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Abstract

Large scale visual search has been one of the challenging issues in the era of big data.

It demands techniques that are not only highly effective and efficient but also allow

users conveniently express their information needs and refine their intents. In this

thesis, we focus on developing an exploratory framework for large scale visual search,

since users often have difficulty in clearly formulating the intent-specific queries for

visual content, unlike keyword based textual information retrieval. Towards this goal,

we also develop a number of enabling techniques in this thesis, including compact

visual content representation for scalable search, near duplicate video shot detection,

and action based event detection at a fine level.

Although the bag-of-visual-words model has been successfully utilized for scalable

visual information retrieval, the large number of visual words obtained from a query

image results in a large amount of data to be uploaded to search engines, which sig-

nificant affects the response time of a query. This problem becomes more serious for

mobile users due to limited bandwidth while the mobile and cloud architecture has

become more and more popular. Therefore, we propose a novel scheme for extremely

low bit rate visual search, which sends compressed visual words consisting of vocabu-

lary tree histogram and descriptor orientations rather than descriptors. This scheme

can reduce the bit rate of a visual query with few extra computational costs on a

mobile client. Specifically, we store a vocabulary tree and extract visual descriptors

on the mobile client. A light-weight pre-retrieval is performed to obtain the visited

leaf nodes in the vocabulary tree.

Compact representation of video data is achieved through identifying keyframes of

a video which can also help users comprehend visual content efficiently. We propose

a novel Bag-of-Importance (BoI) model for static video summarization by identifying

the frames with important local features as keyframes. In addition, we propose to

learn a transformation from a raw local feature to a more powerful sparse non-linear

representation for deriving the importance score of each local feature, rather than

directly utilize the hand-crafted visual features like most of the existing approaches.
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Near duplicate detection is one of the key issues for large scale visual search,

since there exist a large number nearly identical images and videos. In this thesis,

we propose an improved near-duplicate video shot detection approach by adaptively

selecting reference frames for more effective shot representation. Interest points are

further extracted from the selected frames to effectively represent shot contents for

similarity matching.

Event detection has been one of the solutions for bridging the semantic gap in

visual search. In this thesis, we particular focus on human action centered event de-

tection. In this thesis, we propose an enhanced sparse coding scheme through learning

a discriminative dictionary and optimizing the local pooling strategy to model hu-

man actions. By utilizing the sparse coding based representations of human actions,

we further devise a novel coarse-to-fine framework to localize the Volumes of Inter-

est (VOIs) for the actions. Our proposed approach is able to significantly reduce

computational cost while achieving recognition accuracy highly comparable to the

state-of-the-art methods. In addition, such localization technique paves the way for

visual search at a fine action level.

At last, we propose an integrated solution for addressing the prime challenges

raised from large-scale interactive visual search. The proposed system is also one

of the first attempts for exploratory visual search. The system named “Browse-to-

Search” enables users to specify their visual search intents by circling any visual

objects of interest on the browsing pages through multi-touch gestures, forms the

visual entities as queries to represent the latent intent of users, and returns relevant

information through faceted search. We develop “Browse-to-Search” in a real world

tablet system, and evaluate the system performance through millions of images. We

demonstrate that it is effective and efficient to facilitate the exploratory visual search

process of users by reducing the traditional visual query-by-example search from five

steps to one single step in forming visual entities. More importantly, it provides users

more robust results to satisfy their exploring experiences.
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Chapter 1

Introduction

Fueled by the recent advance of the Internet, social networks, and mobile computing

technology, the portfolio of digital data are greatly enriched by various forms of

multimedia data. Among all the forms, we mainly focus on visual data, namely

images and videos, within our research scope. These data types show more diversity

and complexity than the conventional textual data, and visual information retrieval

has become one of the challenging issues and attracted a lot of attentions in the past

decades due to its great potential in many applications. While many techniques such

as feature extraction and indexing techniques have been developed, the exponentially

increasing large scale visual content introduces new challenges [138].

Early work of visual search is mainly text-based, where images are first annotated

with text and visual search is then performed by matching keyword queries with

indexed textual information associated with images and videos stored in a reposi-

tory [14, 15]. However, since automatically generating descriptive texts for a wide

spectrum of images is very challenging, if not feasible, most text-based image retrieval

systems require manual annotation of images, which is a tedious and expensive task

for large-scale image collections, making the traditional text-based approaches non-

scalable. In 1992, the National Science Foundation organized a workshop on visual

data management to identify new directions in image search and database manage-

ment systems [42]. Since then, many researchers from the communities of computer

vision, database management, and information retrieval have been attracted to this
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field. As a result, many techniques of visual information extraction, browsing, and

indexing have been developed, and a large number of content-based image search sys-

tems have been built, as surveyed in [106]. Nowadays, the advances in the Internet

and digital imaging devices have significantly increased the number of images on the

Web. According to a recent well-established report on YouTube 1, over 100 hours of

video are uploaded per minute, with 3 billion viewers a day in 2013. And over 60

billion images have been uploaded to Facebook 2. The popularity of mobile phones

equipped with cameras further makes the scales of images and videos tremendously

large. In contrast to the earlier systems working with thousands of images, the dataset

scale being studied has been greatly increased to millions and even billions. For ex-

ample, Wang et al. developed a system called SIMPLIcity which indexed 200,000

images [118]. Quack et al. built a large-scale image retrieval system, Cortina, for 3

million Web images [94]. Wang et al. [119] and Li et al. [63] utilized 2.4 million Web

photos to solve the image annotation problem through a search and mining process.

Clearly, when facing the challenges raised by visual data, we need to address their

remarkable scales.

When the presence of visual data has already reached an unprecedented level,

new challenges are brought to the visual search. In this thesis, we are motivated to

investigate the challenges raised in the large-scale content-based visual search task

(e.g., visual representation, semantic gap, and search intent), and propose a novel

system as the solution to tackle these challenges.

Visual feature extraction is one of the major focuses in visual retrieval. Most

features proposed in the early years are global features [91, 110, 39], which extract

statistical and structural information (such as color and texture) from a whole image.

Later local features are widely used in visual search, since Lowe developed an effective

solution called SIFT for detecting scale invariant local interest points and a robust

descriptor for reliably matching local features [72]. Its proven accuracy and efficiency

in visual recognition and image retrieval have made a great impact on the research

1 YouTube. www.youtube.com
2 Facebook. www.facebook.com
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of low-level image representation, which has apparently made local features more

popular than global features. To obtain affine invariant features, several detectors

and descriptors have been developed. These improvements include the Harris-Affine

detector and the Hessian-Affine detector developed by Mikolajczyk and Schmid [83],

an edge-based region detector and an intensity-based region detector developed by

Tuytelaars and Van Gool [114], the maximally stable extremal region (MSER) detec-

tor developed by Matas et al. [81], and an entropy-based region detector developed

by Kadir et al. [45]. There are also other improvements over the feature detection

speed, such as SURF [3] and FAST [98], or the repeatability of the feature detection

result, such as Rank-SIFT [61]. A typical way of utilizing local features in image

search is to detect local invariant features from an image and describe the image as

a bag of local descriptors. This process can be accelerated by quantizing continuous

local descriptors to discrete visual words and represent an image as a bag of visual

words [105, 142, 120]. The major limitation of the bag-of-words representation is its

quantization loss and the lack of spatial information, which greatly limits its discrim-

inative power and usually leads to inaccurate search results. In our work, rather than

directly utilize the hand-crafted visual features like most of the existing approaches,

we propose novel strategies to generate compact visual representations for images and

videos, respectively. With the proposed strategy, the compact visual representations

not only are fed well into the existing large-scale visual search frameworks, but also

retain both the most essential visual patterns and the spatial information.

Another key hindrance for large-scale visual search is the well-known semantic

gap between low-level image features and high-level semantic concepts. That is, users

seek semantic similarity, but the search engines can only provide similarity by visual

data processing. Smeulders et al. pointed out that content-based image retrieval

does not rely on describing the content of an image in its entirety, and it may be

insufficient that a retrieval system presents similar images to satisfy the semantic

search demands. Some researchers resorted to feedbacks of users in an iterative way

to bridge the semantic gap. A comprehensive survey can be found in Zhou and

Huang [143]. However, relevance feedback is majorly limited by the fact that the
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user interface is not natural enough and users can be reluctant to provide explicit

feedbacks. In our work, we propose alternative strategies to bridge the semantic gap.

We first improve the near-duplicate detection method to identify and eliminate the

redundant content appearing in the large-scale visual data. By doing this, we are

able to eliminate those overwhelming duplicate visual content that may surpass the

discriminating content with semantic meanings. For further bridging the semantic

gap, we also propose an event-detection method to pave the way for visual search at

a fine search level. We apply the proposed method into the human action centered

event detection application. The present method can be extended to different visual

synsets for inferring the semantic classes of the input visual data.

With the emerging creative multimedia interfaces and mobile-based visual search,

traditional content-based image retrieval (CBIR) faces another challenge that the

typical query-by-image-example scenario needs to be justified that why a user wants

or needs to search for more similar images when he or she already has one image at

hand [138]. Queries on modern computing devices with both content and context

have greatly changed traditional CBIR which simply depends on image content. For

example, when a user submits a query image from his/her local computing device to

a search system, the system will possibly also know the query context such as brows-

ing context, location, time, motion speed, acceleration, direction, lighting condition,

background noise, and touch input. Under such a scenario, how can a system leverage

those contexts to infer search intent of users and provide a better result? For tack-

ling above challenges, we propose an interactive exploratory visual search system to

capture search context, understand user intent and perform large-scale visual search.

In this chapter, we first present the background of relevant visual search applica-

tions, and then explain the research problems we have studied.

1.1 Background

The problem of search visual data has been the foundation of many modern multime-

dia applications. We list a few applications relevant to our research in the following
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paragraphs. Note the relevant applications are included but are not limited to these

listed ones.

Visual Search Engine

Search engines are one of the most popular Internet applications nowadays. Similar

to the textual search engines, users also require the assistance of search engines to

access visual data effectively and efficiently. Finding relevant images / videos will

largely improve the user experience of visual search engines. A user may expect to

obtain a similar image when one web image interests him, but in a larger size or in a

slightly different color transformation. Similarly, a user may want to watch a shorter

version of a video story. Meanwhile, redundant duplicate videos should be removed

or grouped together in the search results for providing diverse results to users.

Near-duplicate Visual Data Detection

A near-duplicate is a multimedia document that differs from the original document in

its visual content but is nearly identical from the perception of users. The differences

are normally introduced by editing, transformation, or slightly different settings in

view angle. The application of finding these near-duplicates in multimedia database

can be regarded as one particular application of content-based similarity search and

is vital for related visual search applications.

Multimedia Event Recognition

Automatic detection of complex events in unconstrained videos has great potential

for many applicaions, such as web video indexing, consumer content management,

and intelligence analysis. It is a challenging task due to large content variation and

uncontrolled capturing conditions. However, due to the explosive growth of user

generated videos on the Internet, this problem has received a lot of interests from the

research community.

In TRECVID 2010 3, a new Multimedia Event Detection (MED) task was es-

3 TRECVID 2010. http://www-nlpir.nist.gov/projects/tv2010/tv2010.html
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tablished to advance research and development in this area. The aim of MED is

to develop systems that can automatically find video clips containing any event of

interest, assuming only a limited amount of training exemplars are given. An event

is a complex activity occurring at a specific place and time, which involves people

interacting with other people and/or objects. Once given an event kit which consists

of an event name, definition, explication and video example, the core task of MED is

to search multimedia repository for user defined events.

Human action analysis is an important human centered event detection topic of

MED. There are two research issues, namely: action classification and action local-

ization. As a classical pattern recognition problem, action classification is to classify

a given action video sequence into one of the pre-defined categories. Action localiza-

tion is to identify the Volumes of Interest (VOIs) of an action over both spatial and

temporal domains.

Interactive Image Search

Interactive image search allows users to find imagery, when there is not a even word

known to the user for the concept he or she has in mind. Interactive retrieval systems

can, for example, assist a virologist in identifying potentially life-threatening bacteria

within a database containing characteristics of tens of thousands of bacteria and

viruses, or assist a radiologist in making diagnosis of a patient by providing the most

relevant examples from credible sources.

The areas of interactive search with the greatest societal impact have been in image

search engines and recommendation systems. Google, Yahoo! and Microsoft have

added interactive visual content-based search methods into their search engines, which

allow search by similar shape and/or color and have been used by millions of people

each day. The recommendation systems have been implemented by companies such as

Amazon, NetFlix and Napster in wide and diverse contexts, from books to clothing,

from movies to music. They give recommendations of what a user would be interested

in based on feedback from prior ratings. Furthermore, Internet advertisements are

usually driven by relevance feedback strategies where products being clicked and
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links are used to show the next set of advertisements to a user in real time. If a user

clicks upon some shoes at a major retailer website, he or she will probably be shown

advertisements for shoes when visiting next websites.

1.2 Problem Characterization

In this section we describe the specific problems that are studied in this thesis.

1.2.1 Compact Visual Representation for Image Retrieval

Due to the large-scale of web images, how to represent an image in a compact way is

the first challenge we need to address. We formulate the compact visual coding in the

mobile visual search task, which can be easily extended into the ordinary large-scale

visual search tasks.

Mobile visual search as one of the popular large-scale image retrieval problems

has become very popular due to for its huge potential in numerous applications.

Typically, a query image is captured by a mobile device and compared with a database

on a server to find similar or duplicate images. Such images can be used in many

applications, ranging from location recognition, product search, landmark retrieval, to

any other social applications. Key problems in mobile visual search include reducing

transmission latency and improving search accuracy for good user experience. The

key solution for addressing this requirement is to represent an image in a compact

but effective way.

As shown in Fig. 1-1, there exist two classical schemes for representing images

towards mobile visual search: 1) the mobile client transmits a raw query image to

the cloud, and 2) the mobile client extracts compact local descriptors from the query

image and transmits the descriptors to the cloud [30]. The first scheme can achieve

the best retrieval accuracy since there is no information loss on the client. In terms

of transmission cost, the first scheme is not always practical in mobile scenarios. A

640× 480 resolution image typically has a size of 30–40 KB, taking about 10 seconds

to be transmitted over 3G network [30]. The Standford Product Search system adopts
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Figure 1-1: Three mobile visual search schemes.

the second scheme, where the bit rate is reduced to about 60 bits/descriptor (by 10

times compared with the first scheme) while maintaining search performance with

extra computational cost on the client [30, 112].

However, we argue that image features can be further represented by visual words

in a vocabulary tree and compressed by a lossless coding method. In the third scheme

(proposed scheme), each local descriptor is quantized into a leaf node in the tree.

Combined with descriptor orientations, the visited leaf nodes (their IDs and visited

frequencies) are then encoded into visual words and transmitted to the cloud. In the

cloud, a full vocabulary with inverted file lists is used to obtain the candidate images.

Specifically, the new scheme can be implemented by performing a light-weight pre-

retrieval procedure on the client and sending compressed visual words only to the

cloud for search.

1.2.2 Compact Visual Representation for Video Summariz-

tion

With the advances of imaging techniques and the Internet, it has been never easier to

create and access a large amount of video content. There has been an ever increasing

demand for efficient and effective tools to help users consume such a large amount

of video content. Static video summarization is one of the prime techniques that

respond to this need, which produces a condensed and informative version for a given

video with a set of representative frames (i.e., keyframes).

In general, static video summarization systems are firstly fed with the image
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features of video frames into the pipelines, and then select the most representative

frames through analyzing the visual variations either by taking a holistic view over

the entire video or by identifying the local differentiation among the adjacent frames,

as surveyed in [111, 84]. Most of those attempts rely on global features such as color,

texture, and motion information [22, 147, 64, 87, 77]. For example, Zhuang et al.

proposed to cluster all the frames within each video shot and identify cluster centers

as keyframes [147]. This is intuitive as the selected keyframes represent the prominent

visual appearances and variations within a shot. Li et al. formulated the keyframe

selection task into a MINMAX rate distortion optimization problem [64]. Ma et al.

proposed to derive visual attention by taking the motion variations among adjacent

frames into account [77]. Recently, Cong et al. formulated video summarization

task as a dictionary selection problem by using sparsity consistency, where a set of

keyframes is selected so that the original video can be optimally reconstructed from

the representative dictionary [22].

By relying on global features heavily, the above approaches are subject to the

limitations on capturing the distinct and discriminative local details of frames, which

make the selected keyframes less informative, though global features coarsely repre-

sent visual characteristics of an image. In recent years, local visual features, such

as the scale-invariant feature transform (SIFT) descriptor [71], have been playing

a more significant role in many applications of visual content analysis due to their

distinctive representation capacity [82, 140, 145, 60]. Some recent work on video

summarization also gains benefits by characterizing video frames into a set of the

local features [49, 37, 36]. In [36], identical (or very similar) local features among

adjacent video frames are identified and connected into a keypoint chain. Each chain

represents a unique keypoint candidate. Different keypoint chains constitute a global

candidate pool with the unique keypoints. Once the keypoint pool is constructed,

the keyframes are selected by ensuring that the representative frames achieve the

best coverage of the unique keypoint candidates. However, this method is subject to

the following two limitations. First, each individual local feature is treated equally,

but the uniqueness of the keypoints does not ensure they are uniquely and equally
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important for the video representation. For example, several unique keypoints only

appear in a very small number of frames, but they are less important to represent

the essence of the video content. Second, the keypoint chain connects the similar

keypoints among adjacent frames only. However, certain content may re-appear at

different parts of the whole video, which results in the situation that multiple key-

point chains actually refer to the same keypoint. These redundant keypoints could

severely exaggerate the representativeness of several repeated visual patterns, and

suppress those informative but less repeated patterns.

1.2.3 Adaptive Near-Duplicate Video Shot Detection

Effective and efficient detection of near-duplicate video shots is of paramount impor-

tance in many applications such as detecting copyright infringement and eliminating

redundant video clips from large-scale visual search results.

Early works mainly focused on developing near-duplicate image detection ap-

proaches [47], [137]. The empirical findings on near-duplicate image detection were

then spontaneously shifted to keyframe-based near-duplicate video detection by rep-

resenting videos with key frames and performing matching between local descriptors

extracted from key frames [123]. However, such a straightforward adoption results

in expensive computation cost as well as ignoring the fact that keyframes are not

capable of capturing the variations of local descriptors with the distribution of video

content. Some existing works tackled the detection of near-duplicate video sequences

by representing videos with a global and compact signature [20]. However, such ap-

proaches did not take the local similarity into account, therefore, were less robust in

near-duplicate shot detection.

More recently, Zhou et al. proposed to represent video shots with a number of

interest points selected from a number of reference frames [144]. It outperforms most

of the existing methods [141] due to its capability of eliminating the local descrip-

tors with lower frequencies among the selected video frames to ensure that the shot

representation is compact and discriminative. At first, a number of reference frames

similar to the key frame in terms of color histogram are chosen. Then a Furthest
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(a) KTH dataset (b) MSR dataset

Figure 1-2: Sample actions from two human action datasets.

Point Voronoi (FPV) diagram is utilized to select a subset of frames which are apart

from each other so as to increase coverage and diversity of the final reference frames.

The reference frame selection plays an important role in this approach. However,

those reference frames were not well chosen to represent content variations within the

shots, which may degrade the performance of near duplicate shot detection.

1.2.4 Efficient Human Action Recognition

Analyzing human actions in videos has been a very important topic in computer

vision, machine learning and pattern recognition domains due to its great potential

in many applications such as human-centric activity/event detection, content-based

video retrieval, visual surveillance, and human-computer interaction. There are two

research issues, namely: action classification and action localization. As a classical

pattern recognition problem, action classification is to classify a given action video

sequence into one of the pre-defined categories [53, 88, 89]. In some popular video-

based human action datasets (e.g., KTH [100] and Weizmann [34] datasets), an action

was generally performed by a single subject (Fig. 1-2(a)). Recently, more and more

human action datasets (e.g. UCF dataset [68] and MSR dataset [10] shown in Fig. 1-

2(b)) are obtained in realistic scenarios where multiple subjects and motions are

involved, which strongly promote the need of localizing human actions (i.e. identifying

when and where an action happens in a video). Specifically, action localization is to

identify the Volumes of Interest (VOIs) of an action over both spatial and temporal

dimensions. In this study, we aim to address these two issues together.

The success of sparse representation in image approximation and recognition tasks

motivates us to explore its potential in human action analysis in video domain. Re-

cently, sparse coding based methods achieve surprisingly superior performance in
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image classification [129, 128, 108]. The success is largely due to the following facts:

1) when compared with the popular Bag-of-Feature (BoF) model, sparse learning

can automatically learn the optimal dictionary (codebook), and concurrently assign

each local feature to the visual words with the optimal responses (weights); 2) the

supervised discriminative learning method seeks the subspace partitions of all the

trained descriptors so that the local image descriptors from different classes are more

easily separable to the classifiers; and 3) spatial pooling [6] is utilized to achieve ro-

bust representation against local variance to image transformation and underlying

noisy clutters. However, it is not straightforward to apply conventional sparse coding

methods proposed in image classification to human action classification. Challenges

arise from the fact that the same underlying visual pattern behaves with variant vi-

sual appearances in different videos. Examples of such differences can range from

distinct spatial appearance such as clothing and illumination variations, to optical

and geometric differences such as changing of action speeds, scales, and view points.

Forming a robust action appearance based representation is the key to solving these

challenges.

In order to find the potential positions where action VOIs occur, exhaustive search

is often conducted on all possible volume candidates through an entire video. Due

to the large number of volume candidates, the exhaustive search strategy is severely

limited in several applications such as video surveillance and video retrieval which

require fast computations. Several recent studies reported different approaches to

locating the desired action VOIs in realistic environments [10, 103, 102, 134, 25]. In

[103, 102], downsampling strategy was described to reduce the searching space. How-

ever the correct volumes might be dropped earlier or miss detected. Moreover, even

when the sub-sampling strategy is adopted, the searching space is still large. Other

methods extended the branch-and-bound approach into human action localization

[10, 134]. Branch-and-bound approach that was initially proposed to seek of the op-

timal bounding box for localizing objects of interest in an image [52] heavily relies

on constructing a high quality bound function and obtaining the bound value is of

computationally expensive. Meanwhile, Derpanis et al. [25] indicated the advantage
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of using wavelet-like feature transformed representation to improve the computation

efficiency. By utilizing the abstract mathematical properties of the wavelet repre-

sentation, fast similarity calculations can be achieved. Similar advantages can be

explored by obtaining wavelet-like feature representation through sparse coding.

1.2.5 Interactive Exploratory Visual Search

In addressing the grand challenges of information seeking problems, the majority of

research interests focus on typical keyword-based search scenarios, and several efforts

among them have mainly tackled the challenges of query understanding in a search

system, such as query classification [9], query disambiguation [104], and query sugges-

tion [126], [136]. A number of studies leverage contextual cues for exploring search

intents and augmenting queries [48], [75]. Though less discussed, some attempts

address the information seeking problem from browsing perspective and report key

design issues in the browse systems [80, 109]. Other research advances the techniques

by keeping users in the search loop, where users can reformulate a second query if the

first fails [131]. In last few years, exploratory search has grown with more interests

as the alternative solutions to traditional search which returns the most relevant doc-

uments similar to a Google-like keyword-based search [78], [121], [122]. Exploratory

search is defined as a special information seeking behavior which is commonly de-

picted by three kinds of activities: lookup, learn, and investigate, especially pertinent

to the learn and investigate activities [78]. As the Web has become the first choice for

users who to seek information, people expect it to serve other kinds of information

needs and search engines must strive to provide services beyond fact retrieval. Con-

sequently, research has focused on defining a broader set of information behaviors in

order to learn from the situations when a user is limited by only having the ability

to perform a keyword search.

Reflecting the growing research interests in exploratory search, a recent investi-

gation studies the information seeking behaviors of users through analyzing users’

average dwelling durations within the online exploring sessions. The result reveals

that browse activity takes up 43.4% percentage of online sessions, whilst search ac-
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tivity only takes up 5.8% percentage [41]. Yet predominately, a collaborative process

of “browse and search” has become a pervasive behavior and dominates exploring

experience, taking up approximately 51% percentage of online sessions 4. Motivated

by such findings, we conducted a user focus study to further investigate the user’s

exploratory search behaviors 5. The results reinforce the above verdicts with similar

findings—among all the predesignated tasks, more than 75% percentage of the in-

formation seeking behaviors are inspired when users browsed the news, Web pages,

emails, and so on. It indicates that many initiatives for a typical fact-retrieval stem

from the motivations on knowledge lookup during Web browsing, rather than the

unprovoked information seeking. Despite that users devote most of the exploration

time on browsing, and consequently the search intent being provoked, to the best of

our knowledge, there have been few attempts collaborating “browse” with “search”

activities into an integrated exploratory search task. In particular, in image process-

ing and multimedia search communities, the fact that the image being browsed has

been commonly used as a query for performing content-based visual retrieval [44],

[139], but rarely involved in the exploratory search loop motivates us to utilize such

an important source as a navigational cue to infer faceted exploratory interests of

users and hence to facilitate their information seeking experiences.

One of the major reasons that “browse” and “search” behaviors are isolated in

most of the conventional visual search systems is that specifying the search intent

simply through image query is a complex and time-consuming procedure. An example

scenario of this is: if a user does not know much about classical music star names but

one of celebrity faces looks familiar to him in a Web page, how should he even begin

to find a piece of information that he might like. Another example scenario is: if a

commercial product search engine can present diverse category-style options or image

examples to users, users can choose from a list instead of guessing a possible keyword

query. We start our work by investigating the exploratory search behaviors of users

through their browse/search switching patterns. We also identify the rationales and

4 By “browse and search,” we refer to the online exploration where search and browse behaviors
happen within one in-situ session.

5 The focus study consists of 16 subjects. They were asked to complete 80 exploring search tasks.
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Figure 1-3: Illustration on the exploratory visual search system.

challenges for the key design issues when considering the collaboration of browse and

search processes, particularly by not simply treating the image being browsed as a

query example or the content-bearing item, but a visual entity associated with the

underlying search intent of users. Then we propose a “Browse-to-Search” system to

tackle the challenges and also evaluate our proposed approach.

When web images are involved into the exploratory search loop, some extra chal-

lenges are introduced. Unlike the textual-based keyword queries, the underlying in-

tents of users behind the images of interest are often vague and sometimes towards

multiple faceted preferences, which are difficult to precisely formulate the intent-

specific queries. Unlike the query-by-example in content-based information retrieval

(CBIR) system, matching the visual queries and returning the similar visual doc-

uments would not support users to acquire additional knowledge. An intact ex-

ploratory visual search system is supposed to support users to browse web images for

fact-retrieval (lookup), to acquire new web resources (learn) and finally to discover

the substantial extracted knowledge (investigate). As illustrated in Fig. 1-3 (a), ex-

ploratory visual search should be capable of leading users to lookup more similar

information, learn new resources and investigate additional knowledge. As shown in

Fig. 1-3 (b), exploratory visual search should facilitate capturing multi-faceted search

intent and predicting the dominant preferences to users for the further exploration.

For achieving the above demands, how to infer the underlying intent of a web image

being browsed, how to satisfy their ultimate exploratory objectives and how to im-
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prove browse / search switching patterns when a visual object inspires the motivations

for exploration are the key challenges to be addressed in this work.

1.3 List of Contributions

In this section we describe the specific contributions for each problem studied in this

thesis.

Bag-Of-Importance Model for Static Video Summarization towards Com-

pact Video Representation

We propose a novel Bag-of-Importance (BoI) model-based method to investigate the

contribution of each individual feature to the representativeness of video content. A

video can be viewed as a collection of representativeness weighted features instead of

the equally important ones. The BoI model provides a mechanism to exploit both the

inter-frame and intra-frame properties by quantifying the importance of individual

features characterizing the whole video. The effectiveness of the BoI model has been

preliminarily demonstrated in shot-length videos in [74]. In this work, we further

investigate its performance towards summarizing the challenging full-length videos,

and improve the term weighting strategy in the proposed BoI model to obtain a better

summarization performance.

We also bring a new perspective into static video summarization by formulating

the problem as an unsupervised feature learning problem. Hence, those representative

frames can be identified by aggregating the weighted features. By removing the

massive redundancy, it is possible to project a video sequence into a low dimensional

sparse space. Locality-constrained linear coding (LCC) method proposed in [117]

provides such a mechanism, which can take advantage of the manifold geometric

structure to learn a nonlinear function in a high dimensional space/manifold. It is

able to and locally embed the points on the manifold into a lower dimensional space,

expressed as the coordinates with respect to a set of anchor points. When compared

with our previous strategy by using sparse coding (SC) method [74], LCC is more
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capable of assembling the salient patterns of the similar features among frames. Our

experiments demonstrate that by employing LCC in replacement of SC for feature

learning, the video summarization performance is improved significantly. To the best

of our knowledge, the proposed BoI model based method is one of the first studies

on formulating video summarization problem as local feature learning and weighting

problem.

Adaptive Reference Frame Selection Strategy for Near-Duplicate Video

Shot Detection

We propose an improved near-duplicate shot detection strategy by redesigning the

reference frame selection method to address detection the accuracy and extending the

idea of shot-based interest points to preserve detection efficiency. At first, we pro-

pose a new adaptive frame selection method based on Pearson’s correlated coefficient

(PCC) which measures the correlation between each pair of successive frames in a

video shot. The shot is then partitioned into several fractions at which the correla-

tion coefficients decrease abruptly so that wide diversity is achieved. We produce the

reference frame set by selecting a frames from the most representative fractions to

ensure wide coverage. Secondly, a shot-based interest point extraction algorithm is

performed to identify important interest points from the set of representative frames.

Finally, the local interest points are matched among frames.

Fast Human Action Classification and VOI Localization Algorithm

We propose a sparse coding based framework for human action classification and

localization. Firstly, we introduce an efficient dictionary learning method. Un-

like a stochastic optimization procedure commonly performed by supervised learning

method such as back-projection [129], we train a discriminative dictionary efficiently

and update it during the reconstruction of the sparse learning process. Secondly, we

propose a novel pooling scheme. Choosing the proper pooling functions often relies

on estimating the underlying mutual dependence among the video features in a local

segment. With the proposed sparse coding schemes, the local features are trans-
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formed into a sparse domain and constructed into a linear spatial-temporal pyramid

matching (STPM) kernel. Thirdly, based on the transformed representation of human

actions, we further propose a two-stage coarse-to-fine localization scheme to detect

VOIs of an action. In the coarse stage, we use a hierarchical template matching strat-

egy to detect possible action regions, named hypothesis regions. In the fine stage,

we perform a multi-level branch-and-bound approach within the hypothesis regions

generated in the coarse stage. Instead of exhaustively computing the quality bound

as reported in [10, 134], our quality bound value can be efficiently obtained through

assembling the local responses of sparse representations. In addition, the usage of a

multi-scale framework provides robustness against local variations such as the differ-

ences of action execution in videos (e.g., performance nuances) and anthropomorphic

attributes (e.g., height and shape). It also allows more flexibility in matching tem-

plates and its sub-components. As a result, the proposed localization scheme avoids

both the exhaustive scans for all the spatial-temporal volumes in a target video and

the prohibitive computational cost of local feature voting, which brings our proposed

approach great potential for real-time video analysis.

“Browse-to-Search” System for Interactive Exploratory Search

In order to overcome the limitations of typical keyword-based image search system and

content-based image search, we propose an interactive visual search system, namely

“Browse-to-Search”, in this work. Integrating of the browsing content can provide

rich context to infer the underlying intent. Next, we perform large-scale visual search

at the back-end to analyze the associated attributes from the visually similar im-

ages. The most dominant attributes (predicted by the system and selected by users)

together with image of the interest constitute an visual entity. A visual entity rep-

resents the multiple faceted intent to facilitate users performing further exploratory

search. “Browse-to-Search” explores a natural and fast way for users to switch be-

tween browse and search, and complete information exploratory tasks both effectively

and efficiently.

The system is characterized by four unique properties: 1) in session—searching
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is naturally performed during browsing, where query formulation and search results

generation do not introduce interventions within a session. In addition, frequently

switching browse and search is not necessary. 2) in context—the pages being browsed

provide rich contextual cues to understand the underlying intent. 3) in focus—users

can focus on the content of interest without worrying about the difficulties of query

formulation, since visual entities are automatically formed to represent the multi-

faceted intent of users. and 4) intuitive—touch and visual search based user interface

provides a natural exploratory search experience. A video demonstration is avail-

able [73].

1.4 Thesis Outline

The rest of the thesis is organized as follows. We review the related work in Chap-

ter 2. In Chapter 3 we present two novel methods to generate compact image and

video representations for facilitating large-scale visual search. In Chapter 4 we present

two content-based visual search applications: near-duplicate video detection and hu-

man action based event search. In Chapter 5 we present a large-scale interactive

exploratory visual search system, which integrates the compact visual generation

approaches, efficient content-based visual search algorithms and exploratory search

techniques. Finally, in Chapter 6 we conclude the thesis with proposals for the future

directions of our work.
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Chapter 2

Literature Review

Our research is closely related to compact image / video representation, content-based

visual search, large-scale image search and interactive exploratory search. Research

of visual search in the early years is mainly focused on text-based techniques, where

images were first annotated with text and then searched using a text-based approach

from traditional database management systems (DBMS) [14, 15]. Later, the dramat-

ically increased number of images produced by various digital devices posed a great

demand on retrieving and managing images based on their visual content. The early

work based on textual annotation and simple image processing techniques cannot ful-

fill the complex search demands especially for large-scale natural image collections.

As a result, many techniques of visual information extraction, browsing, and indexing

have been developed, and a large number of content-based image search system have

been built [106]. Unlike the earlier systems working with only thousands of images,

the dataset scale being studied has been greatly increased to millions and even billions

nowadays. In a large-scale data era, new challenges are brought to the visual search

task. In this chapter, we survey the state-of-the-art works in these challenging areas.

2.1 Compact Visual Representation

Given web-scale visual data, how to represent visual content in a compact way is the

first challenge we need to address. We firstly review the work relevant to represent
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an image in a compact way, and then the study on compact video representation.

2.1.1 Compact Visual Representation for Image Retrieval

For representing an image in a compact way, many efforts have been conducted on

extracting visual features towards large-scale image search. Early studies focus on

towards extracting global features to obtain statistical information (such as color

and texture) from a whole image [91, 110, 39]. Later local feature extraction is

proposed [72], whose proven accuracy and efficiency image retrieval have made a

great impact on the research of low-level image representation. Several different

local detectors and descriptors have been developed [83, 114, 81, 45, 3, 98, 61]. For

speeding up image search by utilizing local features, representing an image as a bag

of visual words (BoVW) model is regarded as a typical method for performing large-

scale image search [105, 142, 120]. However, the BoVW based representation leads

to the quantization loss and is incapable of retaining the spatial information, which

greatly limits its discriminative power and usually leads to inaccurate search results.

Recently the vocabulary tree based method has been proposed [90], and duplicate or

near duplicate image retrieval can be performed in an effective and efficient way. This

method has been widely transferred and adapted to online search and mobile search

scenarios, including developing compact descriptors and leveraging contextual cues.

State-of-the-art online visual search systems also focus on developing compact

descriptors, instead of sending entire query images. Tsai et al. studied dimensionality

reduction of distinctive image features from scale-invariant keypoints (SIFT) and

SURF descriptors with the Karhunen-Loeve Transform (KLT) followed by entropy

coding, resulting in about 2 bits per SIFT dimension. Good retrieval performance of

SURF is achieved at about 57 bits/descriptor [2]. Compressed Histogram of Gradients

(CHoG) is a compressive local descriptor, proposed for online / mobile visual search

scenarios, which achieves approximate 60 bits/descriptor [13]. For an image with 500

descriptors, both of the above methods yield about 3.5 KB data. As discussed in [30],

3–4 KB compressed data typically take 3–4 sec to be transmitted over a 3G network.

Our approach takes a step further on Chen’s work [17]. While Chen’s work focused
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on how to compress leaf nodes histogram, our work attempts to propose an efficient

online visual search scheme. By storing a vocabulary tree on the client and utilizing

GV-based fast reranking method, we can achieve lower bit rate, zero rate distortion

and improved system accuracy.

2.1.2 Compact Visual Representation for Video Summariza-

tion

Video summarization has been extensively investigated due to its wide range of ap-

plications [111, 84]. In general, both visual and audio features have been widely

utilized to characterize video content. For example, Cheng and Hsu proposed to fuse

audio and motion features for highlighting extraction from baseball games [18]. Re-

cently, high level semantic features have also been utilized for video summarization

[76, 16, 59]. In this paper, we focus on the static video summarization task and

mainly address the problem from the visual feature perspective. Therefore, we only

highlight some relevant work on the static video summarization problem utilizing

visual features.

Most of the relevant approaches summarize a video by identifying the salient pat-

terns with global features. The video frames are first represented by high dimensional

global visual feature vectors and then the global features are fed into video summa-

rization pipelines. Those early attempts focused on identifying the distributions and

the variations among visual feature vectors. In [147], Zhuang et al. proposed to clus-

ter all the video frames and select the frames which are closest to the center of each

cluster as keyframes. In [24], video frames were represented as a trajectory curve in a

high dimensional feature space and a generalized version of the planar curve splitting

algorithm was recursively applied to simplify the curve into a lower-dimensional space

and to split it into a tree structure. In [31], a raw frame-feature matrix was projected

into a much lower dimensional space using Singular Value Decomposition and a set

of keyframes were identified through clustering the projected coefficients.

Some recent attempts explore this field with more diverse directions, including

optimization formulation [64, 92], user attention model [77], and graph modeling of a
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video [87, 85, 5]. Zhu et al. [64] formulated the keyframe selection problem as a tem-

poral rate-distortion MINMAX optimization problem, where the temporal distortion

was modeled as the frame distortion between the original and the reconstructed se-

quences. Ma et al. [77] pointed out that human attention is an effective and efficient

mechanism for information prioritizing and filtering, and proposed a set of modeling

methods for visual and aural attentions in the domain of video understanding. With

the advances of graph theories, modeling and analyzing a video as a graph has at-

tracted many interests of researchers. Ngo et al. [87] proposed a unified approach

for video summarization by representing a video as a complete undirected temporal

graph and globally and optimally partitioning the graph into connected video clusters

with the normalized cut algorithm. Similarly, Delaunay Triangulation [85] and dom-

inant set clustering [5] were also explored. One of the latest studies formulated video

summarization problem as a sparse dictionary selection problem[22]. By utilizing the

sparsity consistency, a set of keyframes is selected when the original video can be op-

timally reconstructed by the representative dictionary obtained through unsupervised

learning from the global visual feature vectors.

2.2 Content-based Visual Search

Content-based visual search is one of the most important applications for large-scale

visual search. Our efforts target two important applications: near-duplicate video

detection and human action recognition based multimedia event recognition. Near-

duplicate video shots provide critical visual links among videos and detecting such

video shots efficiently and effectively is of paramount importance in many applica-

tions such as detecting copyright infringement and large-scale visual search. we also

undertake the research on the human action recognition tasks. In this section, we

review the related work in the near-duplicate detection application and human action

recognition application.
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2.2.1 Near-duplicate Detection / Retrieval

The presence of massive near-duplicate visual content imposes heavy demands on

near-duplicate detection/retrieval as it is crucial to many novel applications such as

copyright violation detection, video monitoring, web video re-ranking. Near-duplicate

detection takes a huge part in visual search experience. For example, very often one

wants to watch novel and diverse videos through text queries but ends up with many

duplicates or near-duplicates on the top of the result list. Search service providers are

supposed to employ effective techniques to improve ranking results with appropriate

handling of redundant duplicate results by eliminating duplicates or near-duplicates.

Early works mainly focused on developing near-duplicate images detection ap-

proaches [47, 137, 65]. The empirical findings of the near-duplicate image detection

were then spontaneously shifted into keyframe-based near-duplicate video detection

by representing videos with key frames and performing matching between local de-

scriptors extracted from key frames [123]. However, such a straightforward adoption

results in expensive computational cost as well as ignoring the fact that keyframes

are not capable of capturing the variations of local descriptors with the distribution

of video content. Some existing works tackle the detection of near-duplicate video

sequences by representing videos with a global and compact signature [20]. However,

such approaches did not take the local similarity into account, therefore, are less

robust in near-duplicate shot detection.

More recently, Zhou et al. proposed to represent video shots with a number of

interest points selected from a number of reference frames [144]. It outperforms most

of the existing methods [141] due to its capability of eliminating the local descrip-

tors with lower frequencies among the selected video frames to ensure that the shot

representation is compact and discriminative. At first, a number of reference frames

similar to the key frame in terms of color histogram are chosen. Then a Furthest

Point Voronoi (FPV) diagram is utilized to select a subset of frames which are apart

from each other so as to increase coverage and diversity of the final reference frames.

The reference frame selection plays an important role in this approach. However,
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those reference frames were not well chosen to represent content variations within the

shots, which may degrade the performance of near duplicate shot detection.

2.2.2 Human Centered Event Recognition

Event-detection method is able to pave the way for visual search at a fine search level,

and thus to bridge the semantic gap. In the scope of this thesis, we apply the proposed

method into the human action centered event detection application. However, the

present method can be extended to different visual synsets for inferring the semantic

classes of the input visual data.

Recently, more research efforts are spent on realistic video datasets instead of

the laboratory datasets used in the early years, action classification study has hence

shifted significantly from relying on global features to relying on local interest-point

based representation [100, 101]. For example, the Spatio-Temporal Interest Points

(STIPs) [54] based representation has been widely used. In general, a codebook (i.e.

vocabulary) is formed from all the STIP descriptors and each STIP descriptor is

quantized against the codebook. Finally, a histogram describing the distribution of

those codewords is obtained to represent an action video. These methods are ex-

tremely popular and known as the BoF (bag of feature) model [100, 54]. Although

the extended BoF model with Spatial Pyramid Matching Kernel (SPM) overcomes

the drawbacks when the local spatial order is discarded [56], the selection on the code-

book is still not accurately built and the vector quantization procedure introduces

severe information loss. The discriminative SVM classifiers [100] or the generative

topic models [88] have been widely used for learning action models. Gaussian Mix-

ture Models (GMM) [10] and nearest neighbor (NN) search [134] are two alternative

solutions for the action classification task.

Action localization has been actively researched and several template-based hu-

man action representation and localization methods are reported. A visual space-time

oriented energy structure representation was proposed in [25], which is robust to the

scene clutter and rapid dynamics. Rodriguez et al. [97] proposed Action MACH (a

maximum average correlation height filter) to well capture the intra-class variability.
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Algorithms in [25, 46] performed the sliding window search on the database with a

single query sample. One limitation of this strategy is that with only a single query

sample it is impossible to model action variations. In [55], a set of query samples,

including both positive and negative samples, is used for action localization. Despite

the fact that they worked well in uncontrolled videos, the computational cost is high

and they would fail if there are no sufficient query samples provided. In the latest

work [132], a random forest based voting technique was developed for the action local-

ization and search task, where videos are characterized as spatial-temporal interest

points and the random forest is constructed to index these points and match the

interest points from query videos. Although the localization speed is significantly im-

proved, the localization effectiveness is fragile, which heavily relied on the quality of

the randomly generated visual vocabulary forest. Whilst in our proposed method, we

seek a trade-off between the effectiveness and the efficiency of the performance. The

bases of the dictionary we learned are stable and the deviations of the localization

accuracy vary in a small range.

Sparse coding based method is utilized for performing human action classification

for the first time [146], which only adapts the conventional sparse coding strategy

from the image classification domain to the video classification domain. However,

simply transforming local visual features into a sparse domain are not able to well

capture the intensively varied local patterns. In our work, we proposed a spatial-

temporal based sparse coding method and an adaptive pooling strategy to represent

human actions, which retain well the essential action based patterns including both

spatial and temporal information.

2.3 Interactive Exploratory Image Search

In exploratory search, the search process is inspired by the casual interests on browsing

entities. In order to involve visual entities with information seekers in the exploratory

search loop, we need to offer a natural user interface to enable the seekers to express

their interests on the special visual objects appearing in a web page or in web images
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of the web page. Meanwhile, the latent intent behind visual entities is possibly multi-

faceted. Hence, we need to collect the web context, in particular, the image context

to infer the underlying search intent of users. And for forming the queries represent-

ing the actual intent, we need to predict the likely preferences of the search intent

and allow users interact with the query suggestions to refine the search. Therefore,

most of the current studies are the present work is related to interactive visual search,

relevance feedback system, visual query suggestions and some exploratory search ap-

plications. We will now look at these areas with a view to integrate browsing visual

entities and searching images into an integrated framework.

The advanced functionalities in Google and Bing’s image search engines enable

users to indicate intent via visual filters, e.g., “similar images,” color, size and so on.

The Concept Map uses the position and size attributes of a group of tags to filter

the top text-based search results [124]. In a more advanced search engine prototype,

MindFinder [11], search is performed by sketching a shape image. In [35], authors

provide algorithms within a statistical framework to extend active learning for online

content-based image retrieval (CBIR). Despite the impressive progress shown, none of

them allows users to interact with both the visual and semantic attributes to perform

further exploratory search.

Our work is also related to visual relevance feedback system [19], contextual image

search [75] and visual query suggestions [136]. In [19], the users’ click-through data

as implicit relevance feedback are utilized. The difference from the contextual image

search work [75] is that context is sensed to predict the search intent rather than

contribute to re-rank the returned images. In visual query suggestion work [136], the

search query is reformulated based on an ambiguous textual query. In our work, the

text query does not exist, we obtain query suggestions by analyzing the visual content

and the relevance between the visual content and the associated semantic attributes.

There are some state-of-the-art industrial applications related to our work. Mar-

chionini et al. presents a web-based interface, called the Open Video Digital Li-

brary [79]. The system provides a number of alternative ways to slice and dice the

video corpus so that people can see what is in the collection (overview) and deter-
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mine greater details about a video segment (preview) before downloading it. Google

Related provides a user interface to recommended relevant information to users when

a user is browsing web pages [33]. Although no details are available, most likely it

is based on analyzing the textual information of web pages being browsed or titles.

Neither it supports image search nor allows users to specify their own interests. The

Siri system is a recent triumphant example, which provides a natural search interface

allowing users perform a search task along with the browsing session [4]. It combines

location and temporal context with voice-based command inputs (for replacing typing

inputs) and also display visual results. Though it facilitates the typical keyword-based

search in a more natural way, it still does not perform exploratory search.
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Chapter 3

Compact Visual Representation for

Large-Scale Visual Search

In this chapter we elaborate the technical details and the experiments for the compact

visual representations. Our study for compact visual representation is two-fold: 1)

we propose a novel scheme representing images at an extremely low bit rate for large

online / mobile visual search. 2) we propose a novel method representing videos by

a few keyframes for static video summarization.

3.1 Visual Coding for Online / Mobile Large-Scale

Image Search

In this section, we propose a scheme for extremely low bit rate online / mobile visual

search, which sends compressed visual words consisting of a vocabulary tree histogram

and descriptor orientations rather than descriptors. This scheme can further reduce

the bit rate with few extra computational costs on the client. Specifically, we store

a vocabulary tree and extract visual descriptors on the query client. A light-weight

pre-retrieval is performed to obtain the visited leaf nodes in the vocabulary tree.

The orientation of each local descriptor and the tree histogram are then encoded to

be transmitted to a server. Our new scheme transmits less than 1KB data, which
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Figure 3-1: The proposed online / mobile visual search scheme.

reduces the bit rate by 3 times, and obtains about 30% improvement in terms of

search accuracy over the traditional Bag-of-Visual-Words baseline.

3.1.1 Local Visual Word Coding

Figure 3-1 shows the proposed low bit rate online / mobile visual search system. The

search client captures an image at the first stage. Then, local descriptors (SURF)

are extracted on the client. These descriptors are searched through a vocabulary tree

(VT Matching) which is built upon a large-scale of database. A tree histogram is

created based on the searched leaf nodes. The histogram and descriptor orientations

are compressed into a binary stream (Encoding). The tree histogram is used to

match the inverted files (Inverted File Matching) and generate a candidate list from

the database [90]. Fast Geometric Verification based re-ranking is then performed on

the candidate list. Thumbnails of the top 10 images will be sent back to the client.

3.1.2 Visual Word Representation

We use a vocabulary tree to index images in the repository. This tree is trained

by hierarchical k-means clustering on 100 million descriptors. We adopt SURF as

the local descriptor, which is fast to compute and can achieve similar performance

to SIFT [3]. The vocabulary tree of SURF is also half the size of SIFT. Suppose

a vocabulary tree has the depth D and branch B, the tree structure is shown in

Figure 3-1 (a) (with D = 3 and B = 3). Each node is a centroid of the cluster

derived from its parent node. In an actual system, this tree is unbalanced because
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Figure 3-2: Illustration of local visual word representation.

small degenerate clusters are pruned away in clustering. On the server side, each

leaf node is correlated with an inverted file, which stores information of images that

contain descriptors quantized to the current leaf node, as shown in Figure 3-2 (b).

The vocabulary tree on the client is identical to that on the server, except that we

do not associate the inverted files with the nodes on the client. The reasons are

two-fold: 1) including the inverted files will significantly increase the memory costs

on the client, and 2) we only need to obtain the visual words rather than the image

documents for compression.

Descriptors of images are searched through the vocabulary tree. Interesting points

detected are sorted according to their Hessian response. Only the top N points are

chosen to compute descriptors. N is selected for a trade-off between computation

time and retrieval accuracy, which will be discussed in Section 3.1.5. Each descriptor

is then searched through the vocabulary tree by finding its nearest neighbor according

to its distance to each centroid. As the red nodes and edges in Figure 3-2 (a) show,

di is first assigned to the root node, then the left node on the next level, and finally

such process terminates at the leaf node “2”.

Suppose there are M leaf nodes in the vocabulary tree and a query image q has

N descriptors {di}N−1
i=0 . If di is quantized to the leaf node ldi , we can obtain a visual
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word vwdi as follows:

vwdi = (ldi , tdi , θdi), (3.1)

where tdi indicates the frequency that ldi is visited in total, and θdi is the orientation of

descriptor di and is used for GV-based fast reranking, since the VT matching method

ignores all the geometric clues. θdi is set to an invalid value (2π) if ldi is visited

more than once (tdi > 1). The collection of visual words VQ (VQ = {vwdi}N−1
i=0 ) is

then compressed and transmitted to the server for retrieval. Figure 3-2 (c) shows an

example of VQ obtained from Figure 3-2 (a).

3.1.3 Visual Word Coding on the Client

Before transmission, we compress VQ at a lower bit rate. Following [17], ldi can be

represented sparsely and tdi nearly follows a Binomial distribution. We compress

each part of visual words by different methods and then concatenate them into an

encoding vector. We first sort VQ by ldi in an ascendant. VQ is then comprised of three

ordered parts: L = {ldi}N−1
i=0 indicating which leaf nodes are visited, T = {tdi}N−1

i=0

indicating how many times these leaf nodes are visited, and Θ = {θdi}N−1
i=0 indicating

the orientations of descriptors in the query image q. For example, the following is the

three parts of VQ in Figure 3-2 (c):

L = {0, 2, 3, 4, 7, 8}

T = {2, 1, 3, 1, 2, 1}

Θ = {2π, θ0, 2π, θ1, 2π, θ2}

(3.2)

Compression of L. We first define a binary vector f with M elements: f =

[f0, f1, . . . , fM−1]1×M , where fi (fi ∈ {0, 1}) indicates whether the i-th leaf node

is visited. As ldi indicates whether the ldi-th leaf node is visited, we set the ldi-th

element of f to 1, otherwise 0. We use f to represent the visited leaf nodes as it can

achieve higher compression rate by an adaptive binary arithmetic coder. In the ex-

ample of Figure 3-2 (c), f = [1, 0, 1, 1, 1, 0, 0, 1, 1]. f is then compressed by an adaptive

binary arithmetic coder [86].

54



Compression of T . According to the analysis in [17], almost all the tdi have value

one. So we set an upper limit to tdi . When tdi is greater than 8, it will be set to

8. Then, an 8-symbol adaptive arithmetic coder is used to compress these visiting

frequencies [86].

Quantization of Θ. Orientations of descriptors are used for fast re-ranking. With

the assumption of uniform distribution on [0, 2π) , each orientation can be represented

by a fixed-length code. In our system, each orientation is represented by one byte:

Θ̄ =
{
θ̄di =

θdi
2π
× 255

}
, (3.3)

where θdi ∈ Θ, and θ̄di is the quantized orientation.

3.1.4 GV-based Re-ranking in the Cloud

We use a fast GV-based re-ranking method to reorder the top ranked images. By esti-

mating a geometric transformation between the query image and the database image,

geometric verification is usually computationally expensive. Tsai et al. conduct an

experiment to evaluate the performance of leveraging location, orientation, and scale

for fast re-ranking [113]. Inspired by their work, we propose a reranking method by

utilizing the orientations of descriptors.

Our method is to estimate the global rotation angle between the query image q

and the database image p. Two matched descriptors of duplicate images should share

the same orientation difference as the global rotation of images. In other words,

two descriptors that are quantized to the same visual word and have an orientation

difference equal to the global rotation angle have a larger probability to be a true

positive match. These highly possible matches are used to evaluate the weighting

of candidate images. Different matches vote differently to the final matching score

according to their inverse document frequency (idf).

Let Θ̄p = {θ̄pdi} denotes the orientations of descriptors in a database image p,

which is one-to-one matched with the orientations Θ̄q in the query image q. Θ̄p is
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stored in inverted files as shown in Figure 3-2 (b). We generate a set of distances

between Θ̄q and Θ̄p. These distances are quantized into C bins:

Θ̄D = {∆θ̄di =
θ̄qdi − θ̄pdi

255
× C}, (3.4)

where θ̄qdi ∈ Θ̄q, and C is set empirically.

We then compute a histogram of Θ̄D and the angle that has the maximum value

of the histogram is assigned as the quantized global rotation angle θ̄r. The geometric

verification score is given by
∑

idf(ldi|∆θ̄di = θ̄r,∆θ̄di ∈ Θ̄D). This score is used to

rerank the retrieved images in a descendent order.

3.1.5 Experiments

We deploy the proposed scheme on a HTC Nexus One phone, which features a Qual-

comm processor with 1GHz, a 512M RAM, and a camera with a maximal 2592×1944

resolution. The server is deployed on a Windows Server, equipped with a Xeon E5540

2.53GHz CPU and 36GB RAM. For a trade-off between memory consumption on

mobile client and retrieval accuracy on the server, we set D = 6 and B = 10, which

produces about 100K visual words and 5.3 MB memory cost on the client. The vo-

cabulary tree is trained from 100 million descriptors. It is initially installed on mobile

phones with the application and can be updated over network.

On the server side, we use a database of one million images to train a vocabulary

tree. This image database is also used in the following evaluations. C is set to 10

in Equation (3.4). To evaluate the retrieval accuracy, the Stanford Mobile Visual

Search Data Set (SMVS) due to its unique characteristics, such as rigid objects and

perspective distortion [12], from which 2, 367 query images of six categories are chosen.

These categories cover book covers, business cards, CD covers, DVD covers, museum

paintings, and video frames. Images are resized to 640 × 480 if they exceed this

resolution.
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Table 3.1: Processing time (msec).
Client Server

Operation Time Operation Time
Feature Extraction 1,000-1,500 Decode Visual Words 1.2
Search Visual Words 37 Match Inverted File 225
Encode Visual Words 4 GV-based Re-ranking 13

Table 3.2: Bit rate for transmission in mobile visual search.
Scheme Approach Data(KB)

1 JPEG-compressed Image 30–40
2 SURF [3] 32
2 Compressed SURF [2] 3.6
2 CHoG [13] 3–4
3 Uncompressed Visual Words 1.38
3 Compressed Visual Words (this work) 0.89

Evaluation of latency. The time needed for different operations of mobile image

retrieval is listed in Table 3.1. Feature extraction costs 1–1.5 secs. Searching through

the vocabulary tree costs about 37 msecs. On the client, the major latency comes

from feature extraction. The most encouraging finding is that pre-retrieval and visual

words compression cost only tens of milliseconds. In other words, we can achieve large

amount of bit rate reduction with negligible time expense. On the server side, we

need 225 msecs to retrieve relevant inverted files and generate a candidate list. 13 to

re-rank top 200 images.

Evaluation of bit rate consumption. As the exact time latency to transmit

information over network is highly dependent on varying wireless connections, we

choose the query bit rate as an objective measurement. For transmitting images and

features, we refer to the experimental results of existing studies. Bit rates of different

schemes are listed in Table 3.2. In this case, 500 descriptors require 3.75KB data to

be transmitted. In our experiment, less than 1KB is enough to transmit the visual

words, which reduces the bit rate by about 3 times compared with the second scheme

of sending features, as well as about 30 times compared with the first scheme of

sending raw images.
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Evaluation of search accuracy. We adopt the retrieval performance of Bag-of-

Words (BoW) as the baseline. Mean Average Precision (MAP) and Recall are used

as the measurement. In the SMVS dataset, each query image has only one reference

image. We can see in Figure 3-3 that recall of top one ranked retrieval is improved

from 0.26 to 0.36. In mobile visual search, users may only care about top-ranked

images. Recall rates for different numbers of returned images are given in Figure 3-3.

To have a closer look at the system performance, we show MAP of different image

categories in Figure 3-4. We can see that the fast re-ranking method works better

across all the given image categories. In average, MAP is improved from 0.3 to 0.4,

with about 30% gain. We can extract hundreds of or more descriptors from an image.

The size of compressed data increases with the number of features. We evaluate the

impact of the number of features on bit rate and MAP, and conclude that an upper

limit of 500 is reasonable.
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3.1.6 Conclusions

we proposed a new mobile visual search scheme which is able to achieve very low bit

rate for transmission in-between mobile client and cloud. The new scheme stores a vo-

cabulary tree and encodes visual words on the client to reduce the bit rate. It provides

or achieves a trade-off between bit rate consumption and computational/memory

costs on the client. We have showed that with the extra low costs of 5.3 MB memory

and light-weight computation of visual words on the mobile client, we can reduce the

data to be transmitted by more than 3 times compared with the sending descriptors

scheme, as well as 30 times compared with the sending raw images scheme.

3.2 Compact Visual Representation for Video Sum-

marization

In this section, we propose a novel Bag-of-Importance (BoI) model-based method to

investigate the contribution of each individual feature to the representativeness of

video content. A video can be viewed as a collection of features weighted by their

individual representativeness instead of equal importance. The BoI model provides a

mechanism by exploiting both the inter-frame and intra-frame properties to quantify

the importance of the individual features representing an entire video. The effective-

ness of the BoI model has been preliminarily demonstrated in our recent work [74].

We also bring a new perspective into static video summarization by formulat-

ing the problem as an unsupervised feature learning problem. Those representative

frames hence can be identified in terms of the weighted aggregation of learned fea-

tures. It is very reasonable to assume that the raw feature space of a video sequence

is a high dimensional dense manifold. By removing massive redundancy, it is possible

to project a video sequence into a low dimensional sparse space. Locality-constrained

linear coding (LCC) method proposed in [117] provides such a mechanism, which can

take advantage of the manifold’s geometric structure to learn a nonlinear function

in a high dimension space, and locally embed points on the manifold into a lower
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Figure 3-5: Framework of static video summarization with the proposed BoI model.

dimensional space, expressed as coordinates with respect to a set of anchor points.

Figure 3-5 provides an overview of our proposed approach. We first employ LCC

to transform the raw input features (as shown in (a)) into a sparse space and name the

transformed feature representations as locality-constraint anchor points in this thesis,

as shown in (b). By embedding the similar raw local features into the same anchor

points, the redundancy is reduced but invariance of concurrent visual patterns (e.g.,

salient colors, same shapes, similar textures, etc.) among frames is reserved. With

the locality constraint the essence of the difference is also captured. We calculate the

l2 norm coefficients of the learned features as the magnitudes of the anchor points

and quantize all the magnitudes into a flat histogram. Each feature representation

is further indexed by the nearest histogram codeword. Finally, the histogram forms

a BoI representation, as shown in (c). Therefore, a video frame can be viewed as
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(a) (b)

Figure 3-6: Illustration of LCC anchor points for Bag-of-Importance model.

a bag-of-importance model over the anchor points, by referring to the bag-of-words

model which has been widely used in Natural Language Processing (NLP) domain.

As a result, a video summary can be generated by selecting the frames with high

representativeness scores, which are calculated by aggregating all the importance

scores of the learned features contained in the corresponding video frames, as shown

in (d).

Our approach consists of two core steps: (1) learning the transformed features from

the raw local feature and identifying the BoI representation where the importance of

each learned feature to a given video is quantized by exploiting the group sparsity

property of all the features within the video, as discribed in Section 3.2.1; and (2)

video summarization with the BOI model where a representativeness score for each

frame is calculated by aggregating the importance of learned features contained in

the frame and the frames with top-ranked representativeness scores are chosen as the

final summary, as discribed in Section 3.2.2.
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3.2.1 LCC-based Bag-of-Importance Representation

As illustrated in Figure 3-6, there are two steps in identifying the BoI: (1) learning

a transform by projecting the raw local features into a sparse space. We employ

the classical sparse pursuit technique to learn the dictionary and utilize the locality-

constrained linear coding method to transform the raw features to the anchor points

in the transformed space. After that, the features are weighted by calculating the

magnitude of the coding coefficients; and (2) generating the BoI representation by

deriving the weight distribution and quantizing the distribution into different inter-

vals. We provide an overview of the algorithm for identifying the Bag-of-Importance

model in Algorithm 1. The algorithm is fed with the raw local features and outputs

the Bag-of-Importance representation over the learned features. Two key steps con-

stitute Algorithm 1: Step 1 depicts the procedures of feature learning on transforming

the raw local features into the sparse space and weighting the learned features by l2-

norm magnitudes; Step 2 depicts the procedures of generating the BoI representation.

Algorithm 1 Generating Bag-of-Importance Representation
Input: V = [F1, F2, . . . , FM ]: M frames of the target video, K: dictionary size, λ: sparsity
tuning parameter, L: quantizer size.
Output: ∥z∥l2 : magnitude (l2 norm) of LCC coefficients, Il: importance codeword, P̄IL :
Bag-of-Importance.
Step 1: Encode the descriptors and quantify the features

1. Extract interest points and collect all the local descriptors X = {x1,x2, . . . ,xN}.
2. Learn the dictionary D by pursuing the sparsity reconstruction with the convolution
approach (Eq. (3.6)).
3. Obtain the coding coefficients zi ∈ RM by the Locality-constrained coding (LCC)
method (Eq. (3.8)).
4. Quantify the features and generate the weight curve ∥z∥l2 =
{∥z1∥l2 , ∥z2∥l2 , . . . , ∥zN∥l2}.

Step 2: Generate Bag-of-Importance (BoI)

5. Project the weight curve ∥z∥l2 into the value plane and obtain value distribution as
P (proj∥zi∥l2 ) ∈ [min(∥z∥l2),max(∥z∥l2)].
6. Trough the uniform quantizer, generate the importance codeword as Il = min(∥z∥l2)+
(l − 1) · I⃗, and I⃗ = {max(∥z∥l2)−min(∥z∥l2)}/L is the step size of each interval.
7. Generate the term frequency of the Bag-of-Importance model by the normalized term
frequency as PIl = f(t|Il)/max{f(t, IL)}.
8. Modify the term frequency PIl to the term weighting P̄Il value, as shown in Eq. (3.11).
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Weighting Local Features in Sparse Domain

Given a local descriptor set X = [x1,x2, . . . ,xN ] ∈ Rd×N for representing the col-

lections of all the local features extracted from each frame within a video, where

xi denotes the ith local feature (Scale-Invariant Feature Transform (SIFT) descrip-

tor [71] in this thesis), d denotes the dimension of the feature descriptor, N denotes

the number of all the local features extracted from the given video. To derive the

code coefficients of each local descriptor, we first employ the sparse pursuit technique

to learn the dictionary, then utilize the locality-constrained linear coding method to

transform the raw local inputs to the sparse space.

Learn the Dictionary by Sparse Pursuit. We follow the classical sparse pursuit tech-

nique using group Lasso [135],

min
D,{zi}i=1,...,N

N∑
i=1

∥xi −Dzi∥2l2 + λ∥zi∥l1 , (3.5)

where a dictionary D ∈ Rd×K ( K is the predefined vocabulary size and set to 1024

in our experiments) is derived that the local features can be reconstructed from only

a few columns of D by computing the product Dzi. The sparsity in the zi vectors

is enforced by the last term and λ is a regularization parameter that establishes

the relative importance of the reconstruction error ∥xi −Dzi∥2l2 with respect to the

regularization term |zi∥l1 .

Locality Constrained Coding (LCC). In our previous work [74], once the dictionary

is learned, we employed a convolutional-based sparse coding approach to compute

the code coefficients [96], where the matrix-vector product is replaced by a convolu-

tion [96]. This replacement is possible since we can reasonably assume the local fea-

tures among frames are translation invariant. The optimization problem in Eq. (3.5)

therefore becomes:

min
dj ,{zji}

N∑
i=1

∥xi −
∑
j

dj ∗ zji∥2l2 + λ
∑
j

∥zji∥l1 , (3.6)
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where dj are the atoms of the learned dictionary D and ∗ denotes the convolution

operator and the zji can be seen as a set of sparse coefficients with the same size of the

feature collections. The original problem in Eq. (3.5) was optimized using stochastic

gradient descent approach [57].

Compared with our previous work, this work employs more effective and efficient

coding scheme called Locality Constrained Coding (LCC) in place of sparse coding

for projecting the local points into a manifold where their geometric structure can be

more easily identified. LCC utilizes the locality constraints to project each descriptor

into its local-coordinate system, which learns a set of anchor points or a dictionary

that best reconstruct samples while preserving locality. LCC has been successfully

applied to learn visual feature dictionary and achieved top level performance for object

recognition and related tasks [133, 117].

Given the dictionary trained by Eq. (3.5), local coordinate coding finds coefficients

zi ∈ Rk for each feature xi that minimizes the reconstruction error and violation of

locality constraint. An classical approach is to minimize summed objective function

of all data samples over D and ∥zi∥ simultaneously [117], i.e.

min
zi

N∑
i=1

∥xi−Dzi∥2l2+λ∥ci ⊙ zi∥2,

s.t.1Tzi = 1, ∀i

(3.7)

where ⊙ denotes the element-wise multiplication, and ci ∈ RM is the locality adaptor

that gives different freedom for each basis vector proportional to its similarity to the

input descriptor xi. Locality adaptor ci is calculated as,

ci = exp(
dist(xi,D)

σ
) (3.8)

where dist(xi,D) = [dist(xi,d1), · · · , dist(xi,dM)]T , and dist(xi,dj) is the Euclidean

distance between xi and dj, and σ is used for adjusting the weight decay speed for

the locality adaptor.

In comparison to the sparse coding (SC) process, LCC also achieves less recon-
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struction error by using multiple bases. Nevertheless, due to the over-completeness

of the codebook, the SC process might select quite different bases for similar patches

because of the regularization term of l1 norm favors sparsity, thus losing correlations

between codes. On the other side, the explicit locality adaptor in LCC ensures that

similar patches will have similar codes.

Weighting the Coding Coefficients. Once the transformed feature is learned in the

sparse space, we can obtain the weight of each feature by calculating the l2 norm in

the transformed space. As a result, comparing the difference of the features falls into

a very simple task of comparing their weights ∥zi∥2 in the sparse space.

Generating the BoI Representation

Given the generated weights of all the learned features, the importance of each weight

can be derived with its distribution among all the features. Therefore, a video can be

viewed as a bag of importance (BoI) by referring to the bag-of-words (BoW) model

which has been widely used in Natural Language Processing (NLP) domain. By

directly projecting the weight curve ∥Zi∥2 into its value space, we obtain a value

distribution as P (proj∥zi∥2) ∈ [min(∥Zi∥2),max(∥Zi∥2)], as shown in Figure 3-7.

Since P (·) is a continuous distribution and sensitive to projection loss, we use a

uniform quantizer to map the original value to the index of the nearest vector in a

so-called importance codeword as I⃗ = [I1, I2, . . . , Il, . . . , IL], where L equals to the

size of the intervals which split the value space (set to 100 in our experiments), and

each importance codeword (i.e. term) is defined as

Il = min(∥Zi∥2) + (l − 1) · ∇, (3.9)

where ∇ = {max(∥Zi∥2) −min(∥Zi∥2)}/L is the step size of each interval. And we

further utilize the normalized term frequency, which is the simplest choice, instead of

using the raw frequency of a local feature within an interval, to obtain the codeword
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value in the bag-of-importance model as

PIl =
f(t|Il)

max{f(t, IL)}
, (3.10)

where f(t|Il) is the entry of the quantization vectors refers to count of the interest

points (t) fall into this intervals (Il).

Intuitively, this calculation determines the relative frequency of transformed fea-

tures over the entire feature corpus. It counts the repeatable patterns in the trans-

formed space. However, the redundant patterns are also accumulated, e.g., the most

repetitive transformed features are with the highest PIl value. However, these fea-

tures are too common and most likely present in every frame, hence not discriminative

for differentiating the frames. In order to overcome the redundancy, we produce a

composite weight to examine the most prominent features, and render such common

features essentially negligible with a relatively low score. In this work, we borrow

term-weighting approaches in text retrieval to modify the term frequency score PIl in

Eq. (3.10) as term weighting value,

P̄Il = [
f(1|Il)∑L

t=1(f(t|Il))
log(

M

f(Il|1)
), · · · , f(t|Il)∑L

t=1(f(t|Il))
log(

M

f(Il|t)
),

· · · , f(L|Il)∑L
t=1(f(t|Il))

log(
M

f(Il|L)
)],

(3.11)

where f(t|Il) denotes the number of transformed features that fall into the importance

codeword Il, f(Il|t) denotes the number of importance codewords that are assigned

by the transformed features which fall into l interval, M denotes the total number

of codeswords in the transformed corpus. In comparison to the classical TF-IDF

weighting schemes, f(t|Il)∑L
t=1(f(t|Il))

serves as the term frequency of similar interest points,

M
f(Il|L)

serves as the inverted codeword frequency that calculates the commonness of

the codeword Il. Red curve in Figure 3-7 illustrates the modification from the term

frequency pIl to the term weight value P̄Il .
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Figure 3-7: Illustration of the Bag-of-Importance representation.

3.2.2 Video Summarization with BoI Model

After generating the BoI representation for a given video, each frame has its own

distribution over the Bag-of-Importance. The BoI based distributions of different

video frames are generally different. That is, BoI distribution can easily differentiate

those visually different frames. Meanwhile, among the similar frames (e.g. adjacent

frames) which share similar BoI distributions, the more coverage of the similar im-

portant codewords of the BoI model, the closer their representativeness scores are.

Therefore, the representativeness score of the m-th frame can be calculated by aggre-

gating the important codewords of the BoI model:

Ωm =

∑Nm

i=1{
∑L

j=1 sgnI(∆
X−P (IL)
i , j) · P̄Il}∑M

m=1Nm

, (3.12)

where Nm stands for the number of the extracted interest points of the m-th frame,

sgnI(·) is the sign function which equals to 1 when i-th keypoint is indexed by the

j-th importance codeword, otherwise 0.

It is noticed that there are some common terms appearing across the majority of

the frames within a video and these terms are not very helpful in differentiating the
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Algorithm 2 Summarizing Video with BOI model

Input: P̄IL : Bag-of-Importance, TI⃗ : features indexed by the corresponding importance
codewords, ϵ: predefined percentage for the “stop-importance” terms, ⟨ω1, ω2⟩: predefined
weight set for the spatial salience map, s: predefined number of the summarized keyframes.
Output: Vs = [F ′

1, F
′
2, . . . , F

′
s]: Video summarization set.

Step: Detect keyframes by BOI

1. Filter out the features whose commonness is greater than the given “stop-importance”
percentage ϵ.
2. Calculate the aggregated term weights Ω̃m over the Bag-of-Importance model for each
frame Fm, by integrating the spatial saliency map, ⟨ω1, ω2⟩.
3. Generate frame representativeness curve by Ω̃M = {Ω̃1, Ω̃2, . . . , Ω̃M}.
4. Detect the local maxima of the representativeness curve and extract the top s corre-
sponding keyframes to construct the final summary Vs.

  

  

 
 

 

weight value of -th keypoint  is:  =   

weight value of -th frame is:  

Figure 3-8: Illustration of calculating the representativeness of the m-th frame.
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importance among video frames. Similar to the stop-word practice in NLP domain,

we choose a predefined percentage ϵ of the most frequent terms as “stop-importance”

and filter them out during the calculation of frame representativeness. After the

heuristic trials, we found that our approach is able to achieve the best summarization

performance when ϵ is set as 5.

According to attention model [77], visual content at different locations of a frame

contributes differently to the frame importance and central regions are more impor-

tant than others. Therefore, it is necessary to refine the weight of each local feature in

terms of its spatial location. In this thesis we empirically define a spatial saliency tem-

plate as illustrated in Figure 3-8, though other advanced saliency detection approaches

(e.g. [40]) can be integrated into our framework. Therefore, the representativeness

score of the m-th frame can be updated with the following equation:

Ω̃m =

∑Nm

i=1 sgn⟨ω1,ω2⟩(i){
∑L

j=1 sgnI(∆
X−P (IL)
i , j) · P̄Il}∑M

m=1Nm

, (3.13)

where sgn⟨ω1,ω2⟩(i) is the sign function to decide the saliency within the frame for

weighting the i-th keypoint. As illustrated in Figure 3-8, if falling into the central

area of the frame, it is assigned by ω1, otherwise it is assigned by ω2.

We first filter the keypoints if they are indexed by the stop-importance terms

and obtain the representativeness score by referring to Eq. (3.13). Once the final

representativeness scores of all the frames are obtained, we are able to plot a repre-

sentativeness curve along the frame index as illustrated in Figure 3-9. By detecting

the local maxima of the representativeness curve [115], the corresponding keyframes

are chosen as the final summary.

3.2.3 Experiments

In this section, we firstly describe the video datasets we utilized for the evaluations.

Secondly, we introduce the evaluation metric we used in this thesis. In order to con-

duct a fair comparison among different video summarization approaches, we employ

the same evaluation metric for all the methods. Then we investigate several impact
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Figure 3-9: Illustration of frame selection over the representativeness curve.

factors that may influence the performance for obtaining the optimum experiment

configurations. Last we compare the video summarization results obtained by our

method with several state-of-the-art methods.

Experiment Configurations

Three Benchmark Datasets. The experiments are conducted through three bench-

mark datasets across several genres. We firstly conducted the preliminary experiments

with 10 video shots for investigating the underlying impact factors and obtaining the

optimum experimental configurations. Then we evaluate different methods under two

full video length datasets. The videos in the third video dataset are collected from

web sites, which are more realistic and challenging.

Video shots in open video project (OPV) dataset. As described in Table 3.2.3, it

consists of 10 video shots across several genres (e.g., documentary, education, and

history). The ground-truth keyframes are manually selected by three students with

video processing background. Similar to [22], when calculating the quantitative re-
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Table 3.3: Video shot dataset from the open video project database
Video Name From Frame To Frame # of Frames

v25 A New Horizon, segment 02 664 900 237
v28 A New Horizon, segment 05 3223 3440 218

v33 Take Pride in America, segment 03 540 650 111
v39 Senses And Sensitivity, Introduction to Lecture 4 presenter 1838 1934 97

v40 Exotic Terrane, segment 01 1790 1989 200
v49 Americas New Frontier, segment 07 150 500 351

v57 Oceanoor Legacy, segment 04 1600 1800 201
v58 Oceanoor Legacy, segment 08 540 633 94

v63 Hurricane Force - A Coastal Perspective, segment 03 867 1012 146
v66 Drift Ice as a Geologic Agent, segment 05 766 977 212

sults, we average the results among the three ground-truth sets of keyframes. The

number of target keyframes is set to five.

Full open video project dataset. We then work under 50 videos selected from the

Open Video Project (OPV). Those videos are the same ones used by [5, 85, 23], we

call it OPV dataset. All videos are in MPEG-1 format (30 fps, 352 × 240 pixels).

The selected videos vary across several genres (documentary, educational, ephemeral,

historical, lecture) and their duration varies from 1 to 4 min. The user summaries

were created by 50 users, and each video has 5 video summaries created by 5 different

users. In other words, 250 video summaries were created manually.

YouTube dataset. The next 50 videos were collected from web sites, like YouTube.

These videos also vary across several genres (cartoons, news, sports, commercials,

tv-shows and home videos) and their duration varies from 1 to 10 min. Following the

same experimental protocol as before, static summaries are manually created by 50

users. Five user summaries were produced for each video. The videos in this new

collection differ in color, length, motion and subject, which are more challenging.

This video dataset is reported in [23].

Evaluation Metric. In order to quantitatively evaluate the performance of video

summarization, by following the suggestion in [111], we employ F-score [107] to

aggregate both the precision and the recall of the summarization result as

Fβ =
(β2 + 1)Precision ·Recall

β2Precision+Recall
,
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Figure 3-10: Evaluation on testing video dataset.

where β controls the balance between precision and recall. The F-score can be inter-

preted as a weighted average of precision and recall, where a score reaches its best

value at 1 and worst at 0. In our evaluation setup, we set β = 1 and Fβ is equivalent

to the harmonic mean of precision and recall.

Investigating the Impact Factors

Impact of sparsity tuning parameter. As mentioned in DSVS method [22], the se-

lection of the sparsity tuning parameter λ has the impact on the summarization

performance, as shown in the Figure 3-10. Therefore, we selected different λ values

between 0.15 and 0.5 and observed that our BoIVS method is robust to λ, while the

DSVS method achieves the best performance when λ = 0.5.

After investigating the impact of λ on the convergence rate of sparse coding, we

noticed that when λ = 0.15, it converges much faster than when λ = 0.5, as shown

in Figure 3-11. Therefore we adopted λ = 0.15 as our sparsity tuning parameter for

the rest of our experiments.
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Figure 3-11: Efficiency of the proposed algorithm.

Table 3.4: Impact of stop-importance & spatial saliency.

Method
BoIVS BoIVS

BoIVS(without filtering out (if not counting

stop-importance terms) saliency encodes)

F-score 59% 62% 64%

Impact of Stop-Importance. As shown in Table 3.4, without filtering out the key-

points corresponding to the stop-importance, the summarization performance de-

creases 5%. That is, there is much redundancy due to the temporal continuity of

video content, a simple stop-word like strategy, namely stop-importance in this work,

can effectively eliminate the frequently appeared local features and improve the dis-

crimination among frames.

Impact of Spatial Saliency. Similar to the observation on the impact of stop-importance,

it can be seen from Table 3.4 that the summarization performance decreases 2% with-

out taking the spatial saliency into account. That is, more finely tuned saliency map

could further improve the summarization performance.
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Evaluations on Benchmark Datasets.

In the above section, we investigate several factors may influence the experiment

configurations. Once the experimental parameters are fixed, we then compare our

proposed method with several state-of-the-art methods. Our proposed method is

named as Bag-of-Importance model based video summarization method, denoted by

BoIVS.

We firstly compare our method with other methods the video shots dataset for

evaluating the capability of the proposed method on capturing the local discrimina-

tive details. As shown in Figure 3-10, BoIVS with F-score of 64% clearly outperforms

two Ios-Content based method [92] with F-score 56%, the dictionary selection based

method (denoted by DSVS) [22] with F-score 60%. In order to further demonstrate

the performance difference on capturing the discriminative details, four summariza-

tion results are shown in Figure 3-12, where the first row is the ground truth, the

second row is the summary obtained with DSVS, and the third row is the summary

obtained with BoIVS. The frames marked with green borders are the correct matches

between the result of the DSVS method and the ground truth and the frames marked

with red borders are the correct matches between the result of the proposed BoIVS

method and the ground truth. It is clear that our BoIVS method can produce the

summary result which matches more ground truth frames. In particular, our proposed

BoIVS approach is able to identify the frames with more local details. For example,

in Figure 3-12(a), the third frame of the result produced by the DSVS method does

not match the ground truth frame since the global feature is not able to capture the

creases of the shirt. As shown in Figure 3-12(b), by referring to the second frame,

our BoIVS method is able to identify the frame with yellow collar, while the DSVS

method chooses a frame without such details. Similarly, as shown in Figure 3-12(c),

by referring to the first frame, our BoIVS is able to identify the frame including the

camera; however, such details are not included in the frame chosen by the DSVS

method. For the last two frames, it is noticed that our BoIVS method is able to

capture more details such as the head pose change of the second left person. In par-
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ticular, since the overall scene such as the table has appeared in previous frames, our

BoIVS method is more capable in identifying important and discriminative content.

As shown in Figure 3-12(d), although both the BoIVS method and the DSVS method

have one frame mismatched with the ground truth, it is observed that the result ob-

tained by the BoIVS method can better illustrate the take-off process of the plane,

since the last frame produced by the DSVS method is not able to indicate the plane

is flying far away.

We then compare our proposed BoIVS method with several state-of-the-art meth-

ods under the full open video project dataset: OVP1 by the service provider, DT

proposed in [85], STIMO proposed in [29], KFVS proposed in [36] and dictionary se-

lection based method (denoted by DSVS) [22] under full video length. For full Open

Video Project dataset, as shown in Figure 3-13, BoIVS via Locality Constrained Cod-

ing method clearly outperforms several state-of-the-art methods. LCC method also

demonstrates a superior performance with F-score of 56.5% (+-2.15%) in comparison

to non-coding method (with raw input feature) with F-score of 47.3% (+-4.72%) and

sparse coding method with F-score of 56.0% (+-1.14%). The extracted examples can

be seen from Figure 3-15. The first row is the ground truth (we showcase here with

the ground truth frames annotated by one of the five users, which is annotated by

9 or 10 frames), the second row is the summary obtained with the latest state-of-

the-art method KFVS [36], the second row is the summary obtained with the latest

state-of-the-art method DSVS [22], and the third row is the summary obtained with

our proposed method BoIVS. The frames marked with green borders are the correct

matches between the summary and the ground truth; the frames marked with yellow

borders are the frames with discriminative content despite not being annotated by

the users. The comparisons demonstrate the proposed method BoIVS is very good

at capturing the essence of the video content.

1www.openvideo.org
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V28 

(a) Video: v28 A New Horizon, segment 05V57 

(b) Video: v57 Oceanoor Legacy, segment 04V49 

(c) Video: v49 Americas New Frontier, segment 07
V25 

(d) Video: v28 A New Horizon, segment 05

Figure 3-12: Summarization examples on the video shots in OPV database.
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Figure 3-13: Performance evaluation with the full Open Video Project database. .

3.3 Conclusions

we present a novel feature learning-based approach for static video summarization.

Other than treat each video frame as a high dimensional hand-crafted visual feature

vector, we explore visual content at finer granularity by focusing on learned features

in a low dimensional transformed sparse space. We develop the BoI model by utilizing

the group sparsity property to derive the importance of learned features for a given

video. And the importance of learned features to the individual frames is further re-

fined by using a spatial saliency weighting method. A simple yet effective stop-word

like strategy is also devised to improve the discrimination among frames. Therefore,

we formulate video summarization as identifying the importance of learned features

and extracting representative frames with strong coverage of important features. Ex-

periments have been conducted with three sets of diverse videos to demonstrate the

superiority of the proposed approach against the state-of-the-art methods and to

investigate the impact of various aspects on the proposed approach.

The key contributions of our approach are three aspects:

• We develop a novel Bag-of-Importance model to effectively quantify the im-

portance of each local feature in a transformed sparse space, which is one step
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Figure 3-14: Performance evaluation with the YouTube Database.

further than the recent methods by treating local features equally. With the

proposed scheme, both the inter-frame and intra-frame properties of the fea-

tures are exploited and quantified, which allows an effective way to select the

keyframes capturing both the dominant content and the discriminative details.

• We address the video summarization problem from the feature learning perspec-

tive. We utilize the unsupervised feature learning approach (by employing the

locality-constrained linear coding method) to subsequently feed in the summa-

rization pipeline with the learned features, and showcase superior performance

in comparison with the hand-crafted features having been utilized in traditional

methods.

• We conduct comprehensive experiments on three benchmark video datasets to

evaluate the proposed method and also investigate several key factors that im-

pact performance.
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(a) v24—KFVS / DSVS / BoIVS: 5 / 6 / 9 correct matches (b) v59—KFVS / DSVS / BoIVS: 8 / 5 / 8 correct matches

(c) v29—KFVS / DSVS / BoIVS: 6 / 6 / 8 correct matches (d) v45—KFVS / DSVS / BoIVS: 4 / 5 / 7 correct matches

Figure 3-15: Summarization examples on full OPV database.
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(a) v20—KFVS / DSVS / BoIVS: 4 / 4 / 8 correct matches (b) v90—KFVS / DSVS / BoIVS: 5 / 5 / 8 correct matches

(c) v108—KFVS / DSVS / BoIVS: 4 / 5 / 6 correct matches (d) v98—KFVS / DSVS / BoIVS: 5 / 3 / 6 correct matches

Figure 3-16: Summarization examples on YouTube database
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Chapter 4

Content-based Visual Search

In this chapter we describe the technical details and the experiments for the near-

duplicate video shot detection problem and the human action recognition problem.

4.1 Adaptive Near-Duplicate Video Detection

In this section, we propose an improved near-duplicate shot detection strategy by re-

designing the reference frame selection method to emphasize detection accuracy and

also extending the idea of shot-based interest points to preserve detection efficiency.

At first, we propose a new adaptive frame selection method based on Pearson’s corre-

lated coefficient (PCC) which measures the correlation between each pair of successive

frames. The shot is then partitioned into several fractions at which the correlation

coefficients decrease abruptly so that wide diversity is achieved. We produce the

reference frame set by selecting the frames from the most representative fractions

to ensure a wide coverage. Secondly, the shot-based interest point extraction algo-

rithm is performed to identify important interest points from the set of representative

frames. Finally, the local interest points are matched among frames.
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4.1.1 Pearson’s Correlation Coefficients between Frames

In statistics, the Pearson’s correlation coefficient typically denoted by r (sometimes

also referred to as the Pearson product-moment correlation coefficient) has been

widely employed to measure the correlation (or strength of linear dependence) be-

tween two variables X and Y , giving a value between +1 and −1 inclusive. It is

defined based on the covariance of the two variables divided by the product of their

standard deviations,

r =
n∑

i=1

(Xi −X)(Yi − Y )/(

√√√√ n∑
i=1

(Xi −X)2

√√√√ n∑
i=1

(Yi − Y )2), (4.1)

where Xi (Yi) is a sample of X (Y ), X (Y ) is the expectation of X (Y ), and n is the

number of samples.

According to the observation of Eq. (4.1), the PCC value provides us a measure of

the degree of statistical relationship between X and Y . In this study, two consecutive

frames are equivalent to two variables and their pixels form the samples. Therefore,

large PCC value means high correlation between two frames. Particularly, two frames

are identical when r equals 1. Similarly, small PCC value stands for obvious variations

occurring between two frames. With this consideration, it is possible to construct a

model utilizing PCC value between two successive frames to represent the distribution

of discriminative shot content.

In our approach, the PCC value between two successive frames is calculated for

each of the RGB planes. For frame ft with n×m pixels, R, G, and B planes are rep-

resented by color vectors, CR
t , C

G
t and CB

t , respectively. In the case of R component,

the element CR
t (i, j), with 0 ≤ i ≤ n and 0 ≤ j ≤ m, denotes the colour value of

pixel (i, j) in R channel. By following Eq. (4.1), the PCC value rRt,t+1 between frame
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(a) Pearson’s correlation coefficients among frames in one video shot

(b) Reference frames produced By FPV

(c) Reference frames produced By PCC

Figure 4-1: Comparison of reference frames produced by FPV and PCC.

ft and its successive frame ft+1 for the R plane is expressed by

rRt,t+1 =

n∑
i=1

m∑
j=1

(CR
t (i, j)− CR

t )(C
R
t+1(i, j)− CR

t+1)√√√√ n∑
i=1

m∑
j=1

(CR
t (i, j)− CR

t )
2

√√√√ n∑
i=1

m∑
j=1

(CR
t+1(i, j)− CR

t+1)
2

(4.2)

where CR
t and CR

t+1 are the average values in R space among all pixels in frame ft

and ft+1, respectively.
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The total PCC value is defined as

rt,t+1 , rRt,t+1 + rGt,t+1 + rBt,t+1 (4.3)

As shown in a sample plot of PCC values (Fig. 4-1(a)) for a video shot, it is ob-

served that PCC values effectively reflect content variation and distribution among

consecutive frames in the shot.

4.1.2 Adaptive Reference Frame Selection

Three criteria are set to select reference frames: 1) The reference frames should be

representative; 2) the reference frames should reflect content variations adaptively.

It is not efficient enough to just collect frames apart from each other; and 3) The

number of reference frames should be as few as possible so as to achieve compact

representation in interest-point extraction (see Section 4.1.3).

Fig. 4-2 describes the detailed algorithm adaptively producing the reference frame

set Fv. There are two key components: 1) a video shot is partitioned into k + 1

fractions by identifying k smallest PCC values in the shot (Steps 6 to 7), and 2) the

middle frame of each fraction is chosen as a reference frame (Step 11). The value of k

is adaptively determined by repeating Steps 5 to 9 until the percentage of the video

shot covered by k + 1 fractions is greater than δ (Step 10). If the variation within a

shot is smaller than a threshold ϵ, the shot is partitioned into 3 fractions and the two

middle frames are selected as reference frames.

As shown in Fig. 4-1 (b) and (c), our adaptive reference frame selection algorithm

ensure the frames selected to be consistent with the distribution of content variations

and be more representative. In addition, there are fewer reference frames selected by

our produced algorithm than by FPV approach in this example.

4.1.3 Shot Interest Points Extraction

Similar to [144], shot interest points are extracted by matching the local interest points

among the reference frames. The matched points with higher occurrence frequency

84



Algorithm for producing a reference frame set

input: Fv =< f1, f2, . . . , fN > - All the frames of shot v, rv = {r1,2, r2,3, . . . , rN−1,N} - PCC
Value of each pair of successive frames, ε - Threshold on the ratio of the collected frames to
the total frames, δ - Threshold for ensuring that most frames are covered.

output: Fv - Reference frame set

1. Fv = Φ;

2. if min(rv) ≥ ε

3. Fv =< f[N/3], f[2N/3] >

4. else k = 1

5. do{ k = k+1;

6. Calculate Bottom-k PCC Value
rmin =< r1min, r

2
min, . . . , r

k
min >

7. Divide shot to k + 1 fractions
Fc1 = [f1, . . . , fc1 ], Fc2 = [fc1+1, . . . , fc2 ], . . . , Fck+1

= [fck+1+1, . . . , fN ]

8. Count frames of each fractions
Σc =< Σc1 ,Σc2 , . . . ,Σck+1

>

9. Sort Σc by descending order and acquire top-k fractions
Σc′ =< Σc

′
1
,Σc

′
2
, . . . ,Σc

′
k
>

10. while (
Σ

c
′
1
+Σ

c
′
2
+···+Σ

c
′
k

N < δ)

11. Select middle frame from each sorted fraction
Fv =< fc′1

, fc′2
, . . . , fc′k

>

12. return Fv

Figure 4-2: Producing Reference Frame Set.
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Algorithm for shot interest point extraction

input: Fv =< fc′1
, fc′2

, . . . , fc′k
> - Reference frame set

τ - Frequency threshold

output: Pr < pr > - Set of shot interest points

1. Pr = Φ; Let frames F ′
v =< fc′i+1

, fc′i+2
, . . . , fc′k

> represents the rest of the frames next to

current matching frame fc′i
. Let m be the number of matches of pij .

2. for each frame fc′i
in Fv

3. for each local descriptor pij in fc′i
4. m← 0

5. for each frame fc′j
in F ′

v

6. FindMatchedPoint(pij , fc′j
)

7. if Found

8. m← m+ 1

9. if m ≥ τ

10. Pri ← pij

11. Pr ← Pri

12. return Pr

Figure 4-3: Shot Interest Points Extraction.

are selected. In order to accommodate the reference frames selected by our proposed

algorithm, we perform a different recursive policy to match local interest points. Since

the reference frame set is composed of frames prioritized by the length of the fractions

that they represented, in each recursion, the matchup occurs among the current frame

to its sequential frames.

Fig. 4-3 describes the procedures of our method on extracting shot interest points.

Given a local descriptor pij (described by PCA-SIFTs [47] in this thesis) of a frame fi

in reference frame set, we find each matched local interest point from all the frames

next to fi one by one. If a matched interest point is found, the occurrence frequency

will increase by one. Until the frequency is greater than the pre-defined threshold,

the corresponding point will be collected into the shot interest point set. By adopting

such shot-based interest point extraction algorithm, we ensure that the important

local descriptors are reserved for representing the dominant shot content. Besides,

discriminative local interest descriptors are well collected into the shot interest point
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(a) Average Precision

(b) Precision-Recall

Figure 4-4: Performance comparison on near-duplicate video shot detection.

set along with the distribution of the shot variations.

4.1.4 Experiments

Experimental Settings. We use 2.2-hour videos (including 811 shots) of the 2008

TRECVID corpus (including 35928 video shots) for our experiments. Following the
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Figure 4-5: Overall Average Precisions on Adjacent Shots Detection

evaluation methods in [47] and [144], the 2.2-hour videos are transformed in the fol-

lowing ways to produce near-duplicate video shots: 1) increase and decrease contrast

by 25%; 2) increase and decrease brightness by 25%; 3) increase and decrease satura-

tion by 50%; 3) crop the frame to 50%, preserve centre region; and 4) resize the frame,

decrease scale by two times. Therefore, 19.8-hour videos (including 6488 shots) are

obtained as the video database. We use the latest algorithm proposed by AT&T at

2006 TRECVID to segment the transformed videos into shots.

We adopt the standard evaluation metric to evaluate our strategy. Following the

most popular way to measure the effectiveness, we calculate precision and recall,

respectively. In this thesis, precision is the ratio of the number of correctly detected

shots to the total number of detected shots and recall is the proportion of the number

of correctly detected shots to the total number of detected shots.

We also follow another popular criteria - Average Precision [144] to measure the

effectiveness. The average of the precision value is obtained after each relevant shot

to the query shot is detected, as follows: AvgPrecision = 1/N(
∑N

r=1(P (r) ∗ rel(r))),

where r represents the rank, N is the count detected, rel() is a binary function on

the relevance of a given rank, and P (·) is the precision based on a given cut-off rank.
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Performance of Near-duplicate Detection. We evaluate the effectiveness of

our proposed method in comparison with the most recent work, the FPV based algo-

rithm [144]. Total 811 shots are evolved as the query shots for testing the detection

performance. The threshold values are set as δ = 0.90, ϵ = 0.95 after experimentally

testing several choices, and τ = 2 as referred to [144].

Fig. 4-4 (a) shows the detection performance of both approaches, FPV-based and

our proposed (PCC-based) in terms of the average precision. It is observed that

PCC-based approach shows better performance than FPV-based approach across

consistently all T = {8, . . . , 20}. The overall performance gain can be up to 12% by

the PCC-based approach. Due to that more representative local interest descriptors

are selected into the shot interest point set, such enhanced representation is more

capable of collecting the distribution of discriminative information. Therefore, the

content variations have been taken into account during shot matching. Note in this

comparison, we truncate the values of T from T ≥ 8. This is mainly because each

initial shot is transformed to 8 different shots in our experiment as seen in Fig. 4-

4(a). We trim T from 8 for highlighting the capability of our proposed algorithm on

detecting all possible near-duplicate shots in the dataset.

Similar observation can be drawn from Fig. 4-4(b) demonstrating the performance

comparison in terms of precision-recall curve that the PCC-based approach yields

better precision than the FPV based approach at every recall level.

Overall, our adaptive reference frame selection scheme is effective in identifying

representative yet diverse frames, which results in more effective characterization of

shot content for near-duplicate video shot detection.

Extensibility and Further Discussion. It is noticed that many adjacent shots

in the corpus are of high visual similarity. Therefore, experiments are also conducted

to search for adjacent shots (previous and next) which are considered similar to a

given reference shot. As shown in Fig. 4-5, our proposed approach performs much

better than the FPV-based approach, which means that our proposed approach is

more flexible in capturing content similarity than the FPV-based approach, besides

89



the matching between near-duplicate video shots. Although the adjacent shots are

captured into the retrieval list, the accuracy of detecting near-duplicate shots is pre-

served, which is shown on the that when T ≤ 8. Therefore, the average precision is

at a quite low level, smaller than 0.03 when T ≤ 8. Along with the increase of T ,

more and more adjacent shots are then retrieved, whilst the FPV-based algorithm

performs poor on detecting adjacent shots. As a result, such a capability of our pro-

posed approach allows it to be further extended to many other applications such as

content based video retrieval, video clustering and news video threading.

4.1.5 Conclusions

We present an improved near-duplicate video detection approach by utilizing an adap-

tive reference frame selection scheme. Correlation among consecutive frames mea-

sured by Pearsons correlation coefficient is employed to partition shots into represen-

tative fractions adaptively and a number of frames from each fraction are chosen as

reference frames. In addition, the traditional shot interest point extraction algorithm

is modified to better accommodate the proposed frame selection scheme and to obtain

more important interest points. Comprehensive experimental results on video shots

from TRECVID-2008 corpus demonstrates clear improvement to the state-of-the-art

shot interest point based approach.

4.2 Content-based Human Acion Recogntion

In this section, we propose a sparse coding learning based framework for human action

classification and localization. Firstly, we introduce an efficient dictionary learning

method. Unlike a stochastic optimized procedure commonly performed by supervised

learning methods such as back-projection [129], we train a discriminative dictionary

efficiently and update it during the reconstruction of the sparse learning process. Sec-

ondly, we propose a novel pooling scheme. Choosing proper pooling functions often

relies on estimating the underlying mutual dependence among the video features in

a local segment. With the proposed sparse coding scheme, the local features are
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transformed into a sparse domain and constructed into the linear spatial-temporal

pyramid matching (STPM) kernel. Thirdly, based on the transformed representation

of human actions, we further propose a two-stage coarse-to-fine localization scheme

to detect action VOIs. In the coarse stage, we use a hierarchical template matching

strategy to detect the possible action regions, named hypothesis regions. In the fine

stage, we perform a multi-level branch-and-bound approach within the hypothesis re-

gions generated from the coarse stage. Instead of exhaustively computing the quality

bound as reported in [10, 134], our quality bound value can be efficiently obtained

through assembling the local responses through sparse representations. In addition,

the usage of a multi-scale framework provides robustness against local variations such

as the differences of action execution in videos (e.g., performance nuances) and an-

thropomorphic attributes (e.g., height and shape). It also allows more flexibility in

matching templates and its sub-components. As a result, the proposed localization

scheme avoids both exhaustive scans for all the spatial-temporal volumes in a tar-

get video and prohibitive computation cost of local feature voting, which brings our

proposed approach great potential for real-time video analysis.

4.2.1 Overview the Proposed Scheme

Given a video sequence V, the goal is to find the best spatial-temporal volume Υ ⊆ V

matching the action of interest c, c ∈ {1, 2, . . . , C}, c is the class label of the action.

In our task, each video can be regarded as one spatial-temporal volume. Such a goal

can be formulated as a cost function:

Υ∗ = argmax
Υ⊆V

L(ζ(Υ),Θc), (4.4)

where ζ(· ) denotes the feature representation for the given spatial-temporal volume,

Θc is the model distribution of action class c, and L(· ) is the likelihood function which

calculates the similarity between the volume candidate and the interest action model.

As shown in Eq. (4.4), the key to a successful localization scheme relies on the

following facts: 1) a well-defined feature representation which captures unique visual

91



Algorithm 1: Enhanced Sparse Coding for Coarse-to-Fine Localization

Input: Θc: Action of interest, V: Target video, τ : Similarity threshold.

Output: ΥOpt: action volume of interest (VOI)

Step 1: Sparse Transform for Human Actions.

1. Extract interest points from all the training videos and obtain local descriptors X.

2. Compute the sparse representations Z for the given X.

Step 2: Coarse Spatial-Temporal Template-based Matching.

3. Segment the target video into 2L×2L×2L cell-volumes, compute the response score for
each cell-volume at each level, and ensemble the local response scores from its lower
levels.

4. At each level, find local similarity peaks and suppress the values of the cell-volumes if
its value is less than the similarity threshold τ .

5. Calculate hypothesis regions containing the target action to cover local maximums and
their nearest neighbours.

Step 3: Fine Branch-and-Bound Localization.

6. Calculate the quality bound at each level.

7. Process 3D branch-and-bound approach [134] to obtain the VOI ΥOpt.

Figure 4-6: Sparse coding based coarse-to-fine localization scheme.

patterns of an action and is robust to transform variations and feature noises. The

feature representation should also cooperate well with the similarity matching process;

and 2) a properly constructed matching strategy (building likelihood function) to

efficiently measure the similarity between the models of actions of interest and the

action VOIs over the target videos.

Fig. 4-6 illustrates the overviews of our proposed algorithm. In Section 4.2.2, we

transform the local descriptors of the target video into sparse coding-based representa-

tion. Then we perform a coarse spatial-temporal template-based matching approach.

The possible target volumes will be bounded into hypothesis regions. Hence Eq. (4.4)

will be re-formulated as

ΥHypo = argmax
Υ⊆V

LScT (ζ(Υ),Θc), (4.5)
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where ΥHypo denotes the hypothetical regions (coarsely segmented video volumes

containing the targeting action of interest) generated by the sparse coding based

template matching approach. Such a matching approach is denoted by LScT{· }.

Then we perform a multi-level 3D branch-and-bound method. Instead of scanning

all candidate volumes through the entire video, we only perform it in the hypothesis

regions to obtain a finely-tuned action VOI as

ΥOpt = arg max
Υ⊆ΥHypo

LBnB(ζ(Υ),Θc), (4.6)

where the superscript Opt in ΥOpt denotes the final optimized volume and LBnB

denotes that the branch-and-bound(BnB) approach is applied.

4.2.2 Enhanced Sparse Coding with STABLE Pooling

Conventional Sparse Model Learning. Given a local descriptor set X = [

x1,x2, . . . ,xN ] ∈ Rd×N , where xi denotes ith local descriptor, the implementation

of Spatio-Temporal Interest Points (STIP) [54] combined with HOG/HOF descrip-

tors [53] is employed to represent local features in this thesis, and a dictionary

D ∈ Rd×K and a sparse representation problem can be formulated as

min
D,{zi}i=1,...,N

N∑
i=1

∥xi −Dzi∥2l2 + λ∥zi∥l1 , (4.7)

where zi is the sparse representation of each local descriptor. The formulation is

not convex in D and {zi}Ni=1 simultaneously. The optimization is carried out using

an iterative approach [58]: updating dictionary D by fixing z and performing sparse

coding on z by fixing D.

Discriminative Dictionary Learning. The main purpose of the optimization

problem addressed in Eq. (4.7) is to minimize the reconstruction error while improving

the approximation in a sparse way. Since the single dictionary is unaware of the given

task and the data in different classes, such a learning process aiming to improve the
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approximation alone does not necessarily guarantee the discrimination of the learned

dictionary. Especially, in video-based human action classification problem, different

action classes such as running and jogging share high-occurrence codewords in the

dictionary. Without differentiating the codewords (bases of the dictionary) from those

action classes, learning only a single dictionary deteriorates classification accuracy.

Supervised learning reported in [129, 21, 28, 8] provides a discriminative learning

method but performs inefficiently. As reported, in order to minimize classification

loss, the dictionary has to be re-learned each time given the new prediction model

from previous iteration, until the optimization is converged. Another method studied

in [95] trains dictionary sets with consideration of the incoherence between current

sub-dictionary and other sub-dictionaries from different classes. However, minimizing

the inter-cohesion among sub-dictionaries solely results in an over-complete model.

In our work, we introduce two regularized terms in the reconstruction process (see

Eq. (4.7)) for discriminative dictionary learning. Hence, the dictionary is updated by

minimizing the inter-coherence, Eq. (4.9) and maximizing intra-coherence, Eq. (4.10)

concurrently,

min
Dc,{Zc}

C∑
c=1

{∥Xc −DcZc∥2l2 + λ
Nc∑
i=1

∥zi∥l1}+
αΦ(Dc)

(1− α)
∑C

c=1Ψ(Dc)
,

s.t., ζ ≤ 1− αΦ(Dc)

(1− α)
∑C

c=1Ψ(Dc)
≤ 1,

(4.8)

Φ(Dc) =
∑
c ̸=ĉ

∥DT
c Dĉ∥2F , (4.9)

Ψ(Dc) =
∑

i,j=1:j ̸=i

| < di,dj > |. (4.10)

We use coefficient ζ to control the learning process. If the reconstruction procedure

is not converged to the local minimum but the dictionary already reaches a worse

case, the optimization is terminated since the rest of the optimization makes no

sense to the discriminative power. And α decides the weighted contributions from

the inter- and intra- cohesion. Xc, c = 1, 2, . . . , C, is a STIP feature collection of

C (labelled) classes of training actions and Dc is the corresponding sub-dictionary
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for each action. For Zc = [z1c , z
2
c , . . . , z

Nc
c ], each column zjc stands for the sparse

code corresponding to the j-th (j ∈ [1 . . . Nc]) feature descriptor in class c. The

mutual coupling term, Φ(Dc) measures how closely the current dictionary is from

other dictionaries and such closeness should be suppressed for a better separability.

The subscript F denotes Frobenius norm and the internal cohesion term, Ψ(Dc)

measures how closely related the codewords within a dictionary are related and how

their internal relationship should be tighten. Frobenius norm < di,dj > measures the

distance between the elements of Dc with the cosine similarity. In order to validate

the updated dictionary, we extend the idea of the clustering validity measurements on

using Silhouette Coefficient. Typically, if the dictionary is normalized, the constraint

term, 1 − α·Φ/(1 − α)·Ψ is between 0 and 1. The closer to 1 the value of this

constraint term is, the better separability the dictionary achieves. Numerical results

show the effectiveness of our proposed method.

STABLE Pooling.

Basic Formulation. In order to take the temporal variations of video sequences into

account, we extend the approach of spatial pyramid matching kernel based sparse

representation (ScSPM) [128]. Each sequence is partitioned into 2l × 2l × 2l non-

overlapping volumes at different scales, l = 0, 1, 2, where the volume size is set as 1/2l

of the original sequence in width ϖ, height ~ and temporal τ dimension. With such

an extension, the linear spatial-temporal pyramid matching (STPM) kernel based

sparse representation is expressed as,

κ(Zi
c,Zj

c) =
2∑

l=0

2l∑
ϖ=1

2l∑
~=1

2l∑
t=1

⟨Zi
l(ϖ, ~, τ),Zj

l (ϖ, ~, τ)⟩, (4.11)

where ⟨Zi
lZ

j
l ⟩ = Zi

l
TZj

l . Zi
l(ϖ, ~, τ) stands for the obtained sparse representation

vector for representing the overall volume, which is generated by the spatial-temporal

pooling operation with the statistical combinations of each sparse representation of

all the corresponding STIP local features [54] inside the video volume.
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(a) Conventional Pooling

(b) STABLE Pooling

Figure 4-7: Comparison of two Pooling schemes.

Pooling Scheme with Local Estimation. As described in the above-mentioned formu-

lation, the representation incorporates an important step of the pooling operation,

Z. As shown in Fig. 4-7 (a), by combining the outputs of nearby features into a

“local bag-of-features”, the purpose of conventional pooling methods are to preserve

the task-related information while removing irrelevant details, which is important to

video representation due to local variations.

Several papers have shown that pooling function can greatly influence the per-

formance [129, 128]. Especially, it has been reported both experimentally and the-

oretically that max pooling outperform average pooling [128, 6]. Although seldom

addressed by other studies, in our experiment, sum-pooling shows a comparable per-

formance to max pooling. Such empirical results motivate us to pursue an optimised

pooling method.

A few recent works claim that max-pooling is more biologically plausible. The

research study [38] through simulating a monkey’s responses in neuron cells and theirs

spatial attentions discovered that max-pooling does not rule out the sum pooling,

especially when the distracters are increased in their visual attention. This finding

can be reasonably bridged into our study. By assuming that the given video signal is a
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visual spatial-temporal attention containing actual action class that we are interested

in, true belief is hidden in the local descriptors acting as positive samples, and the

false belief appears like distracters, such as common features or noise features, acting

as negative samples. If the true belief dominates the input signal, max-pooling will

enlarge this saliency and the true belief will be reinforced into the next level. But if

the true belief vaguely exists in the input signal and does not dominate as saliency,

it is possible that max-pooling reinforce the false belief into the next level and noise

will be amplified. While upon such a case, sum-pooling will decrease the risk on

enlarging the noise. It performs with ensemble of weak discriminative power of each

local feature, and finally acts as a significantly discriminative power.

In this work, we propose a novel pooling function, named spatial-temporal atten-

tion belief learning and estimation (STABLE) pooling. Unlike the conventional pool

methods as shown in Fig. 4-7 (a), which adopts only one unique pooling approach

for all the cell volumes but ignores the local variations, we first measure the uncer-

tainty of the local input of each volume and check whether saliency exists. If saliency

presents and dominates the local input, the representation automatically chooses max

pooling; otherwise, sum pooling or average pooling acts. Fig. 4-7 (b) shows the STA-

BLE method we proposed for the multi-level sparse representation model. At level

l = 0, without pooling operation applied, we calculate the sparse codes and assign

the class label c for each local descriptor. Then, in each local volume (ϖ, ~, τ) at the

l-th level, we calculate the entropy of each class. If the lowest entropy (calculated by

Eq. (4.13)) for a certain class is smaller than the predefined uncertainty threshold,

β, we believe that once one class dominates the local input, max pooling is chosen;

otherwise, sum pooling applies. The choice on the pooling function is decided by the

sign function (See Eq. (4.12)).

P = sgn(H(ϖ, ~, τ)i − β), (4.12)
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H(ϖ, ~, τ)i = −
nc∑
i=1

p(xc
i)logp(x

c
i),

s.t. c = argmax
c

nc,

(4.13)

p(xc
i) =

nc

N(ϖ, ~, τ)i
, (4.14)

where N(ϖ, ~, τ)i is the number of the local descriptors in the given volume, nc is the

count of the features with the most of class labels assigned.

4.2.3 Coarse-to-Fine Human Action Localization

Space-time template matching in frequency domain. Template matching is

a conventional technique used in computer vision for finding small parts in an image

which match a template image. It has been extended to detect actions (as defined by

a small template video) in a video [103, 102, 25, 46], and the video is scanned over

all spatial-temporal positions. At each position, the similarity match-up (known as

likelihood value) between the action model distribution and search volumes is com-

puted. The global match value can be obtained by calculating each pair of likelihoods

between the template and the volume at a scanned position:

Γ(Υ) = L(ζ(Υ),Θc) =
∑
µ

(ζ(Υ(µ)),Θc(µ−Υ)), (4.15)

where Γ(Υ) denotes the peak values of the global similarity measurement and µ

ranges over the support in spatial-temporal domain of the template volume. With

the recently popular Bag-of-Features (BoF) model [53, 88, 89, 68, 25, 56], local distri-

butions are represented with the histograms of local features and several histogram

similarity measurements have been reported. In our approach, the Bhattacharyya

coefficient [25] is utilized for template-based matching. Therefore, Eq. (4.15) can be

re-formulated as a sum of cross-correlation problem:

Γ(Υ) =
∑
b

∑
µ

√
Sb(ζ(Υ(µ)))

√
Tb(Θc(µ−Υ)) =

∑
b

√
Sb ⋆

√
Tb. (4.16)
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However, it is computationally prohibitive to perform an exhaustive search to find the

optimal volume from an enormous candidate pool. Let (ϖS, ~S, τS) and (ϖT , ~T , τT )

be the width, height and temporal duration of the search volume, and the template,

respectively, and B represent the number of the histogram bins. The computational

complexity is O(BΠi∈{T,S}ϖi~iτi). In conventional Convolution Theory [32], this

cross-correlation calculation in spatial-temporal domain can be transformed into in-

expensive pointwise multiplications in frequency domain:

Γ(Υ) = F−1{
∑
b

F{
√
Sb(ζ(Υ(µ)))}F{

√
T ′
b(Θc(Υ− µ))}, (4.17)

where F{· } and F−1{· } denote the Fourier transform and its inverse, and T ′
b is the re-

flected template. The computational complexity in frequency domain is dramatically

reduced to O[BϖS~SτS(log2ϖS + log2 ~S + log2 τS)].

Hierarchical Template Matching in Sparse Coding Transformed Domain.

However, wavelet transformation heavily relies on certain abstract mathematical prop-

erties (e.g., orthogonal bases of signal are determined only by mathematical compu-

tations) that might not well represent the properties of video data. Recent research

proves that sparse coding can be used to extract wavelet-like features from natural

image data and provides more optimized bases for a better approximation on sig-

nals [26]. Hence, when the sparse coding method is utilized to transfer the local

descriptions into the wavelet-like feature domain, we are able to perform efficient

similarity match-ups in the transformed domain with inexpensive calculations like

linear kernel-based matching as stated in the following sections.

In Section 4.2.2, we propose a method to represent human action models in the

sparse coding transform domain through discriminative dictionary learning and STA-

BLE pooling schems. Fig. 4-8 shows the process of sparse coding for constructing

sparse representation as wavelet-like feature representation. In this section, we de-

scribe how we use the constructed sparse representation to perform similarity match-

ing.
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Figure 4-8: STPM sparse coding based transform.

Matching score calculation with SVM decision function. In order to obtain the like-

lihood to measure the similarity, we employ a linear SVM approach based on con-

structed sparse codes to learn a decision function. The decision value measures the

response of a searching volume to the action of interest. Hence, the response score

calculated by the likelihood function in Eq. (4.4) can be formulated as kernel matching

L(ζ(Υ),Θc) = f(ZΥ) =
n∑

i=1

αiκ(Zi,ZΥ) + b, (4.18)

where αi is the introduced Lagrange multipliers, b is the estimated bias term learned

the training stage, {(Zi, c)
n
i=1} is the training video sequence, c, c ∈ {1, 2, . . . , C},

is the class label of the training action, κ(· , · ) can be any reasonable Mercer kernel

function, and Z stands for the transformed sparse code vector obtained by the pooling

operation. Motivated by the improved efficiency using pointwise multiplications in

Fourier transform [25], we adopt the linear kernel function, where κ(Zi,ZΥ) = Zi
TZΥ.

Hence, Eq. (4.18) can be further re-formulated as

L(ζ(Υ),Θc) = f(ZΥ) = (
n∑

i=1

αiZi)
TZΥ + b = wTZΥ + b. (4.19)

In comparison with Eq. (4.17), through such a re-formulation, the major advantage of

frequency-based matching can be bridged into the linear kernel matching by perform-

ing the fast multiplication computation instead of the convolution operation, which

means that computational complexity on the likelihood calculation can be reduced to
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Figure 4-9: Hierarchical sparse coding based template matching (Coarse Localization).

O(N), where N is a constant (the predefined length of sparse representation vector

ZΥ, N =
∑L

l=0

∑2l

ϖ=1

∑2l

~=1

∑2l

t=1 ·1 =63 in this thesis). There are multiple classes

of actions in our human action dataset. Hence, if given the sparse representation on

training action sequences {Zti
c , y

ti
c }, ti ∈ 1, . . . , tn, c ∈ 1, . . . N , and ytic as the class

label of the ti-th sequence, the linear SVM can be learned as

min
wc

∥wc∥2 + C

tn∑
ti=1

ℑ(wc, bc; y
ti
c ,Zti

c ), (4.20)

where ℑ(wc, bc; y
ti
c ,Zti

c ) is the hinge loss function, which is trained by adopting a

differentiable quadratic hinge loss as ℑ(wc, bc; y
ti
c ,Zti

c ) = [max(0,wT
c Zti

c · ytic − 1)]2, wc

is the support vector and bc is the estimated bias term. With the learned SVM, given

any spatial-temporal volume Υ and its corresponding sparse representation ZΥ, we

can calculate its response score to the action of interest as

R(Υ) = wc
TZΥ + bc. (4.21)

Hierarchical Matching by STPM based Sparse Representation. With the obtained re-

sponse score R(Υ) in Eq. (4.21), in this section, we will directly utilize it to perform

similarity matching instead of the nearest neighbor matching method as reported

in [134], which is of prohibitive computations of calculating the mutual information

score for each local feature. Spatial pyramid matching kernel has demonstrated its

advantages in characterizing the local variations of a global representation [56] and

its extended version STPM kernel has been introduced for discussing STABLE pool-

ing method. In this section, STPM kernel will be utilized again for calculating the

likelihood scores at local levels to enhance the global matching performance in videos.
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Figure 4-10: Multi-Level 3D Branch-and-Bound (Fine Localization)

Therefore, the linear STPM kernel based likelihood is re-expressed as,

L(ζ(Υ),Θc) =
L∑
l=0

2l∑
ϖ=1

2l∑
~=1

2l∑
t=1

L(ZΥ
l (ϖ, ~, τ),Zc

l (ϖ, ~, τ)), (4.22)

where ZΥ
l (ϖ, ~, τ) is the sparse representation over the local features of each cell-

volume.

Fig. 4-9 explains the coarse hierarchical template-based matching with one action

localization example. In this step, no further feature extraction and sparse transfor-

mation is needed because the same local feature and its corresponding sparse code

can be reused to construct likelihood function at different levels. The final response

scores calculated by the likelihood function now ensemble the partial response scores

by Eq. (4.21) from the coarsest level l = 0 to the finest level l = L (L is set 2 in

this thesis). It is easily to discard the volumes with low final scores. We keep the

cell-volumes (segments) at each level with positive local response scores and suppress

the ones with negative response scores or low response scores. We then calculate

the hypothetical bounded regions by assembling the cell-volumes with the highest

response scores and their nearest neighbors. Those cell-volumes with high responses

may be from the same volume partitions or different volume partitions. By calculating

the new hypothetical bounded regions, we can avoid fragmenting the detected action

volumes which is a problem of using a single monolithic template. In the following

step, the branch-and-bound approach will be performed in the hypothetical regions

only where most likely the action of interest exists. The algorithm explained in this

section is described as the Step 2 in Fig. 4-6.
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Fine Matching with Multi-Level Branch-and-Bound. Branch-and-bound ap-

proach has been studied in object detection [52] and introduced in human action

sub-volume detection task [134]. Instead of scanning entire videos, we perform the

branch-and-bound approach only in the hypothetical bounded regions, as shown in

Fig. 4-10. We also modify the upper bound by summing the bound values of all levels

to form a multi-level branch-and-bound approach.

In branch-and-bound approach, it is crucial to construct a quality function f(· )

and decide the quality bound f̂(· ) for the likelihood function LBnB{· } in Eq. (4.6). In

[10] and [134], the quality function is the summarization of the mutual information

score of each STIP [54] w.r.t class c. However the calculation for mutual information

score is a computationally prohibitive task [134]. In our approach, we can directly

utilize the response score of a cell-volume calculated in Eq. (4.21) as the voting score

to achieve an efficient search. Given a cell-volume set in hypothetical region ΥHypo,

we calculate both the largest and the smallest possible scales that a grid cell-volume

Υl(ϖ, ~, τ) known as Υl
max and Υl

min. Then an upper bound for f̂(· ) is obtained by

summing the bounds for all levels and cells as

f̂(Υl(ϖ, ~, τ)) = f+(Υl
max) + f−(Υl

min) =
L∑
l=0

R+(Υl
max) +

L∑
l=0

R−(Υl
min). (4.23)

With the modified multi-level quality bound calculated by Eq. (4.23), now we can

apply 3D branch-and-bound algorithm, as shown in Fig. 4-10. The detailed technical

description of the 3D branch-and-bound algorithm can be referred to [134]. The

algorithm explained in this section is described as the Step 3 in Fig. 4-6.

4.2.4 Experiments

Experimental Settings

We first evaluate the effectiveness by performing our proposed algorithm for an action

classification task with the well controlled KTH dataset [100] and the realistic UCF

YouTube dataset [66]. Especially, in our experiments, we evaluate the impact of
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the discriminative learning and STABLE pooling methods on classification accuracy.

Then we evaluate both effectiveness and efficiency of our algorithm with the more

complex MSR dataset [10].

Our implementation employs STIPs [54] as the local features fed into our system.

More specifically, we extract both histogram of oriented gradients (HOG) and his-

togram of optical flow (HOF) features at salient locations as in [53], and the feature

dimension is 162. For all the experiments, we tried different bases sizes of the dic-

tionary varying with 1024, 2048 and 4096 for comparison. At the size of 4096, the

best performance is achieved. We train the multi-class linear SVM classifiers by the

LibSVM library [27]. For constructing sparse representation, λ in Eq. (4.8) enforces

the sparsity. Empirically, keeping sparsity to be around 10% yields good results. In

our experiments, λ is fixed as 0.15. The timings in the experiments are based on

unoptimized Matlab code executing on a Xeon 2.67 GHz processor.

Effectiveness Evaluation with Classification Results

1) KTH Action Dataset [100]: We follow the standard experimental setting in the

KTH dataset as in [53, 100, 134]. It contains six types of human actions. Among

25 persons, 16 of them are used for training and 9 are used for testing. The train-

ing dataset contains 1528 actions sequences and the testing dataset contains 863

sequences. With the enhanced sparse coding method as proposed, the average clas-

sification accuracy is improved to 94.21% from 92.94% of the conventional sparse

coding method. Most of the errors are due to the mis-classification of running and

jogging. We also implemented the method by using FFT for a further comparison.

The accuracy is only 80.26%. In Table 4.1, we further compare our results to the

state-of-the-art results. It shows that our proposed approach is highly comparable

with most state-of-the-art methods in term of classification accuracy, while the speed

for obtaining the matching results is much faster.

2)YouTube Action Dataset [66]: The YouTube action dataset contains 11 action

categories. It is a challenging dataset and composed of 1168 videos collected from

YouTube. By adopting the settings given in [66], the dataset was divided into 25
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Table 4.1: Comparison with the state-of-the-art methods in terms of accuracy.
Work / Dataset KTH YouTube

Laptev et al., 2008 [53] 91.8% –
Liu et al., 2008 [67] 94.2% –
Liu et al., 2009 [66] 93.5% 71.2%

Kovashka et al., 2010 [50] 94.53% –
Yao et al., 2010 [130] 93.5% –

Bregonzio et al., 2010 [7] – 64.0%
FFT 80.26% –

Conventional Sparse Coding 92.94% –
Our Work 94.21% 70.4%

Table 4.2: The impact of discriminative learning on the KTH dataset.
Conventional SC. Intra- Only Inter- Only Discriminative

Accuracy 92.94% 93.16% 93.47% 94.21%

subsets, out of which 24 subsets were used for training and the remaining subset was

used for testing. The average classification accuracy obtained is compared with the

existing approaches shown in Table 4.1. The average accuracy is 70.4%, which is

comparable with the result as reported in [66].

3)Discriminative Dictionary Learning : By introducing the discriminative dictio-

nary learning method, the performance improvement in terms of classification ac-

curacy can be seen from Table 4.2. Contributions of the intra- and inter- cohesion

on the discriminative power are studied. Experimental results show that the best

performance is achieved when both terms are taken into account.

4) Comparison of Pooling Methods : We also studied the different pooling methods,

average pooling, max pooling, sum pooling, cross-validation on max-pooling/sum

pooling, and our proposed methods. The results are listed in Table 4.3.It is observed

that STABLE pooling produces the best performance, which proves its robustness to

local spatial variations.

Effectiveness Evaluation with Localization Results

Evaluation of the localization performance of our approach is conducted with the

MSR dataset which includes the human actions in complex scenes. It includes 54
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Table 4.3: The effect of pooling on the KTH dataset.
Pooling Method Accuracy

Average Pooling 89.8%
Max Pooling 93.05%
Sum Pooling 92.81%

Cross Validation (max and sum pooling) 93.75%
STABLE Pooling 94.21%
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Figure 4-11: Localization performance on the MSR dataset in terms of Precision-Recall.

video sequences, each of which contains three actions (i.e., hand waving, hand clapping

and boxing).

Following the evaluation methods set in [10], we denote the action VOI ground

truth as Υg = {Υg
1,Υ

g
2, · · · ,Υg

m}, and the detected VOIs as Υd = {Υd
1,Υ

d
2, · · · ,Υd

n}.

We use HG(Υg
i ) to denote whether a ground truth VOI is detected, and TD(Υd

j ) to

denote whether a detected VOI is the action of interest. HG(Υg
i ) and TD(Υd

j ) are

judged by checking whether the overlapping is above a threshold which is set as 1/4

in this thesis. Based on HG and TD, precision and recall can be defined as

Precision =

∑m
i HG(Υg

i )

m
, Recall =

∑n
j TD(Υd

j )

n
. (4.24)

We learn the human actions from both the KTH dataset and the MSR dataset,

respectively. We also learn the action models from the MSR dataset, half ground

truth action VOIs are used for training and testing is performed on the rest of the

videos.

Once the action VOIs are detected, we can obtain the precision-recall curves of

three actions in the MSR dataset. Fig. 4-11 shows the localization results obtained
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(a) (b)

Figure 4-12: Comparison of computational efficiency.

by our approach and the approach reported in [10]. If learning actions from the

KTH dataset and testing on the MSR dataset, the average accuracy generated over

three actions is 32.10%, which outperforms the state-of-the-art result 31.48%. The

localization accuracy of our method on handclapping and boxing actions is better than

the reported method, but worse on handwaving action. When we learn the action

models from the MSR dataset rather than from the KTH dataset, this accuracy is

improved from 32.10% to 67.90%, which shows that the false localizations largely

raise from model variations between different datasets and the research efforts on

cross-dataset learning are worthwhile.

Efficiency Evaluation

Fig. 4-12 shows the running time consumed by different methods. As observed, our

proposed method improves the running speed drastically in comparison with the

state-of-the-art methods both in classification and localization. Two main aspects

contribute to the efficiency boosting. First, our template-based matching strategy

with wavelet-like features reduces the computation complexity from O(m2n2t2) to

O(m logm·n log n· t log t) (see Eq. (4.17)). Second, by applying the branch-and-

bound approach, the proposed approach does not involve the prohibitive computation

of the local voting score as NBMIM method did in [134]. The calculation of sparse

coding based response score is very efficient. It is worth-noting that the proposed

localization strategy can also be applied to the sparse representation obtained by
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conventional sparse coding method. The enhanced sparse coding method contributes

to the improvement of the classification accuracy; whilst the efficiency is improved

mainly due to the proposed coarse-to-fine localization strategy utilizing the SVM

classification decision scores on the pooled sparse codes.

4.2.5 Conclusions

We present a novel framework for effective human action classification and efficient

VOI localization of human actions from videos with enhanced sparse coding scheme

and hierarchical localization strategy. The contributions of this work are two folds.

First, the conventional sparse coding scheme is enhanced through learning discrim-

inative dictionary and optimizing the local pooling strategy. Second, by utilizing

the sparse coding based representation, a coarse-to-fine localization scheme is fur-

ther proposed for detecting and localizing the VOIs of human actions. Comprehen-

sive experiments have been carried out on popular benchmark datasets. It can be

concluded that our approach achieves significant computational saving by avoiding

prohibitively expensive computations of local feature voting and exhaustive scanning

of entire videos for locating VOI candidates, while its classification and localization

accuracy are comparable to the state-of-the-art methods.
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Chapter 5

Interactive Exploratory Visual

Search

We develop a novel system in this work that achieves such a boomed activity—“browse

and search,” which explores a natural and efficient way for users to switch between

browse and search processes, and effectively complete the information seeking task.

The system called “Browse-to-Search” enables users to specify their visual search

intent by circling any interested visual objects on the browsing pages through multi-

touch gestures, forms the visual entities as queries to represent the latent intent of

users, and returns relevant information through faceted search. We regard the visual

entity as not only the selected image of interest, but also the browsing context and

the heterogeneous attributes associated with the image.

“Browse-to-Search” is one of the first attempts towards “browse” and “search”

integrated application for exploratory search of visual content, which is characterized

by four unique properties: 1) in session—searching is naturally performed during

browsing, where query expression and search result generation do not introduce inter-

ventions within a session; 2) in context—the pages being browsed provide contextual

cues for search; 3) in focus—users can focus on the visual content of interest with-

out worrying about the difficulties of query formulation, and visual entities will be

automatically formed; and 4) intuitive—touch and visual search based user interface

provides a natural user experience. We deployed the “Browse-to-Search” on a real-
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(a) two steps for formulating a text query: “peep toe” 

(b) five steps for formulating an image query: 1) select an image, 2) save image, 3) switch to a search engine, 4) upload image, 5) search 

(c) “circle-to-search” within an in-situ session 

Figure 5-1: Comparison with the conventional image search approaches.

world Tablet Pad system, and evaluated the system performance through millions

of images. We demonstrate that it is effective and efficient to facilitate user’s ex-

ploratory search by reducing the traditional visual query-by-example search from five

steps to one single step by automatically forming visual entities. More importantly,

the system provides users more robust results to satisfy their exploring experience.

Fig. 5-1 illustrates how our approach towards exploratory search is different from

conventional visual search. We assume a very common scenario: when a user is

browsing a web page, one of the web images triggers his/her interest. Typically, there

are two options to further explore information about this query image. The first one is
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to formulate a query in mind, then switch to a search engine by typing query keywords

and performing image search. The other option is to perform search by image with

the following five steps: 1) save the image of interest to local, 2) switch to an image

search engine, 3) choose the saved image from local, 4) upload the saved image to

the search engine, and 5) perform image search. Both conventional manners severely

limit the exploratory experience due to the following reasons. Firstly, it is very likely

that one encounters difficulties in working out accurate queries with the keywords

to express the specific search demands of users. If the query expression fails, users

have to iteratively modify the queries until the relevant documents appear and then

conduct further exploratory search. Secondly, due to the well-known “semantic gap”

problem, the returned images might be still irrelevant to the query. Thirdly, the search

interests might be multiple faceted, but the returned images of each search iteration

only reflects one facet. In order to respond to the above addressed limitations, we

propose “Browse-to-Search” approach in this thesis. The advantages of the proposed

approach include: (1) It enables the browse and search behaviors integrated into

one intra-session without stagnation, which significantly reduces the traditional five

steps into one single step. (2) The integration of the browsing content can provide

rich context to infer the underlying intent. (3) We perform large-scale visual search

at the back-end to mine the associated attributes annotated in the visually similar

images from the repository. As shown in Fig. 5-1, a user naturally circles any image of

interest (or the visual regions inside the image) via multi-touch gestures. As a result,

the system is able to formulate a list of multi-modal queries (e.g., textual keywords

and image examples), then perform joint keyword-image search to summarize a list

to reflect different aspects of the search interest.

5.1 Case Study

Some terms are formally defined as follows.

DEFINITION 1. An In-situ session is a sequence of user activities, which begins

with browsing a Web page, includes subsequent one query with the corresponding
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URL visits, and ends with a period of inactivity if no more search is performed.

DEFINITION 2. A browse to search switching event is the first query occurring

in a in-situ session.

DEFINITION 3. A search goal is an atomic information need, resulting in one or

more related search queries issued to accomplish a single discrete task with satisfac-

tion.

5.1.1 Research Tasks and Questions

To investigate online exploring behaviors, we invited 16 subjects to attend a focus

study. The participants consist of nine females and seven males including college

students and professional people, with the age ranging from 20 to 29.

For better understanding the switching motivations and the ultimate search goals

under different scenarios, each participant was assigned five web pages for performing

searching after browsing task. In total, there are 80 isolated tasks with images appear-

ing in each web pages to be browsed. These tasks cover five different domains, i.e.,

celebrity, news, commercial products, landmarks and local business. For each task,

they are requested to perform browse / search switching within an in-situ session. For

the record of the browse to search switching event and the search goal, they are also

requested to answer and discuss the following three questions: 1) Is there any search

interest in the given browsing task provoked? 2) What are the expected results to

the corresponding search interest? 3) How do you switch to a search (through search

by keyword or image)? The study results show that there are 62 search requests

instantly following 80 browsing tasks (≥75%) within a in-situ session. For example,

when a user browses a movie trailer website and sees a familiar celebrity, search intent

is naturally triggered to find the profile of the star and his/her related performances.

In 51 tasks among all the tasks (≥60%), the browse to search switching events are

inspired by the image of interest. Another finding, but without surprise, is that even

under the same web page to be browsed, the browse to search switching event from

different users are very distinct, for which some context aware interfaces, e.g., Google

Related [33] fail to satisfy users’ actual interest in such scenarios.
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Table 5.1: Evaluation on usablitiy
Speed Engagement Ease-to-use Flexibility Precision

5.75 5.875 4.875 3.625 6.125

With expectations on improving user experiences, we also study the switching

experience by asking them to perform the above tasks from the traditional search

platforms in the PC to the modern natural search interface, including search by

keywords, search by images on PC, and to perform the similar search on mobile

phones and tablet devices. Then they were requested to rank the importance of

the following aspects regarding to the usability of these search interfaces: speed,

engagement, ease-to-use, flexibility, and precision. From the user study results shown

in Table 5.1, precisions, engagement and speed are three most concerned aspects.

Answers to these questions can help us better understand switching behaviors.

They also help us improve the user experiences in accordance with the motivations

of users for switching or derive more sophisticated competitive metrics.

Identify challenges and rationales

The first challenge is that most of the sequential search switching in-situ when a user

browses web pages. We are hence motivated to design a system inducing switching

behavior naturally and promptly if the user’s search intent is active.

The second challenge is that more than 60% of switching event is inspired by the

image of interest. We are hence motivated to design a system allowing users express

their interests on the images and also predict the latent intent behind the images of

interest.

The third challenge is that even under the same web pages being browsed, the

search goals are multi-faceted. We are hence motivated to design a system with the

capability of returning the related documents for the multiple aspects of the search

intent, i.e., browsing context is captured and utilized to infer the multi-facet intent.
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5.2 Browse and Search Paradigm

The “Browse-to-Search” system aims to integrate browse and search behaviors into

one exploratory search session. The exploring life-cycle proceeds by alternating two

behaviors. The search results in one iteration can be the content to be browsed for the

successive iterations and the browsed content will likely inspire a new search action.

The iteration converges when the latter most search results reach a satisfactory level.

Understanding search intent through the browsed objects, forming intent-specific

visual entities, and then performing a prompt intent-driven search visual entities are

the keys to develop a browse-to-search system. Three main components are needed

to facilitate users to express and specify their search intent on a client device in a

natural yet effective way, and to enable the backend system to promptly capture the

search intent through the browsed contents, the surrounding context, and to return

the most relevant information.

• Intent expression. This component aims to help users to express the search

intent naturally during the browse. The search intent in our system is specified

by electing visual objects of interest in web pages via gesture. Afterwards, the

visual content in the elected region and the surrounded contexts are captured

for discovering the underlying semantic meanings of the search intent.

• Intent prediction. This component aims to infer latent intent by forming the

visual entities. Intent lurking in the captured content and context could con-

tain many facets. Intent prediction is to levigate the most dominant facts of the

actual intent and recommend the corresponding keywords or images to formu-

late an accurate intent-specific query. We use a multi-modal query suggestion

approach for performing intent prediction.

• Task completion. Once the search intent is explicitly expressed and encap-

sulated into visual entities, task completion component is to perform a joint

keyword-image search and return the most relevant information by taking three

factors into account: the textual features in the visual entity, the image features
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Figure 5-2: The architecture of the Browse-to-Search system.

in the visual entity and browsing context.

By expressing the search intent on browsing, users can perform a search task

within the same session. The context of the intent is obtained through the context

validation and visual search. With the query suggestion approach, users can only

focus on selecting the visual object, and thus will not suffer from the tedious efforts

for formulating the search queries. At last, by considering search intent, visual content

and nearby context, the intent-driven image search approach can guarantee the results

with high relevance.

5.2.1 The “Browse-to-Search” System

Fig. 5-2 illustrates the process flow and three stages of the proposed system. In the

following, we first present the basic modules in each stage and then give the technical

details.

Intent expression. On the client side, a user selects a region that contains a visual

object of interest with a natural circling gesture, named a “lasso” gesture in this

thesis. Then the selected visual content and the browsing context formed by the
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surrounding texts are delivered to the cloud (or back-end) side. In this stage, on the

cloud side, there are three analysis modules: (1) “context validation” aims to extract

the valid domain-specific attributes from the context. We extract context but only

validate and reserve partial information as it is not guaranteed that all the texts in the

delivered context are helpful to understand the search intent and some surrounding

texts might be noisy; (2) “large-scale image search” aims to find partial duplicate

images and similar images that will help understand the content from the visual

perspective; and (3) “attribute mining” aims to discover the most representative

attributes, such as the gender of the clothes, brand names, and category names, by

analyzing and combining the outputs of the above two modules: context validation

and image search. The visual entity, as the form of the expressed intent, is composed

of the visual features of image of interest, the valid surrounding browsing context,

and representative attributes.

Intent prediction. On the cloud side, multi-modal query suggestion aims to trans-

late the manifold properties of the visual entities into a multi-modal query to users,

in the forms of textual attributes and images. The textual attribute part corresponds

to the prediction of the most representative semantic attributes, determined from the

attributes output from the first stage, which are able to inherently reflect multiple

aspects of the search intent. One visual example from the initial top ranked image

search results that are associated with the suggested attribute is recommended to

provide users a visual clue of the keyword-based attribute and help them express

the search intents more precisely. On the client side, these suggested multi-modal

queries with keyword attributes and the associated image examples help users to see

alternatives and specify a less ambiguous search query.

Task completion. Given the suggested multi-modal query, the search intent is

then explicitly formulated. Then a two-step “intent-driven image search” process is

triggered to return the results. The first step is attribute-based duplicate search,

which joins all the aspects of the user intent, visual content and nearby context to
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return the most relevant documents. The second step is to re-rank the returned

images.

5.3 Approaches

5.3.1 Intent Expression

The following section presents the details on the lasso gesture for selecting the visual

object of interest, extracting the context from the surrounding texts of the selected

image, the image search techniques, and attribute mining.

Lasso Gesture to Select Image of Interest

We introduce a “lasso” gesture, which is triggered by a technique called the Las-

soMenu that combines selection, command invocation, and parameter adjustment in

one fluid stroke [1]. In our system, it is designed to circle a region to indicate the inter-

ested object inside an image. Users select items in the typical lasso fashion of drawing

a path that encloses them. Once the lasso stroke has begun, a semi-transparent orange

circle is placed at the beginning of the lasso stroke. This operation is very natural

and convenient for users to specify the search intent. Compared with selecting a

whole image, the lasso gesture can help discriminate the visual object of interest from

other objects contained in this image. Also it provides a robust interaction and does

not require to draw an exact silhouette or a closed circle. As a result, initial visual

intents are delivered by sending the parameters of the bounded area in the original

image to the cloud-side. This lasso gesture requires no training and can be naturally

engaged with common users. Moreover, the gesture-based intent expression provides

a unique user experience as (1) users do not have to formulate a text query which

is inconvenient in a touch device, to describe the visual interest, and (2) it is not

necessary to upload an image as a query via superfluous procedures.
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Context Detection

On the client-side, our system captures the surrounding textual information of the

circled image to help understand the semantic attributes associated with the image.

The surrounding text is rich but might be noisy. For example, the nearby captured

text for a product image is “Fred Perry Men’s Bleach Washed Chambray Shirt Price:

145.00 FREE Super Saver Shipping Free Returns.” Although the general entity ex-

traction effort [62] is able to discard the vague and general words or phrases, the

extracted entities are still not meaningful enough for our case. Hence, we build a

domain-specific attribute lexicon and only the entities stored in the lexicon will be

extracted and regarded as a valid context. In the commercial product domain, we

collect brand names, category names, genders, major colors, sizes, and so on. In the

above mentioned example, the extracted valid context only contains “Fred Perry,”

“Men,” “Shirt,” and “145.”

Large-Scale Image Search

Given the circled image, we then analyse the search intent from a set of helping

images consisting of the images sharing the same local visual patches within the

circled region, e.g., logos of the products or background of the scenes, and the images

sharing the similar global visual appearance, e.g., similar major color, contour, etc.

We perform two content-based visual search approaches in a parallel way: partial-

duplicate visual search and similar visual search, to collect helping images and then

discover the frequent labeled attributes associated with these images. The search is

performed over an image database containing 6 million images.

1) Partial-Duplicate Image Search. We develop the large-scale partial-duplicate

image search system following the state-of-the-art bag-of-words framework and use

Hierarchical Vocabulary Tree (VT) [13],[43], [99] to construct the vocabulary and in-

verted index. Considering that the query image from the bounded lasso region may

be a distorted raw image, we incorporate the Geometric Verification (GV) step to

improve the accuracy. To make a robust partial-duplicate image search, we extract

118



o0 

o1 

o2 

o3 

o4 

o5 

o6 

15

3

0

 

oqi 

omi 

oqj 

1 2 3 4 4 5 6 7 8 9 1 2 32 44 655 7 98
mi 

qi ,qj 

(2) Compact Orientation  
Geometric Verification (GV) 

(1) Vocabulary tree and 
Inverted Indexing 

 

 

(3) Visual Keywords Extraction 

Query Image q 

Indexed Image m 

Figure 5-3: Illustration of Partial-Duplicate Image Search.

Visual Keyword as to be proposed to enforce the partial-duplicate image search per-

formance. Fig. 5-3 illustrates three technical components of partial-duplicate image

search approach.

Vocabulary Tree and Inverted Index. An inverted index constructed from a vocab-

ulary tree (VT) can be used to fleetly compare images in a large database against a

query image. VT is constructed by performing hierarchical K-means to group local

descriptors into quantized visual codewords. An L-depth VT with B-branch produces

V = BL visual codewords. Given a query image IQ with M extracted local descrip-

tors XQ = {x1, x2, · · · , xM}, where xi ∈ XQ is the i-th descriptor, local features with

SIFT descriptors [71] are extracted in this thesis. The vocabulary tree is traversed

to assign a nearest visual codeword to each descriptor, and then XQ is converted to

a Bag-of-Word (BoW) histogram HQ = [h1, h2, . . . , hV ], where hj ∈ HQ is the trans-

posed histogram corresponding to the j-th codeword. The inverted index associated

with the VT maintains two lists per leaf node, as illustrated in Fig. 5-3. For each

node j, a sorted array list of Image IDs, Ij = {Ij1, Ij2, . . . , IjNj
}, where Ijk ∈ Ij
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means an image that has a local descriptors mapped to this leaf node. The other

list Cj = {Cj1, Cj2, . . . , CjNj
} corresponds to the frequency that indicates how many

local descriptors of the image are mapped to node j. If there are qj local descriptors

from the query image that are mapped to node j, the similarity of the query image

with each image Ijk, (Ijk ∈ Ij) associated with node j increases according to

S(Ijk) := S(Ijk) +
w2

jCjkqj∑
Ijk

∑
q

, k = 1, 2, . . . , Nj. (5.1)

Here,
∑

Ijk
=

∑M
n=1C

n
jk is a normalized factor for the reference image Ijk, where Cn

jk

is the number of local descriptors of image Ijk assigned at node n.
∑

q =
∑M

n=1 q
n is

a normalized factor for the query image, and qn is the count for the query image at

node n, wj = log(N/Njk) serves as the inverted document frequency (IDF) used to

penalize frequently visited nodes, and N is the total number of the database images.

Compact Orientation Geometric Verification We divide the orientation space into

2π/r parts (subspace) which are indexed as a list Os = [o1, o2, · · · , or]. Each local de-

scriptor will be mapped to an orientation subspace and be assigned to an orientation

index. Consequently, we can only store the index, rather than the orientation infor-

mation or location information of the features. We use the orientation to perform a

simple geometric verification and re-formulate the similarity calculation in Equation

(5.1) as

SGV (Ijk) := SGV (Ijk) +
w2

j C̃jkqj∑
Ijk

∑
q

s.t., C̃jk =
∑

P=mi,qi

ℓ(omi
, oqi),

(5.2)

where P denotes the matching pairs in the same leaf node, qi and mi are the feature

points in query image and matching image, respectively. ℓ(•) is the indicator function,

whose value equals one if the orientations of two matched descriptor pairs fall into

the same orientation subspace, oi ∈ Os, and equals zero otherwise.
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Visual Keyword Extraction. In our experiment, we observed that local descriptors

have different characteristics on two aspects: 1) Saliency. The larger patches in an

image are prone to be salient than the smaller ones. Hence, the local patches with

the largest scales are selected to identify the visual keywords. 2) Repetitiveness.

When projecting the local features of an image into the VT, several assigned nodes

will be visited frequently by visually similar images. Based on the two observations,

we propose to filter out a set of less important descriptors that are of small scales

or correspond to visual words that are infrequently visited, and keep the remaining

ones, forming the “visual keywords” that are used to represent an image for the later

search.

Specifically, we first sort all the local descriptors according to their scales. A

bottom λ1 percentage descriptors will be filtered out. After that, a scale array Sqj =

[s1, s2, . . . , st] will be produced. In our approach, we incorporate the scale information

of features when selecting the visual keywords and reformulate Equation (5.2) as

Ṡ(Ijk) := Ṡ(Ijk) +
w2

j C̃jk

∑t
k=1 α

2
k∑

Ijk

∑
q

, (5.3)

where αk =
sk∑
Sq

is a normalized parameter to modulate the scale information of each

feature on the contribution to the calculation of the similarity score. By the above

reformulation, the visual nodes visited by larger patches will contribute more to the

similarity scores than smaller ones.

2) Similar Image Search. Partial-duplicate search aims to seek images that share

the same local visual patches of the query image. In contrast, similar image search

is able to find the images that share the similar global visual appearance (e.g., color,

contour, etc.). In our approach we extract a 576-dimensional global feature vector

formed by the color and HOG feature to represent each image. Similar image search

is complementary to partial-duplicate search in case that partial-duplicate search

cannot return sufficient reliable images.

For performing an effective and efficient visual similarity search, we apply ap-
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proximate nearest neighbor search approach using multiple complementary hash ta-

bles [125]. Besides, we also do an ANN search over the reference database and discover

10 most similar images for each reference image, which is regarded as the visual ex-

pansion of the reference image. The search stage consists of two steps. The first step

is to find candidate images by searching over the complementary hash tables. The

second step is to reorder the candidates by using 10 most similar images to represent

the query and comparing them with the visual expansions of the candidates images

from the first step [93],[116].

Attribute Mining

“Attribute Mining” is to discovery all the attainable semantic attributes which rep-

resent the multiple semantic aspects of the underlying search intent [127],[69]. They

are jointly contributed by the context and the associated metadata from the visual

search content. We construct the attribute collections by selecting the labeled at-

tributes from the top W returned image results and append them with the valid

extracted context.

5.3.2 Intent Prediction

We use the associated metadata from the top W returned images and the extracted

valid context to exploit the semantic attributes behind the search intent. Each image

among the top W images, associated with the valid context, the semantic attributes

constitute a visual entity. Then we predict the most likely attribute keywords and

suggest image examples among all the visual entities to enable users explicitly express

a well-formulated query.

Multi-modal Query Suggestions

Keyword suggestion is proposed in [136]. Their goal is to find a set of keywords to

resolve the ambiguity of the initial textual query. In our work, the initial textual query

does not exist, we need to seek a set of keywords which can simultaneously reflect the
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dominating semantic knowledge of the visual content, context, and also provides the

different aspects of the semantic knowledge. The recommended attributes in this work

should satisfy the following two characteristics: 1) Representativeness. It is jointly

determined by the Relatedness and the Dominance. Relatedness: each attribute is

inherently relevant to the visual appearance of prospected visual content and the

surrounding context. Dominance: the selected attributes are with high co-occurrence

among all the labeled attributes. 2) Divergence. The selected keywords are able to

reflect different semantic aspects of initial search demand.

After running context detection and content-based image search, we will get a

collection of attributes from the context (e.g., “Shoes,”) and the labeled attributes

(e.g., a returned image is labeled with ”Puma” as brand name attribute, ”Male” as

gender information, etc.). Suppose A is a collection of all the attributes from the

valid context set AC , the labeled attributes collection AID from the images results by

partial duplicate search approach and AIS from the image results by similar search

approach: A = AC ∪ AID ∪ AIS , and A = [a1, a2, . . . , aN ], ai ∈ A represents each

attribute in collection A (attribute collection of all the visual entities), C denotes

the collection of context, ID denotes the image results returned by duplicate search

and IS denotes the image results returned by similar search. A includes N unique

attributes. The representativeness of each attribute is defined as R(ai) and calculated

by the following equation.

R(ai, A) = βCI(ai ∩ AC)+

W∑
j=1

(βID
j I(ai ∩ AID

j )+βIS
j I(ai ∩ AIS

j )),
(5.4)

where I() is a indicator function denotes the existence of the attribute ai in the cor-

responding attribute collection. I(ai∩AC) denotes ai exists in the context collection,

I(ai∩AID
j ) denotes ai exists in the labeled attribute collection of j-th duplicate search

result and I(ai∩AIS
j ) denotes ai exists in the labeled attribute collection of j-th similar

search result. βID
j is a normalized similarity score of the j-th partial-duplicate image

result, and βIS
j is a normalized similarity score of the j-th similar search image result.
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βC is a manually tuned weight to control the contribution from the context. By this

equation, both the co-occurrence calculated by I() and the relatedness from the con-

text and visual content controlled by β jointly contribute to the representativeness

calculation.

To address the divergence property, we follow the method proposed in [136] and

use the symmetric Kullack-Leibler (KL) divergence introduced in [51] to measure the

distribution difference between two attributes ai and aj as

K̃L(ai||aj) = KL(ai||aj) +KL(aj||aa), (5.5)

The divergence score of two attributes {ai, aj} with respect attribute collection A can

be defined as

D(ai, aj, A) = g(K̃L(ai||aj)), (5.6)

where g(∗) is a monotonically increasing function.

5.3.3 Task Completion

Given the attributes selected by users, our system will perform intent-driven image

search and return the results that well match the intent. Different from partial dupli-

cate image search and similar search, intent-driven image search searches images using

both visual content and the attributes. To this end, we combine the attributes and

visual content together to index the reference image database. For partial-duplicate

image search, we modify the existing content-based VT search scheme and present

an attribute-embedded indexing and retrieval method. For similar image search, we

modify the re-ranking step and take into consideration the selected attributes.

Intent-driven Image Search

1) Attribute Embedded Partial Duplicate Search. We modify the vocabulary

tree and append the attribute information following the ID in the inverted list that

corresponds to each leaf node. Rather than directly embedding the attributes, we
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Figure 5-4: Inverted file structure.

represent each attribute an ID and then only embed the attribute ID. For clothing

product images the attributes include category, brand name, gender, major color and

price. For news images, the attributes include news genre, timestamp, and geography

information. To hash these attributes, we build a map table to hash an attribute

value to a unique id and an inverted table to map an ID to the associated attribute

value. Particularly, for each type of attribute, we set its ID as 0 if the attribute value

is missing. When building the index using the VT tree, the ID of attributes will be

indexed with its associated image forming a inverted file as shown in Fig.5-4.

The query in the intent-driven case is composed of the extracted visual patches

from the bounded region of the elected image and the IDs of selected attributes. Here

the attributes are used to evaluate the candidate images collected from the inverted

list. For a visited node j, the similarity score in Eq. (5.3) is reformulated by fusing

the confidence score from the attribute similarity,

S̈(Ijk) := S̈(Ijk) +
w2

j (C̃jk + C̄jk)
∑t

k=1 α
2
k∑

Ijk

∑
q

s.t., C̄jk =
∑

A=mi,qi

ℓ(ami
, aqi)

(5.7)

where ami
and aqi is a pair matched attributes between the search attributes and the

attributes of the visited node.

2) Attribute-sensitive re-ranking for similar image search. We denote the

similarity between a query image and a reference image Ii computed from the visual

aspect in the similar image search stage as si. We aim to consider the attributes to
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compute a final score. The fused relevance score ri is formulated as follows,

ri = α0si +
Υ∑
ϵ=1

ℓ(aϵ)αϵsi. (5.8)

Here, α0 and αϵ are the balance parameters used to modulate the visual modality

and the multiple semantic modalities and α0 +
∑Υ

ϵ=1 αϵ = 1, Υ is the number of the

elected attributes. ℓ(aϵ) is an attribute indication function indicating whether the

ϵ-th selected attribute exists in image Ii. The updated relevance scores {ri} of the

candidate images are finally used to reorder the search results.

We display Ω results by an automatic combination of the results from intent-

driven partial-duplicate and similar image search. Among Ω results, top τ results

are generated by partial-duplicate search and the remaining results are produced by

similar image search. This combination is driven by the underlying user intent (based

on our field study result) that the user’s intent is more likely to find partial-duplicate

images than visually similar images. In the case that there are no reliable results

from partial duplicate visual search, the visual similar images will replenish the final

result list.

5.4 Demonstration

Typical online shopping experience mainly contains three activities: browsing, search

and transaction. Usually users spend many efforts in browsing and search activities to

do product research, while the step of placing an order costs much less time. For the

two main categories of shopping websites: 1) online shopping sites like Amazon.com;

2) product search engine like Google Product Search, users often need to frequently

switch between browsing and search. For example, when a user is browsing a laptop

product page on Amazon, he or she may also want to search similar products on

Amazon, or the price information of the same laptop on other shopping sites. Ob-

viously, the frequent switch between websites is not efficient, especially when touch

devices like tablet PC or pad are used.
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In this demonstration, we present a novel interactive shopping application. This

system involves a natural user interaction which seamlessly integrates the browse and

search behaviors to improve user’s online shopping experience. The user can specify

the purchase intent by selecting objects very naturally with gestures (instead of the

conventional query methods such as typing keywords in text box or using an input

image to do search) when browsing e-commerce websites or even some ordinary web

pages, and to obtain the relevant products instantly within the same browsing session.

In this work, we infer user’s search intent by analyzing visual properties of the user

selection, with the help of context information collected from the browsed web page.

The faceted search is conducted to rank candidate products.

5.4.1 System Architecture

In order to capture the underlying purchase intent, and facilitate users making further

purchase decisions, our system is designed with a three-stage process: 1) purchase

intent expression allows users to select the interested product image on the client side

using multi-touch gestures on a Tablet PC (called ”Lasso” gesture in the system). The

back-end server in the cloud recognizes the selected visual content and also analyzes

the surrounding context; 2) multidimensional preference prediction is accomplished

through the multi-modality query suggestion strategy on the cloud which recommends

the relevant product attributes with the associated images to help users designate the

dominant preferences; 3) faceted search & compare performs a joint textual-visual

search on the cloud side and return the most relevant products to users for better

decision-making.

5.4.2 System Implementation

Purchase Intent Expression

We introduce a natural gesture by circling a region to indicate the object inside the

interested product image. Such intent expression method provides a unique user

experience as (1) users do not have to formulate a text query, which is inconvenient
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for a touch device; and (2) it is not necessary to upload an image as a query, which

usually needs several steps to complete.

Then the selected visual content and the context formed by the surrounding texts

are transferred to the cloud side. There are three modules to understand users’

intent: (1) context validation aims to extract the valid product specific attributes; (2)

large-scale image search aims to understand the properties of the products by finding

similar images from the visual perspective; and (3) attribute mining aims to discover

attributes, such as prices, brand names, and categories, by analyzing the outputs of

the above two modules.

Multidimensional Preference Prediction

Multimodal query suggestion algorithm [136] runs at the cloud to analyze the mul-

tidimensional preferences of the purchase intent among the similar product images,

and to suggest the most representative attributes with keywords (by attribute recom-

mendation) and images (by image recommendation) to the users at the client side.

We use the stored associated metadata of the similar images and the extracted

context to exploit the semantic attributes representing the preferences. We bound two

characteristics: representativeness and divergence to ensure the suggested attributes

are not only representative of the dominant preferences, but also reflect the diversity

of aspects.

Faceted Search & Compare

A two-step intent-driven image search process is performed to search the relevant

products. The first step is an attribute-based search step, which joins all the faceted

aspects of the user intent, visual content and context. The second step is to re-rank

the returned images and allow users to compare the products for making a decision.
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(a) Purchase Intent Expression (b) Multi-Preference Prediction

(c) Faceted Search (d) Purchase

Figure 5-5: User interfaces of the “Browse-to-Search” system.

5.4.3 System Demonstration

The system is deployed as an application on iPad and running through a database

with 5 million product images, which currently supports 83 product categories. Fig. 5-

5 shows the user interface of the system. A user expresses his/her purchase intent as

shown in Fig. 5-5 (a); the preference prediction results are shown in Fig. 5-5 (b) and

faceted search results are shown in Fig. 5-5 (c); Fig. 5-5 (d) shows the linked purchase

page if the user clicks the interested product.
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5.5 Evaluations

5.5.1 Data and Settings

To make our system robust with rich data to respond to various underlying search

intents, we collected six million web images including five million images from Amazon

products in the category of “clothing” and one million images from a commercial news

website. For each product image, the product domain-specific attributes like brand

names, prices, major colors, are stored. For each news image, the titles, timestamps

and geography information are stored.

To perform partial-duplicate visual search, local interest points are stored with

the SIFT [71] descriptor. Two scalable vocabulary trees (VT) and the associated in-

verted indexing file for six million images with embedded orientation information and

attributes are created for content-based search and intent-driven search, respectively.

To perform similar visual search, histogram of color features and gradients features

are extracted, respectively.

Dataset for Evaluation

To prepare the dataset for evaluation, we conduct eight groups field studies and

present the demo system to the users, and show them how to use it to perform browse

and search session as illustrated in Fig. 5-5. Then we allow each user to play the demo

by one hour. They are asked to browse and search from the commercial websites like

Amazon, eBay and the other commercial websites with their own interests. During the

search process, we crawled their selected images, stored the bounded area generated

by their lasso gestures and the surrounding text in the websites. After all trials, we

process all the raw stored data and select 1,000 images as query images associated with

the context and the gesture information. For different evaluation purposes, among

1,000 images, 250 of them have valid context information (the stored attributes appear

in the context), and 200 also have partial images of the original image cropped by

the lasso gestures.
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Ground Truth

For each raw image in the selected 1,000 images, we run flat visual search techniques

among 6 million web images and get top 5 partial duplicate search results and top

10 similar search results. Then the ground truth of the search results are built as

follows. We divide 1,000 query images and the corresponding 15,000 returned images

into 10 groups. Then we ask 10 annotators to label the results and each of the user is

assigned with three groups of data, which means each group data will be annotated

by three different users and the relevance score is the average score labelled by three

users. To avoid any bias on labelling, the annotators were selected such that they have

no special knowledge on image search and the proposed techniques. To differentiate

different relevance scores, we adopted a graded relevance score, and use three levels

to represent the relevance: 0—not relevant; 1—relevant or visual similar; 2—near

duplicate.

5.5.2 Evaluation of Visual Search

To evaluate the performance of visual search, we adopt the normalized discount ac-

cumulation gain (nDCG) measure [70].

Evaluation of content-based visual search

For evaluating the content-based visual search approach, we run the experiments to

decide the size of codewords of VT. The size of codewords of VT describes how to

properly partition the local descriptor space. If the size is too large, the transposed

histogram of visual codewords will be sparse and cause the mismatch. If the size is

too small, many different local visual patches will be assigned into a same codeword,

which is the well-known “quantization error”. After getting the empirical best size of

VT, we apply it to different approaches.
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Figure 5-6: Impact of codebook size.
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Figure 5-7: Content-based visual search.

Impact of codeword size of VT

In our experiment, we test three sizes of codewords: 10K (B = 10, L = 4), 100K (B

= 10, L = 5) and 1M (B = 10, L = 6) on 6 million images by the baseline method

of duplicate search method. And the empirical valid best size of the codewords will

be applied to other re-formulated approaches. From Fig. 5-6, it can be observed that

when the size is with 100K (B = 10, L = 5) the search performance measured by

nDCG yields best overall performance for the baseline.

Evaluation of different content-based visual search approaches

In Fig. 5-7, we compare four approaches for performing content-based visual search.

It can be seen that VT-based search with geometric verification reformulation by

embedding the compact orientation does incur the performance improvement, but

the improvement is minor (only 1.1%). The same finding and conclusion (0.5% im-
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Figure 5-8: Intent-driven visual search approach.

provement) is reported in a recent work when they implement spatial verification,

[131].

The improvement with the proposed visual keyword method is obvious. It yields

a 14.4% improvement on overall performance when comparing with the baseline du-

plicate search method. This result well demonstrates that the “visual keyword” is

not only able to match the dominant duplicate local visual patches but also robust

to match well with similar visual patches allowing certain local visual variations.

It is worth noting that the proposed visual similar search method surprisingly

outperforms the proposed partial duplicate method and yields an extra 15.5% im-

provement in comparison with VT-based partial-duplicate search method. One of

the major reasons is that in our benchmark dataset for the evaluation, nearly half

of the crawled web images (469 of 1,000) do not have near-duplicate images in the

database, but visually similar images exist. We introduce a weigh parameter to mod-

ulate the contribution on the representativeness score by the partial-duplicate search

method and similar search method and reformulate Eq. (5.4) as

R(ai, A) = βCI(ai ∩ AC) +
W∑
j=1

((1− µ)βID
j I(ai ∩ AID

j )

+µβIS
j I(ai ∩ AIS

j )).

(5.9)

Based on the database of our system, µ depends on the accuracy gain as µ/(1−µ) =

1 + 15.5%. µ is set as µ ≈ 0.54 in this implementation. µ could be learned when the

system and database is fixed.
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Evaluation of intent-driven visual search approach

There are 250 images in the dataset stored with the valid context and the selected

attributes. For evaluating our proposed approach in premier mining stage, we consider

four scenarios, as shown in the Fig. 5-8. (Notes: Dup AE in the legend is short for

Attribute-Embedded Partial-Duplicate Search method. And Re-ranking is performed

in similar image search stage.) 1) As shown by the blue curve, no context attributes

and selected attributes are used, which means the term C̄jk equals zero in Eq. (5.7).

It will just perform a partial-duplicate search. 2) The valid context is counted into

the partial-duplicate search, but no recommended attributes are selected. It means

the attribute array term in Eq. (5.4) is only composite with the valid context. It is

a possible scenario when users select the suggested images for performing the further

search. As shown by the red curve in the Fig. 5-8, the proposed attribute-embedded

partial duplicate search yields 27% improvement on overall performance. 3) When a

user selects the recommended attributes, as shown by green curve, the performance

is improved obviously. It demonstrates that our proposed query suggestion algorithm

is effective. 4) The purple curve shows the task completion result by combining the

re-ranked visually similar search results. It demonstrates that the proposed approach

by joining the attribute-embedded partial-duplicate search method with the re-ranked

similar search method provides a best system performance.
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Table 5.2: Latency on getting multi-modal query.
Operation Time (msec)

Send Image, Gesture Para. and Text ≤ 300
Context Extraction 55

Large-scale Image Search 798
Attribute Mining 198

Multi-Modal Query Suggestion 15
Total ≤ 1,366

Table 5.3: Latency of large-scale image search (msec).
Partial-Dup.: 798 Similar Search: 511

SIFT Ext. Dup.Search Color+HoG Ext. Sim.Search
586 212 224 287

Run in parallel: 798

Evaluation of the impact of Lasso gestures

We also perform a search evaluation among 200 query images that the bounded

images are a cropped version of the original images. Both the original images and the

cropped images elected by the lasso gestures are used as query images. As illustrated

in Fig. 5-9, it shows query images with the bounded lasso region outperform the

original images. The gesture will help users to express their intent more clearly. As

noted in Fig. 5-9, the nDCG scores of top 2 results are worse than other results. This

is because among 200 queries, only 53 queries (approximately 25%) have the duplicate

images in the database.

5.5.3 Evaluation of Latency

The time needed for different operations are listed in Table 5.2∼5.4. As shown in

Table 5.2, after selecting the interested visual objects by Lasso gestures, users can get

the suggested multi-modal query results within 1.5 seconds (<1,366 ms). During this

process, large-scale image search cost about 0.8 second when the partial-duplicate

image search and similar image search are running in parallel, as shown in Table 5.3.

As shown in Table 5.4, by the intent-driven image search, users can get the search

results within 1 second.
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Table 5.4: Latency on getting task completion results.
Operation Time (msec)

Attribute-Embedded Search 203
Image Re-ranking 287

Task Completion + Metadata Bounding 420
Total 910

5.5.4 Evaluation of Usability

We conducted a user study and invited 12 users to evaluate our system. The partic-

ipants consist of five females and seven males including college students and profes-

sional people, with the age ranging from 21 to 28. Three of them had some experiences

on Tablet-PC and all of them had experiences with multi-touch devices. Four partici-

pants had experiences with visual search on mobile equipments. After five minutes of

demonstrations, all of them became sufficiently familiar with how to use our system.

After demonstrating, each user is asked to perform three tasks. First task, each

user is assigned with five web pages as the entry of browsing. Under each web page,

a query task is allocated and requires the user performing the same browse to search

switching event by 1) search on PC (via copy/paste and typing the textual words

using mouse and keyboard); 2) search on iPad (via copy/paste and typing the textual

words using standard gestures and keyboard); 3) search by the app Bing for iPad;

4) search by our system. We calculate the task completion duration for each task

till finding the satisfying query results. The average task completion time for four

approaches is illustrated in Fig. 5-10 (a). It shows that our system is able to bridge

well with the browse and search session and finish the whole task no more than one

and a half second.

In the second task, each user is asked to randomly pick up 40 image queries from

totally 1,000 queries to perform “browse to search” task. For each query, they are

asked to grade the satisfaction score of the relevance between the search intent and

the returned results. The satisfaction scores are in three levels: 3—very relevant; 2—

relevant; 1—irrelevant. The satisfying score distribution among all the 480 queries is

shown in Fig. 5-10 (b). It can be seen that the overall satisfying ratio is 73.49%.
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In order to demonstrate that our system successfully facilitates their search intent

in comparison with the state-of-the-art system, in the third task, we ask the users to

perform a one-versus-one comparison between our system and Google Related [33].
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User selected at least five web pages from our recommended candidate pool to perform

browsing task and then are asked to arbitrarily find their browse to search switching

event and also to review the results returned by Google Related and our system.

Google Related is a state-of-the-art application to recommend users with some real-

time browsing relevant information. In order to make a fair comparison between two

systems, we allow users to arbitrarily select the browse to search switching event to

perform sequential query activity, since Google Related incapacitates users to express

their search intent. The quantitative evaluation comparing two applications is listed

in Fig. 5-11. All the users thought that our system overall outperform Google Related.

Especially, the users thought (ranked by scores) that our system is more user friendly,

easy on operation, with strong novelty and more attractive, is definitely helpful on

expressing user intent and the results are directly relevant to the search intent.

5.6 Conclusions

We present a novel system to integrate the browse and search behaviors into one

exploring life-cycle. With such an integration, our system is capable of solving three

key problems in the proposed exploratory search paradigm: 1) how to allow users to

formulate intent-specific queries when web images being browsed inspire exploratory

search interests; 2) how to infer the underlying intent of users from browsing context;

3) how to utilize the associated image features and large-scale image search techniques

to understand the multiple aspects of actual search intent, especially to discover the

most dominant preferences.

To summarize, our system makes the following contributions:

• We present an integrated “browse and search” system as a new notion for rep-

resenting online exploration behaviour, and involve the associated textual and

visual features of images as visual entities into exploratory search loop, which

has never been studied before.

• We develop a real-world system “Browse-to-Search” to take advantages of nat-
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ural user interaction and large-scale visual search techniques. The system has

four unique user-centric characteristics: in-session, in-context, in-focus, and in-

tuitive. It represents one of the first attempts supporting easy task completion

through interactive exploratory visual search.

• We propose three methods to optimize the contextual visual search perfor-

mance. Compact geometric verification approach and visual keyword extraction

approach are proposed to consider the impacts from the orientations and scales

of the local features. They both enforce the partial-duplicate image search per-

formance. The proposed attribute embedded method modifies the vocabulary

tree by embedding the attribute into the inverted list and further improves the

visual search performance when contextual information is taking into account.

• We evaluate the system in terms of two popular online tasks—shopping and

news reading—through a large-scale of real-world data and extensive experi-

ments.
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Chapter 6

Conclusions and Future Work

In this chapter, we further conclude our research work and explore directions for our

research in the future.

6.1 Conclusions

In this thesis, we presented a novel paradigm for facilitating users performing interac-

tive exploratory visual search. Visual features are represented in a compact method.

Both the visual content and context are utilized to understand the intent of users.

We also made special contributions to large-scale exploratory visual search.

In the first part (Chapter 3), we proposed a new image search scheme with com-

pact image representation, which is able to achieve very low bit rate for transmission

in-between query client and image repository cloud. The new scheme stores a vo-

cabulary tree and encodes visual words to reduce the bit rate on the local. We have

demonstrated that with using light-weight computation method for obtaining the vi-

sual words on the client, we are able to reduce the data volume to be transmitted

significantly. Compared with the strategy by sending the feature descriptors, the

data volume to be transferred is reduced by more than 3 times. Compared with

the strategy by sending raw images, the data volume to be transferred is reduced by

more than 30 times. We also proposed a novel video summarization approach towards

generating compact video representation. Other than treating each video frame as
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a high dimensional hand-crafted visual feature vector, we explored visual content at

finer granularity by focusing on the learned features in a low dimensional transformed

sparse space. We developed the BoI model by utilizing the group sparsity property to

derive the importance of learned features to a given video. Therefore, we formulated

video summarization as identifying the importance of learned features and extracting

representative frames with strong coverage of important features. Experiments have

been conducted demonstrate the superiority of the proposed approach against the

state-of-the-art methods.

In the second part (Chapter 4), we undertook efforts on two content-based visual

search problems which are important to most of the large-scale visual search applica-

tions. We presented an improved near-duplicate video detection approach by utilizing

an adaptive reference frame selection scheme. Correlation among consecutive frames

measured by Pearson’s correlation coefficient is employed to partition shots into repre-

sentative fractions adaptively and a number of frames from each fraction are chosen as

reference frames. In addition, the traditional shot interest point extraction algorithm

is modified to better accommodate proposed frame selection scheme and to obtain

more important interest points. Comprehensive experimental results on video shots

from TRECVID-2008 corpus demonstrates clear improvement to the state-of-the-art

shot interest point based approach. We also presented a novel framework for effec-

tive human action classification and efficient VOI localization of human actions from

videos with the proposed enhanced sparse coding scheme and hierarchical localization

strategy. It can be concluded that our approach achieves significant computational

saving by avoiding prohibitively expensive computations of local feature voting and

exhaustive scanning of entire videos for locating VOI candidates, while its recognition

accuracy are comparable to the state-of-the-art methods.

In the third part (Chapter 5), we integrated browse and search behaviors, and

proposed the “browse and search” notion for the framework of exploratory visual

search. We presented a novel system to integrate the browse and search behaviors

into one exploring life-cycle. With such an integration, our system is capable of solving

three key problems in the proposed exploratory search paradigm: 1) how to facilitate
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users to formulate intent-specific queries when the web images being browsed inspire

the exploratory search interests; 2) how to infer the users’ underlying intent from the

browsing context; 3) different to the traditional query-by-visual-example system, how

to utilize the associated image features and the large-scale image search techniques to

understand the multiple aspects of the actual search intent, especially to discover the

most dominant preferences. The proposed interactive visual search solution effectively

and efficiently derive the underlying search intent with both the visual and semantic

attributes, and help users formulate the intent and complete the task with relevant

results. Our experiments by both the objective evaluations and subjective evaluations

demonstrated that the system is effective and efficient on search performance and also

satisfies users on the usability and the exploring demands.

6.2 Future work

Exploratory visual search is an open topic that emerges with the development of

mobile-based visual technology. As social networks evolve, new research challenges

and opportunities are also manifesting themselves to the research community. At the

end of this thesis, we address some possible topics as our research directions for the

near future.

6.2.1 Scalability Issue

Scalability becomes a key aspect for any visual-based search techniques. Several

principles can be followed to achieve scalability: generating compact visual features,

utilizing domain-specific indexing structures to enable efficient search, and applying

distributed system to boost performance.

6.2.2 Personalised Visual Search

Visual search aims to provide users with the most desired image / video content by

integrating the content semantic importance with user preferences. The expected
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schemes are: 1) seamless integration of user supplied query information with low

level image features to identify semantically important visual content; 2) integration

of semantic importance and user feedback to dynamically update users’ preferences;

and 3) perceptually optimized adaptation for visual display of search results. In order

to bridge the semantic gap for adaptation, we should make efforts on integrating

low level features with high level semantics. To accommodate the variation of user

preferences, the system should involves users in the adaptation process with simple

feedback so as to present users most interesting and relevant content.

6.2.3 Exploratory Search in Social Networks

Social networks have been providing more and more visual content related services.

Conventional information search providers are also transiting into social networks.

Social features are available where a user shares images and videos with friends,

subscribes other users’ video channels, comments on published images or videos, and

so on. How to integrate the social features into the exploratory loop to foster users’

information seeking activity will be a promising future direction.
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