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Abstract 
The peak heap consumption of a program ¡s the máximum size 
of the live data on the heap during the execution of the program, 
Le., the mínimum amount of heap space needed to run the program 
without exhausting the memory. It ¡s well-known that garbage col
lection (GC) makes the problem of predicting the memory required 
to run a program difficult. This paper presents, the best of our 
knowledge, the first live heap space analysis for garbage-collected 
languages which infers accurate upper bounds on the peak heap 
usage of a program's execution that are not restricted to any com-
plexity class, Le., we can infer exponential, logarithmic, polyno-
mial, etc., bounds. Our analysis ¡s developed for an (sequential) 
object-oriented bytecode language with a scoped-memory manager 
that reclaims unreachable memory when methods return. We also 
show how our analysis can accommodate other GC schemes which 
are closer to the ideal GC which collects objects as soon as they be-
come unreachable. The practicality of our approach ¡s expenmen-
tally evaluated on a prototype ¡mplementation. We demónstrate that 
¡t ¡s fully automatic, reasonably accurate and efficient by inferring 
live heap space bounds for a standardized set of benchmarks, the 
JOldensuite. 

Categories and Subject Descriptora F3.2 [Logics and Meaning 
of Programs]: Program Analysis; F2.9 [Analysis of Algorithms 
and Problem Complexity]: General; D3.2 [Programming Lan
guages] 

General Terms Languages, Theory, Verification, Reliability 

Keywords Live Heap Space Analysis, Peak Memory Consump
tion, Low-level Languages, Java Bytecode 

1. Introduction 
Predicting the memory required to run a program ¡s crucial ¡n many 
contexts like ¡n embedded applications with stringent space re-
quirements or ¡n real-time systems which must respond to events 
or signáis within a predefined amount of time. It ¡s widely rec-
ognized that memory usage estimation ¡s ¡mportant for an accu
rate prediction of running time, as cache misses and page faults 
contribute directly to the runtime. Another motivation ¡s to config
ure real-time garbage collectors to avoid mutator starvation. Be-
sides, upper bounds on the memory requirement of programs have 
been proposed for resource-bound certificaron [10] where certifi-

cates encode security properties involving resource usage require-
ments, e.g., the (untrusted) code must adhere to specific bounds on 
¡ts memory usage. On the other hand, automatic memory manage-
ment (also known as garbage collection) ¡s a very powerful and use-
ful mechanism which ¡s increasingly used ¡n high-level languages 
such as Java. Unfortunately, GC makes the problem of predicting 
the memory required to run a program difficult. 

A first approximation to this problem ¡s to infer the total mem
ory allocation, Le., the accumulated amount of memory allocated 
by a program ignoringGC. If such amount isavailable it ¡sensured 
that the program can be executed without exhausting the memory, 
even if no GC ¡s performed during ¡ts execution. However, it ¡s an 
overly pessimistic estimation of the actual memory requirement. 
Live heap space analysis [18, 5, 8] aims at approximating the size 
of the live data on the heap during a program's execution, which 
provides a much tighter estimation. This paper presents a general 
approach for inferring the peak heap consumption of a program's 
execution, Le., the máximum of the live heap usage along ¡ts execu
tion. Our live heap space analysis ¡s developed for (an intermedíate 
representaron of) an object-oriented bytecode language with au
tomatic memory management. Programming languages which are 
compiled to bytecode and executed on a virtual machine are widely 
used nowadays. This ¡s the approach used by Java bytecode and 
.NET 

Analysis of live heap usage ¡s different from total memory allo
cation because it involvesreasoningonthememoryconsumedatall 
program states along an execution, while total allocation needs to 
observe the consumption at the final state only. As a consequence, 
the classical approach to static cost analysis proposed by Wegbreit 
¡n 1975 [20] has been applied only to infer total allocation. Intu-
¡tively, given a program, this approach produces a cost relation sys-
tem (CR for short) which ¡s a set of recursive equations that cap
ture the cost accumulated along the program's execution. Symbolic 
closed-form solutions (Le., without recursion) are found then from 
the CR. This approach leads to very accurate cost bounds as it ¡s 
not limited to any complexity class (infers polynomial, logarithmic, 
exponential consumption, etc.) and, besides, it can be used to infer 
different notions of resources (total memory allocation, number of 
executed instructions, number of calis to specific methods, etc.). 
Unfortunately, it ¡s not suitable to infer peak heap consumption be-
cause it ¡s not an accumulative resource of a program's execution 
as CR capture. Instead, it requires to reason on all possible states 
to obtain their máximum. By relying on different techniques which 
do not genérate CR, live heap space analysis ¡s currently restricted 
to polynomial bounds and non-recursive methods [5] or to linear 
bounds dealing with recursion [8]. 

Inspired by the basic techniques used ¡n cost analysis, ¡n this 
paper, we present a general framework to infer accurate bounds 
on the peak heap consumption of programs which ¡mproves the 
state-of-the-art ¡n that it ¡s not restricted to any complexity class 
and deals with all bytecode language features including recursion. 
To pursue our analysis, we need to characterize the behavior of 
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the underlying garbage collector. We assume a standard scoped-
memory manager that reclaims memory when methods return. In
this setting, our main contributions are:

1. Escaped Memory Analysis. We first develop an analysis to infer
upper bounds on the escaped memory of method’s execution,
i.e., the memory that is allocated during the execution of the
method and which remains upon exit. The key idea is to infer
first an upper bound for the total memory allocation of the
method. Then, such bound can be manipulated, by relying on
information computed by escape analysis [4], to extract from it
an upper bound on its escaped memory.

2. Live Heap Space Analysis. By relying on the upper bounds on
the escaped memory, as our main contribution, we propose a
novel form of peak consumption CR which captures the peak
memory consumption over all program states along the execu-
tion for the considered scoped-memory manager. An essential
feature of our CRs is that they can be solved by using existing
tools for solving standard CRs .

3. Ideal Garbage Collection. An interesting, novel feature of our
approach is that we can refine the analysis to accommodate
other kinds of scope-based managers which are closer to an
ideal garbage collector which collects objects as soon as they
become unreachable.

4. Implementation. We report on a prototype implementation
which is integrated in the COSTA system [2] and experimen-
tally evaluate it on the JOlden benchmark suite. Preliminary
results demonstrate that our system obtains reasonably accurate
live heap space upper bounds in a fully automatic way.

2. Bytecode: Syntax and Semantics
Bytecode programs are complicated for both human and automatic
analysis because of their unstructured control flow, operand stack,
etc. Therefore, it is customary to formalize analyses on interme-
diate representations of the bytecode (e.g., [3, 19, 13]). We con-
sider a rule-based procedural language (in the style of any of the
above) in which a rule-based program consists of a set of proce-
dures and a set of classes. A procedure p with k input arguments
x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym is de-
fined by one or more guarded rules. Rules adhere to the following
grammar:

rule ::= p(〈x̄〉, 〈ȳ〉) ::=g, b1, . . . , bt

g ::= true | exp1 op exp2 | type(x, c)
b ::= x := exp | x := new ci | x := y.f | x .f := y | q(〈x̄〉, 〈ȳ〉)

exp ::= null | aexp
aexp ::= x | n | aexp−aexp | aexp+aexp | aexp∗aexp | aexp/aexp

op ::= > | < | ≤|≥| = | '=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, which spec-
ifies conditions for the rule to be applicable; b1, . . . , bt the body
of the rule; n an integer; x and y variables; f a field name, and
q(〈x̄〉, 〈ȳ〉) a procedure call by value. The language supports class
definition and includes instructions for object creation, field ma-
nipulation, and type comparison through the instruction type(x, c),
which succeeds if the runtime class of x is exactly c. A class c is
a finite set of typed field names, where the type can be integer or
a class name. The superscript i on a class c is a unique identifier
which associates objects with the program points where they have
been created. The key features of this language are: (1) recursion
is the only iterative mechanism, (2) guards are the only form of
conditional, (3) there is no operand stack, (4) objects can be re-
garded as records, and the behavior induced by dynamic dispatch
in the original bytecode program is compiled into dispatch blocks

class Test {
static Tree m(int n) {

if ( n>0 ) return new
Tree(m(n-1),m(n-1),f(n));

else return null;
}
static int f(int n) {

int a=0,i=n;
while ( n>1 ) {

a += g(n).intValue();
n=n/2;

}
for(; i>1; i=i/2)

a *= h(i).intValue();
return a;

}

static Integer g(int n) {
Integer x=new Integer(n);
return new Integer(x.intValue()+1);

}
static Long h(int n) {

return new Long(n-1);
}

} // end of class Test

class Tree {
Tree l,r;
int d;
Tree(Tree l,Tree r,int d) {

this.l = l;
this.r = r;
this.d = d;

}
}

Figure 1. Java code of running example

(1) m(〈n〉, 〈r〉)::=
n > 0,
s0 := new Tree1;
s1 := n − 1,
m(〈s1〉, 〈s1〉),
s2 := n − 1,
m(〈s2〉, 〈s2〉),
f(〈n〉, 〈s3〉),
init(〈s0, s1, s2, s3〉, 〈〉),
r = s0.

(2) m(〈n〉, 〈r〉)::=
n ≤ 0,
r := null.

(3) f(〈n〉, 〈a〉)::=
a := 0,
i := n,
fc(〈n, a〉, 〈n, a〉),
fd(〈i, a〉, 〈i, a〉).

(4) fc(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2,
fc(〈n, a〉, 〈n, a〉).

(5) fc(〈n, a〉, 〈n, a〉)::=
n ≤ 1.

(6) fd(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2,
fd(〈i, a〉, 〈i, a〉).

(7) fd(〈i, a〉, 〈i, a〉)::=
i ≤ 1.

(8) g(〈n〉, 〈r〉)::=
x := new Integer2,
init1(〈x, n〉, 〈〉),
intValue1(〈x〉, 〈s0〉),
s0 := s0 + 1.
r := new Integer3,
init1(〈r, s0〉, 〈〉).

(9) h(〈n〉, 〈r〉)::=
s0 := n − 1.
r := new Long4,
init2(〈r, s0〉, 〈〉).

(10) init(〈this, l, r, d〉, 〈〉)::=
this.l := l,
this.r := r,
this.d := d.

Figure 2. Intermediate representation of running example.

guarded by a type check, and (5) procedures may have multiple re-
turn values. The translation from (Java) bytecode to the rule-based
form is performed in two steps. First, a control flow graph (CFG)
is built. Second, a procedure is defined for each basic block in the
graph and the operand stack is flattened by considering its elements
as additional local variables. E.g., this translation is explained in
more detail in [3]. For simplicity, our language does not include
advanced features of Java bytecode, such as exceptions, interfaces,
static methods and fields, access control (e.g., the use of public,
protected and private modifiers) and primitive types besides in-
tegers and references. Such features can be easily handled in our
framework and indeed our implementation deals with full (sequen-
tial) Java bytecode.



EXAMPLE 2.1. Fig. 1 depicts our running example in Java, and
Fig. 2 depicts its corresponding rule-based representation where
the procedures are named as the method they represent and “fc”
and “fd” denote intermediate procedures for f . The Java program
is included only for clarity as the analyzer generates the rule-
based representation from the corresponding bytecode only. As
an example, we explain rules (1) and (2) which correspond to
method m. Each rule is guarded by a corresponding condition,
resp. n > 0 and n ≤ 0. Variable names of the form si indicate that
they originate from stack positions. In rule (1), the “new Tree1”
instruction creates an object of type Tree (the superscript 1 is the
unique identifier for this program point) and assigns the variable
s0 to its reference (which corresponds to pushing the reference
on the stack in the original bytecode). Then, the local variable n
is decremented by one and the result is assigned to s1. Next, the
method m is recursively invoked which receives as input argument
the result of the previous operation (s1) and returns its result in
s1. Similar invocations to methods m, f and init follow. In Java
bytecode, constructor methods are named init. In both rules, the
return value is r which in (1) is assigned to the object reference and
in (2) to null. It can be observed that, like in bytecode, all guards
and instructions correspond to three-address code, except for calls
to procedures which may involve more variables as parameters.
The methods intValue1 and init1 belong to class Integer, and
intValue2 and init2 belong to class Long. !

Observe in the example that, in our syntax, with the aim of sim-
plifying the presentation, we do not distinguish between calls to
methods and calls to intermediate procedures. For instance, fc and
fd are intermediate procedures while f is the method. This distinc-
tion can be made observable in the translation phase trivially and,
when needed, we assume such distinction is available.

2.1 Semantics

The execution of bytecode in rule-based form is exactly like stan-
dard bytecode; a thorough explanation is outside the scope of this
paper (see [14]). An operational semantics for rule-based bytecode
is shown in Fig. 3. An activation record is of the form 〈p, bc, tv〉,
where p is a procedure name, bc is a sequence of instructions and
tv a variable mapping. Executions proceed between configurations
of the form A; h, where A is a stack of activation records and h
is the heap which is a partial map from an infinite set of memory
locations to objects. We use h(r) to denote the object referred to
by the memory location r in h and h[r $→ o] to indicate the result
of updating the heap h by making h(r) = o. An object o is a pair
consisting of the object class tag and a mapping from field names
to values which is consistent with the type of the fields.

Intuitively, rule (1) accounts for all instructions in the byte-
code semantics which perform arithmetic and assignment opera-
tions. The evaluation eval(exp, tv) returns the evaluation of the
arithmetic or Boolean expression exp for the values of the cor-
responding variables from tv in the standard way, and for refer-
ence variables, it returns the reference. Rules (2), (3) and (4) deal
with objects. We assume that newobject(ci) creates a new object
of class c and initializes its fields to either 0 or null, depending on
their types. Rule (5) (resp., (6)) corresponds to calling (resp., re-
turning from) a procedure. The notation p[ȳ, ȳ′] records the associ-
ation between the formal and actual return variables. It is assumed
that newenv creates a new mapping of local variables for the corre-
sponding method, where each variable is initialized as newobject
does.

An execution starts from an initial configuration of the form
〈⊥, p(〈x̄〉, 〈ȳ〉), tv〉; h and ends when we reach a final configura-
tion 〈⊥, ε, tv ′〉; h′ where tv and h are initialized to suitable initial
values, tv ′ and h′ include the final values, and ⊥ is a special symbol

indicating an initial state. We assume that any object stored in the
initial heap h is reachable from (at least) one of the xi, namely there
are not collectable objects that can removed from h at the initial
state. Note that dom(tv) = dom(tv ′) = x̄ ∪ ȳ. Finite executions
can be regarded as traces S0"S1" · · ·"Sω , denoted S0"

∗Sω ,
where Sω is a final configuration. Infinite traces correspond to non-
terminating executions.

3. Total Memory Allocation Analysis
Let us first define the notion of total memory consumption. We let
size(c) denote the amount of memory required to hold an instance
object of class c, size(o) denotes the amount of memory occupied
by an object o, and size(h) denotes the amount of memory occu-
pied by all objects in the heap h, namely Σr∈dom(h)size(h(r)).
We consider the semantics in Fig. 3 where no GC is performed.
Given a trace t ≡ A1; h1 "∗ An; hn, the total memory allocation
of t is defined as total(t) = size(hn) − size(h1).

In this section, we briefly overview the application of the cost
analysis framework, originally proposed by Wegbreit [20], to total
memory consumption inference of bytecode as proposed in [3]. The
original analysis framework [1] takes as input a program and a cost
model M, and outputs a closed-form upper bound that describes its
execution cost w.r.t. M. The cost model M defines the cost that we
want to accumulate. For instance, if the cost model is the number
of executed instructions, M assigns cost 1 to all instructions. The
application of this framework to total memory consumption of
bytecode takes as input a bytecode program and the following cost
model Mt, which is a simplification for our language of the cost
model for heap space usage of [3].

DEFINITION 3.1 (heap consumption cost model [3]). Given a byte-
code instruction b, the heap consumption cost model is defined as

Mt(b) =


size(ci) b ≡ x := new ci

0 otherwise

For a sequence of instructions, Mt(b1 · · · bn) = Mt(b1) + · · · +
Mt(bn). !

3.1 Inference of Size Relations

The aim of the analysis is to approximate the memory consumption
of the program as an upper bound function in terms of its input data
sizes. As customary, the size of data is determined by its variable
type: the size of an integer variable is its value; the size of an array
is its length; and the size of a reference variable is the length of the
longest path that can be traversed through the corresponding object
(e.g., length of a list, depth of a tree, etc.). To keep the presentation
simple, we use the original variable names (possible primed) to
refer to the corresponding abstract (size) variables; but we write the
size in italic font. For instance, let x be a reference to a tree, then x
represents the depth of x. When we need to compute the sizes v̄ of
a given tuple of variables x̄, we use the notation v̄ = α(x̄, tv , h),
which means that the integer value vi is the size of the variable xi in
the context of the variables table tv and the heap h. For instance, if
x is the reference to a tree, we need to access the heap h where the
tree is allocated to compute its depth and obtain v. If x is an integer
variable, then its size (value) can be obtained from the variable table
tv .

Standard size analysis is used in order to obtain relations be-
tween the sizes of the program variables at different program
points. For instance, associated to procedure fc, we infer the size
relation n′ = n/2 which indicates that the value of n decreases by
half when calling fc recursively. We denote by ϕr the conjunction
of linear constraints which describes the relations between the ab-
stract variables of a rule r and refer to [9, 3] for more information.



(1)
b ≡ x := exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A; h " 〈p, bc, tv [x $→ v]〉·A; h

(2)
b ≡ x := new ci, o=newobject(ci), r *∈dom(h)
〈p, b·bc, tv〉·A; h " 〈p, bc, tv [x $→ r]〉·A; h[r $→ o]

(3)
b ≡ x := y.f, tv(y) *= null, o = h(tv(y))
〈p, b·bc, tv〉·A; h " 〈p, bc, tv [x $→ o.f ]〉·A; h

(4)
b ≡ x.f := y, tv(x) *= null, o = tv(x)

〈p, b·bc, tv〉·A; h " 〈p, bc, tv〉·A; h[o.f $→ tv(y)]

(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program rule q(〈x̄′〉, 〈ȳ′〉):=g, b1, · · · , bk

such that tv ′=newenv(q), ∀i.tv ′(x′
i) = tv(xi), eval(g, tv ′) = true

〈p, b·bc, tv〉·A; h " 〈q, b1 · . . . · bk, tv ′〉·〈p[ȳ, ȳ′], bc, tv〉·A; h

(6) 〈q, ε, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A; h " 〈p, bc, tv ′[ȳ $→ tv(ȳ′)]〉·A; h

Figure 3. Operational semantics of bytecode programs in rule-based form

(1) m(n)=size(Tree1)+m(s1)+m(s2)+ {n>0, s0=1,
f(n)+init(s0, s1, s2, s3) s1=n−1, s2=n−1}

(2) m(n)=0 {n≤0}
(3) f(n)=fc(n, a) + fd(i, a′) {a=0, i=n}
(4) fc(n, a)=g(n)+fc(n′, a′) {n>1, n′=n/2}
(5) fc(n, a)=0 {n≤1}
(6) fd(i, a)=h(i)+fd(i′, a′) {i>1, i′=i/2}
(7) fd(i, a)=0 {i≤0}
(8) g(n)=size(Integer2)+size(Integer3) {x=1}
(9) h(n)=size(Long4) {r=1, s0=n−1}
(10) init(this, l, r, d)=0 {}

Figure 4. Total Allocation CR.

3.2 Generation of Cost Relations

In a nutshell, given a bytecode program P , the analysis of [3] pro-
ceeds in three steps: (1) it first transforms it into an equivalent
rule-based program (our work directly starts from such rule-based
form), (2) it infers size relations as explained above, (3) it gener-
ates a CR which describes the total memory consumption of the
program as follows.

DEFINITION 3.2 (total allocation CR [3]). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and the size relations ϕr computed
for r. We distinguish the subsequence of all calls to procedures
bi1 . . . bik in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and assume
bij = qij(〈x̄ij〉, 〈ȳij〉). Then, the cost equation for r is:

p(x̄) = Mt(g, b1, . . . , bn) + Σk
j=1 qij (x̄ij ), ϕr

Given a program P , we denote by SP the cost relation generated
for each rule in P w.r.t. the heap consumption cost model Mt. !

Note that each call in the rule qij(〈x̄ij〉, 〈ȳij〉) has a corresponding
abstract version bα

ij
= qij (x̄ij ) where x̄ij are the size abstractions

of x̄ij . The output variables are ignored in the CR as the cost is
a function of the input data sizes, however it should be noted that
the possible effect of output variables on the cost has been already
modeled by the size relation ϕr . For simplicity, the same procedure
name is used to define its associated cost relation, but in italic font.

EXAMPLE 3.3. The CR generated for the rule-based program in
Fig. 2 w.r.t. Mt is depicted in Fig. 4. To simplify the presenta-

tion, we assume that the total heap consumption of all external
methods (init1, intValue1, init2 and intValue2) is 0 and we do
not show them in the equations from now on. Consider, for exam-
ple, equation (4). It states that the memory consumption of exe-
cuting fc(〈n, a〉, 〈n, a〉) is the total memory consumption of exe-
cuting g(〈n〉, 〈r〉) plus the one of fc(〈n′, a′〉, 〈n′, a′〉). The set of
constraints attached to equation (4) includes information on: (1)
how the sizes of the data change when the program moves from
one rule to another, e.g., the constraint n′ = n/2 indicates that
the value of n decreases by half when calling fc recursively; and
(2) numeric conditions (obtained by abstracting the guards) under
which the corresponding rule is applicable, e.g., n > 1 indicates
that the equation can be applied only when n is greater than 1. !

An important observation is that, as discussed in Sec. 1, this analy-
sis approach is intrinsically designed to infer the total cost (memory
allocation in this case) of the program’s execution and not to infer
its peak consumption. This is because the equations accumulate the
cost of all instructions and rules together as it can be observed in
the CR for the example above.

3.3 Closed-Form Upper Bounds

Once the CR is generated, a cost analyzer has to use a CR solver
in order obtain closed-form upper bounds, i.e., expressions without
recurrences. The technical details of this process are not explained
in the paper as our analysis does not require any modification to
such part. In what follows, we rely on the CR solver of [3] (which
can be accessed online through a web interface) to obtain closed-
form upper bounds for our examples. The soundness of the overall
analysis, as stated in the next theorem, requires that the equations
generated as well as their closed-form upper bounds are sound.

THEOREM 3.4 (soundness [3]). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 "∗ 〈q, bc, tvn〉·A; hn, then
p(v̄) ≥ total(t) where v̄ = α(x̄, tv1, h1). !

Observe that the trace t in the theorem represents an execution of
procedure p for some specific input data (properly stored in tv1 and
h1) where the first configuration corresponds to calling p and the
last one to returning from that specific call. As already mentioned
in Sec. 3.1, v̄ denotes the size of the input data.



EXAMPLE 3.5. Solving the equations of Fig. 4 results in the fol-
lowing closed-form upper bounds for f , m, g and h:

m(n) = (2nat(n) − 1)∗(f(n)+size(Tree1))
f(n) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))+

log2(nat(n−1)+1)∗size(Long4))
fc(n, a) = log2(nat(n−1)+1)∗(size(Integer2)+size(Integer3))
fd(i, a) = log2(nat(i−1)+1)∗size(Long4))

g(n) = size(Integer2)+size(Integer3)
h(n) = size(Long4)

where the expression nat(l) is defined as max(l, 0) to avoid nega-
tive evaluations. As expected, method m has an exponential mem-
ory consumption due to the two recursive calls, which in turn is
multiplied by the allocation at each iteration (i.e., the consumption
of f plus the creation of a Tree object). The solver indeed substi-
tutes f(n) by its upper bound shown below. The memory consump-
tion of f has two logarithmic parts: the leftmost one corresponds
to the first loop which accumulates the allocation performed along
the execution of g(n), the rightmost one corresponds to the second
loop with the allocation of h(n). !

A fundamental observation is that the above upper bounds on the
memory consumption can be tighter if one considers the effect of
GC. For instance, a more precise upper bound for m can be inferred
if we take into account that the memory allocated by f can be
entirely garbage collected upon return from f . Likewise, the upper
bound for f can be more precise if we take advantage of the fact that
not all memory escapes from g. The goal of the rest of the paper is
to provide automatic techniques to infer accurate bounds by taking
into account the memory freed by scoped-GC.

4. Escaped Memory Upper Bounds
In a real language, GC removes objects which become unreachable
along the program’s execution. Given a configuration A; h, we say
that an object o = h(r) where r ∈ dom(h) is not reachable, if
it cannot be accessed (directly or indirectly) through the variables
table tv of any activation record in A. To develop our analysis, we
assume a scoped-memory manager, which at the level of the source
language, meets these conditions: (1) it reclaims memory only upon
return from methods and, (2) it collects all unreachable objects
which have been created during the execution of the corresponding
method call.

In order to simulate the behavior of such garbage collector at
the level of the corresponding rule-based bytecode, it is enough
to assume that the memory manager reclaims memory only upon
return from procedures that correspond to methods but not from
procedures that correspond to intermediate states like fc and fd. We
use "gc to denote "-transitions with a scoped-memory manager
which meets the two conditions above. In this context, the escaped
memory of a procedure execution is defined as follows. Given a
trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 "∗

gc 〈q, bc, tvn〉 ·A; hn

whose first configuration corresponds to calling p and the last one
to returning from that specific call, the escaped memory of t is
escaped(t) = size(hn) − size(h1), which corresponds to the
amount of memory allocated during the execution of p and still
live in the memory upon exit from p. Our first contribution is an
automatic technique to infer escaped memory upper bounds.

4.1 Inference of Escape Information

We say that an object escapes from a procedure p, in the context
of a scoped-memory manager, if it is created during the execution
of p, and still available in the heap upon exit from p. Note that if
p corresponds to an intermediate procedure, such object might be
unreachable but still has not been garbage collected because GC
is applied only when exiting from procedures that correspond to
methods in the original program. As a preprocessing phase, for

each procedure p, we need to over-approximate the set of allocation
instructions “new ci” that might be executed when calling p and its
transitive calls such that it is guaranteed that all objects they create
are not in memory upon exit from p, i.e., they have been garbage
collected. Recall that an allocation instruction “new ci” is uniquely
identified by the tagged class ci. We use the notation A \B for the
difference on sets.

DEFINITION 4.1 (collectable objects). Given a procedure p, we
denote by collectable(p) the set of all allocation instructions,
identified by their tagged classes, defined as follows.

ci ∈ collectable(p) iff the following conditions hold:

1. “new ci” is a reachable instruction from p;
2. for any trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 "∗

gc

〈q, bc, tvn〉 · A; hn, it holds that ∀r ∈ dom(hn) \ dom(h1)
the object hn(r) is not an instance of ci. !

The set of collectable objects can be approximated from the
information computed by escape analysis [15, 4]. The goal of
escape analysis is to determine all program points where an object
is reachable and whether the lifetime of the object can be proven to
be restricted only to the current method. In our implementation, we
use the approach described in [21] which, as our experiments show,
behaves well in practice.

EXAMPLE 4.2. The escape information is computed for all proce-
dures (both methods and intermediate rules) defined in Fig. 2:

collectable(m) = collectable(f) = {Integer2, Integer3, Long4}
collectable(fc) = collectable(g) = {Integer2}
collectable(fd) = collectable(h) = ∅

As an example, the information in the set collectable(f) states that
the objects created with class tags Integer2, Integer3 and Long4

during the execution of f by the transitive calls to g and h, do not
escape from f . Also, collectable(fd) = ∅ means that the object
Long4 created in h might escape from fd. An important observation
is that this object is not reachable upon exit from fd, but since GC is
applied only upon exit from procedures that correspond to methods,
it will be collected only upon exit from f . This issue will be further
discussed in Sec. 6. !

4.2 Upper Bounds on the Escaped Memory

Intuitively, our technique to infer upper bounds on the escaped
memory consists of two steps. In the first step, we generate equa-
tions for the total allocation (exactly as stated in Def. 3.2) which
accumulate symbolic expressions of the form size(ci) to repre-
sent the heap allocation for the instruction new ci, rather than its
concrete allocation size. From these equations, we obtain an up-
per bound for the total memory allocation as a symbolic expression
which contains residual size(ci) sub-expressions. The main nov-
elty is that, in a second step, we tighten up such total allocation
upper bound to extract from it only its escaped memory as follows.
Given a procedure p, and its total heap consumption upper bound
p(x̄), we obtain the upper bound on the escaped memory by replac-
ing expressions of the form size(ci) by 0 if it is guaranteed that all
corresponding objects are not available in the memory upon exit
from p, namely ci ∈ collectable(p). Given an expression exp and
a substitution σ from sub-expressions to values, exp[σ] denotes the
application of σ on exp.

DEFINITION 4.3 (escaped memory upper bound). Given a proce-
dure p, its escape information collectable(p), and its (symbolic)
upper-bound for the total memory allocation p(x̄) = exp, the es-
caped memory upper-bound of p is defined as: p̌(x̄) = exp[∀ci ∈
collectable(p).size(ci) $→ 0]. !



Observe that, in the above definition, it is required that the set
collectable(p) contains the information for objects created in tran-
sitive calls from p, as stated in Def. 4.1, because escaped memory
upper-bounds for a method p are obtained by using only the in-
formation in collectable(p) and not in any other collectable(q)
with q *= p. This is an essential difference w.r.t. existing work [3]
which does not compute information for transitive calls, but instead
computes the escape information only for the objects which are cre-
ated inside each method (excluding its transitive calls). We obtain
strictly more accurate bounds as the following example illustrates.

EXAMPLE 4.4. Applying Def. 4.3 to the total heap allocation in-
ferred in Ex. 3.5, by using the escape information of Ex. 4.2, results
in the escaped memory upper bounds:

m̌(n) = (2nat(n) − 1)∗size(Tree1) f̌(n) = 0
f̌c(n, a) = log(nat(n−1)+1) ∗ size(Integer3) ǧ(n) = size(Integer3)
f̌d(i, a) = log(nat(i−1)+1) ∗ size(Long4) ȟ(n) = size(Long4)

We can see that the escaped memory upper bound for m does not
accumulate the allocations of Long4 nor Integer2 and Integer3

objects because they do not escape from f . In [3], the allocations
corresponding to Integer3 and Long4 are accumulated because
they escape from the method where these objects have been created.
The problem is that in [3] they are accumulated in the CR and
hence in all upper bounds for methods that transitively invoke g
and h. !

The following theorem states the soundness of our escaped memory
upper bounds.

THEOREM 4.5 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 "∗

gc 〈q, bc, tvn〉·A; hn, then
p̌(v̄) ≥ escaped(t) where v̄ = α(x̄, tv1, h1).

Proof.
(sketch) First, by Theorem 3.4, we have the soundness of the
total allocation upper bound p(v̄) ≥ total(t). Second, by the
soundness of escape analysis [4], we know that collectable(p)
gives a safe approximation of the objects that escape from t. Now,
by combining both parts, we have that p̌(v̄) ≥ escaped(t) and,
hence, the soundness of p̌(v̄) follows. !

5. Live Heap Space Analysis
This section presents a novel live heap space analysis for garbage-
collected languages which obtains precise upper bounds including
logarithmic, exponential, etc. complexity classes. Achieving accu-
racy is crucial because live heap bounds represent the minimum
amount of memory required to execute a program.

5.1 The Notion of Peak Consumption

Essentially, given a trace t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 ·A; h1 "∗
gc

〈q, bc, tvn〉 · A; hn, the peak consumption can be defined as
peak(t) = max(size(h2), . . . , size(hn))− size(h1). We decre-
ment size(h1) because the objects created in an outer scope (i.e.,
those in h1) cannot be collected during the execution t, as stated in
condition (2) of scoped-GC in Sec. 4.

Let us illustrate this notion by means of this simple method
“void r() {A; p(); B; q(); C; }” whose memory consumption
is showed in Fig. 5. A, B and C are sequences of instructions that
do not contain any method invocation. We use the notation p̂ to
the note the peak consumption of executing the method p. We can
observe that the peak heap consumption r̂ is the maximal of three
possible scenarios: (1) In the leftmost column, we depict a scenario
where we allocate A and then execute p, thus we add the peak
heap consumption of p. (2) In the next alternative scenario, we
still have A and then return from p’s execution, thus we add the
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Figure 5. Memory Consumption of simple program

memory escaped upon return from p (i.e., p̌) and we continue until
the execution of q. Hence we add B plus the peak of q. (3) In the
next column, we have A, plus the memory escaped from p, plus
B, plus the memory escaped from q, plus C. Observe that any of
these scenarios may correspond to the actual peak and we need
to infer upper bounds for all of them and then take the maximal.
The rightmost column indicates the upper bound for total allocation
which is clearly much less accurate.
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Figure 6. Memory Consumption of running example

In general the problem is more complicated, e.g., when method
invocations occur within loops. Fig. 6 depicts the actual memory
consumption of the execution of method f in our running example.
Column 1 captures the heap allocation of executing g at the first
iteration of the first loop (defined by procedure fc). Column 2
represents the escaped memory from g plus the next iteration of
the loop where g allocates again ĝ memory and so on. As the loop
in fc is executed log(n) times we have all such possible scenarios
over the tag Loop 1. Then, we start the execution of the second loop
with an initial heap usage of log(n) times the memory escaped
from g. Similarly, at each iteration of the second loop, method
h is invoked which allocates a maximal of memory ĥ and upon
return, we need to consider the escaped memory from h plus the
next execution. As the loop is executed log(n) times, we have all
possible scenarios to the right grouped over the tag Loop 2. The
peak heap allocation of executing f is the maximal of all such
scenarios, namely the maximal between the two scenarios marked
with ∗. The important point is that we need to infer upper bounds
for ĥ, ĝ, ȟ, ĝ and generate as peak heap consumption the expression
f̂ = max(ĝ + (log(n)− 1) ∗ ǧ, ĥ+ (log(n)− 1) ∗ ȟ+ log(n) ∗ ǧ).
Note that, in principle, it could happen that ĝ > (log(n)−1)∗ȟ+ĥ.



5.2 Peak Consumption Cost Relation

We now propose a novel approach for generating CR that, by rely-
ing on the escaped memory bounds, capture the peak heap con-
sumption by considering all possible states of a program’s exe-
cution. Our proposal is based on the following intuition: Let m1

and m2 be two methods, and let m̂1(x̄1) and m̂2(x̄2) be the peak
heap consumption of executing m1 and m2 respectively, then the
peak heap consumption of the two consecutive calls m1;m2 is
max(m̂1(x̄1), m̌1(x̄1) + m̂2(x̄2)). The following definition gen-
eralizes this idea for an arbitrary sequence of statements.

DEFINITION 5.1 (peak consumption CR). Consider a rule r ≡
p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn and its corresponding size relations
ϕr . Then, its peak consumption equation is p̂(x̄) = T (b1, . . . , bn), ϕr

where T is defined as follows:
T (b1, . . . , bn)::=8
<

:

0 if n = 0
max(q̂(x̄1), q̌(x̄1) + T (b2, . . . , bn)) if b1= q(〈x̄1〉, 〈ȳ1)〉 is a call
Mt(b1) + T (b2, . . . , bn) if b1 is an instruction

Given a program P , we denote by ŜP the peak consumption cost
relation generated for each rule in P . !

In the above definition, it can be observed that, in the second
case, we generate two possible scenarios not only for methods,
but also for intermediate procedures. These scenarios correspond
to either the peak of the first procedure call or to the escaped
memory from the first procedure call plus the peak of the rest
of the instructions sequence. Considering the two scenarios at the
level of procedures (no only of methods) allows us to gain further
accuracy in situations, like in the method f , in which intermediate
procedures correspond to loops which contain method invocations.
The next example illustrates this point.

EXAMPLE 5.2. The peak consumption CR ŜP of the rule-based
program is different from the one in Fig. 4 in equations (1), (3), (4)
and (6) which are now as follows:

(1) m̂(n) =size(Tree1)+max(m̂(s1), m̌(s1)+max(m̂(s2),
m̌(s2)+max(f̂(n), f̌(n)+ ˆinit(s0, s1, s2, s3))))

(3) f̂(n) =max(f̂c(n, a), f̌c(n, a)+f̂d(i, a′))
(4) f̂c(n, a) =max(ĝ(n), ǧ(n)+f̂c(n′, a′))
(6) f̂d(i, a) =max(ĥ(i), ȟ(i)+f̂d(i′, a′))

with the same constraints as those of Fig. 4. We can now replace the
escaped memory upper bounds ǧ, ȟ, m̌ and f̌ by the ones in Ex. 4.4.
As an optimization, we do not apply the transformation to the last
call in the rules, for instance, to the call to init in equation (1),
since trivially ˆinit ≥ ˇinit. Observe that in equation (3) we have
applied also two possible scenarios to the intermediate procedure
fc which does not correspond to a method by introducing the max
operator. This is essential to keep the two possible peaks (marked
with “*” in the figure) separate instead of accumulating both of
them, which would lead to a larger, less accurate upper bound.
Besides, it is sound w.r.t. scoped-GC because the corresponding
escaped memory bounds for f̌c and f̌d are obtained by considering
that GC takes place upon method’s return only.

The most important point is that equation (4) accurately cap-
tures the memory consumption of all scenarios in Loop 1 of Fig. 6
and equation (6) captures those in Loop 2 to the right of the figure,
as it will become clear after solving the equations in Ex. 5.3. !

An important feature of our CR ŜP is that they can still be solved
by relying on a standard upper bound solver for CR produced
by cost analysis like the one in [3]. The only adjustment is that
our CR use the max operator which is frequently not supported.
This is handled by a further preprocessing which transforms one
equation that uses max into an equivalent set of equations that

do not use max by creating nondeterministic equations whenever
we have max. In particular, an equation of the form p(x̄) =
A + max(B, C),ϕ is translated into the two equations p(x̄) =
A + B,ϕ and p(x̄) = A + C,ϕ. Since an upper bound solver
looks for an upper bound for all possible paths, it is guaranteed
that this transformation simulates the effect of the max operator.
Nested max are translated iteratively. For instance, the translation
of equation (1) in Ex. 5.2, results in the following equations:

m̂(n) = size(Tree1)+m̂(s1), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̂(s2), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̂(n), ϕ1

m̂(n) = size(Tree1)+m̌(s1)+m̌(s2)+f̌(n)+ ˆinit(s0, s1, s2, s3), ϕ1

EXAMPLE 5.3. Solving the transformed equations results in the
following closed-form upper bounds:

m̂(n) = 2nat(n)∗size(Tree1) + f̂(n)
f̂(n) = max(f̂c(n, a), f̌c(n, a) + f̂d(n, a′))
f̂c(n, a)= (log(nat(n−1)+1) + 1) ∗ size(Integer3) + size(Integer2)
f̂d(i, a) = (log(nat(i−1)+1) + 1) ∗ size(Long4)
ĝ(n) = size(Integer2) + size(Integer3)
ĥ(n) = size(Long4)

We can observe that the peak bound for f accurately captures the
maximal of the two scenarios in the figure: (1) f̂c(n, a) corre-
sponds to the leftmost column of Fig. 6 (since ǧ is size(Integer3)
which is accumulated log(n)−1 times and ĝ(n) is size(Integer2)+
size(Integer3) and (2) f̌c(n, a) + f̂d(n, a′) corresponds to the
rightmost column where, as expected, we accumulate log(n) − 1
times the escaped size(Long4) object plus an additional one which
is the peak consumption of h (and nothing escapes from fc).

It is fundamental to observe the difference between the above
live heap space bound for m and the total allocation computed
in Ex. 3.5. In our live bound, since the allocation required by f
can be entirely garbage collected upon exit from f , the required
heap is not proportional to the number of times that f is invoked
(i.e., exponential on n) but rather the memory required for a single
execution of f . !

The following theorem states that the upper bounds computed by
our analysis are sound, i.e., for any input values, they evaluate to a
larger value than the actual peak consumption.

THEOREM 5.4 (soundness). Given a procedure p, and a trace
t ≡ 〈q, p(〈x̄〉, 〈ȳ〉) · bc, tv1〉 · A; h1 "∗

gc 〈q, bc, tvn〉·A; hn then
p̂(v̄) ≥ peak(t) where v̄ = α(x̄, tv1, h1). !

6. Approximating the Ideal Garbage Collector
In this section, we show how the analysis of Sec. 5 can be refined
to consider other GC schemes and, in particular, to get closer to
the ideal GC manager where objects are collected as soon as they
become unreachable. For instance, the peak consumption upper
bound inferred in Ex. 5.3 for f is accurate when using a scope-
GC scheme, since all objects created inside the loops are collected
only upon exit from f . However, it is clearly inaccurate for an ideal
GC scheme, since the lifetime of each object created in f is limited
to one iteration of the corresponding loop, and therefore f can be
executed in constant heap space.

Luckily, we can take advantage of scopes in the rule-based rep-
resentation in order to infer accurate upper bounds for such GC
schemes without modifying our analysis. In Def. 4.1 the effect of
GC is considered only on exit from procedures that correspond to
methods, this is essential in order to obtain safe upper bounds for
scoped-GC, since in the original language GC is assumed to be ap-
plied upon exit from method scopes. However, the rule-based lan-
guage distinguishes scopes that correspond to code fragments (in



the original program) smaller than methods, e.g., fc and fd respec-
tively correspond to the first and second loop of f . Considering the
effect of GC on exit from these (non-method) smaller scopes cor-
responds to applying more often GC than in the original language,
and therefore getting closer to the ideal GC. In order to support this,
we need to compute the set of collectable objects for blocks exactly
as we do for methods in Def. 4.1. Let us see an example.

EXAMPLE 6.1. If we apply GC upon exit from fc, then the col-
lectable objects are collectable(fc) = {Integer2, Integer3}, and
hence f̌c(n, a) = 0. Observe that in Ex. 4.2 collectable(fc) con-
tains only Integer3. This in turn improves the peak consumption
for f to f̂(n) = max(f̂c(n, a), f̂d(n, a′)), which is clearly more
precise than the one in Ex. 5.3. !

Interestingly, the above upper-bound can be even further im-
proved in order to obtain one which is as close as possible to the
ideal behavior. Consider Rule (6) in Fig. 2 which corresponds to
the second loop in f . The object created in h, and escaped to the
calling context, becomes unreachable immediately after executing
intValue2. Thus, if we separate the loop’s body into a separate pro-
cedure f ′d, we make this behavior observable to our analysis. This
can be done by transforming the rules associated to the loops as
follows:

(4) fc(〈n, a〉, 〈n, a〉)::=
f′c(〈n, a〉, 〈n, a〉).
fc(〈n, a〉, 〈n, a〉).

f′c(〈n, a〉, 〈n, a〉)::=
n > 1,
g(〈n〉, 〈s0〉),
intValue1(〈s0〉, 〈s0〉)
a := a + s0,
n := n/2.

(6) fd(〈i, a〉, 〈i, a〉)::=
f′d(〈i, a〉, 〈i, a〉).
fd(〈i, a〉, 〈i, a〉).

f′d(〈i, a〉, 〈i, a〉)::=
i > 1,
h(〈i〉, 〈s0〉),
intValue2(〈s0〉, 〈s0〉)
a := a ∗ s0,
i := i/2.

Now the peak consumption equations for fc and fd are:

f̂c(n, a) = max(f̂ ′
c(n, a), f̌ ′

c(n, a) + f̂c(n
′, a′)) {n>1, n′=n/2}

f̂c(n, a) = 0 {n≤1}
f̂d(i, a) = max(f̂ ′

d(i, a), f̌ ′
d(i, a) + f̂d(i′, a′)) {i>1, i′=i/2}

f̂d(i, a) = 0 {i≤1}
f̂ ′

c(n, a) = size(Integer2) + size(Integer3)
f̂ ′

d(i, a) = size(Long4)

and, since f̌ ′
c(n, a)=f̌ ′

d(i, a)=0, solving them results in

f̂c(n, a)=size(Integer2)+size(Integer3)
f̂d(i, a)=size(Long4)

which in turn improves the upper bound of f to

f̂(n) = max(size(Integer2) + size(Integer3), size(Long4))

which is indeed the minimal amount of memory required in order
to execute f in the presence of an ideal GC.

In order to support such transformations, one should guide the
transformation from the bytecode to the rule-based program by the
information previously computed on the lifetime of the different
objects. Such analysis should give us indications about when it is
profitable to make smaller scopes. Currently, we do this transfor-
mation only for scopes that correspond to loops. Also, it should be
noted that there is an efficiency versus accuracy trade-off here, as
we generate more equations in this case which thus will be more ex-
pensive to solve. Note that the same ideas are useful for supporting
region-based memory management. The idea is to infer regions and
use this information to separate the scopes, such that the exit from
scopes coincides with the removal of the corresponding region.

7. Experiments
In this section, we assess the practicality of our proposal on real-
istic programs, the standardized set of benchmarks in the JOlden
suite [12]. This benchmark suite was first used by [7] in the context
of memory usage verification for a different purpose, namely for
checking memory adequacy w.r.t. given specifications, but there
is no inference of upper bounds as our analysis does. It has been
also used by [5] for our same purpose, i.e., the inference of peak
consumption. However, since [5] does not deal with memory-
consuming recursive methods, the process is not fully automatic
in their case and they have to provide manual annotations. Also,
they require invariants which sometimes have to be manually pro-
vided. In contrast, our tool is able to infer accurate live heap upper
bounds in a fully automatic way, including logarithmic and expo-
nential complexities.

The first column of Table 1 contains the name of the benchmark.
For most examples, we analyze the method main which transitively
requires the analysis of the majority of the methods in the package.
Only in those benchmarks whose name appears in two different
rows, we do not analyze the main but rather all those methods
invoked within the main that we succeed to analyze. In partic-
ular, benchmarks Health(cV), Health(gR), Bh(cTD), Bh(eB),
Voronoi(cP), and Voronoi(b) correspond, respectively, to methods
createVertex, getResults, createTreeData, expandBox,
createPoints, and buildDelaunayTriangulation in the cor-
responding packages. In benchmark Bh, we cannot obtain an up-
per bound for the method stepSystem which is invoked within
main. The reason is that this method contains a loop whose termi-
nation condition does not depend on the size of the data struc-
ture, but rather on the particular value stored at certain loca-
tions within the data structure. In general, it is complicated to
bound the number of iterations of this kind of loops. Basically,
the same situation happens in the method simulate of bench-
mark Health. In Voronoi, we are able to analyze all methods when
they are not connected together. Unfortunately, we cannot ana-
lyze the main which, first invokes the method createPoints
which returns an object point and then invokes the method
point.buildDelaunayTriangulation on such object. The
problem is that the upper bound of buildDelaunayTriangu-
lation depends on the size of the object point returned by
createPoints and the size analysis is not able to propagate such
relation. It should be noted that, in these three cases, the limita-
tions are not related to our proposal in this paper but to external
components which can be independently improved.

The second and third columns in the table show, respectively,
the upper bounds for total allocation and for live heap space usage.
Note that the cost model we use for the experiments substitutes the
symbolic expressions size(Obj) by their corresponding numeri-
cal values, so that the system can perform mathematical simplifica-
tions. In particular, the size of primitive types is 1, 2, 4, etc. bytes
respectively for byte, char, int, etc.; the size of a reference is set
to 4 bytes; and the size of an object is the sum of the sizes of all its
fields (including those inherited).1

Let us first explain the examples Tsp, Bisort, Health, TreeAdd,
Perimeter and Voronoi which follow a similar pattern. Basically,
they contain methods (in rule-based form) which have this shape
p(X) ::= alloc(k), p(Y1), . . . , p(Yn), i.e., a certain allocation k is
accumulated by several recursive calls to the method. The size of
the arguments in the recursive calls decrease by half in examples
Tsp, Bisort and Voronoi and there are two recursive calls. Thus,
their resulting upper bounds are linear. In benchmarks Health,
Perimeter and TreeAdd, the size of the argument decreases by a
constant; the first two examples contain 4 recursive calls and the

1 This is just an estimation. The sizes depend on the particular JVM
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nat(A+1) + 8 + max(nat(A+1)2 + 18*nat(A+1) + nat( A
4
) + 72,

nat(A+1)*nat( A
4
) + 25*nat(A+1) + 2*nat( A

4
) + 48)

Em3d 2*nat(D-1)*(32+nat(B)) + 2*nat(B)
+ 16*nat(C) + 2*nat(D) + 89

max(4*nat(B) + nat(C) + 2*nat(D) + 2*nat(D-1) + 153,
4*nat(B) + max(16,nat(C)) + 2*nat(D) + 2*nat(D-1) + 153),
(34 + nat(B))*nat(D-1) + 6*nat(B) + 3*nat(D) + 313)

Bisort 4*nat(A) + 12*nat(B-1) + 52 max(4*nat(A),12*nat(B-1) + 36)
Tsp 46*nat(2*B-1) + 138 28*nat(2*B-1) + 84
Power 258544 5992

Health(cV) 104*4nat(A) + 416 104*4nat(A) + 416

Health(gR) 28*4nat(A−1) + 36 28*4nat(A−1) + 36

TreeAdd 40*2nat(B−1) + 4*nat(A) + 76 24*2nat(B−1) + 60
Bh(cTD) 96*nat(B) + 128 92*nat(B) + nat(B-1) + 308
Bh(eB) 96 92

Perimeter 56*4nat(B) + 4*nat(A) + 128 56*4nat(B) + 112
Voronoi(cP) 20*nat(2*A-1) + 60 20*nat(2*A-1) + 60

Voronoi(b) 88*2nat(A−1) + 8 88*2nat(A−1) + 8

Table 1. Upper bounds for Total Allocation and Live Heap Usage

latter one 2 recursive calls. Thus, their resulting upper bounds are
exponential. The upper bounds for live heap and total heap for
the methods in Health and Voronoi are the same. This happens
because the analyzed methods are encharged of creating the data
structures and there is no memory that can be garbage collected. In
the remaining examples, the method main first calls the method
parseCmdLine which creates a (linear) number of objects that
do not escape to the main and, then, calls other methods that
construct (and modify) a data structure which escapes to the main.
The fact that some memory can be garbage collected explains that
the live heap bounds are smaller than the total allocation. Tsp
is interesting because some auxiliary Double objects are created
during the execution of the methods uniform and median which
do not escape from such methods and hence the difference between
the live bound and the total allocation is bigger.

Benchmark Power has a constant memory consumption. Its live
bound is much smaller than the total allocation because many ob-
jects are created by the constructor of Lateral which become un-
reachable and hence can be garbage collected. In the examples Mst
and Em3d, most of the memory is allocated during the construc-
tion of a graph and all such memory cannot be garbage collected.
As before, the live bound is slightly smaller because of the memory
created by parseCmdLine which can be entirely garbage collected.
Finally, the methods analysed for the benchmark Bh also create a
number of auxiliary objects that can be garbage collected and the
live heap bounds become tighter than the total allocation.

It is not easy to compare our upper bounds with those obtained
by [5] since the cost models are different (we count sizes of ob-
jects as explained above while they count number of objects), they
consider a region-based memory model while our analysis is devel-
oped for a scope-based model and, besides, for recursive methods
(which occur in most benchmarks) [5] requires manual annotations
that are not shown in their paper. In spite of these differences, as ex-
pected, our upper bounds coincide with those of [5] asymptotically
(i.e., by ignoring the coefficients and constants).

An interesting experimentation that we plan to do for future
work is to compare our upper bounds with actual observed values.
This is however a rather complicated task. Note that it would
require choosing particular inputs, and the memory consumption
of the program could highly vary depending on such choice. We
are confident about the positive results since, as we saw above, our
UBs are coherent with those in [5], which in turn have already been
compared to actual observed values.

8. Related Work
There has been much work on analyzing program cost or resource
complexities, but the majority of it is on time analysis (see, e.g.,
[22]). Analysis of live heap space is different because it involves
explicit analysis of all program states. Most of the work of memory
estimation has been studied for functional languages. The work in
[11] statically infers, by typing derivations and linear program-
ming, linear expressions that depend on functional parameters
while we are able to compute non-linear bounds (exponential, log-
arithmic, polynomial). The technique is developed for functional
programs with an explicit deallocation mechanism while our tech-
nique is meant for imperative bytecode programs which are better
suited for an automatic memory manager. The techniques proposed
in [18, 17] consist in, given a function, constructing a new function
that symbolically mimics the memory consumption of the former.
Although these functions resemble our cost equations, their com-
puted function has to be executed over a concrete valuation of pa-
rameters to obtain a memory bound for that assignment. Unlike our
closed-form upper bounds, the evaluation of that function might
not terminate, even if the original program does. Other differences
with the work by Unnikrishnan et al. are that their analysis is de-
veloped for a functional language by relying on reference counts
for the functional data constructed, which basically count the num-
ber of pointers to data and that they focus on particular aspects of
functional languages such as tail call optimizations.

For imperative object-oriented languages, related techniques
have been recently proposed. Previous work on heap space anal-
ysis [3] cannot be used to infer upper bounds on the maximum live
memory as their cost relation systems are generated to accumulate
cost, as explained in Sec. 3. Their refinement to infer escaped mem-
ory bounds is strictly less precise than ours as explained in Sec. 4,
besides, there is no solution there to infer peak consumption. Later
work improves [3] by taking garbage collection into account. In
particular, for an assembly language, [8] infers memory resource
bounds (both stack usage and heap usage) for low-level programs
(assembly). The approach is limited to linear bounds, they rely on
explicit disposal commands rather than on automatic memory man-
agement. In their system, dispose commands can be automatically
generated only if alias annotations are provided. For a Java-like
language, the approach of [5] infers upper bounds of the peak con-
sumption by relying on an automatic memory manager as we do.
They do not deal with recursive methods and are restricted to poly-
nomial bounds. Besides, our approach is more flexible as regards
its adaptation to other GC schemes (see Sec. 6). We believe that



our system is the first one to infer upper bounds on the live heap
consumption which are not restricted to simple complexity classes.

9. Conclusions and Future Work
We have presented a general approach to automatic and accurate
live heap space analysis for garbage-collected languages. As a first
contribution, we propose how to obtain accurate bounds on the
memory escaped from a method’s execution by combining the
total allocation performed by the method together with informa-
tion obtained by means of escape analysis. Then, we introduce a
novel form of peak consumption cost relation which uses the com-
puted escaped memory bounds and precisely captures the actual
heap consumption of programs’ execution for garbage-collected
languages. Such cost relations can be converted into closed-form
upper bounds by relying on standard upper bound solvers. For the
sake of concreteness, our analysis has been developed for object-
oriented bytecode, though the same techniques can be applied to
other languages with garbage collection. We first develop our anal-
ysis under a scoped-memory management which reclaims mem-
ory on method’s return. The amount of memory required to run a
method under such model can be used as an over-approximation
of the amount required to run it in the context of an ideal garbage
collection which frees objects as soon as they become dead. We
also show how to approximate such ideal behavior with our anal-
ysis. For future work, we also plan to consider how to adapt our
techniques to region based memory management [16, 6].

Finally, the idea developed in Sec. 5 can be used to estimate
other (non accumulative) resources which require to consider the
maximal consumption of several execution paths. For example, it
can be used to estimate the maximal height of the frames stack
as follows. Given a rule r ≡ p(〈x̄〉, 〈ȳ〉)::=g, b1, . . . , bn, where
bi1 . . . bik are the calls in r, with 1 ≤ i1 ≤ · · · ≤ ik ≤ n and
bij = qij(〈x̄ij〉, 〈ȳij〉), its corresponding equation would be

p(x̄) = max(1 + qi1(x̄ij ), . . . , 1 + qi1(x̄ik )) ϕr

which takes the maximal height from all possible call chains. Each
“1” corresponds to a single frame created for the corresponding
call. Note that in this setting, tail call optimization can be also
supported, by using an analysis that detects calls in tail position,
and then replace their corresponding 1’s by 0’s. This is a subject
for future work.
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