Termination and Cost Analysis with COSTA
and its User Interfaces

E. Albert! P. Arenas! S. Genaim! M. Gémez-Zamalloa!
C. Puebla? D. Ramirez? G. Roman? D. Zanardini?

L DSIC, Complutense University of Madrid,

{elvira,puri,samir.genaim,mzamalloa}@fdi.ucm.es

? Technical University of Madrid, {german,diana,groman,damianc}@clip.dia.fi.upm.es

Abstract

COSTA is a stalic analyzer for Java bytecode which is able Lo infer cost and lermination information
for large classes of programs. The analyzer takes as input a program and a resource of interest,
in the form of a cost model, and aims at obtaining an upper bound on the execution cost with
respect to the resource and at proving program termination. The COSTA system has reached a
considerable degree of maturity in that (1) it includes state-of-the-art techniques for statically
cstimating the resource consumption and the termination behavior of programs, plus a number of
specialized techniques which are required lor achieving accurate resulls in the conlext of objeci-
oriented programs, such as handling numeric fields in value analysis; (2) it provides several non-
trivial notions of cost (resource consumption) including, in addition to the number of execution
steps, the amount of memory allocated in the heap or the number of calls to some user-specified
method; (3) it provides several user interfaces: a classical command line, a Web interface which
allows cxpcnm(‘ntmg remotely with the systom without the need of mstallmg it. locally, and a
recently developed Felipse plugin which facilitates the usage of the analyzer, even during the
development. phase; (4) it can deal with bolh the Standard and Micro editions of Java. In the
ool demonstration, we will show that COSTA is able Lo produce meaninglul results for non-trivial
programs, possibly using Java libraries. Such results can then be used in many applications,
including program development, resource usage certification, program optimization, ete.

Keywords: Cost Analysis, Termination Analysis, Resource Usage.

* This work was funded in part by the Information Seciely Technologies program of the
European Cominission, Future and Emerging Technologies under the IST-15905 MOBIUS
and IST-231620 HAYS projects, by the Spanish Ministry of Education (MEC) under the
TIN-2006-09207 MERIT, 'TIN-2008-05624 DOVES and 1112008-0153 (Accién Integrada)
projects, and the Madrid Regional Government under the 8-0505/1TC/0407 PROMESAS

http://ucm.es
http://upm.es

1 Introduction and System Description

We start, by describing the architecture of costa, an abstract-interpretation-
based static analyzer for studying the cost [4] and termination [1] behavior
of Java bytecode [7] programs. Cost analysis deals with statically estimating
the amount of resources which can be consumed at runtime (i.e., the cost),
given the notion of a specific resource of interest, while the goal of termination
analysis is to prove, when it is the case, that a program terminates for every
input.

The input provided to the analyzer consists of a program and a description
of the resource of interest, which we refer to as cost model. costa tries to infer
an upper bound of the resource consumption, and sound information on the
termination behavior (i.e., if the system infers that the program terminates
then it should definitely terminate}. The system comes equipped with sev-
eral notions of cost, such as the heap consumption, the number of bytecode
instructions executed, and the number of calls to a specific method.

cosTa is based on the classical approach to static cost analysis [14] which
consists of two phases. First, given a program and a description of the re-
source, the analysis produces cost relations, which are sets of recursive equa-
tions. Second, closed-form solutions are found, if possible. For this, cosTta
uses PUBS [2].

Having both cost and termination analvsis in the same tool is interesting
since such analyses share most of the computing machinery, and thus a large
part of the analyzer is common to both. As an example, proving termination
needs reasoning about the number of iterations of every loop in the program,
which is also an essential piece of information for computing its cost.

In spite of being still a prototype, costa includes state-of-the-art techniques
for cost and termination analysis, plus a number of specialized components
and auxiliary static analvses which are required in order to achieve accurate
results in the context of object-oriented programs, such as handling numeric
fields in value analysis. As for the usability, the system provides several user
interfaces: (i} a classical command-line interface (Section 2.1); (i) a Web in-
terface which allows using costa from a remote location, without the need of
installing it locally (Section 2.2}, and permits to upload user-defined exam-
ples as well as testing programs from a representative set; and (iii) a recently
developed plugin for the widely used programming environment Eclipse [6],
which allows easily using the analyzer while developing software (Section 2.3).
costa can deal with full sequential Java, either in the Stendard Edition [13]
or the Micro Edition [8]. Needless to say, the analyzer works on Java byte-

code programs, and does not require them to come from the compilation of
Java source code; instead, bvtecode may have been implemented by hand, or
obtained by compiling languages different from Java.

The tool demonstration will show that costa is able to read . class files and
produce meaningful and reasonahbly precise results for non-trivial programs,
possibly using Java libraries. Possible uses of such cost and termination results
include:

* helping the programmer in the development process, as obtained by using
costa from the Eclipse plugin;

* the cosTa results can he used as guarantees that the program will not take
too much time or resources in its execution nor fail to terminate; further-
more, this can potentially be combined with the Proof-carrying code [10]
paradigm by adding certificates to programs which make checking resource
usage more eflicient.

¢ program optimization, cosTa can be used for guiding program optimization
or choosing the most efficient implementation among several alternatives,

The preliminary experimental results performed to date are very promising

and they suggest that resource usage and termination analvsis can be applied

to a realistic object-oriented, bytecode programming language.

2 User Interfaces of COSTA

2.1 Command-Line Interface

costa has a command-line interface for executing costa as a standalone ap-
plication. Different switches allow controlling the different options of the ana-
lyzer. It facilitates the implementation of other interfaces, as discussed below.
They collect user information and interact with costa by making calls to its
command-line interface.

2.2 Web Interface

The costa web interface allows users to try out the system on a set of repre-
sentative examples, and also to upload their own programs, which can be in
the form of either Java source, or as Java bytecode, in which case it can he
given as a .class or a . jar file. As the behavior of costa can be customized
using a relatively large set of options, the web interface allows two alternatives
modes of use.

The first alternative, which we call automatic {see Figure 1, left) allows
the user to choose from a range of possibilities which differ in the analysis

B 0E yew Hpoy SomEn Pin oep

w « G 1 $ ¥ mpmmm it escmanangy v G

COSTA: COST and Termination Analyzer for Java Bytecade
| Homa | Analyzer | About |

Step 1. Class File mapMessage

Step 2.

) Methaod ;
bi Check an upper bound 7 No

¢ Cost Model: Number of instructions
) User interface: * Automatic

duilCommand Lj ditionloduiDisplayabée, IV

Step 3. Choose the option values for the analysis.

AUTOMATIC OPTIONS
Select analyss level (from Jesst precise Lo most precse)

o Level 3
» Level 2
v level -1
« Lavel 0 ¥ {Dafauk)
o Level 1
+ Lewel 2
» Level 3
Lowel 4

Ay

. COSTA: COST and Termination Analyzer for Java B

[T

ecode
Home | Analyzer | About

Step 1. Clays File gty st cporarmin

Step 2

) Mathod: furExpenantsallj|

Bl Chtk an upper bound 7 Ne.

i Cost Model: Number of instructions
o) Usar mterface; = Manaal

Step 3: Choose the option values Tor the analysts.

MANUAL OFTIONS

® Cumaders or ol capick enteption § 07 Of

* Consdders o nof lmglch exceptions (hrown by the Vit Machine] § 0

* I on. Iries bo analyie the code of dandand Bvaries. I off, constansts are put instead ® 07 5

® Futraits oo 1ol hodges (e i PG phis e CFD far purny laopd & &

* W on, & oot |5 prrinrmed o compote amswer kiomation. |1aft, aniy ssirach compllation ik performed in st
s, ¥ on o

* tnaties or it 1 shoing of Cost imelevank viriabies in the nie dased fogcsentatun & 07 0

® Fraabibes o ol sl stalysks & 20 r

® Lruables or not rulity anaiysin ¥ 00 0F

= Chooses if stuarinng s dacie top-riiwen o dhetal ity (ot slabin), o ol varlaien s suppenet ol fo sl
o all are suppered to share (N0t avallable] #roshare meaten ool dshare
® (nables or not encipe analpshy * o

® Peopaqutes or nol constant vaees obtained during the size anslysis ¥ on - of
Kreg fhe cond ol eadrord medhocks [yorrd Be i, nalhvr,)
Saves or 0ot 18 file e U Sfthe entry methed ¥ Of

st & oo O o8

 Fonaths o Fiot Trim e Ehe pawenssly saved sppe Seumts, 4t bses Them o asertions & 08 70
® Eqprnne clavs anshyhs 3 the lewel of wirlsbles # of Or

® xmcute fleld vernitive analywy ¥ oF (=

Mg s v urier 80T 8 B 0

® Compuies (e dNyRplatic ppar boand ®nc el

* Check It uner provided upper bound iy grealer than e upper bound eslimated by Costa # 09 &

Fig. 1. Two ways of setting values for analysis options

accuracy and overhead. Starting from level 0, the default, we can increase the
analysis accuracy (and overhead) by using levels 1 through 3. We can also
reduce analysis overhead (and accuracy) by going down to levels -1 through
-3. The main advantage of the automatic mode is that it does not require
the user to understand the different options implemented in the system and
their implications in analysis accuracy and overhead. The second alternative
is called manual (see Figure 1, right) and it is meant for expert users. There,
the user has access to all the analysis options, allowing a fine-grained control
over the behavior of the analyzer. For instance, these options allow deciding
whether to analyze the Java standard libraries or not, whether to take excep-
tions into account, to perform or not a number of pre-analyses, to write/read
analysis results to file in order to reuse them in later analyses, etc.

Figure 2 shows the output of costa on an example program with exponen-
tial complexity. In addition to showing the result of termination analysis and
an upper bound on the execution cost, cosra (optionally) displays information
about the time required by the intermediate steps performed by the analyzer
in previous phases.

2.3 Eclipse Plugin

costa also has available an Eclipse plugin interface, which is fully integrated
within the Eclipse development environment. This plugin allows programmers
to analyze methods during the development process. It loads the classpath
established for the project and uses for analysis the same classes and libraries

Bhe e ew ey Qe fess g

COSTA: COST and Termination Analyzer for Java Bytecode

Hame | Analyzer | About

Fig. 2. Results

| Please, set the preferences for Analysis Execution R Consder or et mglet wxcaprm
| I8 Corsilos b sk ek sliptin
Select the verbosity level (Standard output! 0 v 2 Conseders o1 o srplt mreptons hrun by the Vnusl Machna)
- - - # o, trs b anabyze the coda of standand irsras. # o, constancty ae pul mitead
Select the user interface Autormatic | v Ditracts o nt loog ke e €1 plan ane 7 b wvary bsop|
e W Fon, n Fapomt s pavorned bo compste anmesr ehcematon. i o only abrtrect cormpdatien it perkermed o sre anslyse
Select the Cost Model EN._”“'.“?Pr uf intructions v @ B ok e whing of cand-rwheewat viriables i e e

@ st or oot v wae
i Erables or nat oty snalyee
Lrablet o net eacape ansiyss
@ Bropagaten o not comtare vakers sbtaned dung the tite saln
@ e the rond ¢
- T bt of not 1 o the 1 of thy caery methad
Select the analysis level 0« s ¢ it o s the vty s spper boands, and e thenn af avsartane

watinal itk s anyro U, sl | st o uds)

T Cebeute closs anwtyva at the el of venabies
Enecut field semative aralyza

& Jrogr vy e 50T

Fig. 3. cosTA Plugin Preferences

specified by the user to compile and execute the program. As in the web inter-
face, users can configure a large set of options by using the Eclipse preferences
configuration window, as shown in Fig. 3. These options are saved and loaded
at every Eclipse execution. Also, the user can choose either the automatic
analysis or the expert mode which allows a more fine-grained customization,
like in the web interface. By using this plugin, one can analyze one or several
methods from a class (see Fig. 5) or the whole class (by running the analysis
on all its methods). The results of the analysis are shown using markers in
the source code (see Fig. 4). Such markers are different depending on the
cost model used for analysis. In addition, the plugin also shows all previous

http://ur.de
http://me.ee
http://ft.na.lynl�

RS T TR TR I T A IAT T WEE R = E PP w ST

Fle Edit Svuce Melastor Nevgele Swarch Srowcl Sun Cosla Analyaer Wirsdow Help

Hics- 2 o-0-Q- | weE | & 9|, e] "
M packs 32 T Hierar | = 8 | [AroyStackjavae |10 BHjava 1) Teutjmve 1) myclans jova 52 = 8| 3¢ outline 3 =a
= ® T | r STost » (Mare » @bor » @ Mycloss ¥ e incroment!) W oW e W ik
b i Brellon package bar: = i bor
B syl | g b | - @ MyClasw
P Teat ar a4 courter v
b ez o s Lang . Obj et o Myclasslint)
. w P milnt)
public class Myclans | " Myclassld
. ® meremant(]
int countor:
& addiMyclass(]. mycians)
* public MycClassiat i o nothiog{Object, Stresg)
Counter - cf
:
public static void miint vall {
for o) o
]
* public MyClassi() {
countor = O
}
b 8 headoe | acaation| 8 console SRS ge
6 arors. 1 warming, 2 ethan
ECET Y Hetnusi s Laseating
tsmbar of insr: The Lpper Gound for Baryt lass_miinela) is
b <<climleding flscc=ore 17111 mstructuone = MyClans java millv
Tsrrinatees? orkovcmn
fammp Cansumption: The Upper Daund for Sarmyt lass_sines vian) s
b e <ciobmct <t bytas>> R |l
tasmbar ol calinn The Upper faund for Barmtyclass_<ing = (RA{a) is 2
| caclobimct swvts(N) calisies Myciaaniman <nite (e
e Hezap Consumption: The Uppor Bound far ‘barmyClass_=ina=lineing] m

Fig. 4. cosTA Plugin Markers and View

analysis results in an additional view, which we call “the costa view”. The
costa view also includes a warning icon for methods whose termination is not
proved, in order to alert the programmer about potential problems. It can
also read comments in the source code, written in Javadoc style, in order to
set up analysis information.

PlEssal Enlect e method To analyze

Context Information

JI:svstng.Slring v Jang. Obyect l
Methods:

£ <init={1hv

1 miiv

M <init={

[incrament(h
[addi[LbarMyClass:iLbarMyClass. v
1 nathing(l javafangiobject; mvalang/Stang:)L mvatang/sting:

| oK | | Caneal

Fig. 5. cosTA Plugin Methods Selection

3 Functionalities of COSTA

In this section, we explain the main functionalities of costa by means of several
small examples. Some of these examples aim at illustrating the different cost

http://om.ii

public static int funExp(int n} {
if {(n < 1) return 1;

else return funExp{n - 1) + funExp(n - 2};

Fig. 6. Example for number of instructions

models available in the system. The last two examples are related to termi-
nation issues. In particular, we start in Sect. 3.1 by showing a program whose
execution requires an exponential number of hytecode instructions. Then, in
Sect. 3.2, we present the cost model that bounds the total heap consumption
of executing a program and the recent extension to account for the effect of
garbage collection. Sect. 3.3 performs resource analysis on a MIDlet using the
cost model “number of calls” to a given method. Finally, in Sect. 3.4, we prove
termination on an example whose resource consumption cannot be bound by
costa and, also, show the latest progress to handle numeric fields{Sect. 3.5}
in termination analysis.

3.1 Number of Instructions

The cost model which counts the number of instructions which are executed
is probably the most widely used within cost analvzers, as it is a first step
towards estimating the runtime required to run a program. Let us consider
the Java method in Fig. 6. The execution of this method has an exponen-
tial complexity as each call spawns two recursive calls until the hase case is
found. costa yields the upper bound(slightly pretty printed) -13 + 18x2vat(®
using its antomatic mode which indicates, as expected, that the number of in-
structions which are executed grows exponentially with the value of the input
argument n. This shows that costa is not restricted to polynomial complexi-
ties, in contrast to many other approaches to cost analysis.

3.2 Memory Consumption

Let us congider the Java program depicted in Figure 7. It consists of a set
of Java classes which define a linked-list data structure in an object-oriented
style. The class Cons is used for data nodes (in this case integer numbers)
and the clags Nil plays the role of nudl to indicate the end of a list. Both
Cons and Nil extend the abstract class List. Thus, a List object can be
either a Cons or a Nil instance. Both subclasses implement a copy method
which is used to clone the corresponding object. In the case of Nil, copy just
returns a new instance of itself since it is the last element of the list. In the

abstract class List { List copyO{

abstract List copy(); Cons aux = new Cons();
} aux.elem = m{this.elem);
class Nil extends List { aux.next = this.next.copy();

List copy() { return aux;

return new Nil(); ¥

} static int m(int n) {
} Integer aux = new Integer{(n);
class Cons extends List { return aux.int¥alue();

int elem; }

List next; } // class Cons

Fig. 7. Example for memory consumption

case of Cons, it returns a cloned instance where the data is cloned by ealling
the static method m, and the continuation is cloned by calling recursively the
copy method on next.

The heap cost model of costa basically assigns, to each memory allocation
instruction, the number of heap units it consumes. It can therefore be used to
infer the total amount of memory allocated by the program. Running costa
in automatic mode, level 0, vields the following upper bound for the copy
method of class Cons:

nat(this-1)}*(12 + k; + kg + k3) + 12 + 24k, + ks + k3

It can be observed that the heap consumption is linear w.r.t. the input param-
eter this, which corresponds to the size of the this object of the method, i.e.,
the length of the list which is being cloned. This is because the ahstraction
being used by costa for object references is the length of the longest reference
chain, which in this cage corresponds to the length of the list. The expression
also includes some constants. The symbolic constants k;, k, and ka represent
the memory consumption of the library methods which are transitively in-
voked. In particular, ky corresponds to the constructor of class Object and ks
resp. ks to the constructor and intValue method of the class Integer. The
numeric constant 12 is obtained by adding 8 and 4, being 8 the bytes taken
by an instance of class Cons, and 4 the bytes taken by an Integer instance.
Note that we are approximating the size of an object by the sum of the sizes
of all of its fields. In particular, both an integer and a reference are assumed
to consume 4 bytes,

Interestingly, we can activate the flag go_into_java_api and thus ask costa
to analyze all library methods which are transitively invoked. In this case we
obtain the upper bound 12*nat(this-1) + 12, for the same method. This

is because the library methods used do not allocate new objects on the heap.

3.2.1 Peak Heap Consumption

In the case of languages with automatic memory management (garbage collec-
tion} such as Java Bytecode, measuring the total amount of memory allocated,
ag done above, is not very accurate, since the actual memory usage is often
much lower. Peck heap consumption analysis aimms at approximating the size
of the live data on the heap during a program’s execution, which provides a
much tighter estimation. We have recently developed and integrated in costa
a peak memory consumption analysis [5]. Among other things, this has re-
quired the integration of an escape analysis which approximates the objects
which do not escape, i.e., which are not reachable after a method’s execution.
The upper hound ub(A) = 8+nat(A-1) + 24 is now obtained for the same
example.

An interesting observation is that the Integer object which is created inside the
m method is not reachable from outside and thus can be garbage collected.
The peak heap analyzer accounts for this and therefore deletes the size of
the Integer object from the recursive equation. thus obtaining & instead of
12 multiplying nat{A — 1). By looking at the upper bound above, it can be
observed that costa is not being fully precise, as the actual peak consumption
of this method is 8 x nat{(& — 1} + 8 (i.e. the size of the cloned list). The
reason for this is that the upper bound solver has to consider an additional
case introduced by the peak heap analysis to ensure soundness, hence making
the second constant increase to 24,

3.8 Number of Calls — Java Micvo Edition

The Java Micro Edition {Jeve ME} [8] technology provides a limited envi-
ronment. to create Java applications which can be run on small devices with
limited memory, display and power capacity. It is based on three elements: a
configuration that provides the most basic set of libraries and virtual machine
capabilities, a profile which is a set of APIs supported by mobile devices and
an optional package {set of technologyv-specific APIs), MIDP (Mobile Infor-
mation Device Profile} [12] is the profile that limits the set of APIs to only
those functional areas considered as absolute requirements to achieve broad
portability and successtul deployments, A MIDlet is an application meeting
the specifications for the Java ME technology, such as a game or a business
application. Each MIDlet is an object of class MIDlet which follows a lifecy-
cle [9], which is a state automaton managed by the Application Management
System (AMS).

public void commandAction{Command c, Displayable s) {
if {¢ == exitCommand) {
destroyApp(false);
notifyDestroyed();
¥
if {¢ == sendMsgCommand} {
try {
TextMessage tmsg={TextMessagelclientConn.newMessage(
MessageConnection. TEXT_MESSAGE) ;
tnsg. setAddress("sms://+34697396559") ;
tmsg. setPayloadText (msgTeSend) ;
clientConn.send {tmsg};
¥
catch (Exception exc) {

exc.printStackTrace(};

}
}

!

Fig. 8. Example for number of calls

cosTa ig able to perfom resource analysis on MIDlets by considering
all classes used on each method called during the lifeevele of the MIDlet,
Such methods are the constructor of the class, the startApp() and the
commandAction{Command ¢, Displayable d) methods. In particular, the
classes used during the analysis of the class constructor are added to the
analysis of the startApp() method. After analyzing startApp() method,
the current classes are used for analvzing the commandAction(Command c,
Displayable d) method. As a result, the analyzer obtains a more precise
cost and resource analysis for MIDP applications. Fig. 8 shows a simple but
real example MIDlet that sends a text message: the text message is created
(newMessage method), the recipient phone number set (setAddress method)
and the text message is sent using the method send(Message tmsg) of the
Wireless Messaging APL

We analvze this example using the cost model that counts the number of
calls (necalls) to a particular method. We apply it to obtain an upper bound
on how many times the send(Message tmsg) method is called during the
execution of commandAction method in a mobile device. costa outputs 1 as
result, as it is to be expected.

static int factorial(int n} { L .
) static int doSum{List x) {
int fact=1;)
. if {x==null) return 0;
for (int i=1; i<=n; i++) fact=fact*i;]
else return factorial (x.elem)*doSum{x.next};
return fact;

) d

Fig. 9. Example for termination

3.4 Termination

Fig. 9 shows two methods which belong to the same class. The method doSum
computes the sum of all factorial numbers contained in the elements of a
linked list x, where List is defined as in Fig. 7. costa is able to ensure the
termination of method doSum but no upper bound can be found by the system
for the cost model ninst. The information that costa yields when computing
an upper bound is:

The Upper Bound for ’doSum’({x) is nat{(x}*{1%+c{maximize_failed}*9)+4

Terminates?: yes

Intuitively, the cost of the calls to factorial cannot be hound because the
value of x.elem is unknown at analysis time. However, we can still prove
that the execution of the two methods always terminates by finding a so-
called ranking function [11]. The technical details about how costa deals with
termination can be found in [1].

2.5 Numerie Frelds

Fig. 10 shows a Java program involving a numeric field in the condi-
tion of the loop of method m. This loop terminates in sequential execu-
tion because the field size is decreased at each iteration, at instruction
x.f.setBize(x.f.getSize() — 1), and, for any initial value of size, there are
only a finite number of values which size can take hefore reaching zero. Un-
fortunately, applying standard value analyses on numeric fields can produce
wrong results because numeric variables are stored in a shared mutable data
structure, i.e., the heap. This implies that theyv can be modified using different
references which are aliases and point to such memory location, Hence, further
conditions are required to safely infer termination. costa incorporates a novel
approach for approximating the value of heap allocated numeric variables [3]
which greatly improves the precision over existing field-insensitive value analy-
ses while introducing a reasonable overhead. For the example in Fig. 10, costa
not only guarantees termination of method m but is also able to compute the
(pretty printed) upper bound for m(this,x,y,size} is 33+nat(size)*35
by using the cost model ninst,

class & {
private B f;
int m(A x,B y) {
class B { int i=0;
private int size; while (x.f.getSize()>0) {
public int getSize() {return size;}; i=i+y.getSize();
public void setSize(int n){size=n;}; x.f . setSize(x.f.getSize()-1};
¥ }
return i;
}
I

Fig. 10. Example for termination in presence of numeric fields

4 Discussion and Future Work

cosTa I8, to the best of our knowledge, the first tool for fully automatic cost
analysis of object-oriented programs. Currently, the svstem can be tried online
through the COSTA web site: http://costa.ls.fi.upm.es. We plan to
distribute it soon under a GPL license. The fact that costa analyzes bytecode,
i.e., compiled code, makes it more widely applicable, since it is customary in
Java applications to distribute compiled programs, often bundled in jars, for
which the Java source is not available.

As future work we plan to: {1) define new cost models to measure the
consumption of new resources: (2) support other complexity schemes such as
the inference of lower-bounds; (3) improve both the precision and performance
of the underlying static analvses; and (4) handle the analysis of concurrent
programs.

References

(1] E. Albert, P. Arenas, M. Codish, 8. Genaim, G. Puebla, and D. Zanardini. Termination
Analysis of Java Bytecode. In FAMOODS, LNCS 5051, pages 2-18, 2008,

(2] E. Albert, P. Arenas, 8. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for
Recurrence Relations in Cost Analysis. In 548, LNCS 5079, 2008,

[3] E. Albert, P. Arenas, 8. Genaim, and G. Puebla. Dealing with numeric fislds in termination
analysiz of java-like languages. In FT{JP, 2008,

[4] E. Albert, P. Arenas, 5. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecade.
In ESCOF, LNCS 4421, pages 157-172. Springer, 2007.

[5] E. Albert, 3. Genaim, and M. Gémez-Zamalloa. Live Heap Space Analysis for Languages with
Garbage Collection. [n ISMM 09: Proceedings of the 8th international symposium on Memory
manegement, New York, NY, USA, June 2009, ACM Press.

[6] ECRC. Eclipse User’s Guide. Enropean Computer Research Center, 1993,

http://costa.ls.fi.upm.es

[7] T. Lindholm and F. Yellin. The Java Virtuol Machine Specification. A-W, 1096
[8] Java ME. http://java.sun.con/javans/technology/index. jsp.

(9] MIDP. http://java.sun.com/javame/refersence/apis/jsr118/javax/-microedition/
midlet/packape-summary .html.

[10] G. Necula. Proof-Carrying Code. In Proc. of ACM Symposium on Principles of programming
longuages (POPL), pages 106-119. ACM Press, 1997,

[11] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAIL 2004,

[12] Java Community Process MIDP Release. http://jcp.org/aboutJava/communityprocess/
final/jsr118-/index .html.

[13] Java SE. http://java.sun,com/javase/technologies/index. jsp.
[14] B. Wegbreit. Mechanical Program Analysis. Cemm. of the ACM, 18(9), 1975,

http://java.sun.com/javame/technology/index.jsp
http://jcp.org/aboutJava/communityprocess/
http://java.sun.com/javase/technologies/index.jsp

