system

transition add on. Following are the various viewpoints1 supported by Capella as shown in

Figure 4.17.

Figure 4.17: Engineering activities supported by Capella extensions

1. Requirements addon: the add on helps to import requirements files such as RegIf

defined using a requirements management add on like IBM DOORS. Figure 4.13 shows

the requirements management process used for ECS case study. During the case study,
1 Not all the Capella viewpoints presented were explored.

77

the aircraft-level requirements were tried to import using requirements add on. How-

ever, the add on was just launched and not mature enough to implement. Later the

add on was tested by aircraft-level engineer and found to be effective.

2. XHTML Documentation Generation: The add on helps to generate HTML docu-

ments for Capella models that can be shared with all stakeholders. Figure 4.18 shows an

example of the generated HTML document. For the case study, the HTML document

was shared between the model review team along with models. The document contains

all the model elements, and the information allocated to the element. Moreover, the

document showed the traceability to upper and lower working levels. The document

was effective in providing a complete system specification. However, the problem faced

was that the model should be present along with the document to view the document.

Figure 4.18: ECS model HTML document generated using viewpoint

3. Basic viewpoints: The add on enables to define the non-functional aspect of cost,

mass and performance of components (physical/logical) and compares the maximum

acceptable by the component to the current value of the components. The cost and

mass analysis can be performed at PA. For example, the PA can define the maximum

78

value and the supplier can add required value to do the analysis. The logic for the cost

and mass analysis is as follows:

(a) Value > Max Value; the physical component and associated annotation are dis-

played in red.

(b) Value = Max Value; the physical component and associated annotation are dis-

played in orange.

(c) Value < Max Value; the physical component and associated annotation are dis-

played in Green/pale.

Figure 4.19 shows the mass analysis of the hydraulic system using the logic as mentioned

above.

Figure 4.19: Non- functional mass analysis using Capella viewpoint

Further, performance analysis for time constraints and compares the Function Time

Consumption of all functions in Functional chain (Total Execution Time) with the

maximum allowed execution time limit (Execution Limit). Figure 4.20 shows the per-

formance analysis done on information transfer functional chain between functions

“Display information and receive commands” and “Receive system indication” using

the following logic.

(a) Total Execution Time < Execution Limit: The Execution Limit is displayed

in green/yellow.

(b) Total Execution Time = Execution Limit: The Execution Limit is displayed in or-

ange.

79

(c) Total Execution Time > Execution Limit: The Execution Limit is displayed in red.

Figure 4.20: Performance analysis using Capella viewpoint

In the above mentioned basic viewpoints, performance viewpoint is more useful in

the case study, as it helps to define the maximum allocated time for a process. This

viewpoint was the first attempt to introduce timing analysis in Capella and paved the

way for more mature and functional add ons.

4. Tideal and Time4Sys: The add on contains two viewpoints namely Tideal which is

used to define timing properties and Time4Sys which creates a bridge with Time4sys

a software that enables the architect to perform schedulability analysis or simulation.

Time4Sys proposes four capabilities: modelling and viewing the Time4sys model, a

dedicated meta-model based on the MARTE standard, model transformations able to

transform and adapt Time4sys model for verifications add on and connectors to import

and /or export models from design add ons and verifications add ons [80]. For the ECS

use case, only Tideal was used to define timing properties to software architecture.

Figure 4.21 shows a sample timing property definition using Tideal viewpoint. The

80

purple elements are schedulable resources, and all the functions appear in green colour.

A watchdog timer alarm is defined highlighted in red with timer function as in orange.

Furthermore, the add on helps to provide the model checking process explained in

subsection 3.2.2.

Figure 4.21: Timing properties defined using Tideal

5. Team for Capella: Team for Capella enables system engineers of multi-levels to col-

laborate and share Capella models. Team for Capella provides a fine-grained concur-

rency management policy: only the minimum set of elements are locked when modified

and automatically released on saving [81]. The add on provides a cloud repository to

share models with strict permissions.

For a complex system like DIMA the interfaces are important. When a derived re-

quirement is formed in a system, the actor system interacting with the system should

be informed. Moreover, if a derived requirement forms in item-level, the system-level

needs to know about the change as mentioned in subsection 3.2.1 to assess the im-

pact. With a common shared environment, if the system engineer has limited access

to actor system’s model, the engineer can inform about the change under a request

81

and approve method. After the assessment, if the change is not approved the system

engineer can come up with another solution. Further, when the model is available to

multi-disciplinary team, they can use viewpoint to perform analysis. Therefore, with

the Capella viewpoints, stakeholders in multi-level can perform analysis on a model

and ensure that the concerns of the stakeholders are addressed.

6. Capella Studio: Capella Studio provides a fully integrated development environment

(IDE) which aims at facilitating the development of extensions for Capella MBSE.

Capella Studio offers the capability to create Capella add-ons in a standard way with

Java and the Eclipse Modeling Framework (EMF) [59]. To explore the feasibility to

create a new add -on, a quality assessment viewpoint was created using Capella Studio.

Figure 4.22 shows the quality viewpoint created using the IDE. The viewpoint has the

attributes to define the maturity level and the confidence level of the component.

Figure 4.22: Quality viewpoint developed using Capella studio

Further, there are viewpoints like Safety Architect [82] which enables safety assessment and

Pure Variants which enables variability and property valve management to complement data

class diagrams.

To summarize the viewpoint enables to perform additional engineering activities on the same

82

reference and moreover, new viewpoints can be developed that fits the requirements of the

concerned systems engineering process.

4.7 Summary

In this Chapter, the implementation of MBSE, with the methodology defined in Chapter 3

was discussed. For the case study, a generic architecture for ECS was developed. The generic

architecture included all the needed functionality for an ECS system. The architecture can

be updated to incorporate the development of technologies. To illustrate this, a bleedless

and bleed-driven ECS specification was derived. Further, a CPCS specification and state of

the art ECS HMI specification was also derived. All the derived models used the vertical

transition to maintain consistency and traceability at system-level. At item-level, a CPCS

controller architecture is specified.

The validation tools in Capella help to ensure traceability and consistency is maintained in all

the working levels. When started the modelling activity, it was hard to differentiate the OA

and SA. Especially the capability definitions. Moreover, there was difficulty in comprehend

between activity and capability. The main reason is that the capability was defined after

the activity was defined. Moving on to LA, horizontal adaption was used in the beginning

to define technological variants such as bleed and bleedless ECS. However, the dataflow

diagrams must be kept unsynchronized. This was learned during the case study when a

synchronization was performed to update a function. After synchronization the whole model

was turned into a unreadable diagram, due to the high number or interfaces. The reason

was that once synchronized all the existing interfaces are updated automatically to meet the

Capella validation rule. Therefore, a new method was needed, and thus vertical transition

was used to define sub-systems.

One of the advantages of defining specifications in Capella is that ARCADIA is viewpoint

driven. For the case-study, apart from the need and solution viewpoint in ARCADIA addi-

tional viewpoints were explored. XHTML documentation generation tool was beneficial as an

83

architecture description document. However, at the moment there are add ons that can gener-

ate model description in specific templates which are independent of models. The case study

initiated timing analysis for DIMA architecture using Tideal. The coupled Time4Sys add on

support MARTE modelling and simulations can be performed to check the time constraints.

Overall, MBSE is powerful and effective for designing complex aircraft systems.

84

Chapter 5

Integration and Demonstration
This section presents the integration demonstration that is under development at Bombardier

to reflect the full development cycle from the aircraft level to the software application in an

ARINC 653 platform. The thesis covers the following scope of the demonstration.

1. Develop a plant model in Simulink to emulate the physical system and cabin atmosphere

behaviour.

2. Develop a controller model for CPCS application

3. To support the development of ECS HMI to emulate CDS

The demonstration platform helps explore the optimal specifications of the partitions and

the required computing resources. The demonstration is implemented through a Hardware-

in-the-Loop (HIL) simulation and therefore provide a virtual test environment for the DIMA

platform. HIL simulation helps in testing complex real-time embedded systems. That is, HIL

simulation provides a platform that emulates the complexity of the physical system under

control. For instance, HIL simulation will provide a platform to emulate the outflow valves

in CPCS along with the complex behaviour of the cabin atmosphere. The controller to be

tested will be connected to the platform or plant simulation.

Figure 5.1 shows the overview of integration and demonstration currently under development

for Cabin Pressure Controller (CPC). The HIL simulation is divided into three components.

First is ECS HMI section that consist of the flight deck and avionics application that manages

the HMI aspects. Second is the plant model that act as a real-time simulator for physical

systems and air flow characteristics. The third and most important component is the CPCS

85

application (controller). All three components are connected through TTETHERNET com-

munication protocol.

Figure 5.1: Integration and demonstration overview

The Integration and demonstration aim following three objectives.

1. To validate and verify the CPCS controller and HMI specification defined using Capella

through HIL simulation

2. To develop and test CPCS application

3. To develop and test HMI defined using the ARINC 661 protocol.

The following section provides insight to each component in HIL simulation.

86

5.1 Plant model development

The simulator will emulate the physical system and behaviour of CPCS. The first step is to

develop a Simulink model of the CPCS. The CPCS controls the pressurization by regulating

the exhaust air through outflow valves. The pressurization can be automatic or manually

controlled. To control pressure automatically, the controller acquires pressure data from the

pressure sensor. The controller calculates the deviation from the scheduled pressure. For

manual control, the deviation is calculated between flight crew command and pressure data.

However, the differential pressure between cabin pressure and atmospheric pressure is always

given prior. The differential pressure should be maintained at all cost. Next, the controller

sends the actuation signal to the outflow valve electric actuator The actuation signal is a

reference voltage. The actuator opens the outflow valve to lease the air and pressure is

brought to the required value.

The system can be modeled as a mathematical equation of balance of air mass [83]. The

change in cabin air mass is the sum of the mass of air flowing into the cabin from air

conditioning system (ACS), the mass of exhaust air and mass of air leaked through the

structure as depicted in equation (1)

dMcabin = Mair−in + Mair−out + Mair−leaked (1)

where:

Mcabin – Mass of air in the cabin

Mair−out – Mass of air exhaust from ACS (-ve)

Mair−in – Mass of air forward from ACS(+ve)

Mair−leaked – Mass of air leaked through structural leakage (-ve)

87

The cabin air is assumed to obey the ideal gas equation.

Pcabin = Rair ∗ Tcabin

Vcabin

∫
(Mair−in − Mair−out − Mair−leaked)dt (2)

where:

Rair– Specific constant for air

Vcabin– Volume of the pressurized zone

Pcabin – Cabin pressure

Tcabin – Cabin temperature

The actuator dynamics follows a 2nd order dynamics represented by the following transfer

function with specific values, according to ref [84].

Transfer function = Kv

(1 + TeS)(1 + TmS) (3)

where: Te , Tm – Mechanical and Electrical time constant

Kv – actuator gain

The characteristics of the outflow valve are assumed to be linear. Thus, the amount of

air exhausted is linearly proportional to the valve opening. The equations 2 ,3 are used

to develop the Simulink model. Physical systems such as outflow valves, actuators, and

pressure sensors are also modelled in Simulink, as depicted in Figure 5.3. The cabin air flow

function is defined using the ANSI/ASHRAE Standard [73]. The structural leakage function

determine the leakage based on cabin pressure and atmospheric pressure and is specific to

Bombardier.

The performance of the plant model satisfied with the requirements specified in the ECS

Capella model as shown in Figure 5.2.

88

Figure 5.2: CPCS Simulink model output

Figure 5.3: Simulink model for the CPCS

The plant model will be adapted and deployed in RT-LAB for real-time simulations.

89

5.2 The CPCS application

The application is the software component and will process the CPCS data and perform the

control algorithm. The ECS application is developed through a Simulink model at Bom-

bardier. To do so, the software model needs to be optimized. The first step is to perform a

timing analysis to find out the Worst-Case Execution Time (WCET), execution profiles for

developed functions. The data will be used for optimization of WCET and to validate that

the Simulink model and the derived software program will adhere to timing requirements.

Further, the code for the model is generated using the Embedded Coder in MATLAB [85].

The generated code will be adapted and deployed to an ARINC 653 platform to create the

CPCS application. The model is an intellectual property of Bombardier.

5.3 The ECS HMI

The ECS human-machine interface emulates flight deck with real synoptics for ECS. The

flight deck or CDS is developed using the VAPX XT 661 tool [86]. VAPS XT is a complete,

object-oriented C++ avionics software-development tool for all types of avionics cockpit

displays, including ARINC 661. The CDS acts as a rendering engine that deploys the updated

data from UA and graphical presentations defined in definition files as shown in Figure

5.4. The developed HMI will demonstrate the capabilities of ARINC 661 and the physical

hardware such as buttons, knobs etc. HMI is defined for EECS and consists of physical panel

definitions and layer-widget definitions. There are two physical panels for EECS. (1) Air

conditioning panel definition and (2) Pressurization panel definition.

In layer-widget definition, there is (1) EECS synoptics layer with air parameter widget and

Synoptics widget (2) EICAS ECS layer with air parameter widget and (3) Cabin crew tem-

perature layer with temperature setting widget.

90

Figure 5.4: Overview of ARINC 661 implementation presented by Presagis [87]

To implement the HIL simulation demo, efficient communication between the Real-Time sim-

ulator (Plant model), CPCS application and ECS HMI is crucial. Therefore, TTETHERNET

will be deployed as a communication network.

91

Chapter 6

Conclusion and Future Works
An MBSE methodology for the specifications of the implementation of the aircraft-control

system on a DIMA avionics platform is developed in this thesis.

At present, the system engineering process for a complex system of systems like aircraft is

not well developed and is one of the reasons why aircraft development programs are time-

consuming and resulting in high product development cost and period. Further, the aircraft

complexity has been increased rapidly with the arrival of IMA architecture. Although IMA

provides benefits regarding SWaP, IMA also brings complex interfaces and interdependences.

Traditional paper-based system engineering is unable to account the considerable complexity

introduced by DIMA architectures. The majority (70%) of the faults are introduced in the

early design and analysis phase and are due to errors in requirements and system interaction

or interface definitions. However, MBSE promising to address these challenges. MBSE

can provide consistency, end-to-end traceability and integration throughout the development

phases for complex systems like DIMA.

The scope of the thesis focuses on the improvement of early analysis and design phase for

implementing networked aircraft control system in an IMA architecture. To do so, an ECS

case study has been implemented. The state of the art explored the ECS and various tech-

nologies used by subsystems. Further, IMA technology is studied along with the aerospace

standards and guidelines that must be followed for the use-case. State of the art also ex-

plored existing MBSE frameworks and concluded that ARCADIA/Capella supports the use

case by providing the functional analysis as specified by ARP4754A. ARCADIA/Capella has

four working levels in every engineering level. The first two levels of operational analysis and

92

system analysis specify the need and remaining two levels logical architecture and physical

architecture specifies the solution. However, state of the art realized that the existing MBSE

use-cases focused on the feasibility studies and a gap in methodology exists.

The proposed methodology defines a systematic MBSE approach by strictly following the

development process defined in the aerospace guidelines ARP4754A and DO-178C. Further,

the methodology supports system engineering in multi-level and defines a proper transition

in a top-down approach. Although there exist commercial variability management tools,

the methodology addresses demonstrate how systems with few variants can be efficiently

managed using the generic and derived specific models while still assuring consistency between

subsystems right down to the item level. Horizontal adaptation and vertical transition are

the two methods defined in this thesis. The horizontal adaptation deals with variability

through abstraction and encapsulation thus providing an insight into the solution without

losing the overall picture. The vertical transition deals with variability and level transitioning

and provides a detailed low-level specification.

The specification models are defined for generic ECS architecture with the generic controller,

ECS HMI architecture, bleed and bleedless ECS architecture, CPCS architecture for the fully

electric and electro-pneumatic system and CPCS application. Also, several viewpoints were

also explored to project the capability of Capella tool to address other engineering activities

such as Tideal, XHTML documentation generation and performance viewpoint.

To conclusion, the methodology covers a complete spectrum, from aircraft-level specification

to controller implementation on the avionics platform. The various steps of the methodol-

ogy are illustrated for the aircraft ECS and the CPCS in particular. The thesis shows how

the MBSE approach using the Capella tool can be used to implement all the process steps

required by the SAE ARP4754A and DO-178C. A demonstration platform is presented that

enables virtual testing of the developed controller using a Simulink plant model to represent

the system. Overall, the presented work significantly contributes to the further develop-

ment of a DIMA platform by improving the specification capabilities. With the established

93

methodological framework and the demonstration platform, it is possible to perform predic-

tions of how many additional resources might become available at runtime, considering a

more granular definition of the control system’s operating conditions. The MBSE approach

enables to provide a centralized architecture definition with a unified information model.

Furthermore, the model-based system specifications are much more complete, allowing for

virtual testing of the integrated system, which leads to more mature specifications in the real

product and hence reduces rework in later design phases and thus also development costs.

The presented methodology applies to other aircraft-control systems and contributes to the

model-based development of future DIMA platforms.

6.1 Future works

The immediate future work is to validate the ECS controller specifications through the com-

pletion of the demonstration. The controller code generated by Simulink needs to be adapted

for an application deployed in the VxWorks environment. Once an application is deployed,

the communication between ECS HMI, CPCS controller and real-time plant simulator needs

to be established through TTETHERNET protocol. In the modelling aspect one interesting

work to be done is to continue exploring the Time4Sys viewpoint to perform time analysis

on the model. Another major work is to implement the Team for Capella, so that a shared

environment can be created to collaborate multi-level system engineers.

The proposed methodology specified in this thesis has also investigated requirements man-

agement. However, a guideline should be developed on how to define requirements at each

engineering level. Further, the guideline should also address the standardization of MBSE

nomenclature. For example the standardization in formulation of function names, exchange

names and other nomenclatures. This will further help in the wide spread adoption of MBSE

in an organization. Another important aspect is to schedule a maintenance period to update

to the newest versions of the tool. The tool upgrades provide more capabilities to model

specifications. For instance, while in thesis most of the models were made in Capella 1.1.1

94

to keep the model accessible to specialist while Capella 1.2 was already in the market. The

reason is because a large number of users were adapting to MBSE and the few specialists

used MBSE tool only to support model review process. As a result, the upgrading of the

tool was hard to implement throughout the organization. The organization can make use of

the Capella Studio to develop the much-needed bridge between Capella and Simulink. This

will facilitate a complete Model-Driven Engineering (MDE) framework. Moreover, a bridge

between the tool and Product Lifecycle Management (PLM) will effectively help to track the

versions and provide a library and repository for models to be shared.

The case study was performed with the open-source tool Capella but could also be imple-

mented in other MBSE tool frameworks using similar concepts. However, the efficiency of the

overall process highly depends on the tool infrastructure. For example, the full benefit of an

architecture-centric approach only becomes available if other engineering activities such as

safety assessments, performance assessments and optimization, and requirements engineering

are also performed using the same reference. The efficiency of this approach strongly depends

on the tool infrastructure. Future work can be performed to fully benefit from the developed

framework and to investigate in-depth aspects such as the development of customized view-

points, the investigation of bridges between tools for virtual integration (e.g. to Simulink),

safety analyses, and DIMA resources analyses.

In summary, a significant contribution was made by providing a practical but reusable ex-

tensive example of MSBE methodology for aircraft control system specifications for DIMA

platforms.

95

List of Publications
• George Mathew, P., Liscouet-Hanke, S., and Le Masson, Y., “Model-Based Systems En-

gineering Methodology for Implementing Networked Aircraft Control System on Inte-

grated Modular Avionics - Environmental Control System Case Study,” SAE Technical

Paper 2018-01-1943, 2018, https://doi.org/10.4271/2018-01-1943.

• Presented at Aerospace Systems and Technology Conference (ASTC) in UK, London,

November 2018.

96

Bibliography
[1] “Bombardier Aerospace Granted Authority to Offer CSeries Aircraft to Customers

- Bombardier.” Bombardier Inc, [Online], Available : https://bit.ly/2ExwzRw,

[Accessed:07-Jan-2019].

[2] S. Trimble, “Transport Canada announces type certification for CSeries.” FlightGlobal,

[Online], Available : https://bit.ly/2EyZeFN, [Accessed:07-Jan-2019].

[3] P. Jackson and K. Munson, “IHS Jane’s all the world’s aircraft. Development & produc-

tion,” 2019.

[4] S. Holt, P. Collopy, and D. DeTurris, “So It’s Complex, Why Do I Care?,” in Trans-

disciplinary Perspectives on Complex Systems, pp. 25–48, Cham: Springer International

Publishing, 2017.

[5] H. Salzwedel, “Mission level design of avionics,” in The 23rd Digital Avionics Systems

Conference (IEEE Cat. No.04CH37576), pp. 9.D.2–91–10, IEEE.

[6] H.-H. Altfeld, Commercial aircraft projects : managing the development of highly com-

plex products. Ashgate Pub., 2010.

[7] B. Annighoefer, V. Posternak, and F. Thielecke, “Empirical investigations on avionics

scaling laws,” in 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC),

pp. 1–10, IEEE, September 2016.

[8] A. J. Kornecki, “Airborne Software: Communication and Certification,” SCPE, vol. 9,

no. 1, pp. 77–82, 2008.

[9] Federal Aviation Administration, “Handbook for Ethernet-Based Aviation Databuses:

Certification and Design Considerations,” tech. rep., 2005.

97

[10] R. E. McShea, Test and Evaluation of Aircraft Avionics and Weapon Systems. 2014.

[11] P. Eremenko, “Historical schedule trends with complexity by DARPA,” Adaptive Vehicle

Make (AVM). Proposers’ Day BriefingTactical Technology Office, DARPA, 2017.

[12] SAE International, “ARP4754 A Guidelines for Development of Civil Aircraft and Sys-

tems,” 2010.

[13] J. Gausemeier and S. Moehringer, “VDI 2206- A New Guideline for the Design of Mecha-

tronic Systems,” IFAC Proceedings Volumes, vol. 35, pp. 785–790, December 2002.

[14] B. Lewis and P. H. Feiler, “Incremental Verification and Validation of System Architec-

ture for Software Reliant Systems Using AADL(Architecture Analysis & Design Lan-

guage).” Software Engineering Institute, Layered Assurance Workshop, Carnegie Mellon

University, Pittsburgh, 2010.

[15] P. H. Feiler, “Model-based validation of safety-critical embedded systems,” in 2010 IEEE

Aerospace Conference, pp. 1–10, IEEE, March 2010.

[16] B. W. Boehm, Software Engineering Economics (Prentice-Hall Advances in Computing

Science & Technology Series). 1981.

[17] Research Triangle Institute (RTI), “The Economic Impacts of Inadequate Infrastructure

for Software Testing Final Report 02-3,” tech. rep., National Institute of Standards &

Technology (NIST), U.S Department of Commerce, Technology Administration, Project

Number 7007.011, 2002.

[18] D. Galin, Software Quality Assurance: From Theory to Implementation.

Pearson/Addison-Wesley, 2003.

[19] Federal Aviation Administration, “Handbook for Real Time Operating Systems Inte-

gration and Component Integration Consideration in Integrated Modular Avionics Sys-

tems,” 2008.

[20] P. E. Gartz, “Systems Engineering.” Boeing, tutorial at 14th DASC, Boston/MA,

98

November 1995.

[21] C. R. Spitzer, “Digital Avionics - an International Perspective,” IEEE Aerospace and

Electronic Systems Magazine, vol. 7, no. 1, pp. 44–45, 1992.

[22] J.-B. Itier, “A380 Integrated Modular Avionics,” in Network of Excellence on Embedded

Systems Design, (Rome), pp. 6–19, 2007.

[23] M. Morgan, “Integrated modular avionics for next generation commercial airplanes,”

IEEE Aerospace and Electronic Systems Magazine, vol. 6, pp. 9–12, August 1991.

[24] A. Mairaj, “Preferred choice for resource efficiency: Integrated Modular Avionics versus

federated avionics,” in 2015 IEEE Aerospace Conference, pp. 1–6, IEEE, March 2015.

[25] Boeing Commercial Airplane Group, “777 Application Specific Integrated Circuits

(ASIC) Certification Guideline,”

[26] F. M. G. Dorenberg, “Modular avionics.” lecture at UCLA , 1997.

[27] Kafyeke,Fassi, “Quand l’environnement inspire l’innovation - rapport final de fin de

projet,” tech. rep., 2015. SAGE-2 Consortium.

[28] P. E. Gartz, “Avionics Development and Integration System Methods,” IEEE Aerospace

and Electronic Systems Magazine, vol. 2, pp. 2–8, June 1987.

[29] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and Inter-

national Council on Systems Engineering., Systems engineering handbook : a guide for

system life cycle processes and activities. 4th ed., 2015.

[30] National Aeronautics and Space Administration (NASA), NASA Systems Engineering

Handbook. revision 1 ed., 2007.

[31] J. S. Macias, J. M. G. Rey, C. A. Gonzalez, C. E. Roso, J. S. Velandia, J. P. Barreto,

N. Ochoa, C. F. Rodriguez, and A. Garcia-Rozo, “Design and implementation of a

Lunabot using NASA Systems Engineering,” in 2012 IEEE 4th Colombian Workshop on

99

Circuits and Systems (CWCAS), pp. 1–6, IEEE, November 2012.

[32] B. W. Boehm, “A spiral model of software development and enhancement,” Computer,

vol. 21, pp. 61–72, May 1988.

[33] W. W. Royce, “Management of the Development of Large Software Systems: Concepts

and Techniques,” in Wescon Conference 1970, International Conference on Software

Engineering, 1987.

[34] A. J. Shenhar, V. Holzmann, B. Melamed, and Y. Zhao, “The Challenge of Innovation in

Highly Complex Projects: What Can We Learn from Boeing’s Dreamliner Experience?,”

Project Management Journal, vol. 47, no. 2, pp. 62–78, 2016.

[35] M. Schulte, “Model-Based Integration of Reusable Component-Based Avionics Systems -

A Case Study,” in Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC’05), pp. 62–71, IEEE.

[36] J. Yin, B. Lawler, and H. Jin, “Application of model based system engineering to IMA

development activities,” in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference

(DASC), pp. 1–7, IEEE, September 2017.

[37] D. Dori, Object-Process Methodology. Berlin, Heidelberg: Springer Berlin Heidelberg,

2002.

[38] INCOSE, “Systems Engineering Vision 2020. version 2.03 edn.,” Technical Operations,

International Council on Systems Engineering, vol. INCOSE-TP-, 2007.

[39] “System Engineering Methodology for Implementation of Networked Aircraft Con-

trol Systems on Distributed Integrated Modular Architecture.” Concorida Univer-

sity, Bombardier Aerospace, Mitacs, [Online], Available : https://bit.ly/2EHJRL8,

[Accessed:02-Jan-2018].

[40] International Organization for Standardization, “Standard Atmosphere ISO 2533:1975,”

1975.

100

[41] Bombardier Aerospace, “Bombardier Global Express - Altitude and Temperature Oper-

ating Limit - Flight Crew Operating Manual,” tech. rep. November 2006.

[42] M. Sinnett, “787 No-Bleed Systems -Saving Fuel and Enhancing Operational Efficien-

cies,” AERO Magazine QTR 4.07, [Accessed:20-Jan-2019].

[43] R. Burkhart, “Modeling Standards Activity Team - MBSE Initiative,” in MBSE Inter-

national Workshop - INCOSE, (Phoenix, AZ), 2011.

[44] “MBSE:standards .” MBSE Wiki, [Online], Available : https://bit.ly/2tvksy3,

[Accessed:28-Jun-2018].

[45] “SysML Open Source Project - What is SysML? Who created SysML?.” Eclipse Foun-

dation, [Online], Available : https://sysml.org/, [Accessed:02-Feb-2019].

[46] “What is UML .” Unified Modeling Language, [Online], Available : http://www.uml.

org/what-is-uml.htm, [Accessed:05-Jan-2019].

[47] C. J. Paredis, Y. Bernard, R. M. Burkhart, H.-P. de Koning, S. Friedenthal, P. Fritzson,

N. F. Rouquette, and W. Schamai, “An Overview of the SysML-Modelica Transforma-

tion Specification,” 2010.

[48] “OMG UML Profile for DoDAF/MODAF.” Object Management Group, [Online], Avail-

able : https://www.omg.org/updm/, [Accessed:05-Jan-2019].

[49] “OMG MARTE Web site.” Object Management Group, [Online], Available : https:

//www.omg.org/omgmarte/, [Accessed:05-Jan-2019].

[50] S. Gérard, J. Medina, and D. Petriu, “MARTE: A New Standard for Modeling and Anal-

ysis of Real-Timhttps://www.overleaf.com/project/5c782592b91383699645afa0e and

Embedded Systems,” in Euromicro Conference on Real-Time Systems (ECRTS 07),

(Pisa, Italy), 2007.

[51] E. J. Barkmeyer, A. B. Feeney, P. Denno, D. W. Flater, D. E. Libes, M. P. Steves,

and E. K. Wallace, “Concepts for automating systems integration,” tech. rep., National

101

Institute of Standards and Technology, Gaithersburg, MD, 2003.

[52] CCSDS, “Reference Architecture for Space Data Systems.,” in Recommendation for

Space Data System Practices (Magenta Book), vol. Issue 1, (Washington, D.C), 2008.

[53] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/IEC 19793: Information

technology – Open Distributed Processing – Use of UML for ODP system specifications,”

2015.

[54] ISO/IEC JTC 1/SC 7 Software and systems engineering, “ISO/IEC/IEEE 42010:2011

- Systems and software engineering – Architecture description,” 2011.

[55] D. Huart and O. Olechowski, “Towards a Model-Based Systems Lifecycle: CPCS from

Design to Operations,” International Workshop on Aircraft System Technologies, 2017.

[56] J.-L. Voirin, Model-Based System and Architecture Engineering with the Arcadia Method.

Elsevier, first ed., 2017.

[57] J.-L. Voirin, S. Bonne, D. Exertier, and V. Normand, “Simplifying (and enriching)

SysML to perform functional analysis and model instances,” in Annual INCOSE Inter-

national Symposium, 2016.

[58] J.-L. Voirin, “Method and tools to secure and support collaborative architecting of

constrained systems,” in 27th Congress of the International Council of the Aeronautical

Science (ICAS 2010), (Nice, France), 2010.

[59] B. Langlois and J. Barata, “Extensibility of Capella with Capella Studio.” Eclipse

Foundation, [Online], Available : https://bit.ly/2NjZPOb, [Accessed:25-Jan-2019].

[60] L. Batista and O. Hammami, “Capella Based System Engineering Modelling and Multi-

Objective Optimization of Avionics Systems,” in ISSE -Int. Symp. Syst. Eng., 2016.

[61] “pure::variants.” Pure Systems, [Online], Available : https://www.pure-systems.com/

products/pure-variants-9.html, [Accessed:03-Aug-2018].

102

[62] H. Jahanara, S. Liscouët-Hanke, and J.-L. Bauduin, “A Model-Based Systems Engi-

neering Approach for the Development of Test Means for Flight Control Systems,” in

Aerospace Systems and Technology Conference (ASTC), 2018.

[63] A. Jeyaraj and S. Liscouët-Hanke, “A Model-Based Systems Engineering approach for

efficient flight control system architecture variants modelling in conceptual design,” in

Recent Advances in Aerospace Actuation Systems and Components, (Toulouse, France),

2018.

[64] S. Liscouët-Hanke, B. R. M. Mohan, P. J. Nelson, C. Lavoie, and S. Dufresne, “A Model-

Based Systems Engineering Approach for the Conceptual Design of Advanced Aircraft

High-Lift System Architectures,” in CASI AERO conference, Toronto, 2017.

[65] M. Sadri, “Modeling of Landing Gear System,” Bombardier Aerospace, Concordia Uni-

versity. internship report, 2017.

[66] RTCA, “DO-297 Integrated Modular Avionics (IMA) Development Guidance and Cer-

tification Considerations,” 2005.

[67] RTCA, “DO-178C, Software Considerations in Airborne Systems and Equipment Certi-

fication,” 2012.

[68] RTCA, “D0-331,Model-Based Development and Verification Supplement to DO-178C

and DO-278A,” 2011.

[69] Aeronautical Radio Inc., “ARINC 651 Design Guidance for Integrated Modular Avion-

ics,” 1997.

[70] Aeronautical Radio Inc., “ARINC 653 Specification Avionics Application Standard Soft-

ware Interface,” 2015.

[71] Aeronautical Radio Inc., “ARINC 661 Cockpit Display System Interfaces to User sys-

tems,” 2016.

[72] SAE International, “SAE AS6802: Time-Triggered Ethernet,” 2016.

103

[73] ASHRAE Standards Committee, “ASHRAE Standard 161-2013: Air Quality within

Commercial Aircraft,” 2013.

[74] “Capella Add-ons.” Pure Systems, [Online], Available : https://polarsys.org/

capella/addons.html, [Accessed:20-Nov-2018].

[75] “M2Doc - M2Doc.” [Online], Available : http://www.m2doc.org/, [Accessed:25-Jan-

2019].

[76] L. Wagner, “Formal Methods for Certification: Why and How?,” 2016.

[77] SAE International, “APPENDIX E - Contiguous Aircraft/System Development Process

Example,” 2010.

[78] “Capella Guide.” Help - Capella, Capella 1.3.0.

[79] S. Bonnet, J.-L. Voirin, D. Exertier, and V. Normand, “Modeling system modes, states,

configurations with Arcadia and Capella: method and tool perspectives; Modeling sys-

tem modes, states, configurations with Arcadia and Capella: method and tool perspec-

tives,” in 27th Annual INCOSE International Symposium, (Adelaide, Australia), 2017.

[80] “Time4Sys.” PolarSys, [Online], Available : https://www.polarsys.org/time4sys,

[Accessed:25-Jan-2019].

[81] “Team for Capella.” Obeo.[Online].Available : https://bit.ly/2SQK5IM. [Accessed:22-

Jan-2018].

[82] “Safety Architect.” ALL4TEC, [Online], Available : https://www.all4tec.com/

safety-architect, [Accessed:25-Jan-2019].

[83] Fábio Yukio Kurokawa, Cláudia Regina de Andrade, and Edson Luiz Zaparoli, “Deter-

mination of the outflow valve opening area of the aircraft cabin pressurization system,”

in 18th International Congress of Mechanical Engineering, (Ouro Preto, MG), 2005.

[84] SAE Aerospace, Applied Thermodynamics Manual ; 6: Characteristics of equipment

104

components, equipment cooling system design, and temperature control system design.

Aerospace information report, Society of Automotive Engineers, 3. ed ed., 1994.

[85] “Embedded Coder - MATLAB & Simulink.” MathWorks, [Online], Available : https:

//www.mathworks.com/products/embedded-coder.html, [Accessed:05-Feb-2019].

[86] “VAPS XT - COTS Modeling & Simulation Software.” Presagis, [Online], Available :

https://www.presagis.com/en/product/vaps-xt, [Accessed:28-Jun-2018].

[87] Y. Lefebvre, “Mastering the arinc 661 standard,” in SAE Technical Paper, SAE Inter-

national, October 2011.

[88] J. F. Asfia, K. R. Williams, W. A. Atkey, C. J. Fiterman, S. M. Loukusa, and C. Y. Ng,

“Electric air conditioning system for an aircraft Patent: US6526775B1,” September 2001.

Boeing Co, [Online], Available : https://patents.google.com/patent/US6526775B1/

en.

105

Appendix A

Capella diagrams
This sections provides an overview on Capella diagrams in all ARCADIA working levels.

It is recommended that the creation of diagrams follow the order in which diagrams are

introduced in this appendix.

A.1 Operational Analysis (OA)

The first level is Operational Analysis, where the stakeholder needs are expressed. The

OA provides a need understanding on ‘ What the users of the system need to accomplish ’.

Following seven diagrams specific to OA.

A.1.1 Operational Entity Diagram [OEBD]

Figure A.1: [OEBD]- Operational Entity Breakdown Diagram

The entity diagram shows all the actors and entities in an OA and any relationship between

them. For instance,Operational Actor 8 is contained in Entity 2. Further, Entity 7 and

106

Entity 6 is contained in Entity 3.

A.1.2 Operational Capability diagram [OCB]

The Capability diagram in OA shows the capabilities of actors and entities as shown in Figure

A.2. For this example, the Operational Capability 3 is contained inOperational Capability 2.

That is, to provide a specific use-case Operational Capability 2 would need the Operational

Capability 3.

Figure A.2: [OCB]- Operational Capabilities Blank diagram

A.1.3 Operational Activity Breakdown diagram [OABD]

The Operational Activity Breakdown diagram shows all the activities identified in OA. Fur-

thermore, the diagram also shows the nested activities.

Figure A.3: [OABD]- Operational Activity Breakdown diagram

107

A.1.4 Operational Activity Interaction diagram [OAIB]

Operational Activity Interaction diagram presents the interaction or exchange between the

activities as shown in Figure A.4. Each connection between an activity is a one directional

flow of information. For instance, in Figure A.4 Operational Activity 1 & 6 has a one way

forward interaction to Operational Activity 4 through Interaction 1 & 2. The green port is

output and red port is input to the function.

Figure A.4: [OAIB]- Operational Activity Interaction Blank diagram

A.1.5 Operational Activity Scenario [OAS]

Figure A.5: [OAS]- Operational Activity Scenario diagram

108

The Operational Activity Scenario diagram presents the sequence by which the activities

interact to provide a specific capability. For example, in Figure A.5 the sequence of activities

is as follows:

Operational Activity 6 ⇒ Operational Activity 4 ⇒ Operational Activity 2 ⇒ Operational

Activity 1 ⇒ Operational Activity 4 ⇒ Operational Activity 3

A.1.6 Operational Architecture diagram [OAB]

The Operational Architecture diagram presents the overall architecture at OA. As shown in

Figure A.6, the architecture includes identified actors, entities, activities, interactions and

communication means.

Figure A.6: [OAB]- Operational Architecture Blank diagram

109

A.1.7 Operational Exchange Scenario diagram [OES]

Figure A.7: [OES]- Operational Entity Scenario diagram

The Operational Exchange Scenario diagram presents the sequence by which the actors and

entities interact to provide a specific capability. For example, in Figure A.7 the sequence of

interactions is as follows:

Operational Actor 5 ⇒ Entity 1 ⇒ Entity 6 ⇒ Operational Actor 4 ⇒ Entity 1 ⇒ Entity

7 ⇒ Entity 6.

A.2 System Analysis (SA)

The System Analysis provides the need understanding on ‘ what the system has to do for

users’. SA is a sum of operational need understanding and system need understanding.

Following seven diagrams are specific to SA.

110

A.2.1 System Contextual Actor diagram [CSA]

The System Contextual Actor diagram shows all the actors in SA level along with system

of interest. It should be noted that all the actors and entities identified in OA will be

transformed into actors in SA.

Figure A.8: [CSA]- System Contextual Actor diagram

A.2.2 Mission diagram [MB]

The Mission diagram presents the mission of the system and the capabilities and actors that

needs to complete the mission as shown in Figure A.9.It should be noted that the operational

capabilities will be acquired during transition from OA. The operational capability can be

adapted for SA and additional system capabilities can be defined.

111

Figure A.9: [MB]- Mission Blank diagram

A.2.3 System Functional Breakdown diagram [SFBD]

The System Functional Breakdown diagram presents all the functions needed to represent the

system need. Further, as shown in Figure A.10 the also contains the operational activities

defined at OA. During transition to SA the activities are transformed into functions to

support the system need.

Figure A.10: [SFBD]- System Functional Breakdown diagram

112

A.2.4 System Functional Dataflow diagram [SDFB]

The System Functional Dataflow diagram shows the realized exchanges between functions.

It is to be noted that only leaf function can exchange information. Each connection or

functional exchange is uni-directional. Moreover, once allocated, all the actor functions will

be presented in blue colour in a dataflow diagram.

Figure A.11: [SDFB]- System Functional Dataflow Blank diagram

A.2.5 Functional Scenario [FS]

The Functional Scenario diagram presents the sequence by which the functions interact to

provide a specific capability. For example, in Figure A.12 the sequence of functions is as

follows:

Actor Function 1 ⇒ Operational activity 6 ⇒ System Function 4 ⇒ Actor Function 2 ⇒
Operational Activity 5 ⇒ Actor Function 1.

Figure A.12: [FS]- System Functional Scenario Blank diagram

113

A.2.6 System Architecture diagram [SAB]

The System Architecture diagram presents the overall architecture at SA. As shown in Figure

A.13, the architectural diagram consist of actors, system of interest, actors & system functions

and exchanges between them.

Figure A.13: [SAB]- System Architecture Blank diagram

A.2.7 System Exchange Scenario diagram ES

The System Exchange Scenario diagram presents the sequence by which the actors and

system of interest interact to provide a specific capability. For example, in Figure A.14 the

sequence of interactions is as follows:

System Actor 3 ⇒ System ⇒ System ⇒ System Actor 1 ⇒ System ⇒ System Actor 3 .

114

Figure A.14: [ES]- System Entity Scenario diagram

A.3 Logical Architecture (LA)

The Logical Architecture provides the solution on ‘ how the system works to achieve the

required performance.’. LA is the logical solutions for needs specified in OA, SA. Following

diagrams are specific to LA.

A.3.1 Logical Functional Breakdown diagram [LFBD]

The Logical Functional Breakdown diagram presents all the logical functions needed to rep-

resent the system solution.

115

Figure A.15: [LFBD]- Logical Functional Breakdown diagram

A.3.2 Logical Functional Dataflow diagram [LDFB]

The Logical Functional Dataflow diagram shows the realized exchanges between functions.

It is to be noted that only leaf function can exchange information. Each connection or

functional exchange is uni-directional. Moreover, once allocated all the actor functions will

be presented in blue colour in a dataflow diagram.

Figure A.16: [LDFB]- Logical Functional Dataflow Blank diagram

A.3.3 Functional Scenario [FS]

The Functional Scenario diagram presents the sequence by which the logical functions inter-

act to provide a specific capability. For example, in Figure A.17 the sequence of functions is

as follows:

116

(1) Logical Function 4 ⇒ Logical Function 6, (2) Logical Function 2 ⇒ Logical Function 6,

(3) Logical Function 3 ⇒ Logical Function 6, (4) Logical Function 6 ⇒ Logical Function 5,

(5) Logical Function 5 ⇒ Logical Function 1.

Figure A.17: [FS]- Logical Functional Scenario diagram

A.3.4 Logical Component Breakdown diagram [LCBD]

The Logical Component Breakdown Actor diagram shows all the components in LA level.

Figure A.18: [LCBD]- Logical Component Breakdown diagram

A.3.5 Logical Architecture diagram [LAB]

The Logical Architecture diagram presents the overall architecture at LA. As shown in Figure

A.13, the architectural diagram consist of actors, logical components, system of interest,

logical functions and exchanges between them.

117

Figure A.19: [LAB]- Logical Architecture diagram

A.3.6 Logical Exchange Scenario diagram [ES]

The Logical Exchange Scenario diagram presents the sequence by which the actors and

logical components interact to provide a specific capability. For example, in Figure A.20 the

sequence of interactions is as follows:

(1) Logical Actor 1 ⇒ Logical Component 1, (2) Logical Actor 3 ⇒ Logical Component 1,

(3) Logical Actor 2 ⇒ Logical Component 1, (4) Logical Component 1 ⇒ Logical Actor 5,

(5) Logical Actor 5 ⇒ Logical Actor 4.

Figure A.20: [ES]- Logical Entity Scenario diagram

118

A.4 Physical Architecture (PA)

The Physical Architecture provides the solution on ‘ how the system will be developed and

built..’ PA is the developed and built solution from the selected logical solution. Following

diagrams are specific to PA.

A.4.1 Physical Functional Breakdown diagram [PFBD]

The Physical Functional Breakdown diagram presents all the physical functions needed to

represent the system build and development.

Figure A.21: [PFBD]- Physical Functional Breakdown diagram

A.4.2 Physical Functional Dataflow diagram [PDFB]

The Physical Functional Dataflow diagram shows the realized exchanges between Physical

functions. Moreover, once allocated, all the actor functions will be presented in blue colour

in a dataflow diagram.

119

Figure A.22: [PDFB]- Physical Functional Dataflow Blank diagram

A.4.3 Functional Scenario [FS]

The Functional Scenario diagram presents the sequence by which the Physical functions

interact to provide a specific capability. For example, in Figure A.23 the sequence of functions

is as follows:

(1) Physical Function 1 ⇒ Physical Function 2, (2) Physical Function 2 ⇒ Physical Function

3, (3) Physical Function 3 ⇒ Physical Function 4, (4) Physical Function 6 ⇒ Physical

Function 3, (5) Physical Function 3 ⇒ Physical Function 1.

Figure A.23: [FS]- Physical Functional Scenario diagram

120

A.4.4 Physical Component Breakdown diagram [PCBD]

The Physical Component Breakdown Actor diagram shows all the components in PA level.

The components include node physical component and behavior physical component.

Figure A.24: [PCBD]- Physical Component Breakdown diagram

A.4.5 Physical Architecture diagram [PAB]

The Physical Architecture diagram presents the overall architecture at PA. As shown in Figure

A.25, the architectural diagram consist of actors, physical components, physical functions and

exchanges between them.

Figure A.25: [PAB]- Physical Architecture diagram

121

Appendix B

Logical architecture for the bleed-driven

ECS
Figure B.1 shows a Bleed ECS architecture based on Challenger 605. A conventional bleed

ECS uses bleed air from the engine as an existing source of pneumatic energy. First, the bleed

air is filtered for contaminants. Next, the pneumatic power is preconditioned using ram air.

Then, the preconditioned air is transferred to the compressor and compressed. Next, the

hot, compressed air is cooled in the heat exchanger down to the atmospheric temperature

(in ideal conditions). The cooled air is then expanded in the expander. The temperature

of the air emitted from the expander is below the atmospheric temperature. Finally, the

low-temperature air coming out of the expander gets mixed with the hot air extracted from

the preconditioning process, and thus conditioned air is generated. In Figure B.1, three

functional chains are shown:

1. Cold air generation chain represented by orange chain.

This chain highlights the manipulation of airflow to generate cold air. The functional

flow is as follows:

Provide pneumatic power generation and distribution ⇒ Modulate Pneumatic power

flow ⇒ Provide protection against FOD ⇒ Regulate Pneumatic power flow to ECS ⇒
Provide primary cooling ⇒ Limit pre-cooled air flow ⇒ Provide primary cooling to hot

air ⇒ compress air ⇒ Provide secondary cooling to compressed air ⇒ Provide moisture

exaction⇒ Provide air expansion ⇒ Provide humidity control ⇒ prevent backward air

flow ⇒ Provide cockpit and cabin ventilation

2. Temperature control flow chain represented by red chain.

This chain highlights the flow of hot air to control the temperature. As shown in Figure

122

B.1 a portion of the hot air is used to prevent ice formation in ECS system. The main

hot air flow for cabin temperature control is as follows:

Provide primary cooling ⇒ Limit pre-cooled air flow ⇒ Provide cabin and flight deck

temperature control ⇒ Limit high temperature in conditioned air ⇒ prevent backward

air flow ⇒ Provide cockpit and cabin ventilation

3. Redundant cold air air generation chain represented by yellow chain

The redundant chain is a measure to facilitate cross flow between two air conditioning

systems in case of failure in one. The pre-cooled air is taken by a redundancy mean

(usually a cross bleed valve) and feed it to the second air conditioning system.

123

Figure B.1: Logical architecture for the bleed ECS

124

Appendix C

Physical architecture for the CPCS

The Figure C.1 shows a high-level PA of fully electric CPCS and also reflect the demonstration

overview presented in 5.1. The actors of the CPCS are flight crew, flight deck, FMS, door,

landing gear system and oxygen system. The communication switch provides integrated

communication between the components. There is two avionics computing unit representing

LRM. The unit one is dedicated for HMI and is placed near the flight deck. Also, unit one

host the ECS HMI application and also contains the ECS HMI definition files. Unit two

host the CPCS application. The remote data concentrator (RDC) forward the actuation

command to the outflow valves and also receive pressure data from sensors. The CPCS has

two sets of outflow valves with each having a primary and secondary valve.

125

Figure
C

.1:
Physicalarchitecture

for
the

C
PC

S

126

Appendix D

Data class for cabin pressure controller

Figure D.1: Data class for cabin pressure controller

127

Appendix E

Example for logical scenario

Figure E.1: Logical scenario for automatic-to-manual pressurization control for the electric
system

128

Appendix F

Logical architecture for the bleedless

ECS
The logical architecture for the Bleedless ECS in Figure F.2 is adapted from the Boeing

patent for electric air conditioning system for an aircraft [88] presented in Figure F.1.

Figure F.1: Electric air conditioning system adapted from [88]

129

There are four functional chains defined in Figure F.2.

1. Cold Air Generation chain is represented by the blue line The chain highlight the

manipulation of ram air to generate cold air. The functional flow is as follows:

Generate pneu power ⇒ Provide cooling to compressed air ⇒ Compress warm air ⇒
Provide cooling to recompressed air ⇒ Reheat cooled air ⇒ Cool warm air through

expansion (primary) ⇒ Condense water from cold air ⇒ Cool air through expansion

(secondary) ⇒ Provide fresh air through mixing.

2. Alternate Cold Air Generation chain is represented by olive green in Figure F.2 & F.1.

In this chain, the air from secondary heat exchanger (Sec HX) is feed to secondary

turbine by bypassing the primary turbine.

3. Control Signal Flow chain is represented by pink colour. The chain highlights the valves

that are directly controlled by the ECS controller

4. Electrical Flow chain is represented by yellow colour. the chain shows possible electrical

supply to the required elements

130

Fi
gu

re
F.

2:
Lo

gi
ca

la
rc

hi
te

ct
ur

e
fo

r
th

e
bl

ee
dl

es
s

EC
S

131

