2,631 research outputs found

    Automating Home Appliances For Elderly and Impaired People: The B-Live Approach

    Get PDF
    DETIThis paper describes the B-Live approach for automating home appliances for elderly and impaired people. This system has been developed at Micro I/O for enhancing the quality of life and the independence of its potential users. The target application is the retrofitting of common dwellings. The paper introduces the motivation for the B-Live system and presents a survey on current Smart Home projects and endeavours. The B-Live system is described and details on its software, hardware and communications architecture are provided. A survey of the supported appliances and interfaces is presented as well as a description of the B-live configuration and operation procedures. The suitableness of the B-Live system to improve the autonomy of the envisaged users was informally evaluated by C4, C5 and C6 patients at the CMRRC Rovisco Pais demonstrator. The conclusion is that the system has a short learning curve and can cope with the requirements of its potential users

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Coordination of ECA Rules by Verification and Control

    Get PDF
    International audienceEvent-Condition-Action (ECA) rules are a widely used language for the high level specification of controllers in adaptive systems, such as Cyber-Physical Systems and smart environments, where devices equipped with sensors and actuators are controlled according to a set of rules. The evaluation and execution of every ECA rule is considered to be independent from the others, but interactions of rule actions can cause the system behaviors to be unpredictable or unsafe. Typical problems are in redundancy of rules, inconsistencies, circularity, or application-dependent safety issues. Hence, there is a need for coordination of ECA rule-based systems in order to ensure safety objectives. We propose a tool-supported method for verifying and controlling the correct interactions of rules, relying on formal models related to reactive systems, and Discrete Controller Synthesis (DCS) to generate correct rule controllers

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Collaborative Solutions to Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) merge computer vision, image processing and wireless sensor network disciplines to solve problems in multi-camera applications in large surveillance areas. Although potentially powerful, VSNs also present unique challenges that could hinder their practical deployment because of the unique camera features including the extremely higher data rate, the directional sensing characteristics, and the existence of visual occlusions. In this dissertation, we first present a collaborative approach for target localization in VSNs. Traditionally; the problem is solved by localizing targets at the intersections of the back-projected 2D cones of each target. However, the existence of visual occlusions among targets would generate many false alarms. Instead of resolving the uncertainty about target existence at the intersections, we identify and study the non-occupied areas in 2D cones and generate the so-called certainty map of targets non-existence. We also propose distributed integration of local certainty maps by following a dynamic itinerary where the entire map is progressively clarified. The accuracy of target localization is affected by the existence of faulty nodes in VSNs. Therefore, we present the design of a fault-tolerant localization algorithm that would not only accurately localize targets but also detect the faults in camera orientations, tolerate these errors and further correct them before they cascade. Based on the locations of detected targets in the fault-tolerated final certainty map, we construct a generative image model that estimates the camera orientations, detect inaccuracies and correct them. In order to ensure the required visual coverage to accurately localize targets or tolerate the faulty nodes, we need to calculate the coverage before deploying sensors. Therefore, we derive the closed-form solution for the coverage estimation based on the certainty-based detection model that takes directional sensing of cameras and existence of visual occlusions into account. The effectiveness of the proposed collaborative and fault-tolerant target localization algorithms in localization accuracy as well as fault detection and correction performance has been validated through the results obtained from both simulation and real experiments. In addition, conducted simulation shows extreme consistency with results from theoretical closed-form solution for visual coverage estimation, especially when considering the boundary effect

    A P2P Networking Simulation Framework For Blockchain Studies

    Full text link
    Recently, blockchain becomes a disruptive technology of building distributed applications (DApps). Many researchers and institutions have devoted their resources to the development of more effective blockchain technologies and innovative applications. However, with the limitation of computing power and financial resources, it is hard for researchers to deploy and test their blockchain innovations in a large-scape physical network. Hence, in this dissertation, we proposed a peer-to-peer (P2P) networking simulation framework, which allows to deploy and test (simulate) a large-scale blockchain system with thousands of nodes in one single computer. We systematically reviewed existing research and techniques of blockchain simulator and evaluated their advantages and disadvantages. To achieve generality and flexibility, our simulation framework lays the foundation for simulating blockchain network with different scales and protocols. We verified our simulation framework by deploying the most famous three blockchain systems (Bitcoin, Ethereum and IOTA) in our simulation framework. We demonstrated the effectiveness of our simulation framework with the following three case studies: (a) Improve the performance of blockchain by changing key parameters or deploying new directed acyclic graph (DAG) structure protocol; (b) Test and analyze the attack response of Tangle-based blockchain (IOTA) (c) Establish and deploy a new smart grid bidding system for demand side in our simulation framework. This dissertation also points out a series of open issues for future research
    • …
    corecore