4,523 research outputs found

    Cost analysis of object-oriented bytecode programs

    Get PDF
    AbstractCost analysis statically approximates the cost of programs in terms of their input data size. This paper presents, to the best of our knowledge, the first approach to the automatic cost analysis of object-oriented bytecode programs. In languages such as Java and C#, analyzing bytecode has a much wider application area than analyzing source code since the latter is often not available. Cost analysis in this context has to consider, among others, dynamic dispatch, jumps, the operand stack, and the heap. Our method takes a bytecode program and a cost model specifying the resource of interest, and generates cost relations which approximate the execution cost of the program with respect to such resource. We report on COSTA, an implementation for Java bytecode which can obtain upper bounds on cost for a large class of programs and complexity classes. Our basic techniques can be directly applied to infer cost relations for other object-oriented imperative languages, not necessarily in bytecode form

    Verification of Java Bytecode using Analysis and Transformation of Logic Programs

    Full text link
    State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on resource consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java bytecode (JVML). In order to achieve our goal, we rely on well-known techniques for meta-programming and program specialization. More precisely, we propose to partially evaluate a JVML interpreter implemented in LP together with (an LP representation of) a JVML program and then analyze the residual program. Interestingly, at least for the examples we have studied, our approach produces very simple LP representations of the original JVML programs. This can be seen as a decompilation from JVML to high-level LP source. By reasoning about such residual programs, we can automatically prove in the CiaoPP system some non-trivial properties of JVML programs such as termination, run-time error freeness and infer bounds on its resource consumption. We are not aware of any other system which is able to verify such advanced properties of Java bytecode

    Termination and Cost Analysis with COSTA and its User Interfaces

    Get PDF
    COSTA is a static analyzer for Java bytecode which is able to infer cost and termination information for large classes of programs. The analyzer takes as input a program and a resource of interest, in the form of a cost model, and aims at obtaining an upper bound on the execution cost with respect to the resource and at proving program termination. The costa system has reached a considerable degree of maturity in that (1) it includes state-of-the-art techniques for statically estimating the resource consumption and the termination behavior of programs, plus a number of specialized techniques which are required for achieving accurate results in the context of object-oriented programs, such as handling numeric fields in value analysis; (2) it provides several nontrivial notions of cost (resource consumption) including, in addition to the number of execution steps, the amount of memory allocated in the heap or the number of calls to some user-specified method; (3) it provides several user interfaces: a classical command line, a Web interface which allows experimenting remotely with the system without the need of installing it locally, and a recently developed Eclipse plugin which facilitates the usage of the analyzer, even during the development phase; (4) it can deal with both the Standard and Micro editions of Java. In the tool demonstration, we will show that costa is able to produce meaningful results for non-trivial programs, possibly using Java libraries. Such results can then be used in many applications, including program development, resource usage certification, program optimization, etc

    Live Heap Space Analysis for Languages with Garbage Collection

    Get PDF
    The peak heap consumption of a program is the maximum size of the live data on the heap during the execution of the program, i.e., the minimum amount of heap space needed to run the program without exhausting the memory. It is well-known that garbage collection (GC) makes the problem of predicting the memory required to run a program difficult. This paper presents, the best of our knowledge, the first live heap space analysis for garbage-collected languages which infers accurate upper bounds on the peak heap usage of a program’s execution that are not restricted to any complexity class, i.e., we can infer exponential, logarithmic, polynomial, etc., bounds. Our analysis is developed for an (sequential) object-oriented bytecode language with a scoped-memory manager that reclaims unreachable memory when methods return. We also show how our analysis can accommodate other GC schemes which are closer to the ideal GC which collects objects as soon as they become unreachable. The practicality of our approach is experimentally evaluated on a prototype implementation.We demonstrate that it is fully automatic, reasonably accurate and efficient by inferring live heap space bounds for a standardized set of benchmarks, the JOlden suite

    Dynamic Information Flow Analysis in Ruby

    Get PDF
    With the rapid increase in usage of the internet and online applications, there is a huge demand for applications to handle data privacy and integrity. Applications are already complex with business logic; adding the data safety logic would make them more complicated. The more complex the code becomes, the more possibilities it opens for security-critical bugs. To solve this conundrum, we can push this data safety handling feature to the language level rather than the application level. With a secure language, developers can write their application without having to worry about data security. This project introduces dynamic information flow analysis in Ruby. I extend the JRuby implementation, which is a widely used implementation of Ruby written in Java. Information flow analysis classifies variables used in the program into different security levels and monitors the data flow across levels. Ruby currently supports data integrity by a tainting mechanism. This project extends this tainting mechanism to handle implicit data flows, enabling it to protect confidentiality as well as integrity. Experimental results based on Ruby benchmarks are presented in this paper, which show that: This project protects confidentiality but at the cost of 1.2 - 10 times slowdown in execution time

    Sawja: Static Analysis Workshop for Java

    Get PDF
    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. This paper describes the Sawja library: a static analysis framework fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including (i) efficient functional data-structures for representing program with implicit sharing and lazy parsing, (ii) an intermediate stack-less representation, and (iii) fast computation and manipulation of complete programs
    corecore