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Abstract

A general setting is developed which describes controlled invariance for nonlinear control sys
tems and which incorporates the previous approaches dealing wit.h cont.rolled invariant (co -)
distributions. A special class of cont.rolled invariant subspaces, called controllabilit.y cospaces, is
introduced. These geometric not.ions are shown to be useful for deriving a (geometric) solution to
the dynamic disturbance decoupling problem and for characterizing the so-called fixed dynamics
for the general input-output nonint.eracting cont.rol problem via. dynamic compensation. These
fixed dynamics are a major issue for st.udying nonint,eracting cont.rol wit.h st.ability. The class of
quasi-static sta.t.e feedbacks is used.



1 Introduction

During the last two decades, nonlinear control theory was developed thanks to the increasing
number of researchers involved in t.his area. A main st.ream of t.he research in the 80's was
the generalization, at least partially, of t.he so-called geometric approach which proved to be
particularly efficient for linear time-invariant systems (see [32] for an overview). In this linear
theory, controlled invariance is a fundamental notion.
The study of controlled invariance for nonlinear syst.ems of t.he form

x= f(x) +g(x)u (1)

where x E lRTl
, tl E lRffl

, was initiated in [6]. In this paper invariants were sought under feedback
transformations of the form

u=O'(x)+v (2)

Later on, controlled invariance was tackled by various authors ([20],[15],[23],[24]). The group of
feedback transformations acting on (1) was enlarged 1.,0 transformations of the form

11 = O'(x) + (3(:1:)v (3)

where (3(x) is square and locally invertible. These works yielded the definit.ion of a controlled
invariant distribution. The key was found for the solution of synthesis problems, such as the
disturbance decoupling problem and the non interacting cont.rol problem, via regular (or invertible)
static state feedback (see the textbooks [18],[25] for an overview). The study of controlledm
invariance under the class of feedbacks (:3) remains active - see [8:1,[11] for recent contributions.
Some limits of this by now well est.ablished theory appeared at, the end of t.he 80's in the char
acterization of left- or right-invertibility for nonlinear syst.f'ms or for synt.hesis problems involving
dynamic feedback. A nice understand ing of these problems is provided by a differential algebraic
theory ([13]).
In linear theory, it has been shown that controllabilit.y subspaces play an important. role in appli
cations. These controllability subspaces are a special class of controlled invariant subspaces. An
analogous notion of controllability dist.ribution was defined for nonlinear systems ([26]). Recently,
dynamic controllability distributions were considered ([30]). It. has been shown t.hat. these distribu
tions may be used to characterize the invertibility of a system. In this paper, a dual notion called
"controllability cospace", is defined. These controllabilit.y cospaces incorporat.e the annihilators of
the dynamic controllability distributions introduced in ([:30]).
The goal of this paper is to introduce a generalized notion of cont.l'OlIed invariance by allowing an
enlarged class of feedback transform ations acting on (l). The moti va tion is to clarify the geomet
ric structure of nonlinear systems and to develop an (algebl'O -) geol11etl'ic framework to tackle
synthesis problems via dynamic feedback. Relations exist wit.h both the differential geometric and
the differential algebraic approach, but these will not, be outlined in this paper.
vVe can summarize the existing results related to the st.udy of controlled invariance for nonlinear
systems in the following table:

Feedback References

II. = O'(;r) + v I3rockett
Isidori et al.

tl = (\(;r) + ,£3(;r)v IIirschorn
Nijmeijer et al., ...

11 = (\'(;t·, v,i,.· .. , v(4, I)

To complete the table, we investigate in this paper the contl'0lled invariance for nonlinear systems
under feedback transformations called quasi-static state feedback.
In the sequel we consider a nonlinear control system (1), where the entries of f(J.:) and g(x) are
meromorphic functions of x. It is assumed that rank g( ;1:) = 111 and that n 2: 1.
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The organization of this paper is as follows. In Section 2 we define the generalized notion of
invariance with respect to the dynamics (1). Section 3 is devoted to controlled invariance and
related properties. Controllability cospaces and their applications are treated in Section 4.

2 Invariant subspaces

We follow the notations and setting of [12]. Let K denote the field of meromorphic functions of
x, u, it,···, u(n-1). £ is the formal vector space spanned by {dx, du, dil,···, du(n-1)} over K. The

notation dx stands for {dX1, ... , dx ll } and du(k) for {dulk), ... , dU~,~)}, Let .l' := span,ddx} and
U := spanJ({du, dit,···, du(n-1)}.
Consider a subspace 0 eX. Define

n=spandw IwE O} (4)
11 n

where w = L w;(x, u, it,···, u(n-1))d:l:; and time-derivation is defined by w = L (w;dx; + w;dx;).
;=1 ;=1

Thus wE spandd.r,du}.

Definition 2.1 A subspace 0 C .l' is said to be invariant with respect to (1) if

nCo + spanddu}

Renlark 2.2 Let Kk be the field of meromorphic functions of x, '1/., •• " u(k) and define

(5)

•

K' = U Kk
kElN

Then (5) is equivalent to the statement that (0 + span A.: I {dll(k) I k: 2: O}) is a differential vector
space, with the derivation defined above.

Example 2.3 Let 0 be an involutive invariant codistribution for (1) and let (;1'1, X2) be a local
system of coordinates such that 0 = span{dJ'd. Then in the coordinates (;I'l,X2), (1) takes the
form (cr. [18],[25])

h(X1) + gl(J,du
h(X1, X2) +92(;1:1, ;l'2)U

Then

Hence 0 is invariant in the sense of Definition 2.1.

(6)

(7)

When a given subspace is not invariant, it is interesting to know whether or not there exists a
feedback transformation that renders it invariant. This is the topic of the next section.

3 Controlled invariant subspaces

In this section we define and characterize the controlled invaria.nce of subspaces 0 C X under
quasi-static state feedback. In Subsection 3.1 we first define quasi-static state feedback, based
on ([9],[10],[11]). In Subsection 3.2 we give a definition of controlled invariance under quasi-static
state feedback. ''''e make some remarks ahout the smallest controlled invariant suhspace containing
some given subspace in Subsection 3.3. As shown in [28], this subspace allows to characterize the
solvability conditions of the dynamic disturbance decoupling problem. In Subsection 3.4 some
properties of controlled invariance under regular static state feedback (3) are given. Finally,
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conditions for controlled invariance of subspace 0 C .l' under quasi-static state feedback are
investigated in Subsection 3.5.
Throughout this paper we employ the following terminology. A vector w C £ is called exact if
there exists a <P E K. such that w = d<p. A subspace 0 C £ of dimension l' is called exact if there
exist functions <P1, ... , <Pr E K. such that. 0 = spanK {d<p1' ... , d<pr }. Given subspaces 0 1 C O2 C £,
(02/0d is said to be exact if there exist functions <P1,"', <Pd E £, with d = dim(02) - dim(Ot},
such that O2 = 0 1 ED spanKJd<P1, ... , d¢d}, or, in other words, (OdOd is isomorphic to an exact
subspace of E. Consider a subspace 0 C £. Then clearly 0 C 0 is exact. Furthermore, if 0 1 CO,
O2 C 0 are exact, then also 0 1 + O2 C 0 is exact. Hence there exists a unique maximal exact
subspace in O.

3.1 Quasi-static state feedback

Consider the nonlinear system (1). A generalized static slate feedback for (1) is a feedback of the
form

1J, = ¢(x, v," " v(r)) (8)

where v E lR 17l denotes the new controls. Let. K" denote the field of nwromorphic functions of
{x, {v(k) I k 2: On and define the formal vector space [." := spanK v{d~ I ~ E K,,}. As in [9],[10],
we define the following filtrations ([2]) of [.,,:

V- 1 spanKv{dx}
(9)

Vk spanKv{d.l', dv,···. dp(k)} (~. 2: 0)

U- 1 spanK v{dJ.·}
(10)

lh {d' / /("l} (~: 2: 0)spanKv ..t.((P,···,c</J

The filtrations l,fA, and Vk are said to have bounded di.tTer'ence ([2]) if there exists an s E IN such
that for all k > -1

Uk C Vk+s
Vk C U~,+s

(11)

Definition 3.4 ([9],[10],[11]) u given by (8) is said to be a quasi-static state feedback for (1) if
the filtrations l,fA, and Vk have bounded difference.

Remark 3.5 It is easily verified that a regular static state feedback (3) is a quasi-static state
feedback.

The following result is also easily proved.

Proposition 3.6 Let 1J, given by (8) be a quasi-stalic state feedback. Then there exist an integer
s E IN and a function 1f'(x,tt., ... ,u(s)) such that, locally,

v = 'Ij;(x, u,· ", u(s))

3.2 Controlled invariance

(12)

•

Consider the control system (1) together with a quasi-static state feedback (8) and define V :=
spanKv {dv(k) I k 2: O}. Let liS denote e(k) as the time derivative of order k of e along the

trajectories of the system (1), and elk] as the time derivative of order k of e along the trajectories
of the closed loop system (1 ) fed hack with (8). We will wrile simply <3 for e(1).
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Definition 3.7 A subspace n c .1' is said to be controlled invariant for (1) if there exists a
quasi-static state feedback (8) such that. for (1 )(8) one has

n[l] c n + V (13)

The definition of controlled invariance given in Definition 3.7 is in accordance with the well known
definition of a controlled invariant codist.ribution. Recall from e.g. [18],[25] that a codistribution
n is controlled invariant if there exists a regular static state feedback (3) such that

(14)

Let wEn. Then for (1,3) we have

In

W[l] = LJ+gaW + 2)ViLl9~')"W + (w, ([I/3).i)dvi) E Q + V
i=1

(15)

when we interpret n as a subspace of span,,:={ dx}.
The following theorem gives a necessary condition for controlled invariance. For (1), let 9 denote
the distribution spanned by the input vector fields. Define the subspace g.1. C .1' by

g1. = {w E .1' I (w, g) =o. "1[1 E g}

Theorem 3.8 Let n c .l.'. Then n is cOlltrolled inl'ariallt only if

Proof By definition of g1., (n ng1.) C .1'. Controlled invariance of r2 then implies (17).

(16)

(17)

•
Remark 3.9 In fact, using (15), it may be shown that (17) is equivalent to the well known
conditions .cj(n ng1.) c n, .cg,(Q n~;1.) c Q(i = 1,"',111) for controlled invariance ofinvolutive
codistributions (cr. [18], [25]).

3.3 The smallest controlled-invariant subspace containing a given sub
space

Given a subspace II eX, it is unclear whether (or under ,yhat conditions) there exists a smallest
controlled invariant subspace containing IT. This is due to t,he fact that. for two controlled invariant
subspaces nl , r2 2 eX, we do not necessarily have that Q l n r2z is controlled invariant, so that
we cannot use the "standard" arguments (as in e.g. [:32],[18],[25]). In this subsection we will give
some comments on this question.

VI/e will use the following notation. Given a subspace II C .1', we define

II. := X n (II + II(l) + ... + II(n-l))

In what follows, we will need the following lemma.

Lemma 3.10 Consider a subspace r2 C .1' satisflJing (Q n g.1.)
k E IN:

4

(18)

{O}. Then we have for all

(19)



Proof Let d := dim(fl), and let WI, ... , Wd be a basis of fl, with

n

Wi = LW;j(x,"Il, .. ',U,(>'l)d.l:j (i = 1", ',d)
j=l

(20)

Let A(X,11,· .. ,U(r») be the (d,n)-mat.rix with entries Wij (i = l,· .. ,d;j = l,· .. ,n). Since
WI, ... , Wd forms a basis of fl, the matrix A has full row rank over K". \Ve may now characterize
fl by

fl = rowspanK:
v
(A(x,"Il,···, t/(r») 0 ... 0)

while fl(k) (k = 1,2,···) may be charaderized by

fl(k) = rowspanK:
v

(XkO XH ... Xkk-1 (Ag) 0 ... 0)

(21)

(22)

for certain matrices XkO,··· ,XU-I. Now assume '.hat. (Ag) is not. right-invertible over J(". This
implies that there exists a non-zero row-vedor I]T := (']1 .. "]d) such that

7]T (Ag) =0

However, this would imply that W := "Lji=l']jWj sat.isfies

(W, T) = 0 (tiT E 9)

(23)

(24)

which contradicts the fact that (fl n GJ..) = {O}. Hence we haw that (Ag) is right-invertible over
K". Next, let W E.1:' n (fl(1) + ... + O(k)) (~, E {l, 2.···}). Since wE (0(1) + ... + O(k»), we may
represent W by a row-vector

X 10 (Ag) 0 0
X20 X 21 (A g) 0

(7]f ... 7]t)

XkO Xu X~.2 .\.... -1 (Ag)

The fact that W E ,1:' implies that necessarily

(Ag) 0 0 0
.\21 (Ag) 0 0

(7]f ... 7]t) =0

Xk1 Xk2 Xk3 XH-1 (Ag)

and thus

7];(Ag) = 0

which give 7]; = 0, since (Ag) is right-invertible. Thus. W = 0, which establishes our claim.

-Proposition 3.11 Let 0 C .1:' be a subspace sati.~fljillg 0 n GJ.. CO. Then

fl. = fl

Proof Let nbe such that

5

•

(25)



By hypothesis we have

(26)

(28)

We now prove by induction that we have

(0 n g1.)Ck) c 0 + n(l) + ... + n Ck - 1) (k = 1,2,"') (27)

By (26), we have that (27) holds for k~ = 1. Next assume that (27) holds for k = 1, .. " i -1. Then

(0 n g1.)(i) = ((0 n g1.)(l-I»)(1) ~ (0 + n(l) + ... + n Ci - 2»)(I) =

() - - C"5)'-:-" - ( ) - ( ) (26)(0 1 +o(2)+ ... +OCi-l») ~ «ong1.)+ol + ... +Oi-l) c

(0 + n(1) + '" + n((-1))

which establishes (27). Using (27) and the modular di;;;tributive rule (see e.g. [32, Section 0.3])
we obtain

0.= Xn(O+O(1)+ ... +Oln-l»)=

.l' n (0 + (0 n g1. )(1) + n(1) + ... + (0 n ~/1. )Cn-l) + oCn») C

.l' n (0 + 0(1) + ... + oCn») = 0 +.1' n (OC1) + ... + oCn-l»)

Since by definition of nwe have that (0 n~/1.) = {O}. WI' obtain from (28) and Lemma 3.10 that

(29)

Furthermore, we have by definition of fL that

Hence we have that n. = 0, which establishes our claim.

(30)

•
Corollary 3.12 Consider a subspace II C .1' and let 0 c .1' be a control/cd invariant subspace
containing II. Then II. C O.

Proof Using the definition of II., the fact that II C n, and combining the results of Theorem 3.8
and Propositio 3.11, we obtain

II. = .l' n (II + II(l) + ... + Illn») C .l' n (n + Oll) + ... + oln-I l) = O. = 0

which establishes our claim. •
The subspace II. defined in (18) is, by Corollary 3.12, a candidate for lwing the smallest controlled
invariant subspace containing II. If II is exact, it can be shown that indeed it is. This may be
shown in the following way. Let 7' = dim IT and choose meromorphic functions hi (x), "', hr(x)
such that II =spanJC {dh 1, .. " dh,. }. Nf'xt consider the system

x = I(x) + g(x)u
y = hex)

(31)

Then for this system, II. = .1.' n Y; where Y = span,4Jdy, .. " d.l/ n - I l}. (The subspace .l' n y
was introduced in [7] for the study of the minimal order input-output dccoupling problem.) If the
system (31) is right-invertible, one can constmct a quasi-static state feedback which renders II.
invariant by using the construction in [28]. If (31) is not right-inVl'rtible. t.he same construction, to
gether with Lemma 1 from [22] may be usee! to show t.hat ll. is cont.rolled invariant. Summarizing,
we have the following result:
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Theorem 3.13 Consider a subspace IT C X which is exact. Then IT. := .l' n (fl + ... + nCn - 1))

is the smallest controlled invariant subspace containing fl. •

A nice application of the subspace fl. = X ny (the smallest controlled invariant subspace contain
ing the differential of the output) was shown in ([28]). This subspace allows to characterize the
solvability conditions of disturbance decoupling problem by means of quasi-static state feedback,
and then by dynamic state feedback. This condition is in accordance with the one used in case
of the static disturbance decoupling problem where the concept of supremal controlled invariant
subspace or supremal controlled invariant distribution contained in kernel of the output is applied
(see [18],[32]).

3.4 Characterization of controlled invariant subspaces under regular
static state feedback

In this subsection we investigate under what condit.ions a subspace n C .l' is controlled invariant
under regular static state feedback. Recall from Subsect.ion 3.2 that a regular static state feedback
is a special sort of quasi-static state feedback. A first result is the following.

Proposition 3.14 Consider a d-dill/(//sional subspacf n C .l'. AssuIIIe that n is controlled
invariant under a quasi-static statf feedback of thf forlll v = <1J(;I:, t'). Thw n admits a basis

Wl,"',Wd with

n

Wi = LWij(x)d,l:j
j=1

Proof Assume that n = spanl( {W 1, ... , Wd}, wi th

n

Wi = LWij(J:, u)dJ:j
j=1

(32)

(33)

Let A(x,u) be the matrix with entries ':::ij (i = 1,···,d;j = 1,···,n). Viewing n as a linear
subspace (over K) of X EEl spanl({du}, it may be characterized by

n = rowspanl( (A(J:, 11) 0)

Similarly, n + n is characterized by

;, ( A(x, u)
H = rowspanl( B( .. . )

X,II,U

where

(34)

(35)

n fJA m 'J 4 ( " fJ )
B(x, tI, it) = L ;:;-(x, v);i:j(;r, u) + L ~ 'Ilj + A(;l', u) f,,(x) + L ~u

i=1 VXi j=l ClUj i=1 VXi
(36)

with fx the Jacobian of f, Since Sf is rendered invariant. via u = 0(.1:. v) there exist matrices
P(x, v, v) and Q(J:, v) such that

or

B(x, </J, ¢)dx + (Ag)(J:, </J)do = P(;r. v, i')..1(;r, <p)d.r + Q(;l:, v)du (37)

B(;r, ,P,9)

(Ag)(x, </J)</Jv(x, v)

P(.!:.!', iJ)A(,I'. qi) - (A!I)('l', <p)0.,·(.1:, v)

Q(.r, v)

7
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Since ¢v (x, v) is invertible, this yields

B(x, ¢, ¢) = P(x, v, V)A(.I·, ¢) - Q(x, v)¢,,(x, v)-l¢x(x, v) (39)

Furthermore, by the Inverse Function Theorem there locally exists a function 1/J(x, u) such that
tl = ¢(x, v) is equivalent to v = 1/J(;t:, u) and 1/Jx(:I:, It) = -¢,,(x, 1/J(x, u))-l¢x(x, 'ljJ(x, u)). Hence
(39) yields

B(x, u, it) = ?(x, u, it)A(.I:, It) + Q(x, u)lj.!x(x, u) (40)

where ?(x, u, it) = P(x, 1/J(x, u), ~(J.:, u, il.) and Q(x, u) = Q(x, lj.!(x, u)). Taking partial derivatives
with respect to it i , we obtain

fJA fJ?
~ = ~A(x,u) (i = 1", ·,m)
VUi VUi

Obviously,

fJ2 ?
-::-:---:::-:-=0 (i,i=I, .. ·,m)
fJit i fJitj

Hence there exist matrices Ri(X, '11.) (i :::: 1. ... , m) such that

fJA
~ = Ri(X, u)A(J:, '11.)
VU·i

(41)

(42)

Using arguments from the theory of linear time-varying ordinary differential equations this yields
that A(x, tt) is of the form

A(x, u) = <I>(x, u)\l1(J:)

with <1>( x, u) square invertible. Hence

0= rowspanK (A(x, '11.) 0):::: rowspan,,: (1IJ(;I:) 0) (43)

which establishes our claim. If 0 :::: rowspallK (A(;,:. U,"', !lUI) 0) with e > 1, the claim is
established by using the same arguments together with an induct.ion argument.. •

From the above proposition it follows that the set of subspaces 0 C .1' that are controlled invariant
under a quasi-static state feedback tl. = 1,6(;1:, v) may be identified with the set of "classical"
controlled invariant codistributions. The following theorem gives a characterizat.ion of controlled
invariance in our generalized framework.

Theorem 3.15 Let 0 C .1' be a subspaCf sllch thnt

(0 + 0.)/0 is eJ:aci (44)

and which admits a basis satisfying (32). Th en n is controlled illl'ariant IInder a quasi-static state
feedback U :::: ¢(x, v) if and only if

(45)

Moreover, if the conditions above arc satisfied, thell 1,6(:1:, v) rendering n invariant may be chosen
of the form (3).

Proof The necessity was proven in Theorem 3.8.
Assume that (45) holds. No.te that. 0 + 0. c spandd.t:,dll}. Let n c :r be such that 0 ::::

(0 n g1.) EEl n. Assume that nn.1' i=- {OJ. This implies that there is all::;; E n, wi=- 0, such that
wE X and hence wE (0 n g1.), which gives a cont.radiction. Thus

nn .l' :::: {OJ

8
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By (44), there exists a VI(X, u) such that

0+ n= 0 EEl span,ddvr} (47)

Since (45) and (46) hold, we must have that (avi/all,) has full row rank. Then there exists a
function V2(U) such that (av/all) is square and invertible, where v = (vT vff. By (47) we now
have that

0[1] C 0 + V (48)

Moreover, since (av/au) is invertible, there exists a 'l/J(x, v) such that u = 'l/J(x, v). Hence 'l/J
defines a quasi-static state feedback and thus 0 can be rendered invariant via quasi-static state
feedback. Since we are dealing with a control system (1) that is affine in II, it is easily seen that v
can be taken affine in u and thus 'l/J can be taken affine in v. This implies that 0 can be rendered
invariant via a static state feedback (3). •

Remark 3.16

(i) If 0 is exa~t, then clearly also (0 + 0.)/0 is exact,. lIence the set of subspace 0 C .1:' such
that (0 + 0)/0 is exact, incorporates the "classical" involutive codistributions.

(ii) The condition (0 + 0.)/0 is exact is not necessary for controlled invariance. This can be
seen from the following counter example. Take t.he syst.em Xl = U1, X.2 = U2, xa = 0 and-o = span,ddX1 + X2dxa}. It. is straight.forwardly to check that (0 n 91.) C 0 and that
(0 + 0)/0 is not exact. However, with t.he regular static state feedback 111 = VI - XaV2,

U2 = V2 we obtain

and hence 0 is controlled invariant..

3.5 Some characterizations of controlled invariance

Conditions are derived for controlled iuvariance of a subspace under a quasi-st.at.ic st.ate feedback.

3.5.1 The general case: a sufficient condition

Let us consider a general subspace 0 C .r. Define by ind lIction:

o

maximal exact subspace in OA' + 0. ..
~h

Furthermore, define

k* := max{~~ ~ 1 I dim(nA:) > dim(n.._d}

Theorem 3.17 Let 0 C .r. If

(i) (Ong1.)cO

(z·z') 0"°-1 + s'h,o-I .n zs exact.
"°-1



then n is controlled invariant for (1).

Proof From the definition of k*, there exist vector valued dVI, ... , dVk. in £, where each dVi is
non-empty, such that

span {dv} C no + no
J( 1 no

(49)

Note that from (ii) the last inclusion in (4~») is in fact an equality. We now have

(50)

is not exact.

n + spanddtP') I k ~ O}

It remains to be shown that v defines a quasi-static stat.e f('edback. From the above construction,
one has

VI <PI(.r,u)
V2 <P2(;t·, Vl,Vl, 11.)

(51)

Vk' ¢k· (x, {v~j) 11 ::; i ::; k* - 1. 0 ::; j ::; k:· - i}, u)

l.From (i), (O(¢l,···,<Pk.)!OU) has full row rank. Thus there exists Vk'+1 = <P~:.+l(U) such that
(O(¢l,"" <Pk·+d!ou) is square invertible. From the Inverse Function Theorem, there exists a
function 'l/J such that 11. = V'(x, v, i,,"', v(e)). By applying this feedback, one has

n[1] c n+spanddv(k) I k ~ O}

•
Remark 3.18 The above theorem only gives sufficient conditions for the controlled invariance of
a subspace n eX. In Theorem 3.8 it was shown that (i) is also a necessary condition. But the
condition (ii) is not. This is shown by the following example.

Example 3.19 ([18])\Ve consider a nonlinear system on IR4 with three inputs ttl, 112, 113 given
by:

Let n =span..ddxl - 1I1dx3, dX4}.Then n is not exact, and n is given by

n=span,d(I-UIJ:t}dul -Uldll'.! - t[tcLl'3 - U~d;l'l.d1l3}'

".. . b VI n+n
HIS ll1vanant y 1/1 = VI, tt2 = -.,a:l - V1x1 + V2 and u3 =1'3. One obtains k· = 1, but -,,-

Vi H

10



3.5.2 A special case

Let us consider a subspace 0 C X s\lch that

o = 0 n g1. + <1>.

where <I> is an any exact subspace in .1'.

Proposition 3.20 Let 0 C X satisf/} (52), then 0 is controlled invariant if and only if

(52)

(53)

Proof By Theorem 3.8 we only need to show the sufficiency. Clearly <1>. is controlled invariant
(see Theorem 3.13). Hence there exists a quasi-static feedback (8) such that

<I>~l] C <1>. + V

Now (53) implies that

0[1] C 0+ V

and hence 0 is controlled invariant.

An effective way to compute <1>. satisfying (52) is given by the following proposition.

•

Proposition 3.21 Let 0 C X bc a subspace such Ihal (58) holds. Then there exists an exact
subspace <I> C 0 satisfying (52) if and onll} if

1. '
0= 0 n 9 + <1>.

where 4> is the largest exael subspace in 0

(54)

Proof
Assume that (54) holds. Taking <I> = 4>, we then have (52). Conversely, assume that there exists an
exact subspace <I> C.l:' such that (52) holds. Clearly <1>. C 4>•. Now 4> cO implies by Proposition
3.11 that 4>. C O. Thus

o = 0 n g1. + <1>. con g1. + 4>. c 0

Hence (54) is verified.

4 Controllability cospaces

•

In this section, controllability cospaces are studied under quasi-static state feedbacks as a spe
cial class of controlled invariant subspaces previously defined. These controllability cospaces are
related to the dual of dynamic controllability distributions (see [30]). In Subsection 4.1 we first
define controllability cospaces. An algorithm which characterizes these cospaces is then given in
Subsection 4.2 and some properties are discussed. III Subsection 4.3 we derive an algorithm com
puting the smallest controllability cospace containing a given exact subspace, while its applications
are treated in Subsection 4.4 and Subsection 4.5.

11



4.1 Definition of controllability cospaces

Controllability cospaces consist of vectors which are autonomous after applying certain quasi
static state feedback u = 'l/J(x, v,' . " vir)) and zeroing certain input channels Vi, where j E :J C
{l,···,m}. Such nonregular transformations are not defined for every element in Kv • One pos
sibility to circumvent this problem is to consider the module spanA {dx} over the ring of analytic
functions rather than the linear space over the field of meromorphic functions. Another way is
chosen here; it consists in taking a particular basis of a given subspace of span,ddx} so that its
time derivative is well defined when applying nonregular feedback. Such a basis always exists.
More precisely, let e C .1:' be a subspace which admits a basis 01 , ... , Od with

2:
n

Qik(X, V,"', v(v))
()i = ( ) d;ri,

fJik(X v ... v v) .
k:: 1 . " ,

where Qik and fJiA: are in A, the ring of analytic functions of {x, vlk ) I k ~ O}}. Obviously, we can
choose another basis for e, 01 ,"', Od, in the module spanA {d:l:} over the ring A by taking

n

Oi =(II fJik)Bi
k::1

Definition 4.22 A subspace CC.:r is said to be a controllability cospaCf for (1) if there exists a
quasi-static state feedback (8) and a sel of integers J C {I"", m} s1Ich that for (1),(8) one has

c[1] C C+ V

and

C = max{8 C ,1:' Ispan,dOpJ IVj::o,ie.-r} C 8}

where Oi is defined as above.

(55)

(56)

This means that C is the largest autonomous subspace in .1' of t.he closed loop syst.em. Moreover,
by this definition, it is clear that a cont.rollability cospace is controlled invariant. The following
example illustrates the above defini (.ion.

Example 4.23 Consider again the nonlinear syst.em given in Example 3.19. Let C = spanK:
{dxl, d(X2 - xa), dX4 - Uldxa}, and suppose that. 1I1 = 1'1 + c where c is a non zero constant,
1/,2 = V2 and 1/,a = Va + i'IXa + (VI + c)2'1:3 + (VI + C)1'2' which is quasi-static since VI = UI - c and
V2 = U2 and Va = Ua - tilxa - uixa - 1/,lU2. From this, it is easy to show that

and

Furthermore

C =max{8 C .:r I e[1] 1",::O,V3::0C e}

Hence C is a controllability cospace in t.he sense of Ddlnition 4.22.

12



4.2 Controllability cospace algorithm

First of all, we give an algorithm characterizing the controllability cospaces, called the controlla
bility cospace algorithm.. Some properties of a general controllability cospace are then derived.
Let C be a given subspace and define a sequence Sit according to

So X
(57)

SJ.l+l spandw E SII IwE SJ.l + C} (J-l E IN)

The SJ.l sequence is decreasing. Thus, there exists a J-l* E IN such that SJ.l* =SJ.l' +1 =... =S·.
The algorithm (57) yields a necessary condition for a subspace C of .1:' to be a controllability
cospace, which is shown in the following lemma.

Lemma 4.24 Let C eX. If C is (( controllability cos]lacf, then C =S·

Proof Assume that C is a controllabilit.y cospace. Let {w;} be a basis for C in the module
spanA {dx} over the ring A. Then by definition, there exists a quasi-static state feedback (8) and

a set of integers :J C {I,···, m} such that C[I] C C + V and C(l] = span/dwl lJ IVj=o,j E.J} c C.
According to (57), write

S* = spandw E.1: IwE S* + (;} (58)

Let w E C. We have wE Cand hence w E S*. This implies that C C S·. Now, S' C S* + C. By
the feedback which renders C[1] C C, one has S*[l] C S·. Since C is the largest subspace in X such
that C[1] c C, one has S· C C. •

In the next section, we give an algorithm computing the smallest controllability cospace containing
a given subspace, based on algorithm (57).

4.3 The smallest controllability cospace containing a given subspace

In general, the intersection of two controllability cospaces is not a controllability cospace. Thus it is
unclear ifthere exists a smallest controllability cospace containing some given subspace. However,
if an exact subspace II C .1:' is given, then there exists a smallest one containing II.
Consider a nonlinear system given by (1). By Theorem :3.13 II* is the smallest controlled invariant
subspace containing II. The next theorem will relate II. to the smallest controllability cospace
containing II.

Theorem 4.25 Define the sequence 'fl ll ((ccoly/ing to

va X
(59)

VJ.l+I spandw E 'fl ll IwE V lt + Ii.} (p E IN)

Then V. = limlHOO ViJ is the smallest controllability cosJlace containing II.

Proof Note that

'0* = spandw E X IwE 'fl. + n.} (60)

Let r = dimII. Now, II is exact implies that there exist llH'J'Omorphic functions 'PI (x), ... , SOr(x)
such that II = span/ddy1 , ... , dy ,.}. Consider the system (1) with a fictitious output SO =
(SOl"",SOr)T. We decompose the output y as y = (ep,ep)T so that the system (1) with the
output ep is right-invertible. Define p := dim(ep).



Construct a quasi-static state feedback II = ¢(x, v, ... , v(r), by taking Vi = c,O~n:) where {n~} is
the set of orders of zeros at infinity, for i =1"", p and Vi =wi for i = p+ 1, ... , m. This feedback
always renders II. invariant. Thus, D. is rendered invariant too, i. e. VPI C V. + V. Let now {wd
be a basis for V. in the module spanA {dx} over the ring A. If we set Vi =a for i = 1, ... , pone
obtains

V [l] { ~ [i] I }• =spanK Wi Vj=O,i=l"",p C V.

and V. is then a controllability cospace. In order to prove that D. is the smallest controllability
cospace containing II, we consider anot.her controllability cospace V such that V ::> II. By definition
D is controlled invariant and according to Lemma 4.24, V satisfies

V = spandw E X IwE D+V} (61)

Since II. is the smallest controlled invariant. subspace cont.aining II, this implies that V ::> II•.
From (60) and (61), one has V. CD, •

Now we consider a nonlinear system given by (31). Clearly n. =.r n Y is the smallest controlled
invariant subspace containing the different.ial of t.he output. Therefore the smallest controllability
cospace cont.aining the differential of t.he output is giwn by the next corollary.

Corollary 4.26 Define the sequence CII according to

Co .1.'
(62)

CII+1 spandw E CJl I wE CII + fl.} (JI E .IN)

Then C. =limll -+ OO CII is the smallest control/ability cosJlacc containing span.K:{dh(;r)}.

Remark 4.27 When specialized to lillt'ar systems, the sequenCt' Cit (62) turns out to be equal
to t.he dual of the sequence R,I, (tilt' seqllence comput.ing t.he maximal controllability subspace in
kernel of the output mapping). A proor of this can be found in the appendix.

4.4 The block input-output decoupling problem

Now, we apply the smallest controllabilit.y cospaces C. previously defined t.o solve a quasi-static
state feedback input-output. decoupling problem. For this, we consider the system (1) together
with the part.itioned output blocks !Ii for i = 1, ... , k. given by:

Yi = hi (x) (63)

The problem can be stated as follows: find a quasi-static st.ate feedback and a partit.ion of the new
control v = (v[, ... ,vff such that. the new input v[ only affect.sy t.he output Yi.

Define Ci. and ni• to be the smallest controllability cospace and the smallest controlled invariant
subspace respectively, both containing spanK{dhi(;I:)}.

First, let us give the following propert.y which is derived from Theorem 5.1 in ([29]).

Property 4.28 Consider system (31), and aSSlImf that dim(Gl.) = 11-111. Let p be its differential
output mnk. Then

dimWl. + n.) = dim(Gl. + C.) = (11-111+(1).

Moreover, if the system (31) is right-inl1crtible, the11

dimWl. + n.) =dimWl. + C) = (1I-11I+p).

14
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This property is a generalization of known result. on linear system. It gives a geometric inter
pretation for the rank of a system. That. was also derived by Respondek in [30J using dynamic
controllability distributions.

Corollary 4.29 The block input-output decoupling problem via quasi-static state feedback for the
system (1),(63) is solvable if and on/./I if

d· (91. + C.) _~d' (91. + Ci.)
un 91. - L....,; 1m e1.

i=1 !;I

(66)

Proof If P denotes the rank of the system (1),(63) and Pi denotes the rank of the subsystem (1)
with the output Yi, then by Property 4.28, (66) is equivalent to

(67)

So, (66) coincides with the condition given by Di Benedetto et 111. ([12]), in case of the dynamic
block decoupling problem. Thus, the proof in [12J also proves this result. •
Furthermore, the controllability cospaces also allow to characterize the fixed dynamics with respect
to any quasi-static feedback. This will be the topic of the next section.

4.5 Dimension of fixed modes by quasi-static state feedback

The problem of noninteraction and st.abilit.y of nonlinear systems by means of static feedback has
been considered by Isidori and Grizzle [21]. They have shown that there exists a fixed internal
dynamics, called p. dynamics whost' stability is a necessary condition to solve the noninteracting
control problem with stability. In the case where t.he P' dynll/nics is unstable, Wagner in [31J
has shown that there exists a well-defined dynamics. called ~mi.,. dynamics, which cannot be
eliminated by any regular dynamic feedback that renders the considered system noninteractive.
The ~mi.r. dynamics must then be asymptotically stable if noninteracting control and stability is
to be achieved by means of dynamic state feedback. A sufficient, condition to solve the problem of
noninteracting control with stability by means of dynamic state feedback was given in ([4],[5]). In
these references, the problem of dynamic feedback non interacting control with stability is solved
if some regularity assumptions are satisfied, t.he ~mi." dynamics is asymptotically stable and each
decoupled subsystem is asymptotically stabilizable.
All the results above are valid under the assumption that t.he decoupling matrix A(x) is nonsin
gular. In the case where A(x) is singular and the system is square and invertible, Zhan et al.
[33] introduced the so-called Canonical Dynamic Decoupling Algorithm to construct a canonical
dynamic extension. They have shown that the dynamically decoupled system is stable only if the
~mix dynamics of the canonical dynamic extension is stable, which is an intrinsic property of the
given system.
In this section, we investigate the case where the decoupling matrix is not necessarily invertible and
study the noninteracting control problem with stabilit.y by means of quasi-static state feedback.
The goal is to show that the controllability cospaces introduced before are able to describe intrinsic
geometric conditions generalizing the above ones.
Let us consider a square invertible nonlinear alline system (~) of the form

x f(x) + L:;'~1 [/i(.I')Ui, ;1' E IR", Ui E IR
(68)

Yi hi(x), i=l,···,m, YiEJR

Let {n;} be the set of orders of zeros at infinity, where 11 ~ > n~ > ... > n~" Permute if necessary
Yi such that the corresponding order of zero at infinity is 1/;. Let Ci. be the smallest. controllability
cospace containing span,,::{dhi(x)}. A first result is t.he following.
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Lemma 4.30 Suppose that the system (68) is dccouplable by a quasi-static state feedback u =
lj.J(X, v,' . " v(s)). Then, there always c;rist coordinates ~ = (~o, 6," " ~m, i) such that the system
(68) is presented in the following form:

{o fo(~o)

6 = !lC~o,6, vd

~m fm ceo ,em, vm ) (69)

i fce, v, v,"', 'l1(S))

y; hiceo, ei)

To prove Lemma 4.30, we first. need the following property of c..
Lemma 4.31 For a scalar output .lli = hi(.l~), C. is all c.racl subspace.

Proof Let Oi. be the smallest controlled invariant subspace cont.aining spanK;{dh;(x)}. If.:li is
the maximal controlled invariant distribution in ker{ dhi(J~)}, we have OJ. =S;.L. Let now ni be
the maximal controllability distribution in ker{dh i ( ;l~)}. Clearly 'R.'( is a controllability cospace

containing spanK;{dh;Cx)}, and thus C. C 'R.i.L. From [18], we have

and thus

1n

'R·i = .:li n ([I, 'R·il + I)/j, R·il + m
j=1

and ("IT E 'R.j)(Vcr E {I, [/1, .... [/m})( ([cr, T]' W2) =On

(70)

(71)

Let W E 'R.(. Hence there exist. WI E Oi. and W2 E G.l such that W =WI + W2 I and "IT E ni ,Vcr E
{f,gl,"',gm}, one has ([cr , T],W2) =O. Compute

Clearly WI E Oi•. Furthermore
m

W2 .cJW2 + '£,(Uj.cgj W2 + (W2>!lj)duj)
j=1

(72)
m

.cJW2 + '£, Uj.c gj W2
j=1

Now, let TEn; and cr E {f,gl,'" ,f/m}. Then

(73)

where the last equality follows from tlw fart. that w ERr" and Wl E Oi. C R.'/. By (72),(73), we
then have W2 E 'R.( , and hence



By construction, Ci* is the largest subspace in X which verifies Ci* C Ci* + f2i*. This implies
R;J.. C Ci*. So Ci* is the annihilator of R.;, which is known to be involutive ([26],[18]). Hence Ci*
is exact, which establishes our claim. •

Proof of Lemma 4.30 By Lemma 4.:11, Ci* is an exact subspace. Thus, Ci* as well as I:;~~1 Cr~)
are also exact. Let us define Co as the uncontrollable subspace of (~) which is the subspace 1ioo

introduced in [1]. It is obvious that for each i = 1, ... , m
I I

ni-1 n k -l

Co = L d~) nL L cij
}

j=a k:#;i j=O

Let deo to be a basis of Co, thus ~o = fa(ea). For an invertible system, we can construct a quasi

static state feedback which decouples system (E) by taking Vi = yjn:). For i = 1", ',m, then

choose dei such that {dea, ded is a basis of I:j~~1C~~). Then one has

~i = f;(ea,ei,Vi)

Complete the new coordinates by choosi ng ~, such that {d~o, de 1, .... d~m, dt} is linearly indepen
dent. Thus, one has

t = lee, V, i,,"', v(')),

and (69) is established. •
Using this Lemma, the following ("Orollary is obtained

Corollary 4.32 The dimension of the fiud dynamics with respect to any quasi-static feedback
which decouples the system, is

I

7» 1lj-l

n - dim (L L C)~»)
i=1 j=O

Remark 4.33 From the definition of the structl\l'e at infinity, one gets
I

m· nj-l 7n

dim (L L cj~)) = dim (.1' n L L C)~))
i=1 j=O i=1 j~a

(74)

(75)

From Remark 4.33 and Corollary 4.32, the following theorem is derived.

TheorelIl 4.34 For a square invertible nonlinear system, the dimension of the fixed dynamics
with respect to any quasi-static state feedback is

m

11 - dim (X n L L C)~))
i=lj~a

•
The above theorem allows to characterize the dimension of the fixed dynamics by computing Ci*
only. Under additional technical conditions as in [21], one describes the fixed dynamics. Suppose
that the origin is an equilibrium point of f and the quasi-static state feedback rendering (68)
noninteractive preserves this equilibrium point, then the induced fixed dynamics are

And the asymptotic stability of these dynamics is a Ilt'Ct'ssary condition for noninteracting control
with internal stability.
The next example illustrates theorem 4.34.
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Example 4.35 Let us consider a nonlinear system given by:

We have {n;} ={2, I}. Permute then !Ii, and thus Cto = {dX2} and C2* = {d,vd. The quasi-static
feedback which decouples the system is til =V1 and U'2 =liZ - (X3 + X4)V1 - X3i11, where (V1, V2)

is a new input vector.
It is clear that Co =O. We choose d6 = {dX2,d(X4 + X3U1)} as a basis of {C to +Cto }, and thus

~1 = ( {ll ) = ( ~12 )
62 V2

Choose now {d6} = {dxd as a basis of C2*, and one has

( ~21) (',1,',45 ) .'''Te complete our coordinate transformation by taking ( = <.,

coordinates (6,6, {), the considered system becomes

(76)

(77)

So in the new

~12

V1

V2 - (~12 - td - i1 VI + (~12 - il )i'l/ "1

6+61
(78)

!/1 6
!/2 ~ll

III ('

Clearly dim ({) = 2. It equals n - dim (.1' n (L: L: Ci:))) = n - dim (dx1,d.r2,dx4 + U'ldx3)'
;=1 j~O

Thus, the dimension of the fixed dynamics is two. Since the origin is an equilibrium point, the
fixed dynamics are then

t
o

(79)

Similarly to Wagner's and Battilotti's results, in the CRse where 110 quasi-stat.ic state feedback can
render the system simultaneously nonintcractive and stable, a suitable dynamic feedback may still
solve the problem. This reduces to the results in Zhan rt af. [33].
Finally, we can then summarize the existing results related to the dimension of the fixed dynamics
of a nonlinear square decoupled system in the following table:

Feedback A(",) invertible A(;!,) non-invertible

dim (P*)

(Quasi) Static (Isidori & Grizzle) n-dim (.1' n d= L: '>0 C:(i»))
;=1 ]-

Dynamic dim (~mi.r) dim (~mi.r'(~I'))

("Wagner, Battilotti) (Zhall cI af.)
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5 Conclusions

A generalized not.ion of cont.rolled invariance under quasi-st.at.ic st.at.e feedback for nonlinear sys
t.ems was int.roduced. It. was shown t.hat. t.his notion coincides wit.h t.he "classical" notion of a
controlled invariant. distribution under regular stat.ic st.at.e feedback. Using t.he generalized no
tion of cont.rolled invariance, a condition for t.he controlled invariance of not. necessarily involutive
distribut.ions was derived. For a subspace n c X, we gave sufficient. condit.ions for controlled
invariance under quasi-static st.ate feedback. Furt.hermore, a necessary and sufficient. condition
was also given, but it was only made for a special class of n.
For a cont.rollability cospace C eX, some properties were derived by means of t.he controllability
cospace algorit.hm. Moreover the smallest cont.rollability cospace containing the differential of
t.he output allowed to solve the block input.-output decoupling problem. It. also characterized the
dimension of the fixed dynamics wit.h respect to any quasi-static st.ate feedback in the case of one
t.o one decoupling.
This paper leaves some interesting open quest.ions, which are t.he t.opic for further research. A
first question is related to necessary and sufTicient. wndit.ions for cont.rolled invariance for a general
class of subspaces. A second question is whet.her (or under what. conditions) t.here exist.s a smallest
cont.rolled invariant subspace containing some given subspace. It set'ms that. for t.he answer to both
quest.ions a better understanding of quasi-st.atic st.ate feedback is needed.
Finally, let us remark that. throughout t.he paper we have rest.ricted ourselves t.o "Kalmanian"
systems and to subspaces n c .1:'. IIowevel' , the definit.ion of cont.rolled invariance and the char
acterizations of controlled invariance iu t.his paper can, lIIutatis IIlutandis, be t.ranslated to non
Kalmanian syst.ems and subspaces n c .r xU.
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Appendix

According to Remark 4.27, we will prove that the sequence (62) computing C. is the same as the
one computing R·.J.. ( the dual of R·, the maximal controllability subspace in kernel of the output)
for linear time invariant systems. \Ve proceed by induction. First, we recall some basic operations
that we need.

Consider a linear system given by :

x Ax + Bu, x E JRIl, 11 E /Rm
(80)

y ex

Identify elements of IRn with column vectors, while elements of IRn.J.., its dual, are identified with
Il

row-vectors. Thus, W = LQ;dxi E JR".J.. is identified wit.h the row-vect.or 0' := (0'1, ... , O'n) E /Rn .
;=1

With this notation,

W = O'di = O'Adx + O'Bdll E (JRIl X /R11l)l.

is identified wit.h the row-vector (nA O'B).

Let a subspace V C IRn be given. Then

{W E span{d.r} 1< w, A" >= 0, Vv E "}

{O' E 1R" InAI' =0, VI' E Il} = {n E JRIl InA E Ill.}

-IAVl.

if W = O'd;r E (A Il)l. n Bl., then

W= nAdx + O'Bdu = nild.,' ::::: nA E "ol.

(81)

(82)

(83)

The two sequences t.o be compared are:

{
RJ X

-n l. V• .J.. + - 1 ,'l'n l. nIB l.
1~'ll+ 1 -- I~, II 111

and

III E N)
(84)

.l'
{W E Cil IwE Cil + ~.• .J..} (JI E N)

(85)

where V· is the maximal controlled invariant subspace in KerC for the syst.em (80). For step 0, it
is obvious that R~ =Co. Suppose t.hat. R.; =Cil for II =0, .. " C. Let W E Rt+l' thus there exist

WI E V·.J.. and W2 E -1 ARt n Bl. such tha(, W = WI + W2. By (8:3) , W2 E R,f = Cl and hence
RtH C Cl +1 . To show the other inclusion, let W E CC+l, then

'.J.. l. '.J..wE Ce+V· = R.( +V· (86)

Thus, there exists WI E V·.J.. and W2 E R,t such that W=WI +W2. Let now wo =~=w2. So,
wo E Rt. This implies that

Wo E {w = ndJ.' IwE Rn = {nbl nAd.1' + nBdll E R·n
(87)

{n Inil E Rt} n ]Jl. = -1 ARt n Rl.

So, W = Wi +Wo E R.f+l' which yields t.hat. CC+l C Rt+l' Thus, we have t.hat Cil = R.; for all
JI EN, which establishes our claim. •
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