637 research outputs found

    The NMDA agonist D-cycloserine facilitates fear memory consolidation in humans

    Get PDF
    Animal research suggests that the consolidation of fear and extinction memories depends on N-methyl D-aspartate (NMDA)- type glutamate receptors. Using a fear conditioning and extinction paradigm in healthy normal volunteers, we show that postlearning administration of the NMDA partial agonist D-cycloserine (DCS) facilitates fear memory consolidation, evidenced behaviorally by enhanced skin conductance responses, relative to placebo, for presentations of a conditioned stimulus (CS) at a memory test performed 72 h later. DCS also enhanced CS-evoked neural responses in a posterior hippocampus/collateral sulcus region and in the medial prefrontal cortex at test. Our data suggest a role for NMDA receptors in regulating fear memory consolidation in humans

    Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation

    Get PDF
    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20 min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24 h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term.Fil: Fernández Larrosa, Pablo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Ojea, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Ojea, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Molina, Víctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; ArgentinaFil: Zorrilla Zubilete, María Aurelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad Nacional de Córdoba. Facultad de Medicina. Departamento de Farmacología; ArgentinaFil: Delorenzi, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development

    Get PDF
    The prefrontal cortex (PFC) plays a pivotal role in regulating our emotions. The importance of ventromedial regions in emotion regulation, including the ventral sector of the medial PFC, the medial sector of the orbital cortex and subgenual cingulate cortex, have been recognized for a long time. However, it is increasingly apparent that lateral and dorsal regions of the PFC, as well as neighbouring dorsal anterior cingulate cortex, also play a role. Defining the underlying psychological mechanisms by which these functionally distinct regions modulate emotions and the nature and extent of their interactions is a critical step towards better stratification of the symptoms of mood and anxiety disorders. It is also important to extend our understanding of these prefrontal circuits in development. Specifically, it is important to determine whether they exhibit differential sensitivity to perturbations by known risk factors such as stress and inflammation at distinct developmental epochs. This Special Issue brings together the most recent research in humans and other animals that addresses these important issues, and in doing so, highlights the value of the translational approach

    The interaction between stress and chronic pain through the lens of threat learning

    Get PDF
    Stress and pain are interleaved at multiple levels - interacting and influencing each other. Both are modulated by psychosocial factors including fears, beliefs, and goals, and are served by overlapping neural substrates. One major contributing factor in the development and maintenance of chronic pain is threat learning, with pain as an emotionally-salient threat – or stressor. Here, we argue that threat learning is a central mechanism and contributor, mediating the relationship between stress and chronic pain. We review the state of the art on (mal)adaptive learning in chronic pain, and on effects of stress and particularly cortisol on learning. We then provide a theoretical integration of how stress may affect chronic pain through its effect on threat learning. Prolonged stress, as may be experienced by patients with chronic pain, and its resulting changes in key brain networks modulating stress responses and threat learning, may further exacerbate these impairing effects on threat learning. We provide testable hypotheses and suggestions for how this integration may guide future research and clinical approaches in chronic pain

    Disconnection and reconnection: the morphological basis of (mal)adaptation to stress

    Get PDF
    We would like to thank Antonio Pinheiro, Hugo Almeida, and José Miguel Soares for help with the illustrations. We also thank all past and present members of our laboratories for stimulating discussions.Maladaptive responses to stress and the associated hypersecretion of glucocorticoids cause psychopathologies ranging from hyperemotional states and mood dysfunction to cognitive impairments. Research in both humans and animal models has begun to identify morphological correlates of these functional changes. These include dendritic and synaptic reorganization, glial remodeling, and altered cell fate in cortical and subcortical structures. The emerging view is that stress induces a disconnection syndrome’ whereby the transmission and integration of information that are critical for orchestrating appropriate physiological and behavioral responses are perturbed. High-resolution spatiotemporal mapping of the complete neural circuitry and identification of the cellular processes impacted by stress will help to advance discovery of strategies to reduce or reverse the burden of stress-related neuropsychiatric disorders.Work in our laboratories was supported by the German Academic Exchange Service - Acções Luso-Alemãs, Fundação para a Ciência e Tecnologia (PTDC/SAUNSC/ 111814/2009), and European Union FP7 (SwitchBox Project, Contract 259772; Neuroendocrine Immune Networks in Ageing Scientific Network, Contract 238665)

    Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders

    Get PDF
    AbstractPathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery

    Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders

    Get PDF
    AbstractStress—especially chronic, uncontrollable stress—is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders

    Single prolonged stress: toward an animal model of posttraumatic stress disorder

    Full text link
    Although selective serotonin reuptake inhibitors (SSRIs) are reported to be effective in decreasing posttraumatic stress disorder (PTSD) symptoms, a subgroup of PTSD patients remain chronically symptomatic and maintain conditioned fear responses to traumatic stimuli. In this context, the establishment of an appropriate animal model of PTSD is necessary to promote better understanding of the mechanisms of the disorder and to facilitate the development of more effective therapeutic alternatives to SSRIs. Although no single widely accepted animal model of PTSD has been established to date, the single prolonged stress (SPS) animal model has been partially validated as a model for PTSD. SPS rats mimic the pathophysiological abnormalities and behavioral characteristics of PTSD, such as enhanced anxiety-like behavior and glucocorticoid negative feedback, and they exhibit the expected therapeutic response to paroxetine on enhanced fear memory. In addition, SPS rats exhibit enhanced freezing in response to contextual fear conditioning, and impaired extinction of fear memory, which is alleviated by D -cycloserine. The enhanced consolidation and impaired extinction of fear memory found in SPS rats suggests that this model has additional value because recent studies of PTSD indicate that memory abnormalities are a central feature. In this study, we summarize the behavioral and pathophysiological PTSD-like symptoms in SPS, focusing on memory abnormalities, and evaluate the validity of SPS as an animal model of PTSD. Depression and Anxiety, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64546/1/20629_ftp.pd

    Stress Effects on Multiple Memory System Interactions

    Get PDF

    Diverse therapeutic developments for post-traumatic stress disorder (PTSD) indicate common mechanisms of memory modulation

    Get PDF
    Post-traumatic stress disorder (PTSD), characterized by abnormally persistent and distressing memories, is a chronic debilitating condition in need of new treatment options. Current treatment guidelines recommend psychotherapy as first line management with only two drugs, sertraline and paroxetine, approved by U.S. Food and Drug Administration (FDA) for treatment of PTSD. These drugs have limited efficacy as they only reduce symptoms related to depression and anxietywithout producing permanent remission. PTSD remains a significant public health problem with high morbidity and mortality requiring major advances in therapeutics. Early evidence has emerged for the beneficial effects of psychedelics particularly in combination with psychotherapy for management of PTSD, including psilocybin,MDMA, LSD, cannabinoids, ayahuasca and ketamine. MDMA and psilocybin reduce barrier to therapy by increasing trust between therapist and patient, thus allowing for modification of trauma related memories. Furthermore, research into the memory reconsolidation mechanisms has allowed for identification of various pharmacological targets to disrupt abnormally persistent memories. A number of preclinical and clinical studies have investigated novel and re-purposed pharmacological agents to disrupt fear memory in PTSD. Novel therapeutic approaches like neuropeptide Y, oxytocin, cannabinoids and neuroactive steroids have also shown potential for PTSD treatment. Here,we focus on the role of fear memory in the pathophysiology of PTSD and propose that many of these newtherapeutic strategies produce benefits through the effect on fear memory. Evaluation of recent research findings suggests that while a number of drugs have shown promising results in preclinical studies and pilot clinical trials, the evidence from large scale clinical trials would be needed for these drugs to be incorporated in clinical practice
    corecore