
Termination and Cost Analysis with COSTA
and its User Interfaces

E. Albert1 P. Arenas1 S. Genaim1 M. Gómez-Zamalloa1

G. Puebla2 D. Ramírez2 G. Román2 D. Zanardini2

1 DSIC, Complutense University of Madrid,
{elvira,puri,samir.genaim,mzamalloa}Qfdi.ucm.es

2 Technical University of Madrid, {german,diana,groman,damiano}@clip.dia.f i .upm.es

Abs t rac t

COSTA is a static analyzer for Java bytecode which is able to infer cost and termination information
for large classes of programs. The analyzer takes as input a program and a resource of interest,
in the form of a cost model, and aims at obtaining an upper bound on the execution cost with
respect to the resource and at proving program termination. The COSTA system has reached a
considerable degree of maturity in that (1) it includes state-of-the-art techniques for statically
estimating the resource consumption and the termination behavior of programs, plus a number of
specialized techniques which are required for achieving accurate results in the context of object-
oriented programs, such as handling numeric fields in valué analysis; (2) it provides several non-
trivial notions of cost (resource consumption) including, in addition to the number of execution
steps, the amount of memory allocated in the heap or the number of calis to some user-specified
method; (3) it provides several user interfaces: a classical command line, a Web interface which
allows experimenting remotely with the system without the need of installing it locally, and a
recently developed Eclipse plugin which facilitates the usage of the analyzer, even during the
development phase; (4) it can deal with both the Standard and Micro editions of Java. In the
tool demonstration, we will show that COSTA is able to produce meaningful results for non-trivial
programs, possibly using Java librarles. Such results can then be used in many applications,
including program development, resource usage certification, program optimization, etc.

Keywords: Cost Analysis, Termination Analysis, Resource Usage.

* This work was funded in part by the Information Society Technologies program of the
European Commission, Future and Emerging Technologies under the IST-15905 MOBIUS
and IST-231620 HATS projects, by the Spanish Ministry of Education (MEC) under the
TIN-2005-09207 MERIT, TIN-2008-05624 DOVES and HI2008-0153 (Acción Integrada)
projects, and the Madrid Regional Government under the S-0505/TIC/0407 PROMESAS

http://ucm.es
http://upm.es

1 Introduction and System Description

We start by describing the architecture of COSTA, an abstract-interpretation-
based static analyzer for studying the cost [4] and termination [1] behavior
of Java bytecode [7] programs. Cost analysis deals with statically estimating
the amount of resources which can be consumed at runtime (i.e., the cost),
given the notion of a specific resource of interest, while the goal of termination
analysis is to prove, when it is the case, that a program terminates for every
input.

The input provided to the analyzer consists of a program and a description
of the resource of interest, which we refer to as cost model. COSTA tries to infer
an wp'per bound of the resource consumption, and sound information on the
termination behavior (i.e., if the system infers that the program terminates
then it should defmitely terminate). The system comes equipped with sev­
eral notions of cost, such as the heap consumption, the number of bytecode
instructions executed, and the number of calis to a specific method.

COSTA is based on the classical approach to static cost analysis [14] which
consists of two phases. First, given a program and a description of the re­
source, the analysis produces cost relations, which are sets of recursive equa-
tions. Second, closed-form solutions are found, if possible. For this, COSTA

uses PUBS [2].
Having both cost and termination analysis in the same tool is interesting

since such analyses share most of the computing machinery, and thus a large
part of the analyzer is common to both. As an example, proving termination
needs reasoning about the number of iterations of every loop in the program,
which is also an essential piece of information for computing its cost.

In spite of being still a prototype, COSTA includes state-of-the-art techniques
for cost and termination analysis, plus a number of specialized components
and auxiliary static analyses which are required in order to achieve accurate
results in the context of object-oriented programs, such as handling numeric
fields in valué analysis. As for the usability, the system provides several user
interfaces: (i) a classical command-line interface (Section 2.1); (ii) a Web in-
terface which allows using COSTA from a remote location, without the need of
installing it locally (Section 2.2), and permits to upload user-defined exam-
ples as well as testing programs from a representative set; and (iii) a recently
developed plugin for the widely used programming environment Eclipse [6],
which allows easily using the analyzer while developing software (Section 2.3).
COSTA can deal with full sequential Java, either in the Standard Edition [13]
or the Micro Edition [8]. Needless to say, the analyzer works on Java byte-

code programs, and does not require them to come from the compilation of
Java source code: instead, bytecode may have been implemented by hand, or
obtained by compiling languages different from Java.

The tool demonstration will show that COSTA is able to read . c l a s s files and
produce meaningful and reasonably precise results for non-trivial programs,
possibly using Java libraries. Possible uses of such cost and termination results
include:

• helping the programmer in the development process, as obtained by using
COSTA from the Eclipse plugin;

• the COSTA results can be used as guarantees that the program will not take
too much time or resources in its execution ñor fail to terminate; further-
more, this can potentially be combined with the Proof-carrying code [10]
paradigm by adding certificates to programs which make checking resource
usage more efficient.

• program optimization, COSTA can be used for guiding program optimization
or choosing the most efficient implementation among several alternatives.

The preliminary experimental results performed to date are very promising
and they suggest that resource usage and termination analysis can be applied
to a realistic object-oriented, bytecode programming language.

2 User Interfaces of COSTA

2.1 Command-Line Interface

COSTA has a command-line interface for executing COSTA as a standalone ap-
plication. Different switches allow controlling the different options of the ana-
lyzer. It facilitates the implementation of other interfaces, as discussed below.
They collect user information and interact with COSTA by making calis to its
command-line interface.

2.2 Web Interface

The COSTA web interface allows users to try out the system on a set of repre-
sentative examples, and also to upload their own programs, which can be in
the form of either Java source, or as Java bytecode, in which case it can be
given as a . c l a s s or a . j a r file. As the behavior of COSTA can be customized
using a relatively large set of options, the web interface allows two alternatives
modes of use.

The first alternative, which we cali automatic (see Figure 1, left) allows
the user to choose from a range of possibilities which differ in the analysis

* v £ ? i niawMJiiMiiwwwHuiPniMii y HF^ . COSTA: COSTand Termination Analyzer for Java Bytecode

COSTA: COST and Termination Analyzer for Java B ytecode s t*P ! c l m '•* -»w»o.«.it.K«™
Home analyzer About c.t";, ?

Step 1. Cías F«le ^ v ^ * ^ i ^ ^ ^ ^^ i t i . i iD i
b> Ch«t i r jpoír bcurd 7 No
(I Crjftt Model: Number of Imtiiictions

Etep 2. d; Uscí mlErlace: • Mirual

afHelliKl:commaidlrt¡onlLjava^mírQ^¡t¡oiVl^uKooinwnd;Ljavartini:roed¡t¡ofl/kd^DÍ!playaWer]V

bl Check ar upper bound ? No

t i Cost Model: Numberof Instruclkins M A N U A L OPTIONS

di User ¡ntenxe: • Automatic

í l e o : Choose the optlon valúes for the analysis.

AUTOMATIC OPTIONS

Select aiály5¡5 level ifTom leaít fjrecíse to rnost precise]

• Level 3

• Level-2

• Level-1

•LevdO ' (OefauH

• Level 1

Slep 3; thoose the o|)lioi< valúes for l l ie anulysis

• tonÑders orno! «wütd emnrtioní ' Vi W
• Itoiikidi'ihDiiKilfanpfiki'Hi'ptiaiisElliiiiviil^lrii - ulrlu.d M* luir) • fw íft

• If o«, liio¡ lo inAfKIhc todo of tlwidard Horarios. II «lt<wU*r»Hí are put¡nstead • t* &••
• F«lr¿m M va lorvn llhr m u rfr>plu< IÍIW rfr.lirf rwryloapl t i l o Iff

• If oit 4 ll̂ point lí pcrfoniicd to computo answrr hloimatloi». Hall, orly obitraol (omplloHoii IsporfoinioO Ini l i t

• tíiaW« ur nol ttie slkíng al <05t-*Televflrd vaiiaM» ¡n the mlo-lhfted-naarcsontatioin i Bf orí
* Fllat4V*lll Ihil *lnil adLlhfSk ! ÍV: OB

* BltWH or nol nulldy ana^tis *On oh
* rllliiisn II tliallllijr. iliHir I I^ - I I I IMI ni ilrmilaliurully liml avaalaMrl, LII ^valMiar* ¿r Mjjpi i f i l lliil 1

oí all are suoposed to sfute [nol avalablcl #poshare ' rapflwn ' denoi ' alsharo
* [nobles nrnw osíapf analyíl* • : • ür

• rropaaitos OÍ not c-ipsiam valúeslODtakiedosjririairie s¡« anafes t w "

* Krni>llir inst !iN'plrm.d n»'llii«h [iniri'iesdyeHTr Mnaik-v. nafta-....! as '•nislaid*. ni padsO • fin
• s.ases or roí lo lile me uu of ine entrv meined • •„? w

LeVel 2 * liKtKnr md riiini lie llie ptevkiuvhl savetl uppm IHHIIIIK aml U^PS Hf n as asseitluns • 011 On

Level 3 • EjeefLieeLwsjiiatysisai tneieueiólwilaNes r tí* oe

• UWÍIJ<« licld servil *tf íiuliMS • . - ur
* t i i«v muí inurslar « T ' On OH

• compiaestfie asymptoik upperboand h a np-ial luy

* Chctk d usw.provfileP Lpper Oound I Í greolcr tlmi Ihc jpcer Pwjpd esliTMled by COÍI* ' C<i Oo

Fig. 1. Two ways of setting valúes for analysis options

.LeveH

aecuracy and overhead. Starting from level O, the default, we can increase the
analysis aecuracy (and overhead) by using levéis 1 through 3. We can also
reduce analysis overhead (and aecuracy) by going down to levéis -1 through
-3. The main advantage of the automatic mode is that it does not require
the user to understand the different options implemented in the system and
their implications in analysis aecuracy and overhead. The second alternative
is called manual (see Figure 1, right) and it is meant for expert users. There,
the user has access to all the analysis options, allowing a fine-grained control
over the behavior of the analyzer. For instance, these options allow deciding
whether to analyze the Java standard librarles or not, whether to take excep-
tions into account, to perform or not a number of pre-analyses, to write/read
analysis results to file in order to reuse them in later analyses, etc.

Figure 2 shows the output of COSTA on an example program with exponen-
tial complexity. In addition to showing the result of termination analysis and
an upper bound on the execution cost, COSTA (optionally) displays information
about the time required by the intermedíate steps performed by the analyzer
in previous phases.

2.3 Eclipse Plugin

COSTA also has available an Eclipse plugin interface, which is fully integrated
within the Eclipse development environment. This plugin allows programmers
to analyze methods during the development process. It loads the c l a s spa th
established for the project and uses for analysis the same classes and librarles

COSTA: COST and Terminalion Analyzer for Java Bytecode
aaaaaaaaaaaaaaaaaaa«™ II I I I I I ' I'«aaaaaaaaal

T h i i t i COSTA, v * r » i o n 0 . 2 .

Copyright 2006 09 E.Albert, : .Gena !n , G. P u e b l j , and]

lOC d a t a i l » ÉIÉCuC« ' C t É t a - H •
Th ia i s f r e s flotmjr*, and yo-u «.ce «telecine : Ú r e d i a c r ibur -e i r ur.de E

c e r t a i n c o n d i t i o n s ; f o r d - e t a i l c s x t e u t s ' c o s t a • L "
For usoao i n l o r m a c i e n ex.aeuc« ' C H M - H '

Loadad 16 bycreodan írom

HSK b u i L t i ti 4 H I C L I

The i n l c i a i RBH c o n t a í n i 14 ruLea

N u l l i t y i T i 4 l y > l > p * r E « m * d i n 0 M I C I

Sitr i i . í n . i l ya i n pe r fo rmed i n 0 I O E C B

o p t i m i z a d RBR compuced i n 4 n f t c i

Th* o p c L i i i t d HBR c c n t a i n i 13 m l t i

í h a r i r o ana lyaLe pe r ío rmad I n 0 macea

E ize A n a l y e i a p e E l o r a e d i n 12 meeca

GES ge-nerAted i n 0 me.ee a

The tfcs co-nta ine L l eauaLÍons

Uppar b o u n d i ? « n * i i í«d i n 16 masca.

UB a i n p l j f i c d I m C maceo

Total ft.na.lynl» t i »» : 0.05É n o

i r m a l v i n g 1 F I J I I I H i n a matea.

Fig. 2. Results

Please, set the preferences for Analysis Execution

Select the verbosity level (Standard output) 0 | v

Select the user interface Automatic v |

Select the Cost Model ;Numberof intructions v ;

Method Ñame |java,lang.Str¡ng

Class Mame |toString,()LjavaJang.String;

Select the analysis level | 0 v |

EE Conudcn or mt u p k l «aceptan*

. ' C""'- •-'• ' *''" •'•' "i ' '"'•

Z ícnsderseTwt knplicit ixcepiwis (thrawrityil» virtual Machine]

.. ff 01*. :••*s i:• i-ílys» v * Í t í » :f Ttsníanl libranes,tf :-. condantU in piit mitad

2 C t̂raí' 5 <jr nri loupi (the mair Crc pUi ar« Crc tw every lo&pí

2 if orijafccpBJrí iiperformídito «mauleanswerfifomiaior.lf ofr, only abstract-complot ion ls performedm

¿ Priitll*--! Lir lltri lli'Slll IH¡ ilfinlaihlrni/iril vnluikh^ ililhlr llili--liVirijlr|jli-\i-li<*lllil

Z £n jbfet or roí iign iruryíii

2 Enablcf arnotM%»%EK

._ £niMti arñor eitaptírwh/jii

7 &"»*f*l t) «' riflt t*fi«»nt vvutl otl*n*J ¡turnio tfi*. n¡« «rufai j

Z ÍH^plhriinJ nlhtlnralrnrilHdi (rim-HrtJiípdU^Hiii^^rfhr,.. J^.tnri-J^il',. [» pul%n

I isu«ar nertohleLlwUHflfTrtf íwrymethorí

. [airJí« n« Fíryn tila |ha pfívwdy fíJíd W BOirtdi jnd utif ti-s. — a(iíiHWrx

I tufcute dsM«n»lif»ít the Iwelffl+wiable*

r Eaícutt fitld scmtMe aratyw

Z ¡j!oij|ni(iibiK.ís¡w«trr

Fig. 3. COSTA Plugin Preferences

specified by the user to compile and execute the program. As in the web inter­
face, users can configure a large set of options by using the Eclipse preferences
configuration window, as shown in Fig. 3. These options are saved and loaded
at every Eclipse execution. Also, the user can choose either the automatic
analysis or the expert mode which allows a more fine-grained customization,
like in the web interface. By using this plugin, one can analyze one or several
methods from a class (see Fig. 5) or the whole class (by running the analysis
on all its methods). The results of the analysis are shown using markers in
the source code (see Fig. 4). Such markers are different depending on the
cost model used for analysis. In addition, the plugin also shows all previous

http://ur.de
http://me.ee
http://ft.na.lynl�

--
Fili. Edil Sourtir B«Fji|ur NJ-JUJJIH Sm ic l i Piojwtt Rjn Ci?tt* fiMtytm Wir»*"" H»>P

J¿ fr" O - <*" h£t W * -

K Tt Hl«

V uJ B-telTesi

P tai imWTiphiii r i r y k íwa rn^ lwv l

1¿ Arro/SlQ(k,|avn

p-ackagc ¡ • -• • :

- UH.java J.Tc=l.pva

• S bar ^ Q Mytlass *

flfl MyCtais.jovn « \ ^

/ * •

• ;• O M . I I o n t i ' í t i j v j i \ ¿ i í i f l . 5 t r i n f l j a va ."lang + Otojcct

|Hl l , l !• • ! . . - . - : '•1,-i " .1 .-. ¡

i n t c o u n t c r :

p n h l i c N f C l a u (í > t c) (

i

n i f r

" (V o s "t a £-n a 1.-, ze t r i

¡ i . Hríihl*in-i A j * v * d i w ¿¿ ü*fl*fjMhfln I 9 [;&r>*al* •

ü « r r

lí^nCTipIlCl

1\ * •> . *

• u MvCI***

**mOrtJ

*. l i W I f t W K l]

* oddfMyClas [J.MvClosc)

« rialh¡iiqíObji?rt. Sírinq)

MyClft*f.,|*vti m l l)v

MycUu. jBva *pn¡t»II]V

Myi h'^í p . r f -¡inití-: :v

I* Hcap • ün'.urrpi-Gr: The Uppcr Botnid *or 'b»rVMyClo3í_^ inií^-tiJvtA.el i»

Fig. 4. COSTA Plugin Markers and View

analysis results in an additional view, which we cali "the COSTA view". The
COSTA view also includes a warning icón for methods whose termination is not
proved, in order to alert the programmer about potential problems. It can
also read comments in the source code, written in Javadoc style, in order to
set up analysis information.

3 •JJ3. ja la: ; uia maiiíail :i> ¡m^f-n m Cantert Information:

|ava.¡ang.String java.lang.Ohject

Methods:

D <inil>tl>V

[I mtúv

Q <mit>|)V

D incremento I

D add{[Lbar/MyClass;l_har/MyClass:)V

U pmhingd \wx)*nq{c¡b\ert;\ javfVlarq/R|TÍng;il]nv?i/tang/sri-hg;

D i (H I I L H I

Fig. 5. COSTA Plugin Methods Selection

3 Functionalities of COSTA

In this section, we explain the main functionalities of COSTA by means of several
small examples. Some of these examples aim at illustrating the different cost

http://om.ii

public static int funExp(int n) {

if (n < 1) return 1;

else re turn funExp(n - 1) + funExp(n - 2) ;

}

Fig. 6. Example for number of instructions

models available in the system. The last two examples are related to termi­
nation issues. In particular, we start in Sect. 3.1 by showing a program whose
execution requires an exponential number of bytecode instructions. Then, in
Sect. 3.2, we present the cost model that bounds the total heap consumption
of executing a program and the recent extensión to account for the effect of
garbage collection. Sect. 3.3 performs resource analysis on a MIDlet using the
cost model "number of calis" to a given method. Finally, in Sect. 3.4, we prove
termination on an example whose resource consumption cannot be bound by
COSTA and, also, show the latest progress to handle numeric fields(Sect. 3.5)
in termination analysis.

3.1 Number of Instructions

The cost model which counts the number of instructions which are executed
is probably the most widely used within cost analyzers, as it is a first step
towards estimating the runtime required to run a program. Let us consider
the Java method in Fig. 6. The execution of this method has an exponen­
tial complexity as each cali spawns two recursive calis until the base case is
found. COSTA yields the upper bound(slightly pretty pr inted)-13 + 18*2nat(n)
using its automatic mode which indicates, as expected, that the number of in­
structions which are executed grows exponentially with the valué of the input
argument n. This shows that COSTA is not restricted to polynomial complexi-
ties, in contrast to many other approaches to cost analysis.

3.2 Memory Consumption

Let us consider the Java program depicted in Figure 7. It consists of a set
of Java classes which define a linked-list data structure in an object-oriented
style. The class Cons is used for data nodes (in this case integer numbers)
and the class Nil plays the role of nuil to indicate the end of a list. Both
Cons and Nil extend the abstract class L i s t . Thus, a L i s t object can be
either a Cons or a Nil instance. Both subclasses implement a copy method
which is used to clone the corresponding object. In the case of Nil , copy just
returns a new instance of itself since it is the last element of the list. In the

abstract class List {

abstract List copyO ;

}
class Nil extends List {

List copyO {

return new Nil();

}
}
class Cons extends List {

int elem;

List next;

List copy(){

Cons aux = new Cons();

aux.elem = m(this.elem);

aux.next = this.next.copy();

return aux;

}
static int m(int n) {

Integer aux = new Integer(n);

return aux.intValue();

}
} // class Cons

Fig. 7. Example for memory consumption

case of Cons, it returns a cloned instance where the data is cloned by calling
the static method m, and the continuation is cloned by calling recursively the
copy method on next.

The heap cost model of COSTA basically assigns, to each memory allocation
instruction, the number of heap units it consumes. It can therefore be used to
infer the total amount of memory allocated by the program. Running COSTA

in automatic mode, level 0, yields the following upper bound for the copy
method of class Cons:

n a t (t h i s - l) * (1 2 + ki + k2 + k3) + 12 + 2*ki + k2 + k3

It can be observed that the heap consumption is linear w.r.t. the input param-
eter t h i s , which corresponds to the size of the this object of the method, i.e.,
the length of the list which is being cloned. This is because the abstraction
being used by COSTA for object references is the length of the longest reference
chain, which in this case corresponds to the length of the list. The expression
also includes some constants. The symbolic constants k1; k2 and k3 represent
the memory consumption of the library methods which are transitively in-
voked. In particular, kt corresponds to the constructor of class Object and k2

resp. k3 to the constructor and intValue method of the class In teger . The
numeric constant 12 is obtained by adding 8 and 4, being 8 the bytes taken
by an instance of class Cons, and 4 the bytes taken by an In tege r instance.
Note that we are approximating the size of an object by the sum of the sizes
of all of its fields. In particular, both an integer and a reference are assumed
to consume 4 bytes.

Interestingly, we can activate the flag goJnto-java-api and thus ask COSTA

to analyze all library methods which are transitively invoked. In this case we
obtain the upper bound 1 2 * n a t (t h i s - l) + 12, for the same method. This

is because the library methods used do not allocate new objects on the heap.

3.2.1 Peak Heap Consumption

In the case of languages with automatic memory management (garbage collec-
tion) such as Java Bytecode, measuring the total amount of memory allocated,
as done above, is not very accurate, since the actual memory usage is often
much lower. Peak heap consumption analysis aims at approximating the size
of the Uve data on the heap during a program's execution, which provides a
much tighter estimation. We have recently developed and integrated in COSTA

a peak memory consumption analysis [5]. Among other things, this has re-
quired the integration of an escape analysis which approximates the objects
which do not escape, i.e., which are not reachable after a method's execution.
The upper bound ub(A) = 8*nat(A-l) + 24 is now obtained for the same
example.

An interesting observation is that the Integer object which is created inside the
m method is not reachable from outside and thus can be garbage collected.
The peak heap analyzer accounts for this and therefore deletes the size of
the Integer object from the recursive equation, thus obtaining 8 instead of
12 multiplying nat(A — 1). By looking at the upper bound above, it can be
observed that COSTA is not being fully precise, as the actual peak consumption
of this method is 8 * nat(A — 1) + 8 (i.e. the size of the cloned list). The
reason for this is that the upper bound solver has to consider an additional
case introduced by the peak heap analysis to ensure soundness, henee making
the second constant increase to 24.

3.3 Number of Calis - Java Micro Edition

The Java Micro Edition {Java ME) [8] technology provides a limited envi-
ronment to créate Java applications which can be run on small devices with
limited memory, display and power capacity. It is based on three elements: a
configuration that provides the most basic set of librarles and virtual machine
capabilities, a profile which is a set of APIs supported by mobile devices and
an optional package (set of technology-specific APIs). MIDP (Mobile Infor­
mation Device Profile) [12] is the profile that limits the set of APIs to only
those functional áreas considered as absolute requirements to achieve broad
portabihty and successful deployments. A MIDlet is an apphcation meeting
the specifications for the Java ME technology, such as a game or a business
apphcation. Each MIDlet is an object of class MIDlet which follows a lifecy-
cle [9], which is a state automaton managed by the Application Management
System (AMS).

public void commandAction(Commaiid c,

if (c == exitCommand) {

destroyApp(false);

notif yDestroyedO ;

}
if (c == sendMsgCommand) {

try {

TextMessage tmsg=(TextMessage)cl

Displayable s) {

ientConn.newMessage(

MessageConnection.TEXT_MESSAGE);

tmsg.setAddress("sms://+34697396559");

tmsg.setPayloadText(msgToSend);

clientConn.send(tmsg);

}
catch (Exception exc) {

exc .printStackTraceO ;

}
}
}

Fig. 8. Example for number of calis

COSTA is able to perfom resource analysis on MIDlets by considering
all classes used on each method called during the lifecycle of the MIDlet.
Such methods are the constructor of the class, the s t a r tAppO and the
commandAction(Command c, Displayable d) methods. In particular, the
classes used during the analysis of the class constructor are added to the
analysis of the s t a r tAppO method. After analyzing s t a r tAppO method,
the current classes are used for analyzing the commandAction(Command c,
Displayable d) method. As a result, the analyzer obtains a more precise
cost and resource analysis for MIDP applications. Fig. 8 shows a simple but
real example MIDlet that sends a text message: the text message is created
(newMessage method), the recipient phone number set (setAddress method)
and the text message is sent using the method send (Message tmsg) of the
Wireless Messaging API.

We analyze this example using the cost model that counts the number of
calis (ncalls) to a particular method. We apply it to obtain an upper bound
on how many times the send (Message tmsg) method is called during the
execution of commandAction method in a mobile device. COSTA outputs 1 as
result, as it is to be expected.

s t a t i c in t f a c t o r i a l (i n t n) {
s t a t i c in t doSum(List x) {

in t fac t=l ;
if (x==null) return 0;

for (int i=l; i<=n; i++) fact=fact*i;
else return factorial(x.elem)*doSum(x.next);

return fact;

h [i
Fig. 9. Example for terminat ion

3.4 Termination

Fig. 9 shows two methods which belong to the same class. The method doSum
computes the sum of all factorial numbers contained in the elements of a
linked list x, where L i s t is defined as in Fig. 7. COSTA is able to ensure the
termination of method doSum but no upper bound can be found by the system
for the cost model ninst. The information that COSTA yields when computing
an upper bound is:
The Upper Bound for 'doSum'(x) is nat(x)*(19+c(maximize_failed)*9)+4
Terminates?: yes

Intuitively, the cost of the calis to f a c t o r i a l cannot be bound because the
valué of x.elem is unknown at analysis time. However, we can still prove
that the execution of the two methods always terminates by finding a so-
called ranking function [11]. The technical details about how COSTA deals with
termination can be found in [1].

3.5 Numeric Fields

Fig. 10 shows a Java program involving a numeric field in the condi-
tion of the loop of method m. This loop terminates in sequential execu­
tion because the field s i z e is decreased at each iteration, at instruction
x.f .setSize(x.f .getSize() — 1), and, for any initial valué of s i ze , there are
only a finite number of valúes which s i z e can take before reaching zero. Un-
fortunately, applying standard valué analyses on numeric fields can produce
wrong results because numeric variables are stored in a shared mutable data
structure, i.e., the heap. This implies that they can be modified using different
references which are aliases and point to such memory location. Henee, further
conditions are required to safely infer termination. COSTA incorporates a novel
approach for approximating the valué of heap allocated numeric variables [3]
which greatly improves the precisión over existing field-insensitive valué analy­
ses while introducing a reasonable overhead. For the example in Fig. 10, COSTA

not only guarantees termination of method m but is also able to compute the
(pretty printed) upper bound for m (t h i s , x , y , s i z e) i s 33+nat (s ize)*35
by using the cost model ninst.

class B {

prívate int size;

public int getSizeO {return size;};

public void setSize(int n){size=n;};

};

class A {

private B f;

int m(A x,B y) {

int i=0;

while (x.f.getSize()>0) {

i=i+y .getSizeO ;

x.f.setSize(x.f.getSize()-l);

}
return i;

}
};

Fig. 10. Example for terminat ion in presence of numeric fields

4 Discussion and Future Work

COSTA is, to the best of our knowledge, the first tool for fully automatic cost
analysis of object-oriented programs. Currently, the system can be tried online
through the COSTA web site: h t t p : / / c o s t a . l s . f i . u p m . e s . We plan to
distribute it soon under a GPL license. The fact that COSTA analyzes bytecode,
i.e., compiled code, makes it more widely applicable, since it is customary in
Java applications to distribute compiled programs, often bundled in jars, for
which the Java source is not available.

As future work we plan to: (1) define new cost models to measure the
consumption of new resources; (2) support other complexity schemes such as
the inference of lower-bounds; (3) improve both the precisión and performance
of the underlying static analyses; and (4) handle the analysis of concurrent
programs.

References

[1] E. Albert , P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Terminat ion
Analysis of Java Bytecode. In FMOODS, LNCS 5051, pages 2-18, 2008.

[2] E. Albert , P. Arenas, S. Genaim, and G. Puebla. Automat ic Inference of Upper Bounds for
Recurrence Relations in Cost Analysis. In SAS, LNCS 5079, 2008.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Dealing witli numeric fields in terminat ion
analysis of java-like languages. In FTfJP, 2008.

[4] E. Albert , P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode.
In ESOP, LNCS 4421, pages 157-172. Springer, 2007.

[5] E. Albert , S. Genaim, and M. Gómez-Zamalloa. Live Heap Space Analysis for Languages witli
Garbage Collection. In ISMM'09: Proceedings of the 8th International symposium on Memory
management, New York, NY, USA, June 2009. ACM Press.

[6] ECRC. Eclipse User's Guíde. European Computer Research Center, 1993.

http://costa.ls.fi.upm.es

[7] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. A-W, 1996.

[8] Java ME. http:/ / java.sun.com/javame/technology/index.jsp.

[9] MIDP. h t t p : / / j ava . sun. com/javame/ref erence/apis / j s r 118/javax/-microedition/
midlet/package-summary.html.

[10] G. Necula. Proof-Carrying Code. In Proc. of ACM Symposium on Principies of programming
languages (POPL), pages 106-119. ACM Press, 1997.

[11] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAI, 2004.

[12] Java Community Process MIDP Reléase. http:// jcp.org/aboutJava/communityprocess/
f inal / j s r118- / index.html .

[13] Java SE. ht tp: / / java.sun.com/javase/ technologies / index. jsp .

[14] B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9), 1975.

http://java.sun.com/javame/technology/index.jsp
http://jcp.org/aboutJava/communityprocess/
http://java.sun.com/javase/technologies/index.jsp

