171 research outputs found

    Generalized controlled invariance for nonlinear systems

    Get PDF
    A general setting is developed which describes controlled invariance for nonlinear control systems and which incorporates the previous approaches dealing with controlled invariant (co-)distributions. A special class of controlled invariant subspaces, called controllability cospaces, is introduced. These geometric notions are shown to be useful for deriving a (geometric) solution to the dynamic disturbance decoupling problem and for characterizing the so-called fixed dynamics for the general input-output noninteracting cont.rol problem via dynamic compensation. These fixed dynamics are a major issue for studying noninteracting control with stability. The class of quasi-static state feedbacks is used

    Local Behavior of Sparse Analysis Regularization: Applications to Risk Estimation

    Full text link
    In this paper, we aim at recovering an unknown signal x0 from noisy L1measurements y=Phi*x0+w, where Phi is an ill-conditioned or singular linear operator and w accounts for some noise. To regularize such an ill-posed inverse problem, we impose an analysis sparsity prior. More precisely, the recovery is cast as a convex optimization program where the objective is the sum of a quadratic data fidelity term and a regularization term formed of the L1-norm of the correlations between the sought after signal and atoms in a given (generally overcomplete) dictionary. The L1-sparsity analysis prior is weighted by a regularization parameter lambda>0. In this paper, we prove that any minimizers of this problem is a piecewise-affine function of the observations y and the regularization parameter lambda. As a byproduct, we exploit these properties to get an objectively guided choice of lambda. In particular, we develop an extension of the Generalized Stein Unbiased Risk Estimator (GSURE) and show that it is an unbiased and reliable estimator of an appropriately defined risk. The latter encompasses special cases such as the prediction risk, the projection risk and the estimation risk. We apply these risk estimators to the special case of L1-sparsity analysis regularization. We also discuss implementation issues and propose fast algorithms to solve the L1 analysis minimization problem and to compute the associated GSURE. We finally illustrate the applicability of our framework to parameter(s) selection on several imaging problems

    Evaluation of Temporal Spacing Errors Associated with Interval Management Algorithms

    Get PDF
    This paper seeks to characterize the temporal spacing errors resulting from the use of Interval Management (IM) algorithms. The focus of the current paper is IM concepts and algorithms that realize a specified temporal spacing between a Target aircraft and an Ownship aircraft at the runway threshold. The paper presents an IM algorithm consisting of the following four modules: (i) Target-Landing-Time Estimation Module, (ii) Ownship-Landing-Time Estimation Module, (iii) Ownship Speed Command Computation Module, and (iv) Ownship Thrust Command Computation Module. The overall guidance module is evaluated on a simulation that models aircraft point-mass dynamics, bank-angle auto-pilot dynamics, pitch-axis auto-pilot dynamics, and engine lag dynamics. The simulation environment also consists of actual atmospheric forecasts and realistic spatio-temporally correlated wind uncertainty models. Results obtained from single case simulation as well as Monte-Carlo simulations are presented in the paper. The modeled scenario consisted of an A320 Target equipped with Lateral Navigation/Vertical Navigation (LNAV/VNAV) capabilities followed by an A320 Ownship equipped with the IM algorithm. Both aircraft fly the BIGSUR route to SFO airport using a RAP-13 1-hr wind forecast. 500 Monte-Carlo simulations were conducted with realistic wind uncertainty models. The IM algorithm for this case is seen to have a 90% probability landing time error range of 5.9 seconds, compared to the no-IM solution, which has a 90% probability landing time error range of 33.4 seconds

    Mobile Robotics in Education and Research

    Get PDF

    Searching for the Semantic Internet

    Get PDF
    Search engines, directories and web browsers all deal with the Internet at the level of individual web-pages. We argue that this is too low a level of resolution for many, including the non-casual surfer, who has detailed knowledge of his/her topic of interest. We present the shopping-mall metaphor that is based on identifying tightly integrated communities of web pages, where pages procure information from each other via hyperlinks. A search operation identifies these web-page communities, rather that individual web-pages, and the communities are visualised as a Virtual Reality shopping mall - for presentation on a VRML enabled web browser. Each information outlet (shop) can contain multiple information “products” (pages) gathered around a common theme. The metaphor serves to integrate both search and visualisation phases, presenting a coherent information collection to the user - regardless of the search domain

    A Comparative Study of Interval Management Control Law Capabilities

    Get PDF
    This paper presents a new tool designed to allow for rapid development and testing of different control algorithms for airborne spacing. This tool, Interval Management Modeling and Spacing Tool (IM MAST), is a fast-time, low-fidelity tool created to model the approach of aircraft to a runway, with a focus on their interactions with each other. Errors can be induced between pairs of aircraft by varying initial positions, winds, speed profiles, and altitude profiles. Results to-date show that only a few of the algorithms tested had poor behavior in the arrival and approach environment. The majority of the algorithms showed only minimal variation in performance under the test conditions. Trajectory-based algorithms showed high susceptibility to wind forecast errors, while performing marginally better than the other algorithms under other conditions. Trajectory-based algorithms have a sizable advantage, however, of being able to perform relative spacing operations between aircraft on different arrival routes and flight profiles without employing ghosting. methods. This comes at the higher cost of substantially increased complexity, however. Additionally, it was shown that earlier initiation of relative spacing operations provided more time for corrections to be made without any significant problems in the spacing operation itself. Initiating spacing farther out, however, would require more of the aircraft to begin spacing before they merge onto a common route

    Bohr-compactifications are cocompactifications

    Get PDF
    • …
    corecore