3,978 research outputs found

    The problems and challenges of managing crowd sourced audio-visual evidence

    Get PDF
    A number of recent incidents, such as the Stanley Cup Riots, the uprisings in the Middle East and the London riots have demonstrated the value of crowd sourced audio-visual evidence wherein citizens submit audio-visual footage captured on mobile phones and other devices to aid governmental institutions, responder agencies and law enforcement authorities to confirm the authenticity of incidents and, in the case of criminal activity, to identify perpetrators. The use of such evidence can present a significant logistical challenge to investigators, particularly because of the potential size of data gathered through such mechanisms and the added problems of time-lining disparate sources of evidence and, subsequently, investigating the incident(s). In this paper we explore this problem and, in particular, outline the pressure points for an investigator. We identify and explore a number of particular problems related to the secure receipt of the evidence, imaging, tagging and then time-lining the evidence, and the problem of identifying duplicate and near duplicate items of audio-visual evidence

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences

    Media aesthetics based multimedia storytelling.

    Get PDF
    Since the earliest of times, humans have been interested in recording their life experiences, for future reference and for storytelling purposes. This task of recording experiences --i.e., both image and video capture-- has never before in history been as easy as it is today. This is creating a digital information overload that is becoming a great concern for the people that are trying to preserve their life experiences. As high-resolution digital still and video cameras become increasingly pervasive, unprecedented amounts of multimedia, are being downloaded to personal hard drives, and also uploaded to online social networks on a daily basis. The work presented in this dissertation is a contribution in the area of multimedia organization, as well as automatic selection of media for storytelling purposes, which eases the human task of summarizing a collection of images or videos in order to be shared with other people. As opposed to some prior art in this area, we have taken an approach in which neither user generated tags nor comments --that describe the photographs, either in their local or on-line repositories-- are taken into account, and also no user interaction with the algorithms is expected. We take an image analysis approach where both the context images --e.g. images from online social networks to which the image stories are going to be uploaded--, and the collection images --i.e., the collection of images or videos that needs to be summarized into a story--, are analyzed using image processing algorithms. This allows us to extract relevant metadata that can be used in the summarization process. Multimedia-storytellers usually follow three main steps when preparing their stories: first they choose the main story characters, the main events to describe, and finally from these media sub-groups, they choose the media based on their relevance to the story as well as based on their aesthetic value. Therefore, one of the main contributions of our work has been the design of computational models --both regression based, as well as classification based-- that correlate well with human perception of the aesthetic value of images and videos. These computational aesthetics models have been integrated into automatic selection algorithms for multimedia storytelling, which are another important contribution of our work. A human centric approach has been used in all experiments where it was feasible, and also in order to assess the final summarization results, i.e., humans are always the final judges of our algorithms, either by inspecting the aesthetic quality of the media, or by inspecting the final story generated by our algorithms. We are aware that a perfect automatically generated story summary is very hard to obtain, given the many subjective factors that play a role in such a creative process; rather, the presented approach should be seen as a first step in the storytelling creative process which removes some of the ground work that would be tedious and time consuming for the user. Overall, the main contributions of this work can be capitalized in three: (1) new media aesthetics models for both images and videos that correlate with human perception, (2) new scalable multimedia collection structures that ease the process of media summarization, and finally, (3) new media selection algorithms that are optimized for multimedia storytelling purposes.Postprint (published version

    Video frame data conversion of the RGB feature sequence

    Get PDF
    Query Video has been send from base station to relay station. Base station sending video signal. And then user extract the video.Thus the video has been convert into several frame. Thus the video frame is covert into data conversion. Finally synchronization of the video frame.Hash code will be generation. This code can be used to the video secured purpose. Rijndael algorithm can be used to the formation of frame. Thus the encrypted conversion has been send from base station to relay station. Finally finding the RGB color.View conversion can be used to read the video data file. Calculate the time stamp, sequence,data length,and calculate the frame of the dimension(Width,Height). The proposed DTW-based synchronization method can achieve automatic synchronization for not only FH vectors, but also other types of video hashing methods. Shows the benefits of the proposed synchronization method to hash code generation. Again, the detection performance is significantly improved comparing with random recuperation

    Listen, Look, and Gotcha: Instant Video Search with Mobile Phones by Layered Audio-Video Indexing *

    Get PDF
    ABSTRACT Mobile video is quickly becoming a mass consumer phenomenon. More and more people are using their smartphones to search and browse video content while on the move. In this paper, we have developed an innovative instant mobile video search system through which users can discover videos by simply pointing their phones at a screen to capture a very few seconds of what they are watching. The system is able to index large-scale video data using a new layered audio-video indexing approach in the cloud, as well as extract light-weight joint audio-video signatures in real time and perform progressive search on mobile devices. Unlike most existing mobile video search applications that simply send the original video query to the cloud, the proposed mobile system is one of the first attempts at instant and progressive video search leveraging the light-weight computing capacity of mobile devices. The system is characterized by four unique properties: 1) a joint audio-video signature to deal with the large aural and visual variances associated with the query video captured by the mobile phone, 2) layered audio-video indexing to holistically exploit the complementary nature of audio and video signals, 3) light-weight fingerprinting to comply with mobile processing capacity, and 4) a progressive query process to significantly reduce computational costs and improve the user experience-the search process can stop anytime once a confident result is achieved. We have collected 1,400 query videos captured by 25 mobile users from a dataset of 600 hours of video. The experiments show that our system outperforms state-of-the-art methods by achieving 90.79% precision when the query video is less than 10 seconds and 70.07% even when the query video is less than 5 seconds. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. The search process can stop anytime once a confident search result is achieved. Thus, the user does not need to wait for a fixed time lag. The proposed system is characterized by its unique features such as layered audio-video indexing, as well as instant and progressive search. Categories and Subject Descriptor

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Content based video retrieval via spatial-temporal information discovery.

    Get PDF
    Content based video retrieval (CBVR) has been strongly motivated by a variety of realworld applications. Most state-of-the-art CBVR systems are built based on Bag-of-visual- Words (BovW) framework for visual resources representation and access. The framework, however, ignores spatial and temporal information contained in videos, which plays a fundamental role in unveiling semantic meanings. The information includes not only the spatial layout of visual content on a still frame (image), but also temporal changes across the sequential frames. Specially, spatially and temporally co-occurring visual words, which are extracted under the BovW framework, often tend to collaboratively represent objects, scenes, or events in the videos. The spatial and temporal information discovery would be useful to advance the CBVR technology. In this thesis, we propose to explore and analyse the spatial and temporal information from a new perspective: i) co-occurrence of the visual words is formulated as a correlation matrix, ii) spatial proximity and temporal coherence are analytically and empirically studied to re ne this correlation. Following this, a quantitative spatial and temporal correlation (STC) model is de ned. The STC discovered from either the query example (denoted by QC) or the data collection (denoted by DC) are assumed to determine speci- city of the visual words in the retrieval model, i:e: selected Words-Of-Interest are found more important for certain topics. Based on this hypothesis, we utilized the STC matrix to establish a novel visual content similarity measurement method and a query reformulation scheme for the retrieval model. Additionally, the STC also characterizes the context of the visual words, and accordingly a STC-Based context similarity measurement is proposed to detect the synonymous visual words. The method partially solves an inherent error of visual vocabulary under the BovW framework. Systematic experimental evaluations on public TRECVID and CC WEB VIDEO video collections demonstrate that the proposed methods based on the STC can substantially improve retrieval e ectiveness of the BovW framework. The retrieval model based on STC outperforms state-of-the-art CBVR methods on the data collections without storage and computational expense. Furthermore, the rebuilt visual vocabulary in this thesis is more compact and e ective. Above methods can be incorporated together for e ective and e cient CBVR system implementation. Based on the experimental results, it is concluded that the spatial-temporal correlation e ectively approximates the semantical correlation. This discovered correlation approximation can be utilized for both visual content representation and similarity measurement, which are key issues for CBVR technology development

    Intelligent Software Tooling For Improving Software Development

    Get PDF
    Software has eaten the world with many of the necessities and quality of life services people use requiring software. Therefore, tools that improve the software development experience can have a significant impact on the world such as generating code and test cases, detecting bugs, question and answering, etc. The success of Deep Learning (DL) over the past decade has shown huge advancements in automation across many domains, including Software Development processes. One of the main reasons behind this success is the availability of large datasets such as open-source code available through GitHub or image datasets of mobile Graphical User Interfaces (GUIs) with RICO and ReDRAW to be trained on. Therefore, the central research question my dissertation explores is: In what ways can the software development process be improved through leveraging DL techniques on the vast amounts of unstructured software engineering artifacts? We coin the approaches that leverage DL to automate or augment various software development task as Intelligent Software Tools. To guide our research of these intelligent software tools, we performed a systematic literature review to understand the current landscape of research on applying DL techniques to software tasks and any gaps that exist. From this literature review, we found code generation to be one of the most studied tasks with other tasks and artifacts such as impact analysis or tasks involving images and videos to be understudied. Therefore, we set out to explore the application of DL to these understudied tasks and artifacts as well as the limitations of DL models under the well studied task code completion, a subfield in code generation. Specifically, we developed a tool for automatically detecting duplicate mobile bug reports from user submitted videos. We used the popular Convolutional Neural Network (CNN) to learn important features from a large collection of mobile screenshots. Using this model, we could then compute similarity between a newly submitted bug report and existing ones to produce a ranked list of duplicate candidates that can be reviewed by a developer. Next, we explored impact analysis, a critical software maintenance task that identifies potential adverse effects of a given code change on the larger software system. To this end, we created Athena, a novel approach to impact analysis that integrates knowledge of a software system through its call-graph along with high-level representations of the code inside the system to improve impact analysis performance. Lastly, we explored the task of code completion, which has seen heavy interest from industry and academia. Specifically, we explored various methods that modify the positional encoding scheme of the Transformer architecture for allowing these models to incorporate longer sequences of tokens when predicting completions than seen during their training as this can significantly improve training times
    corecore