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ABSTRACT

Dynamic Information Flow Analysis in Ruby

by Vigneshwari Chandrasekaran

With the rapid increase in usage of the internet and online applications, there is

a huge demand for applications to handle data privacy and integrity. Applications

are already complex with business logic; adding the data safety logic would make

them more complicated. The more complex the code becomes, the more possibilities

it opens for security-critical bugs. To solve this conundrum, we can push this data

safety handling feature to the language level rather than the application level. With a

secure language, developers can write their application without having to worry about

data security.

This project introduces dynamic information flow analysis in Ruby. I extend the

JRuby implementation, which is a widely used implementation of Ruby written in

Java. Information flow analysis classifies variables used in the program into different

security levels and monitors the data flow across levels. Ruby currently supports data

integrity by a tainting mechanism. This project extends this tainting mechanism to

handle implicit data flows, enabling it to protect confidentiality as well as integrity.

Experimental results based on Ruby benchmarks are presented in this paper, which

show that: This project protects confidentiality but at the cost of 1.2 - 10 times

slowdown in execution time.
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CHAPTER 1

Introduction

With the luxury of software aided automation, there comes a risk of having

security issues. We are often the target of hackers, who gain valuable information

about us by exploiting flaws in the software that we use. This has led to the invention

of a lot of security software to safeguard the information underneath. Though this

has been effective to some extent, the hackers keep inventing techniques that bypass

the protection that we have. One common area of interest for attackers is stealing

secret information, like login credentials, credit card information, innovation details,

and top-secret government information.

Introducing information flow analysis to a language helps protect confidentiality

and data integrity. Information flow can be defined as the transfer of information from

one variable a to another variable b during execution. Every variable is associated

with a security level. Transfer of information from a high level to a low level leads

to confidentiality or integrity violations. In reference to the scope of this project,

there are two security levels: secret and public. If there is a data flow from secret to

public, it is considered as a confidentiality violation. This project focusses on ensuring

confidentiality in JRuby. Whenever there is a data flow from secret to secret, public

to public or, public to secret, the execution is allowed. If the data flow occurs from a

secret level to a public level, the execution is not permitted, and the program throws

exception to preserve confidentiality.

1.1 Motivation

Humans are prone to mistakes. This seems especially true when we consider

writing software code. Processes such as code reviews can help, but we can still

not be sure that the code is bug free. By extension, when there is a bug, there is

a possibility of software instability that can be utilized in a malicious way. Many
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software vulnerabilities like buffer overflows, cross-site scripting, and SQL injection

are due to the improper handling of external data injected into the software system.

In general, these problems are the result of external input from an untrusted source

propogated through the program to affect part of the code dealing with sensitive data.

There have been several approaches to solve this issue caused by improper handling

of information flows [1].

Per Qin et al. [1] proposed using security tools to detect information flow violations.

Publicly known software such as LibSafe can find only about 30% of the software

security violations. In addition, [1] does not divulge any additional information

regarding how the attack was carried out or what were the steps involved in the

attack. So, to complement the security tools, ACLs were introduced. Though they

worked well with restricting data access to privileged users, they did not deal with

the problem of tainted flow propagation. Although techniques like mandatory access

control prevent problems with memory leaks, the approach is too slow to use it in

real time [2].

Alternatively, privacy and integrity of the sensitive data can be statically checked

for information flow that is susceptible to an external attack. But the main disadvan-

tage of this attack is that even if a branch would not be executed in runtime, it will

still be analyzed, leading to more false positives.

1.2 Solution - Dynamic Information Flow Analysis

Information flow analysis is the classification of variables used in the program

into different security levels and monitoring the data flow across levels at runtime.

For instance, in Figure 1 there are two variables: a and b. a is marked as public

and b is marked as secret variable. If the transfer of information is from b to a, it is

considered a confidentiality violation. This data flow is prevented through information
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flow analysis, thereby eliminating confidentiality violations [3].

Figure 1: Information flow across different security levels.

There are two types of information flows.

1. Explicit flows: Secret leaking directly to a public variable

2. Implicit flows: Secret leaking to a public variable through program control flow

Explicit flows happen whenever there is an assignment statement, IO read/write, or

function calls with a return statement involving secret data. Figure 2 shows explicit

information flow.

username = readFromConsole ( ) // IO Read
pr in t getBalance ( username ) ;
// Sec r e t in fo rmat ion i s r e t r i e v e d with a pub l i c data

// The getBalance code l ooks l i k e t h i s . .
double getBalance ( username ) { // Gets a pub l i c data
re turn ba l anceL i s t . get ( username ) ; // Returns a s e c r e t

in fo rmat ion
}

Figure 2: Explicit Flow - Code Snippet

An implicit flow from a to b can be defined as a data flow from a random variable

c to b with the data flow occurring at runtime based on a decision made by a. Figure 3

shows an implicit information flow from balance to rFlag.

Information flow analysis is of two variants:
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double balance = s e c r e t (25000) // Sec r e t data
bool rFlag = f a l s e // Publ ic − Minimum balance r equ i r ed

f l a g
i f ba lance >= 5000 // Imp l i c i t f low

rFlag = true // rFlag can p a r t i a l l y r e v e a l the
balance in fo rmat ion

end

Figure 3: Implicit Flow - Code snippet

1. Static information flow analysis

2. Dynamic information flow analysis

Static information flow analysis is a language based approach that ensures

information flow policies through a technique like type checking. If a program has

any policy violations, it means there are improper information flows that could cause

security violations and hence will not be permitted for execution. This technique

works at compile time and requires the programmer to use certain annotations to mark

public and secret context so that the type checking can be carried out. There is little

runtime overhead since everything is done before execution. But on the downside,

though static analysis can cover all paths of execution, it is a poor fit for dynamically

typed languages like Ruby. For instance, the eval in Ruby allows the programmers to

compile and evaluate a string at runtime. This dynamic evaluation can lead to false

alarms in static analysis, since the type of expression will not be known until runtime.

Dynamic information flow analysis is a method that involves tagging the data

at runtime with information flow labels. Whenever secret data gets written/leaked

to a public variable, the execution can be terminated to avoid confidentiality viola-

tions [4]. This process incurs some runtime overhead as the cost paid for preventing

confidentiality violations [5].

The confinement problem [3] is producing public results that depend on private
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data. For instance, if a person visits a website that calculates how much of a tax

refund he is eligible for, it gets sensitive data from the user to calculate results. The

downside is that there has to be an assurance that the data has not been written to

any of the server variables to maintain confidentiality. Dynamic information flow

analysis helps in addressing the confinement problem.

1.3 Information Flow Analysis in JRuby

This paper introduces dynamic information flow analysis to JRuby, a Java

Implementation of Ruby. There are three reasons for choosing this topic.

1. Much of the current software executes code on a server which might not be

completely trustworthy. This leads to a need for data safety at runtime. By

adding memory safety to the language rather than the application, we provide a

more systemic defense against data leaks [4].

2. There can be instances where users trust the server that it does not persist users’

data. Yet, the server may depend on untrustworthy library code to complete

execution. There can be no guarantee that this third-party code does not misuse

the data. This looks similar to the confused deputy problem which puts a serious

threat on the reliability of the server.

3. JRuby currently supports a dynamic tainting mechanism. This allows us to

concentrate on dynamic information flow handling for implicit flows and provides

a platform for runtime performance comparison between the JRuby baseline

and JRuby with dynamic information flow analysis.

My implementation only handles various forms of if statements but additional

constructs can be extended from this in a straightforward manner. This project

presents experimental results of small benchmark programs run on unmodified JRuby
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and JRuby with dynamic information flow analysis. In terms of performance, the

baseline code is 1.2 - 10 times faster than the modified version. But on the other

hand, the modified code catches implicit data leaks whereas the baseline allows data

leak across security levels. Chapter 5 discusses the execution results of benchmark

programs and the time taken for execution. In this test, all the data flows were valid.

For data leaks, there cannot be any performance comparison, since the modified code

crashes the execution right away.

The organization of this paper proceeds as follows. The next section discusses

the literature survey of previous researches done in achieving confidentiality. Chapter

3 talks about JRuby architecture. Chapter 4 explains the implementation details of

this project. Chapter 5 presents the performance results and chapter 6 concludes this

paper with a discussion on future scope of this project.
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CHAPTER 2

Literature Review

This chapter discusses information flow analysis and previous research works

towards achieving it. The papers being discussed in this chapter are the inspiration

and starting point for this thesis.

2.1 Background and Motivation

Many current security practices aim at protecting confidentiality and integrity

of data by the computing systems. Confidentiality is ensuring that the sensitive

data does not flow into inappropriate domains, whereas integrity is ensuring that the

data is not written from inappropriate domains. This thesis concentrates on ensuring

confidentiality through dynamic information flow analysis.

Access control was introduced to prevent users from accessing a file, thereby

achieving confidentiality. However, once the file is read, the propagation of data is not

monitored by access control. Hence there can be data leaks. Similarly, cryptographic

encryption ensures only the person who has the decryption key can have access to the

data. But it fails to make sure the data is not leaked afterwards. These limitations

led to the need for data monitoring throughout the process.

To address the data propagation issue, information flow analysis is introduced at

the language level. Sabelfeld and Myers [6] provides a summary of prior research on

information flow analysis.

2.2 Information Flow Analysis

Consider two security levels: secret and public. There are two variables s and p.

s belongs to secret level and p belongs to public level. Whenever there is transfer of

data across security levels, we call it information flow. In reference to our context, a

data flow from secret to public, it is an information leak (or) confidentiality breach.

Monitoring data flow across the security levels is called as information flow analysis.
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2.3 Information Flow Analysis Approaches

There are two approaches to information flow analysis: static and dynamic. Static

approach involves mechanisms that deal with certifying a program at compile-time.

On the otherhand, dynamic approach makes a call to terminate the program whenever

it finds data flow across unacceptable levels.

2.3.1 Static Information Flow Analysis

Denning [3] presents a static approach which certifies a program as valid only

after it complies with the policies defined. They consider a programming language

with simple data types: integer, boolean, and file. A program is certified as secure only

when there is no data flow from x to y, unless specified in the policy. This approach

has been implemented for assignment statements, I/O, control structures, procedure

calls, and exception handling. Certification semantics are defined and incorporated

to the analysis phase of a compiler. The compiler verifies the program against the

standard defined in the semantics. Lampson [7] identified three channels through

which data can propogate. Legitimate channels are the outputs of a program. Storage

channels are storage objects where the data gets written during the execution. Covert

channels are unintendend channels through which the data can leak; it can be program

running time, noise, or power consumption. The first two channels are covered in [3]

whereas the covert channels fall beyond the scope. It should also be noted that it is

impossible to eliminate the covert channels completely in distributed systems with

plenty of shared resources.

Type checking can be used to achieve information flow analysis. The Jif com-

piler [8] has implemented the type-checking approach. In this approach, every

expression has a static label associated with it along with its data type. For example,

an expression with type int has a label. The label specifies how the value can be used.
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Since labels are static, type-checking is done at compile time. It ensures there is no

improper information flows at runtime.

Type-checking also supports handling implicit flows through the use of a program

counter. The program counter is associated with a label pc. The program is certified

as secure only if the label of the assigned variable is equal or higher than pc. Consider

a conditional statement as shown in the code snippet 4. The variable s has a

label secret and p has a label public. The pc is also secret to match the current

branching conditional statement. The assignment inside the control structure will

not be permitted because the label of assigned variable is not as restrictive as that of

program counter.

s = 1
p = 0
i f s == 1

p = 1
end

Figure 4: An implicit flow.

Volpano et al. [9] have developed a type-system based on Denning’s linformation

flow analysis and proved its correctness. Although there are plenty of research works

that prove static analysis for achieving confidentiality, the static approach is not

suitable for dynamically-typed languages like Ruby, Perl, and JavaScript. The static

approach is even more difficult in cases of dynamic code evaluation supported through

constructs like eval methods. To handle data safety in a dynamically-typed language,

dynamic analysis is preferred because of its flexibility on applying policies at runtime.

2.3.2 Dynamic Information Flow Analysis

King et al. [10] investigated explicit and implicit flows identified by a static infor-

mation analysis algorithm. Though it catches every path that leads to confidentiality
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violations, it suffers from an extremely high number of false alarms. Most of these

false alarms are due to unchecked exceptions in implicit flows, thereby proving the

need for more practical analysis at runtime.

Austin and Flanagan [4] presented dynamic information flow analysis using

universal and sparse labelling strategies. In universal labelling, every value is tagged

with a information flow label. At runtime, whenever a resultant variable has a public

label, it is made sure that it could not have been influenced by value that has a

secret label. Label locality is where most or all of the data items in a data structure.

In this case, associating every value with a label will incur unnecessary overhead at

runtime. To avoid the label locality problem, [4] introduces sparse labelling where the

information label will be introduced to values only for values those get transferred

across information flow domains. This approach reduces a significant amount of

runtime overhead associated with the universal labelling strategy. Experiments done

in this paper proved that sparse labelling has a substantial speedup over universal

labelling.

In another work of Austin and Flanagan [11], the focus was made on implicit

flows and letting most of the programs to complete execution while preventing data

leaks. This paper uses the permissive-upgrade strategy, where a security label P is

introduced to track partially-leaked data. Such data containing private information,

in some instances can be labeled as public in certain executions. This partial leak

gets converted into total leak if this data is used in any conditional statement and

the execution halts. To solve this conundrum, privatization operation is used. A

privatization operation converts public and partially leaked data to private. As

a ground rule, introducing privatization at sensitive uses of partially leaked data

eliminates many stuck executions (i.e. program crashes).

Both these papers address the issues and solutions associated with JavaScript or

10



any other browser-based programming language. This is because of the exponential

increase in the usage of Internet applications and JavaScript is predominantly used

for developing such applications.

Apart from information flow analysis, Devriese and Piessens [12] have presented

a secure multi-execution strategy, where a program is executed several times, once per

security level. This approach guarantees noninterference since the outputs at a level

cannot possibly depend on inputs from higher levels. The downside of this approach

is that it suffers a high cost in terms of CPU time and memory. Faceted values have

been introduced to reduce this cost issue [13]
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CHAPTER 3

JRuby Architecture

This chapter explores how JRuby works and its comparison with the traditional

Matz’s Ruby Interpreter (MRI). I use an example based on strings to explain the

work flow in JRuby.

3.1 Ruby vs JRuby

Ruby interprets the input code using native machine language since it is based

on C. On the other hand, JRuby compiles the input code to Java bytecode, that will

run on a standard JVM. Unlike Ruby that interprets the script directly, JRuby is

actually a compiler. Hence, ahead of execution, JRuby compiles the input script to

bytecode. The JVM interprets this bytecode and then executes it.

sum = 1 + 2

pr in t sum . to_s ( )

Figure 5: Script: ToString.rb

Consider the simple script given in Figure 5. This script converts an integer

to its string representation. JRuby has several layers of abstraction, in addition to

the bytecode generation. The rest of this chapter explains how a Ruby script gets

transformed into Java bytecode, how the JRuby library is being used in the script,

and the JVM interpretation of the bytecode.

3.2 JRuby - Java Bytecode

Once the jruby command is executed, JRuby takes the file name as the parameter,

constructs an abstract syntax tree (AST ), and generates the bytecode representation

of the same. From the bytecode, a class file is generated. Methods to be used inside

the script will be discussed in a short while discussing bytecode generation.

Figure 6 presents the functional architecture of JRuby.
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Figure 6: JRuby Architecture

3.2.1 AST generation

Figure 7: AST - ToString.rb

The JRuby parser generates an AST for the script. Figure 7 shows the ast

generated for the ToString.rb script shown in Figure 5.

On a closer look at the AST, it can be noted that several nodes are created to

13



represent the script. RootNode is the reference/parent node. BlockNode is created for

every block in the script. Since the example script has a single block, this node can

be of less use in the discussion.

LocalAsgnNode is created for the first statement: sum = 1 + 2. FixnumNode

is used for numerical constants. A CallNode with a parameter "+" denotes the

arithmetic operation.

FCallNode: print is created for the second statement: print sum.to_s().

LocalVarNode retrieves the local variable named sum. CallNode represents the

to_s function call. FCallNode makes a call to the print method.

Each of these nodes is defined as a separate class in JRuby. Appendix A lists

nodes defined in JRuby. This rich set of modularized and readable nodes helped in

the implementation of this project. The AST gets complicated with complex logic

and more blocks. This ast is the input for bytecode generation.

3.2.2 Bytecode generation

Since JRuby is Java based, the libraries are in class files compiled from the

actual definition. For instance, the string representation is defined in a Java class

named RubyString.java. This class is responsible for all string functions. JRuby

uses annotations to link to Ruby-equivalent methods.

Figure 8 is a snippet from the RubyString class. The annotation @JRubyMethod

tells the JRuby execution engine to link this method when to_s is referenced in a

Ruby script.

The input script would contain code that refers to the library functions. For

example CallNode makes calls to internal functions. During execution, those methods

are required. Bytecode generated by JRuby is platform independent, as it is one of

the key properties of Java. JRuby, on compilation, generates bytecode that can be

14



@JRubyMethod(name = {"to_s" , " to_str " })
@Override
public IRubyObject to_s ( ) {

Ruby runtime = getRuntime ( ) ;
i f ( getMetaClass ( ) . ge tRea lClas s ( ) != runtime .

g e tS t r i ng ( ) ) {
return strDup ( runtime , runtime . g e tS t r i ng ( ) ) ;

}
return this ;

}

Figure 8: JRuby - to_s definition

interpreted by the JVM.

Figure 9 shows the bytecode generated for the script ToString.rb. I have edited

the bytecode for readability without modifying the overall meaning. ALOAD and

ASTORE statements are loading and storing the values from register, just like any other

assembly code. Statements like INVOKESTATIC and INVOKEVIRTUAL makes calls to

library methods. INVOKESTATIC is used when the method to be called is determined

at compile time. INVOKEVIRTUAL is used when the method to be called in determined

during runtime.

For instance, INVOKEVIRTUAL in line L1 is used for assigning the computed value

to sum. Since the reference to sum would not be created until runtime, the method

to be called is determined at runtime. Similarly, in L2, retrieving value from sum can

be determined only during runtime.

For execution, the bytecode from libraries is also required. Bytecode of the to_s

method of RubyString is presented in Figure 10

3.2.3 Bytecode Execution

The execution is complete when the bytecode is interpreted by the JVM. Figure 11

shows the bytecode interpretation by the JVM.
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L1
LINENUMBER 1 L1
ALOAD 0
ALOAD 2
ALOAD 0
INVOKESTATICToString . fixnum0 ( Lorg/ jruby / runtime/

ThreadContext ; ) Lorg/ jruby /RubyFixnum ;
INVOKESTATIC ToString . invokeOtherOneFixnum1:+
ASTORE 11
ALOAD 7
ALOAD 11
INVOKEVIRTUAL org / jruby / runtime/DynamicScope .

setValueZeroDepthZeroVoid
LINENUMBER 2 L2
ALOAD 0
ALOAD 2
ALOAD 7
INVOKEVIRTUAL org / jruby / runtime/DynamicScope .

getValueZeroDepthZero ( )
INVOKESTATIC ToString . invokeOther2 : to_s
ASTORE 12
ALOAD 0
ALOAD 2
ALOAD 2
ALOAD 12
INVOKESTATIC ToString . invokeOther3 : p r i n t
ASTORE 13
ALOAD 13
ARETURN

Figure 9: Script Bytecode

3.2.3.1 JIT Compiler

A JIT (Just In Time) compiler is available inside the JVM. As the name implies, it

provides one more compilation step for some portions of code, identified as "hotspots".

The JVM finds out which portions of the code would be used frequently and labels

them as "hotspots". The JIT compiles the bytecode associated with the hotspot into

16



pub l i c org . j ruby . runtime . b u i l t i n . IRubyObject to_s ( ) ;
Code :
0 : aload_0
1 : i nvok ev i r t u a l #45 // Method getRuntime : ( ) Lorg/ jruby /

Ruby ;
4 : astore_1
5 : aload_0
6 : i nvok ev i r t u a l #62 // Method getMetaClass : ( ) Lorg/ jruby

/RubyClass ;
9 : i n vok ev i r t u a l #149 // Method org / jruby /RubyClass .

ge tRea lClas s : ( ) Lorg/ jruby /RubyClass ;
12 : aload_1
13 : i n vok ev i r t u a l #64 // Method org / jruby /Ruby . g e tS t r i ng

: ( ) Lorg/ jruby /RubyClass ;
16 : if_acmpeq 29
19 : aload_0
20 : aload_1
21 : aload_1
22 : i n vok ev i r t u a l #64 // Method org / jruby /Ruby . g e tS t r i ng

: ( ) Lorg/ jruby /RubyClass ;
25 : i n vok ev i r t u a l #124 // Method strDup : ( Lorg/ jruby /Ruby

; Lorg/ jruby /RubyClass ; ) Lorg/ jruby /RubyString ;
28 : areturn
29 : aload_0
30 : areturn

Figure 10: RubyString - to_s Bytecode

native machine language, speeding up execution.

A simple tweak to the sample code in Figure 12 is done to trigger the JIT to

identify a hotspot. The modified code contains an arbitrary loop which ensures the

code gets executed multiple times.

Setting the runtime flag -J-XX:+PrintCompilation during execution displays

all the methods that were compiled to native machine code from Java bytecode. The

command used to display the hotspots is shown below:

$ ./bin/jruby -J-XX:+PrintCompilation ToString.rb > hotspot.txt
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Figure 11: Execution

i = 0
while i < 10000 do

s = "1" . to_s ( )
i = i + 1

end

Figure 12: Induced Hotspot

The output file hotspot.txt lists various methods that were identified by

the JIT. Without the loop introduced in Figure 12, hotspot.txt did not

have to_s(). After introducing the loop, the JIT added to_s() to the

list of methods converted to native machine language as shown below:

1813 2936 3 org.jruby.RubyString$INVOKER$i$0$0$to_s::call (8 bytes)

1814 2937 3 org.jruby.RubyString::to_s (31 bytes)
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CHAPTER 4

Implementation

The implementation is based on monitoring implicit data flows to track infor-

mation flow at runtime. This implementation is focussed only on Ruby Strings.

This can be extended to other datatypes in a straightforward manner. This chapter

presents code development process, approaches used, and challenges faced during the

implementation.

4.1 Software Criteria

The following software was used for configuring the JRuby development environ-

ment.

• JDK 1.8

• Maven 3.3.9

• Apache ANT 1.8

4.2 Characteristics of JRuby’s architecture

The implementation of this project is closely coupled with the following three

characteristics of JRuby.

• Multi-layer Abstraction

• Dynamic class generation

• Code optimization

These characteristics are explained to help understand the implementation of this

project.

4.2.1 Multi-layer Abstraction

As shown in the previous chapter, the call stack for a simple code is quite large.

For instance, a program with a single print statement involves 27 function calls. The

multi-layer abstraction in JRuby provides modularity. For example, JRuby has a

rich set of instruction classes which corresponds to Java bytecode. To add a new

19



type of instruction, it is enough to modify the instruction definition layer. Once

defined confirming to the standards required, the instruction can be included at any

part of bytecode generation. The execution of the instruction is automatically taken

care by the subsequent layers by calling the handlers provided within the instruction

definition.

Figure 13 shows the new instruction, IfEnd created for this project. The use of

this instruction is discussed in the section 4.3.3. Following are required to be followed

by the new class created:

• Must have IS - A relationship with Instr class.

• Must implement clone() method.

• Must implement visit() method.

The IfEnd class inherits NoOperandInstr which means the instruction does not

have any operands. The FixedArityInstr interface is a marker interface which

instructs JVM that this instruction has a fixed number of operands. IfEnd.ifEnd

is placed wherever this instruction is required. The visit() method is the handler

method that will be called when the bytecode contains IF_END.

4.2.2 Dynamic class generation

The Java Virtual Machine executes the instructions from class file loaded by

the class loader. To comply with this, as a next step to bytecode generation, JRuby

generates a class file dynamically. A method handle is created for the method,

Ruby$script which is the point of entry, similar to a main method in Java. Figure 14

shows the entire process from bytecode generation to obtaining a handle for the

Ruby$script method.

• Bytecode obtained from the AST is stored in the variable bytecode in line 1.

• In line 2, a class handle is created from the bytecode generated in line 1.
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package org . j ruby . i r . i n s t r u c t i o n s ;

import org . j ruby . i r . IRVi s i t o r ;
import org . j ruby . i r . Operation ;
import org . j ruby . i r . t r ans f o rmat i ons . i n l i n i n g . CloneInfo ;
/∗∗
∗ Created by v igneshwar ichandrasekaran on 4/5/17.
∗ Dynamic Informat ion Flow Ana lys i s
∗/
public class IfEnd extends NoOperandInstr implements

FixedAr i ty In s t r {
public stat ic IfEnd ifEnd = new IfEnd ( ) ;

private IfEnd ( ) {
super ( Operation .IF_END) ;

}

@Override
public I n s t r c l one ( CloneInfo i i ) {

return this ;
}

@Override
public void v i s i t ( IRVi s i t o r v i s i t o r ) {

v i s i t o r . i fEnd In s t r ( this ) ;
}

}

Figure 13: If End Instruction

• In line 3 & 4, a handle to the method Ruby$script is created.

4.2.3 Code Optimization

During bytecode generation, deadcode is eliminated. Peephole optimization [14]

is being done to eliminate useless instructions. Every instruction has a flag isDead.

During the compiler optimization pass, this flag is set to true if this instruction

is eligible for elimination. In the final pass, the marked instructions are excluded

from bytecode generation. When adding instructions to handle implicit flows, it was
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1 bytecode = v i s i t o r . compileToBytecode ( scope , context ) ;

2 Class compiled = v i s i t o r . defineFromBytecode ( scope , bytecode
, c l a s sLoade r ) ;

3 Method compiledMethod = compiled . getMethod ( "RUBY$script" ,
ThreadContext . class , S ta t i cScope . class , IRubyObject . class ,
IRubyObject [ ] . class , Block . class , RubyModule . class ,

S t r ing . class ) ;

4 _compiledHandle = MethodHandles . publicLookup ( ) . u n r e f l e c t (
compiledMethod ) ;

Figure 14: Dynamic Class Generation

important to ensure that they would not be deleted by the optimizer.

4.3 Implicit Flow Monitor

To handle implicit flows, this project altered the if-else construct in JRuby. The

project aims at terminating the execution when a data leak happens, such as the leak

shown in Figure 15.

4.3.1 Data Leak

In Figure 15, rFlag is a public flag, and balance is sensitive data. At the end

of execution, by observing rFlag, one can guess the range of balance. To protect

confidentiality, this project changes the byecode formation of the if-else construct,

and also uses the existing tainting mechanism.

double balance = s e c r e t (25000) // Sec r e t data
bool rFlag = f a l s e // Publ ic − Minimum balance r equ i r ed

f l a g
i f ba lance >= 5000 // Imp l i c i t f low

rFlag = true // rFlag can p a r t i a l l y r e v e a l the balance
end

Figure 15: Implicit Flow
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4.3.2 If-else construct

The if-else statement is built as show in the Figure 16. The condition gets

evaluated first. If the condition is evaluated to true, then the program control jumps

to a label that corresponds to the then statement. Otherwise, the program counter gets

incremented normally. The else block follows immediately after condition evaluation

and it contains a jump instruction to a label that occurs right after the if-else construct.

Pseudo-code representation of JRuby’s if-else construct is shown in Figure 16.

d e c i s i o n = bu i ld ( if_cond_expr )
JMP( dec i s i on , true , L2)

L1 : r e s u l t = bu i ld ( e l s e body )
JMP L3 #L3 i s the l a b e l o f i n s t r u c t i o n a f t e r i f−e l s e

cons t ruc t
L2 : r e s u l t = bu i ld ( thenbody )
L3 : #other statements

Figure 16: If-else construction

The if-else construct in JRuby has 5 parts. They are as follows:

• condition evaluation

• then block

• then block exit

• else block

• else block exit

4.3.3 Dynamic Information Flow

The then block exit and else block exit contain instructions of what has to be

done after the respective body execution. The implict data flow monitor requires a

watchman to monitor the security level of the assigned variable in data assignment

statements inside then and else blocks. If the assigned variable’s security level is not

as restrictive as that of the variable in the conditional expression, the execution is

23



terminated. This project introduces a flagging mechanism and a watchman at the

entry and exit points of then and else blocks.

As a last step to the evaluation of conditional expression, a flag is assigned to the

resultant boolean value. This flag reflects the security level of variables involved in the

conditional expression. Inside then or else block, if there is an assignment statement,

the assigned variable’s security level is compared with the flag introduced. If the

assigned variable’s security level is lower than the flag, the execution is terminated.

Otherwise, the execution is allowed safely. The flag is reverted to false at the exit

of the corresponding block. The flag revert operation is introduced because of the

following reasons.

• To ensure the rest of the assignment statements following the if-else construct

get executed safely.

• To provide a template to accomodate nested structures.

The flag revert operation required a new instruction to be introduced in JRuby as

an exit monitor to the then and else constructs. It was straightforward to introduce a

flag at the entry of if block, which was done as the last step in condition evaluation.

However, reverting had to be done at the end of this control structure.

The if block can:

• be empty

• contain a then block

• contain an else-if ladder

• contain a then-else block

To accomodate any type of if block structure, this project introduced a new

instruction template, shown in Figure 13. This instruction marks the if exit point.

When the bytecode gets generated, this instruction is made available to be used to

mark any exit criteria from the if block.
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4.4 Compiler Optimization

This project was implemented and tested with an exclusion of one of the compiler

optimization passes. During the creation of a new instruction, the instruction was

overlooked during the compiler optimization. To incorporate the newly created

instruction for this project, the optimization was disabled.
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CHAPTER 5

Experimental Results

This chapter presents the analysis and experimental results of this project. To

evaluate the performance cost of this project, two implementations of JRuby are used:

Unmodified JRuby (referred to as baseline), and JRuby with dynamic information

flow analysis.

5.1 System Configuration

The tests were ran on a MacBook Pro with a 2.5 GHz Intel Core i7 quad-core

processor, 16 gigabytes of RAM, and running OS X version 10.12.2.

5.2 Performance Comparison

Performance comparison of the implementations were done on the benchmark

programs [15] listed in Table 1.

Table 1: Performance Comparison

Benchmark Baseline Modified JRuby Ratio
fannkuch-redux 0.3 s 3 s 10

mandelbrot 1.62 s 10.6 s 6.6
pidigits 7.66 s 12.47 s 1.7
n-body 1.26 s 3.66 s 2.99

binary-trees 90 s 140.35 s 1.6
crypto - MD5 1.63 s 6.2 s 3.9

matrix multiplication 1.06 s 5.45 s 5.2
fasta 40.2 s 48.8 s 1.21

quick sort 6.22 s 32 s 5.14
merge sort 9.92 s 46.58 s 4.7

Since the compiler optimization had been excluded in this project, it had been

ignored in the baseline considered to have a fair comparison. The baseline is unmodified

otherwise. While these results show that there is a 1.2x - 10x slowdown in performance,

this project protects confidentiality by sealing data leaks through implicit flows.
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The Ratio column in Table 1 shows the slowdown of this project over the baseline.

The fasta, pidigits, and binary-trees benchmarks had very few if-else constructs,

which is evident in the Ratio column. Tests showed that the slowdown in execution

was proportional to the usage of if-else construct and assignment statements inside it.

5.3 Incremental Performance Testing

Appendix B shows the script for the test case if-else-10K shown in Table 2.

The if-else-10K has two while loops. The first loop has a simple if-else construct

which involves secret operation, whereas the second loop does the identical operation

over public data. This test case involves 10,000 secret operations and 9,999,000 public

operations. The remaining test cases in Table 2 are similar to if-else-10K with an

exception of incremental 10 percent increase in the ratio of secret operation to public

operation, keeping the total number of operations constant across all the testcases.

The Execution Time column shows that the execution time increases when there is a

significant increase in the number of secret operations.

Table 2: Incremental Testing

No. of secret operations / 1B Execution Time
if-else-10K 357 s
if-else-100K 428.9 s
if-else-1M 447.44 s
if-else-10M 501.62 s
if-else-100M 529.58 s
if-else-1B 565.65 s
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CHAPTER 6

Conclusion and Future work

This project presents an implicit data flow monitor in JRuby that tracks in-

formation flow across security levels at runtime, and protects confidentiality. The

performance results show that this project has some higher performance overhead

than the baseline in order to prevent data leaks.

Extending this project to accomodate the following is the future scope of this

project.

• Additional data types: In addition to Strings, the project can be extended to

other data types such as: boolean, numbers, and objects.

• Additional language constructs: Extending this project to looping constructs,

case statements and function calls is straightforward.

• Additional principals: Along with the simple secret-public lattice, this project

can be extended to a lattice with more security levels [16].
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APPENDIX A

Types of Nodes

• AliasNode

• AndNode

• ArgsCatNode

• ArgsNode

• ArgsPushNode

• ArgumentNode

• ArrayNode

• AssignableNode

• AttrAssignNode

• BackRefNode

• BeginNode

• BignumNode

• BinaryOperatorNode

• BlockAcceptingNode

• BlockArgNode

• BlockNode

• BlockPassNode

• BreakNode

• CallNode

• CaseNode

• ClassNode

• ClassVarAsgnNode

• ClassVarDeclNode

• ClassVarNode

• Colon2ConstNode

• Colon2ImplicitNode

• Colon2Node

• Colon3Node

• ComplexNode

• ConstDeclNode

• ConstNode

• DAsgnNode

• DNode

• DRegexpNode

• DStrNode

• DSymbolNode

• DVarNode

• DXStrNode

• DefNode

• DefinedNode

• DefnNode

• DefsNode

• DotNode

• EncodingNode

• EnsureNode

• EvStrNode
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• FCallNode

• FalseNode

• FileNode

• FixnumNode

• FlipNode

• FloatNode

• ForNode

• GlobalAsgnNode

• GlobalVarNode

• HashNode

• IArgumentNode

• IScopedNode

• IScopingNode I

• fNode

• InstAsgnNode

• InstVarNode

• InvisibleNode

• IterNode

• KeywordArgNode

• KeywordRestArgNode

• LambdaNode

• ListNode

• LiteralNode

• LocalAsgnNode

• LocalVarNode

• Match2CaptureNode

• Match2Node

• Match3Node

• MatchNode

• MethodDefNode

• ModuleNode

• MultipleAsgnNode

• NewlineNode

• NextNode

• NilImplicitNode

• NilNode

• Node

• NonLocalControlFlowNode

• NthRefNode

• NumericNode

• OpAsgnAndNode

• OpAsgnConstDeclNode

• OpAsgnNode

• OpAsgnOrNode

• OpElementAsgnNode

• OptArgNode

• OrNode

• PostExeNode

• PreExe19Node

• PreExeNode

• RationalNode

• RedoNode
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• RegexpNode

• RequiredKeywordArgumentValueNode

• RescueBodyNode

• RescueModNode

• RescueNode

• RestArgNode

• RetryNode

• ReturnNode

• RootNode

• SClassNode

• SValueNode

• SelfNode

• SplatNode

• StarNode

• StrNode

• SuperNode

• SymbolNode

• TrueNode

• UndefNode

• UnnamedRestArgNode

• UntilNode

• VAliasNode

• VCallNode

• WhenNode

• WhenOneArgNode

• WhileNode

• XStrNode

• YieldNode

• ZArrayNode

• ZSuperNode
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APPENDIX B

Test case: if-else-10K

s t a r t = Time . now

i = 0

mid = 10000 # var i e s

max = 1000000000

while i < mid do # se c r e t

ba l anc eF i l e = " bal . txt " . t a i n t

f l a g = "0" . t a i n t

i f ba l anc eF i l e === "bal . txt "

f l a g = "1"

end

i = i + 1

end

while i < max do # pub l i c

ba l anc eF i l e = " pub l i cF i l e . txt "

f l a g = "0"

i f ba l anc eF i l e === " pub l i cF i l e . txt "

f l a g = "1"

end

i = i + 1

end
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f i n i s h = Time . now

execTime = f i n i s h − s t a r t

p r i n t "\ r \n"

p r i n t execTime
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