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Abstract

Visual sensor networks (VSNs) merge computer vision, image processing and

wireless sensor network disciplines to solve problems in multi-camera applications

in large surveillance areas. Although potentially powerful, VSNs also present

unique challenges that could hinder their practical deployment because of the unique

camera features including the extremely higher data rate, the directional sensing

characteristics, and the existence of visual occlusions.

In this dissertation, we first present a collaborative approach for target localization

in VSNs. Traditionally; the problem is solved by localizing targets at the intersections

of the back-projected 2D cones of each target. However, the existence of visual

occlusions among targets would generate many false alarms. Instead of resolving the

uncertainty about target existence at the intersections, we identify and study the

non-occupied areas in 2D cones and generate the so-called certainty map of targets

non-existence. We also propose distributed integration of local certainty maps by

following a dynamic itinerary where the entire map is progressively clarified.

The accuracy of target localization is affected by the existence of faulty nodes

in VSNs. Therefore, we present the design of a fault-tolerant localization algorithm

that would not only accurately localize targets but also detect the faults in camera

orientations, tolerate these errors and further correct them before they cascade. Based

on the locations of detected targets in the fault-tolerated final certainty map, we

construct a generative image model that estimates the camera orientations, detect

inaccuracies and correct them.
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In order to ensure the required visual coverage to accurately localize targets or

tolerate the faulty nodes, we need to calculate the coverage before deploying sensors.

Therefore, we derive the closed-form solution for the coverage estimation based on

the “certainty-based detection” model that takes directional sensing of cameras and

existence of visual occlusions into account.

The effectiveness of the proposed collaborative and fault-tolerant target local-

ization algorithms in localization accuracy as well as fault detection and correction

performance has been validated through the results obtained from both simulation

and real experiments. In addition, conducted simulation shows extreme consistency

with results from theoretical closed-form solution for visual coverage estimation,

especially when considering the boundary effect.
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Chapter 1

Introduction

1.1 Visual Sensor Networks

Vision is perhaps the most powerful of the human senses. Many multi-camera systems

have been developed for different applications ranging from security monitoring to

surveillance in the last few decades. In these applications, many high-resolution

and expensive cameras are deployed into large buildings (i.e., malls and airports)

and open areas (i.e., parking lots and public parks) to capture the events in the

sensing field through a centralized architecture where all collected visual data sent to

a central processing location via wires for storage or real-time analysis by a human

operator. However, these systems are not scalable and subjective to decisions of

human operators. In addition, it is unaffordable to deploy many cameras into large

environments because of high cost of installation and system maintenance.

With recent developments in imaging, networking, embedded computing and

circuit design technologies, it is not impossible any more to produce significantly

small size and low cost visual sensor platforms with imaging, on-board processing

and communication capabilities [Rinner and Wolf, 2008]. These technological

improvements dramatically change the concept of cameras from being a black box

that can only capture videos or images to being an intelligent device that not only
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takes pictures but also analyzes and reports the events in the scene. Deployment

of a large number of such platforms to cover a wide surveillance area forms a so-

called visual sensor network (VSN), that is capable of solving complex computer

vision problems through distributed sensing and collaborative in-network processing.

Therefore, VSNs have generated a new emerging interdisciplinary research field and

got attractions from many diverse research disciplines including computer vision,

image processing and wireless sensor networks.

Based on their potential capabilities, many researchers refer to the visual

sensor network as the fundamental of the next generation of smart surveillance

systems [Aghajan and Cavallaro, 2009]. Visual sensor networks are facilitated in

many different multi-camera applications in diverse environments. Surveillance and

security are the most obvious applications of visual sensor networks to cover the large

environments. In addition to this, visual sensor networks have different application

areas including smart buildings, medicine and entertainment. We summarize some of

these applications below:

Surveillance: It is one of the primary applications of visual sensor networks where

hundreds of cameras are deployed to monitor a large environment for a specific

task such as automatic target detection and tracking in public places, traffic

monitoring and flow control at intersections and parking lots. Exchange of

visual information among the sensor nodes is required to achieve these specific

purposes [Sankaranarayanan et al., 2008].

Security monitoring : In order to monitor the remote and secure areas against

the intruders, an energy-efficient VSN is required to prolong the task for a

long period of time. Therefore, sleep-wake scheduling is maintained to awake

the visual sensors periodically in homogenous sensor networks. Moreover, in

heterogenous sensor networks, different types of sensors that have lower power

consumption than cameras might be deployed into sensing field to awake the

cameras when an intruder is detected [Soro and Heinzelman, 2009].
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(a) (b) (c)

Figure 1.1: Example visual sensor platforms (a) CMUcam3, [Rowe et al., 2007] (b)
MeshEye, [Hengstler et al., 2007] and (c) CITRIC, [Chen et al., 2008]

Smart building : Instead of just monitoring the environment, VSNs is capable of

generating automated responses to some events that require emergency actions

to ensure the human safety such as patients in hospitals, elderly people in

assisted living or physically disabled people in their homes, [Fleck and Strasser,

2008]. These systems analyze the captured visual data and provide relevant

information about any unusual behavior to alert the emergency units for

immediate actions.

Since there are many diverse application areas, many research groups in various

institutions and companies have developed their own low-cost and easy-deployment

visual sensor platforms based on their task-specific applications. Representative

platforms in the recent literature include WiCa, Cyclops, MeshEye, CMUCam3,

Citric and DSPcam (see Fig. 1.1).

One of the early designs of visual sensor platforms is the WiCa (Wireless Camera)

node from NXP research and Philips research by Abbo and Kleihorst [2002] for a

gesture recognition system. Cyclops is designed in UCLA by Rahimi et al. [2004] for

object-tracking applications. In Stanford, Hengstler et al. [2007] developed MeshEye

for low-power performance by using two low-resolution cameras to trigger a high

resolution camera when target is detected. CMUCam3 designed in Carnegie Mellon

by Rowe et al. [2007] is the third version of CMU cameras with limited processing
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Table 1.1: Hardware specifications of example visual sensor platforms by [Abbo
and Kleihorst, 2002], [Rahimi et al., 2004], [Hengstler et al., 2007], [Rowe et al.,
2007], [Chen et al., 2008], and [Kandhalu et al., 2009], respectively.

Platform Visual Sensor Processor Communication Power

WiCa CMOS, NXP Xetal, Zigbee, ≈ 1 W
(2002) 640× 480 80MHz 802.15.4
Cyclops CMOS, ATmega128, Mica2, ≈ 70 mW
(2004) 352× 288 7.3MHz 802.15.4
MeshEye CMOS, AT91SAM7S, Zigbee, ≈ 1 W
(2007) 640× 480 55MHz 802.15.4
CMUCam3 CMOS, LPC2106, Firefly, ≈ 500 mW
(2007) 352× 288 60MHz 802.15.4
Citric CMOS, PXA270, Tmote, ≈ 1 W
(2008) 1280× 1024 520MHz 802.15.4
DSPcam CMOS, Blackfin, FireFly, ≈ 50 mW
(2009) 1280× 1024 133MHz 802.11g/b

power. As a result of joint work by UC Berkeley and Merced, CITRIC camera

node is designed by Chen et al. [2008] and used for image compression and target

tracking applications. The most recent visual sensor platform is DSPcam designed

by Kandhalu et al. [2009]. The overview of the hardware specification of these

platforms are summarized in Table 1.1.

1.2 Challenges in Visual Sensor Networks

Although many potential applications have been made possible using these powerful

visual sensor platforms, VSNs also present unique challenges that could hinder their

practical deployment compared to conventional 1-D omnidirectional scalar sensor

networks (SSNs) (e.g., temperature sensors, microphones and geophones) because of

unique features of cameras. These features include the extremely higher data rate,

the directional sensing characteristics with limited field of view, and the existence of

visual occlusion.
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The main challenge in visual sensor networks is the huge data volume of visual

sensors which generally requires high network bandwidth for data transmission, which

cannot be adequately addressed because of the energy constraint and the usage of the

low-bandwidth wireless communication. Among all the major processes taken place

in a VSN, i.e., sensing, processing, and communication, communication consumes

most of the energy. Usually, we can neglect the energy consumption on sensing and

processing compared to that on communication. However, when processing images,

some computationally expensive algorithms can easily consume as much energy as

communication and become a problematic issue for practical deployment of VSNs.

Therefore, we need to follow two basic guidelines when solving computer vision

problems in a distributed environment. First, the sensor data, i.e., the image, should

be pre-processed locally to reduce the amount of transmitted data volume [Kahn et al.,

1999]. Second, simple but effective local processing algorithms should be developed

to reduce the computational cost.

Another challenge in VSNs is the existence of “visual occlusions” among targets

which cannot be avoided because of the directional sensing nature of visual sensors.

Since the light emits directly and cannot pass through the non-transparent objects, a

camera can visually capture a target only when the target stands in the field of view

and there is no other occluding targets between the camera and the target. Usually, it

is not possible to cover all targets in a crowded environment by using a single camera.

Therefore, we need to deploy and use multiple visual sensor nodes to cover a large

sensing field, taking the visual occlusion into account.

In addition to huge data volume and visual occlusion, since visual sensors have

limited field of views, and limited computational capacity, visual information obtained

by each sensor node is neither sufficient nor accurate. Therefore, collaboration in

visual sensor networks is essential not only to compensate for the processing, sensing,

energy, and bandwidth limitations of each sensor node but also to improve the

accuracy and robustness of the network.
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1.3 Motivation and Contributions

In order to address challenges in VSNs listed above, many researchers from

various institutions have proposed different approaches and hundreds of journal and

conference papers have been published in recent years. However, there are still

many partially solved or unsolved issues in visual sensor networks that need to be

investigated in detail.

In this dissertation, we first present an energy-efficient and light-weight approach

to localize targets in a crowded environment using a visual sensor network through

distributed sensing and collaborative in-network processing by taking the directional

sensing and visual occlusion issues in visual sensors into account. Since the presence

of faulty sensor nodes in VSNs affects the accuracy of target localization, we design

a fault-tolerant target localization algorithm that would not only accurately localize

targets but also detect the faults in camera orientation, tolerate these errors and

further correct them before they cascade.

In addition to target localization and fault tolerance in VSNs, we also consider

a relevant challenging topics in visual sensor networks, namely visual coverage

estimation. In order to ensure the required coverage in a sensing field to accurately

localize targets or tolerate the faulty nodes, we derive the closed-form solution

to estimate the visual coverage probability based on the “certainty-based target

detection” model that takes directional sensing of cameras and existence of visual

occlusions into account. We briefly introduce each of these topics and emphasize our

research contributions as follows.

The Certainty Map Model : One of the most significant contributions of this

dissertation work is the development of certainty map method for collaborative

solutions to visual sensor networks. Traditionally, the intersections of the back-

projected 2D cones of each target is used to solve the problems in a VSN (e.g.,

target localization and visual coverage estimation). However, the existence

of visual occlusion among targets would generate many false alarms. Instead
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of resolving the uncertainty about target existence at the intersections, we

identify and study the non-occupied areas in the cone and generate the so-called

certainty map of non-existence of targets.

Dynamic Itinerary for Target Localization: The second major contribution is the

development of dynamic itinerary for progressive certainty map integration

in target localization algorithms. In order to localize target in crowded

environments, we focus on the design of a light-weight, energy-efficient, and

robust solution where not only each camera node transmits a very limited

amount of data but that a limited number of camera nodes is involved. We

propose a dynamic itinerary for certainty map integration where the entire map

is progressively clarified from sensor to sensor starting the integration with the

sensor that has the greatest contribution information to the current certainty

map. When the confidence of the certainty map is satisfied, targets are localized

at the remaining unresolved regions in the certainty map.

Fault Tolerance, Detection and Correction: The third contribution is the design of

the fault tolerance, detection and correction algorithm in target localization.

Fault tolerance in VSNs is more challenging than in conventional scalar sensor

networks (SSNs) because of the directional sensing nature of cameras and the

existence of visual occlusion. We focus on the design of a collaborative target

localization algorithm in VSNs that would not only accurately localize targets

but also detect the faults in camera orientation, tolerate these errors and further

correct them before they cascade. Based on the locations of detected targets

in the final certainty map, we construct a generative image model in each

camera that estimates the camera orientation, detect inaccuracies in camera

orientations and correct them before the fault in the system cascades and reaches

a point where the performance of the algorithm dramatically drops.

Visual Coverage Estimation: The fourth contribution is a first attempt toward a

closed-form solution for the visual coverage estimation problem in the presence
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of occlusions to guarantee the required coverage in a sensing field. By adapting

the certainty-based target detection model in coverage estimation in a randomly

deployed VSN, we derive a closed-form solution for the estimation of the visual

coverage estimation. Therefore, the sensor related parameters (e.g., sensor

density, sensing range, etc.) can be decided before deployment in order to

have proper visual coverage in the sensing field. In addition, since the visual

coverage probability in a crowded environment depends not only on the sensor

density and deployment but also on the target density and distribution, our

proposed closed-form solution considers both the directional sensing nature of

cameras and the visual occlusions among targets and provides more accurate

and realistic coverage estimation in a crowded VSN.

1.4 Dissertation Organization

The dissertation is organized as follows: In Chapter 2, we study target localization

using a progressive certainty map in visual sensor networks and its distributed version

for certainty map integration. Then, Chapter 3 focuses on the design of a collaborative

target localization algorithm in VSNs that would not only accurately localize targets

but also detect the faults in camera orientation, tolerate these errors and further

correct them before they cascade. In Chapter 4, we represent a first attempt toward

a closed-form solution for the visual coverage estimation problem in the presence

of visual occlusions among crowded targets in a visual sensor network. Finally, we

conclude this dissertation with a summary of accomplished and directions for future

research in Chapter 5.
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Chapter 2

Collaborative Target Localization

in Visual Sensor Networks

2.1 Introduction

In this chapter, we study a traditional computer vision problem, target localization,

using visual sensor networks. The target localization problem in VSNs faces two

major challenges [Qian and Qi, 2008]. First of all, because of the crowded targets,

“visual occlusions” among targets cannot be avoided. Secondly, since visual sensors

have limited field of views, and limited computational capacity, visual information

obtained by each sensor node is neither sufficient nor accurate. To localize targets in

a crowded environment with the existence of visual occlusion and partial or inaccurate

information is the major challenge of this work. In this chapter, we present a

progressive solution to localize crowded targets by performing simple but effective

image processing algorithms on each sensor node, transmitting very limited amount

of processed data among only a limited number of nodes, and using an efficient data

fusion algorithm to obtain the final result.

The work in this chapter was first published in [Karakaya and Qi, 2011b] and [Karakaya and
Qi, 2009].
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Figure 2.1: Four intersections are created from back projection, where intersections
A and B are locations of two real targets but empty intersections C and D are also
generated due to occlusion.

In traditional target localization algorithms, intersections of the back-projected

2D cones of the targets are calculated to localize all the individual targets. Occupied

areas in 2D visual cones correspond to the possible occupancy information generated

by planar projection of the 3D cones onto a plane parallel to the ground, also referred

to as the existence information in this dissertation. If the cones from different sensors

intersect at the same point, it can be considered there is at least one target in that

intersection. However, in crowded environments, many “empty” intersections that

are not actually occupied by any targets are created because of occlusion, as shown

in Fig. 2.1. Therefore, the existence information in the corresponding intersections is

not certain. To remove the uncertainty about the target existence at the intersections

and to detect the real locations of the targets have been very challenging problems in

computer vision.

To solve this problem, we present a technique to localize crowded targets by a

collaborative effort from a group of sensor nodes. Instead of resolving the uncertainty

about the target existence, we identify and study the non-occupied areas in 2D visual

cones, also referred to as the non-existence information in this dissertation. Since it

is certain that there is no target in the corresponding region, we refer to the map

generated from this process as the certainty map [Karakaya and Qi, 2009].
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(a) (b) (c)

Figure 2.2: (a) The certainty map generated by the 1st sensor node (b) Fusion of
certainty maps generated by the 1st and the 2nd sensor nodes (c) Fusion of certainty
maps generated by the 1st, 2nd, and 3rd sensor nodes.

In our system, each camera extracts objects of interest from the background,

computes the 2D cones of objects, determines the non-occupied areas by targets

and combines them with other sensor nodes to jointly assess the situation in a more

accurate way. Certainty map is used as the information exchange unit between sensor

nodes when fusing the non-occupied regions to yield a globally consistent belief of

non-occupancy, as shown in Fig. 2.2. The final certainty map, which keeps the real

occupied regions, is used to estimate the target locations. The advantage of our

system is its efficiency in both computation and bandwidth usage.

The chapter is organized as follows: Section 2.2 describes the background and

related works in the visual sensor network. Section 2.3 introduces our proposed

progressive target localization method. In Section 2.5, collaborative processing and

itinerary selection techniques are described. Section 2.6 compares the certainty

map with non-existence information and occupancy map with existence information.

Comprehensive analytical study on communication and energy efficiency is performed

in Section 2.7. Experimental results are presented in Section 2.8. Finally, we conclude

in Section 2.9.
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2.2 Background and Related Works

In the literature, there exist many works related to larger-scale surveillance and

monitoring of activities using different types of sensing modalities such as range

sensors and visual sensors. In robotics, range sensors like laser scanners and sonar

sensors are widely used to obtain distance information between objects and sensor

nodes for mapping and localization applications [Kleeman and Kuc, 1995; Tards

et al., 2002]. Although sonar sensors have the advantage of fast response and cheaper

cost compared to laser sensor, mapping and localization applications with range-

only measurements are challenging issues due to the partial observability and large

amount of reflectance outliers especially when objects are small or with wide angle

[Tsalatsanis et al., 2006]. Because of these limitations, visual sensors that have similar

cost as sonar sensors become a viable choice to localize objects within the field of view.

Moreover, visual sensors may provide additional useful information when integrating

with other image processing related applications (such as target recognition).

Single camera approaches [Han et al., 2004; Haritaoglu et al., 1998; Isard and

MacCormick, 2001] are easy to deploy but they could not be applied efficiently

in complex environments such as crowded and occluded target scenarios because

they could not provide 3D information by using a single camera view. Therefore,

several multi-camera systems are researched and proposed to detect and track

multiple objects and compute their accurate 3D locations in a complex environment.

Applications like target detection [Qian and Qi, 2008], tracking [Krumm et al., 2000]

and counting [Yang et al., 2003] based on wireless networks have been previously

investigated. In [Krumm et al., 2000], and [Sogo et al., 2000], stereo techniques are

used to collect the information from different cameras to localize people. However,

these methods are computationally complex as they use color, shape, or texture based

methods [Collins, 1996; Haritaoglu et al., 1999; Mittal and Davis, 2003] to segment,

detect, and track multiple targets in a scene by matching each pair of views between
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camera nodes, and matching is computationally expensive in crowded environments

because of the large number of possibilities.

In recent multi-camera systems, occupancy map is a popularly used technique to

localize objects by using foreground images captured by overhead cameras [Halvorson

and Parr, 2007] or using visual hull procedure and motion information of the

objects [Yang et al., 2003]. However, these methods either require too high

computational complexity to be deployed in VSNs or a central processing center

in which information from every camera in the network is collected to achieve specific

tasks. The probabilistic version of occupancy map (POM) uses the visual hull

idea with color and motion models to estimate the probability of target occupancy

by comparing the foreground image with its estimated trajectory in each camera,

iteratively [Fleuret et al., 2008]. However, this approach requires many iterations to

localize individual targets in uncrowded scene and additional color and motion models

which are computationally expensive. Therefore, they may be useful for a small local

group of sensors and targets but may not be applicable in a large and crowded VSN

environment. Overhead cameras mounted on the ceiling have also been used for target

localization. However, the deployment is not ad hoc and is limited to only indoor

environment.

Shape from silhouette (SfS) techniques [Laurentini, 1994] resolve the volumetric

description of a target by combining the silhouette cones in 3D which can be used to

localize targets by projecting the resultant silhouette to 2D plane surface. However,

it is more expensive to compute than back-projected 2D cone methods which can be

described as a subset of the SfS techniques with similar detection performance because

planar projection of 3D cone preserves the most useful information of moving targets

along a plane which is perpendicular to the projection plane in target localization

applications [Yang et al., 2003].
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2.3 Target Localization with Certainty Map

In this section, we present the centralized version of the proposed method to localize

crowded targets within the sensing region of a VSN. Its progressive or distributed

implementation will be discussed in Section 2.5. In the proposed method, each sensor

node captures a snapshot of the scene, processes it locally to compute the local

certainty map and sends the result to the processing center to collaboratively reach

a decision about target locations in the scene.

Because of the sheer amount of data generated at each camera node, local

processing is needed to provide the necessary information with a much smaller data

volume. We need to keep in mind that local processing cannot be computationally

expensive; otherwise, it will consume as much energy as communication. Due to its

algorithmic simplicity, background subtraction is adopted for object segmentation.

By using the background subtracted image, 2D visual cones can be generated and

the non-occupied areas in the field of view (FOV) of each camera node can be derived.

If an area within the FOV of a sensor node is not occupied or occluded by any object,

it is declared as a non-occupied area. On the other hand, the occupied areas are the

ones where it is possible that there exist targets. The uncertainty is due to either

occlusion or outside of the FOV of the camera. We use the so-called certainty map

to record the non-occupied areas.

In a certainty map, the environment is divided into uniformly sampled grids where

each grid point represents that the corresponding ground space in the surveillance area

is certain about target non-existence (labeled with one or white) or uncertain about

target existence (labeled with zero or black). Note that since the certainty map is

essentially a binary image consisting of zeros and ones, it can be further compressed

using existing coding techniques to decrease the data size to save the communication

cost.

Fig. 2.3 illustrates the steps in constructing the certainty map at a node. For

object segmentation, background subtraction is utilized because of its algorithmic
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(d) (e) (f)

Figure 2.3: Illustration of local processing and construction of the certainty map
at a visual sensor node. (a) The original captured image by sensor node, (b) The
background image, (c) The foreground image, (d) 3D cones of an object (e) Projection
of 3D cones onto a plane parallel to the ground, and (f) Constructed local certainty
map.

simplicity. For the corresponding scenario in Fig. 2.3, we obtain the foreground

image in Fig. 2.3c by subtracting the background image in Fig. 2.3b from the original

image in Fig. 2.3a. Each object sweeps a cone in 3D space as shown in Fig. 2.3d. To

find 2D visual cones of the object, these 3D cones are projected onto a plane parallel

to the ground as shown in Fig. 2.3e. The non-occupied (white) areas in the 2D visual

cones are thus determined to construct the local certainty map as shown in Fig. 2.3f.

In this work, it is assumed that each sensor node, si, knows its coordinates in the

2D global coordinate system as (xsi , ysi). Let vsi denote the vector that describes the

non-occupied areas within the FOV of the sensor node, si. The vector is composed of

a series of (φi,j, ψi,j) pairs, where φi,j and ψi,j record the starting and ending angles,

respectively, of the jth non-occupied area in the corresponding planar projection of

3D cones onto the 2D ground space, j = 1, . . . , Bi, and Bi is the total number of non-

occupied areas of the image taken by node si. We can then describe the certainty
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map through a much condensed vector representation,

vsi = [xsi , ysi , φi,1, ψi,1, . . . , φi,Bi
, ψi,Bi

] (2.1)

The conversion between vsi and the certainty map can be done through a mapping

function, f(vsi), whose value at coordinate (x, y) is,

fx,y(vsi) =

 1, if φi,j ≤ arctan
x−xsi

y−ysi
≤ ψi,j, j = 1, . . . , Bi

0, otherwise.
(2.2)

Let S = {s1, s2, . . . , sN} denote the set of sensor nodes in the network, we then have

U(S) =
N∪
i=1

f(vsi) (2.3)

where U(S) denotes the union formed by all the local certainty maps in S. Targets

are located in the complement of U(S), that is, the unresolved regions (labeled in

black). Note that the sensor node communicates only the vector representation of

the certainty map, vsi , to the processing center to fuse its local certainty map with

the global certainty map.

Assume that information obtained from each sensor node is accurate or trustwor-

thy (relaxation to this assumption will be discussed in Chapter 3), since the size of

the total uncertain region in the global certainty map monotonically decreases, the

convergence of the global certainty map is guaranteed. The idea is that the uncertain

regions will be shrinking as local certainty maps are fused. If the non-existence of

target for certain region is declared by one sensor node, the corresponding region is

globally announced as non-occupied and cleared from the certainty map. If the entire

surveillance area is covered by sensor nodes, then the only uncertain region left would

be the location of targets.

By taking this inverse approach to traditional target localization problem, instead

of having to resolve the uncertainty of target existence, we remove the uncertainty of
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target non-existence which is a more computationally efficient solution. Its progressive

implementation which further reduces communication overhead will be discussed in

Section 2.5.

2.4 Target Counting Algorithm

As further application, we can count targets in the final certainty map after localizing

them in the sensing region. The final certainty map consists of sets of small regions

with potential locations of targets, referred to as the phantoms. Phantoms are the

remaining areas in the certainty map that could not be cleared by any sensor nodes.

In literature, there are different approaches to count the objects in each phantom.

In [Yang et al., 2003], the area of each phantom is divided by object size regardless of

object shape. However, because of the occlusion of objects in crowded environments,

there will be some residual areas in the phantom that cannot be clarified by any

cameras and make the size of the phantoms bigger than the object size. Therefore, it

is necessary to consider the shape of the object and residual areas when to compute

the number of objects in each phantom. If there is no occlusion and there is infinite

number of cameras, the size of the phantom converges to the actual size of the object.

However, in crowded targets, it is not possible to prevent occlusion and the residual

areas in the phantom. In Fig. 2.4, the possible residual areas are shown for cylindrical

objects. The planer projections of the cylindrical objects are discs in the ground space.

The smallest residual areas occurs when the objects touch each other assuming there

is no overlapping between the objects.

In Fig. 2.4(a), the residual area around the object converges to zero if there is

infinite number of cameras. In Fig. 2.4(b) and 2.4(c), the smallest residual areas

around the objects, shown for two and three objects cases, are the areas between the

objects.

These residual areas, Ri, cannot be prevented so they have to be taken into

consideration in the calculation of minimum size of the total area for different number
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Figure 2.4: Three different scenarios of residual areas for cylindrical objects.

of object cases in a phantom. They are calculated by adding the corresponding

minimum residual areas to total area of objects, such as two and three object cases

shown in Fig. 2.4. The number of objects can be found by comparison between

the area of each phantom and the pre-calculated minimum size of the total area for

different number of object cases.

2.5 Collaborative Processing and Itinerary Selec-

tion

In order to fuse or integrate the certainty map, two mechanisms can be adopted,

centralized or distributed. In the centralized approach, each camera node sends its

local certainty map to a processing center for information fusion. In the distributed

approach, the certainty map is propagated through the network. At each camera

node, the certainty map is refined by integrating with local certainty map to add

more certainty to the previous map. In other words, the local information helps

clarify uncertain areas as this fusion process prolongs. Hence, we also refer to the

distributed approach as progressive integration and use them interchangeably in this

dissertation.

If there is no energy or bandwidth limitation, the information from all the

available cameras can be used to compute the best possible certainty map since the
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residual areas in the certainty map monotonically decreases as the number of cameras

increases. However, the energy resource is very limited in VSNs and increasing the

number of used camera nodes decreases the network lifetime. In the next section,

we will compare the performance between centralized and progressive integration of

the certainty map through experiments. Here, we first tackle a critical problem in

realizing the progressive integration, i.e., how to determine the itinerary along which

the certainty map propagates. This problem is two-fold: the itinerary of propagation

and the stop condition of propagation.

2.5.1 Itinerary Selection

The visual data provided by geographically close camera nodes might be highly

correlated. If removal of a sensor node from the itinerary does not shrink the

uncertainty region of the certainty map too much, the information provided by that

camera node can be deemed redundant. In order to save energy, transmission of the

certainty map between these sensor nodes must be avoided. To find the minimum

subset of camera nodes to construct the accurate certainty map is the main goal of

itinerary selection.

In literature, different approaches for sensor selection have been proposed for

different scenarios. In [Yang et al., 2004], clustering the parallel and perpendicular

cameras to the vectors connecting the objects is a good approach for two-object case.

However, how to find the vectors connecting the objects without prior knowledge of

object locations or how to update the vectors for moving objects is another problem.

In this dissertation, we study three different itinerary selection criteria, including

fixed, random and dynamic itinerary, to fuse the certainty map.

Fixed Itinerary

To overcome the problems identified above, the cameras can be clustered by using

their orientation angles regardless of the target location. The best choice for the next
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Figure 2.5: Best camera selection with clustering (a) by using the parallel
and perpendicular cameras to the vectors connecting the objects and (b) best
complimentary FOV.

camera is to select the camera which has the best complimentary field of view of

the previous camera as shown in Fig. 2.5. The 90 degree difference in the camera

orientation with the previous camera gives the best complimentary FOV. Therefore,

to determine the fixed itinerary, cameras which have the 90 degree difference in the

camera orientation with others are clustered into small subsets.

Random Itinerary

Instead of using the fixed itinerary, we also implement the itinerary in which cameras

are randomly selected to integrate the certainty map.

Dynamic Itinerary

Neither fixed nor random itinerary determines the route of certainty map migration

based on the content of the map. Therefore, it is not guaranteed that the next

integration would clear the most uncertain region leading to the shortest route. To

overcome this problem, we propose a dynamic itinerary selection method, where in

each iteration sensor nodes compute their local certainty maps, calculate the size of
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Algorithm 1: Dynamic Itinerary

Data: Certainty map, CM = ∅, is fully occupied; S = {s1, s2, . . . , sN} is the
set of sensor nodes. while S ̸= ∅ do

for each si in S do
Compute clarification amount, |f(vsi)|, by using the current CM ;
Broadcast |f(vsi)| to the network;
Pause for a short waiting time to receive the |f(vsi)| from other nodes;
if S ̸= ∅ and |f(vsi)| < δ then

S = S − si to remove redundant sensors;
end
if |f(vsi)| is the largest then

S = S − si to remove the winning sensor;
end

end
if sj = argmaxsi∈S |f(vsi)| then

Update CM by sj, the j
th sensor node;

Broadcast updated CM to the network;

end

end

area that can be cleared from the current certainty map and broadcast it through the

network. The sensor node which has the largest clarification area gets the priority over

others to integrate its local certainty map with current certainty map and broadcasts

the updated certainty map to the network to allow other sensor nodes to recalculate

the amount of additional clearance on the certainty map. This procedure repeats

until the confidence test (to be discussed in Section 2.5.2) is passed.

This progressive integration method is described in Algorithm 1, where S denotes

the set of sensor nodes and |f(vsi)| denotes the total area that can be cleared from

the current certainty map by sensor node si. δ is the threshold to determine if the

sensor node holds adequate additional clarification information to remain in set S. If

|f(vsi)| < δ, the sensor node, si, is removed from S. Note that set S is maintained

at each sensor node and will remain consistent across the entire network at each

iteration. Assume the sensor nodes within the network are synchronized. After each

node broadcasting |f(vsi)| to the network, each node is able to sort the received
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|f(vsi)|’s from other nodes and remove the nodes from S with either the highest

clarification area or the clarification area below the threshold, δ. Since δ is fixed

across the entire network, the content of S should always be the same within each

iteration although it is distributively maintained.

2.5.2 Confidence Test

No matter which itinerary approach is adopted, a common question each faces is

when to stop the integration process. Because of energy constraints, we have to stop

transferring the certainty map in the VSN when certain criteria can be satisfied.

In the fixed or random itinerary, the certainty map is transmitted to the next

sensor node without prior knowledge about how much it can clarify from the certainty

map. If the sensor node does not contribute to certainty more than a pre-defined

threshold, it raises a stopping flag. If the number of consecutive stopping flags reaches

a certain percentage of the total number of sensor nodes, transmission is stopped and

the final certainty map is declared. This method has an apparent drawback. If

the certainty map travels among sensor nodes with redundant information at some

portion of the itinerary, the procedure will be stopped even though other sensors can

still contribute.

In dynamic itinerary, it is not necessary to count the number of flags and the

stopping criterion is naturally realized with the design of Algorithm 1. When the

winning sensor with the largest clarification amount presents a |f(vsi)| < δ, that

means none of the remaining sensor nodes would have adequate additional clearance

area on the certainty map as the size of clearance area monotonically decreases and

that the integration process can be stopped immediately. This is also equivalent to

saying that the iterations should be terminated when S = ∅.
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2.6 Comparison between Certainty Map and Oc-

cupancy Map

To better understand the difference between the certainty map-based approach that

integrates target non-existence information and the occupancy map-based approach

that integrates target existence information for target localization purpose, we

perform the following simulation to visually demonstrate the advantage of the

certainty map-based approach. Details regarding simulation setup are provided in

Sec. 2.8.1. In the simulation, 20 targets and 150 visual sensor nodes are randomly

deployed in the sensing field. Only centralized processing is adopted where each

sensor node generates the corresponding foreground image of targets and computes

the 2D visual cones of the non-occupied or occupied areas using the planar projection

of 3D cones. Then, the results are sent to the processing center to arrive at

the final decision about the target locations by using either the certainty map or

occupancy map approaches. Before applying the threshold to localize targets, the

final integrated/fused versions of the occupancy and certainty maps are shown in

Fig. 2.6 where the left figure is the result from the occupancy map, and the right is

from the certainty map. The z-axis of the 3-D occupancy map represents the number

of sensors that suspects target existence at the corresponding spatial location and

the z-axis of the 3-D certainty map represents the number of sensors that is certain

about target non-existence at the corresponding spatial location.

We observe that both methods show local maxima at the target locations.

However, the value of local maxima in the occupancy map differ from target to target

depending on the density of sensor coverage at that location; on the contrary, the local

maxima in the certainty map show the same height. To localize the targets from the

occupancy map by selecting an appropriate threshold is a challenging problem because

of the various pick values present.

As shown in Fig. 2.7(b-c), if the threshold value is chosen as 70% or 65% of

the pick value in the occupancy map, 9-10 targets can then be localized without
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(a)

(b)

Figure 2.6: The final versions of (a) the occupancy map and (b) certainty map
generated at the processing center before applying the threshold to localize targets.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2.7: (a) Simulation setup with 20 targets and 150 sensor nodes, (b-f) Final
version of the occupancy map using threshold values 70%, 65%, 60%, 55%, and 50%,
of the pick value in the occupancy map, respectively and (g) Final version of the
certainty map using threshold value 0.

any false alarms but half of the targets would be missed. To detect the missing

targets, lower threshold values are demanded which introduce many false alarms,

as shown in Fig. 2.7(d-f). Moreover, the areas of some detected target regions are

smaller or larger than the target size because of higher or lower threshold values

selected, that would affect the exact localization of the detected targets. To solve this

problem and to choose the threshold value automatically for each individual target,

an additional post-processing algorithm, such as searching for the local maxima of the

occupancy map, is required. However, this additional step would introduce additional

computational burden on the target localization algorithm. Instead of searching to

find accurate threshold to convert the gray-scale map to binary map, in certainty
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map, threshold selection is trivial because the regions, which cannot be cleared by

any sensor, i.e., a threshold of 1, give target locations, as shown in Fig. 2.7g.

To summarize, the certainty map approach presents better performance in target

localization by showing fewer false alarms without the post-processing step of

searching for the accurate threshold value for each individual target. In addition to

the performance superiority, the certainty map approach can be carried out in either

the centralized or the distributed fashion to fuse the information from each sensor

node. By using the dynamic itinerary scheme in distributed processing, the certainty

map can be progressively clarified until the confidence level is met by involving limited

number of sensor nodes. However, the occupancy map approach can be implemented

only in the centralized processing fashion because the nature of intersection requires

to fuse all the information from every sensor node.

2.7 Analytical Study on Communication and En-

ergy Efficiency

The advantage of using dynamic itinerary in progressive processing is that less number

of nodes might be involved in the integration process and that the cleared areas from

the certainty map monotonically decreases between integrations. However, dynamic

itinerary also introduces overhead by having to communicate both |f(vsi)| and vsi in

several integrations, while in centralized processing only vsi is communicated in one

integration. The key is how many sensors are involved. Therefore, a comprehensive

analytical study is necessary to evaluate communication efficiency between different

integration schemes, i.e., centralized integration, progressive integration with fixed,

random, and dynamic itinerary, in reaching a final certainty map. We first perform

analytical study on the number of bits transmitted within the network which is a

good indicator of energy consumption and bandwidth usage. Then, we calculate the

total energy consumption during the data transmission through different integration
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schemes. We use a subscript “d” to indicate dynamic itinerary and “o” for other

integration schemes.

2.7.1 Analytical Study on the Number of Bits Transmitted

Assume there are N sensors in the network, among which Nd sensors are involved in

the target localization process if using dynamic itinerary, and No sensors involved if

using fixed or random itinerary (note that when centralized integration is adopted,

No=N). Assume there are M targets within the surveillance area of the N sensors,

the worst case scenario for data transmission is that there are M + 1 non-occupied

regions in local certainty map which can be expressed as a data vector according

to the notations defined in Section 2.3, vsi = [xi, yi, φi,1, ψi,1, . . . , , φi,M+1, ψi,M+1].

The size of the data vector is Do = 32 × (2(M + 1) + 2) = 32 × (4 + 2M) bits per

transmission, assuming each element in the vector is represented as a 32-bit floating

point. In dynamic itinerary, besides the transmission of vsi , the total size of area

that can be cleared from the current certainty map by sensor node si ∈ S, |f(vsi)|, is

also required to be propagated which is an extra 32-bit floating point for each sensor

in each iteration. Then, the total size of the data vector in dynamic itinerary is

Dd = 32 × (4 + 2M) + 32 × N bits per integration. Therefore, the total amount of

bits transmitted in dynamic itinerary, Dd ×Nd, is less than that in other integration

schemes, Do ×No, only if the following inequation holds:

32× (4 + 2M +N)×Nd

32× (4 + 2M)×No

= (1 +
N

4 + 2M
)× Nd

No

< 1 (2.4)

Fig. 2.8a and Fig. 2.8b illustrate the relationship between the ratio of transmitted

data, Do×No

Dd×Nd
, and the ratio of involved sensor nodes, No/Nd. We observe that when

No/Nd is greater than certain number, dynamic itinerary would require less amount of

data transmission indicating less energy consumption and less bandwidth occupation

than other integration schemes. We also observe that the dynamic itinerary becomes

more advantageous if the number of targets,M , is increased with a fixed N , as shown

27



0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

No/Nd

(D
o
×

N
o
)/

(D
d
×

N
d
)

 

 

M=5

M=10

M=15

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

No/Nd

(D
o
×

N
o
)/

(D
d
×

N
d
)

 

 

N=100

N=150

N=200

(b)

Figure 2.8: Comparison of the total amount of data transmitted in VSN by using
dynamic itinerary and other integration schemes for (a) different number of targets,
M where N = 100 and (b) different total number of deployed sensor nodes, N where
M = 10. Note that Nd = 10.
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in Fig. 2.8a, or the number of deployed sensor nodes, N , is decreased with a fixed M ,

as shown in Fig. 2.8b.

2.7.2 Efficiency on Energy Consumption

The energy consumption of a wireless network interface in broadcast and unicast

transmission can be represented by a summation of linear equations for sending,

receiving and discarding data [Feeney and Nilsson, 2001]. In this dissertation, we

evaluate and compare the total energy consumption, E during the transmission of

certainty maps in dynamic itinerary and other integration schemes by using the linear

energy consumption approach which can be described as follows:

E = c×D + ξ (2.5)

where c is the energy cost per byte, D is the data size and ξ is the fixed cost

for different communication modes. We assume that each sensor node is in the

communication range of other nodes to avoid the hidden terminal problem and the

energy consumption due to the bit error, package and channel loss is ignored to

simplify the problem.

In broadcast transmission, a sensor node sends data and all sensor nodes within the

transmission range receive it. However, in unicast transmission where point-to-point

communication is used, only one sensor node sends data and only the destination

node receives it while non-destination sensor nodes discard the data. Therefore, the

certainty map can be transmitted within the network through broadcast transmission

if using dynamic itinerary and unicast transmission if using other integration schemes.

Note that when computing the energy consumption in unicast traffic, we consider

not only the sending and receiving data, but also the discarding data at the non-

destination sensor nodes because sensor node consumes energy until determining it is

non-destination. In addition, the total energy consumption of sending, receiving and

discarding data is proportional to total number of sensor nodes which send, receive
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Table 2.1: Linear Model Energy Consumption Parameters for IEEE 802.11 11Mbps
Wireless Network Card, [Feeney and Nilsson, 2001].

Energycostperbit(c) Fixedcost(ξ)
µW · sec/byte µW · sec

send 2.1 272
broadcast receive 0.26 50

send 0.48 431
unicast receive 0.12 316

discard 0.11 66

and discard the data. Let Esend
d and Erecv

d denote the energy consumption for each

sensor node when sending and receiving Dd amount of data in each itinerary. The

total amount of energy consumption in dynamic itinerary is then

Ed = Nd × [Esend
d + (N − 1)× Erecv

d ] (2.6)

where Nd is the number of sensors involved in dynamic iteration and in each iteration

only one sensor sends data but (N − 1) sensors receive data.

Let Esend
o , Erecv

o and Edisc
o denote the energy consumption for each sensor node

when sending, receiving, and discarding Do amount of data. The total amount of

energy consumed in other integration schemes is then

Eo = No × [Esend
o + Erecv

o + (N − 2)× Edisc
o ] (2.7)

where in each iteration, only one sensor sends data, one sensor receives data, but

(N − 2) sensors discard the data.

Table 2.1 shows the linear energy consumption parameters, c and ξ to send/

receive/ discard a byte in broadcast and unicast traffic of an IEEE 802.11 11Mbps

wireless network card [Feeney and Nilsson, 2001]. By using these parameters, a

more quantitative representation of the energy consumption in dynamic and other

integration schemes can be derived. Fig. 2.9a-2.9b show the relationship between

Eo/Ed and No/Nd with respect to different numbers of deployed targets, M and
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Figure 2.9: Comparison of the total amount of energy consumed in VSN by using
dynamic itinerary and other integration schemes for (a) different number of targets,
M where N = 100 and (b) different total number of deployed sensor nodes, N where
M = 10. Note that Nd = 10.
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sensor node, N . We observe that Eo/Ed is greater than 1, that is, Eo > Ed, when

No/Nd is greater than certain value. In addition, we observe similar trend as in Fig.

2.8a- 2.8b, where the increment in the total number of targets, M and the decrement

in the total number of deployed sensor nodes, N make the usage of dynamic itinerary

more advantageous. However, the effect of M is far less compared to the effect of N .

This is especially true when N ≫M .

2.8 Experiments and Results

In this section, we evaluate the performance of the target localization algorithm with

both simulated and real experiments for various integration scenarios, including cen-

tralized integration and progressive integration with random and dynamic itineraries.

The evaluation is conducted from four perspectives, that is, effect of the node density,

effect of the target density, effect of the number of consecutive stopping flags as

stopping criterion, and effect of the voting threshold. We use two metrics to present

the results, the number of detected targets as compared to the true number of targets

and the number of involved sensor nodes. We use the following default values for the

two parameters introduced in the algorithm:

• δ, the threshold to determine if a sensor node holds adequate additional

clarification information, is set to be 10% of the object size. When below this

threshold, a stopping flag is raised.

• The default number of consecutive stopping flags is set to be 10% of the total

number of nodes in the network. If the number of consecutive flags is reached,

then the itinerary is stopped and a final certainty map is generated. This

parameter is used in fixed and random itineraries.
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2.8.1 Experiments using Simulation

In our simulation, square-shaped targets of uniform size are deployed on a 2D sensing

field, and infinitely small-size sensor nodes with uniform FOV and focal length are

directed horizontally on the sensing field. The location of each sensor and target is

randomly generated in the simulation by assuming there is no overlapping between

the targets and sensors. For the deployment of large-scale sensor networks, random

deployment has been a viable choice for its easiness in operation and ability to rapidly

form the coverage network. Random deployment is especially advantageous when

sensors need to be placed in harsh or hostile environment [Hynes et al., 2004]. In

each set of experiments presented below, targets and sensors are deployed randomly

for four times and the results are averaged. To insert more randomness to random

itinerary, 100 different random itineraries are generated in each deployment scenario

and the results are averaged as well.

In all the simulations, we assume each node is accurately calibrated, synchronized

with each other, captures and extracts the targets from their backgrounds. Also, each

node is able to find its location and orientation by using a positioning system (such

as GPS) and a digital compass, respectively. Following is the setup of some typical

parameters: The 2D sensing field is 30m × 20m large. The size of each target is

0.5m × 0.5m. The uniform sensing range of nodes is 20m in length and 45◦ in angle.

The orientation of each sensor node is a floating point number randomly generated

in [0◦, 360◦]. Each node is able to communicate with each other. Fig. 2.10 illustrates

a sample random deployment of 20 targets, represented as squares, and 200 cameras,

represented as points.

After each deployment of targets and cameras, the simulation software generates

the corresponding foreground image of targets in the FOV of each sensor node. Each

sensor node then computes the 2D visual cones of the non-occupied areas using

the planar projection of 3D cones and generates local certainty map as described

in Sec. 2.3. By using the different integration processes, the certainty map is
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Figure 2.10: Simulation setup with 20 targets and 200 sensor nodes.

progressively clarified until the confidence level is met and targets are located at

the remaining uncertain regions in the map.

We conduct two sets of simulated experiments to study the effect of sensor density

and effect of target density on the performance of target localization with certainty

map.

Effect of Node Density

In this set of experiments, centralized and progressive processing with random and

dynamic itineraries are tested to show the performance of the algorithm by deploying

different numbers of sensor nodes versus a fixed number of targets in the 2D sensing

field. In the simulation, 10 targets and different numbers of sensor nodes are randomly

deployed. The final version of the certainty map derived using different integration

approaches is shown in Fig. 2.11 where the left column is the results from centralized

processing, the middle column is from dynamic itinerary, and the right column is

from random itinerary.

Fig. 2.12 illustrates the total number of detected targets versus different numbers

of deployed sensor nodes as a performance metric. We observe that dynamic itinerary

and centralized processing show almost identical performance in target detection and
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Figure 2.11: The final version of certainty map when detecting 10 deployed
targets using centralized processing (left column), dynamic itinerary (middle column),
random itinerary (right column) with 100 (top row), 200 (middle row), 300 (bottom
row) cameras, respectively.
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Figure 2.12: Total number of detected targets in localization for different number
of deployed nodes. Note that the true number of targets is 10.

better performance than random itinerary with less false alarms, when total number

of deployed cameras is less than 300. To have better performance in random itinerary,

an increase in total number of deployed cameras is required. However, this increment

also implies more financial cost. Another way to have more accurate results in random

itinerary is to increase the number of consecutive stopping flags such that more sensor

nodes are involved in the integration process. As shown in Fig. 2.12, to set the number

of consecutive stopping flags to 20% of total number of sensor nodes has less false

alarms than to set it to 10%.

The other important performance metric in VSN is the total number of involved

sensor nodes in the integration process. When detection accuracy is not affected

much, having less number of nodes involved in the integration process saves both

energy and communication bandwidth. In Fig. 2.13, the total number of involved

sensor nodes is shown for different integration mechanisms.
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Figure 2.13: Total number of involved sensor nodes in localization for different
number of deployed nodes. Note that the true number of targets is 10.

We observe that to have the same accuracy in target detection, dynamic itinerary

uses limited number of cameras in the integration process which is less than that

used in other integration schemes. For example, when total number of deployed

cameras is 300, although all integration processes can result in accurate detection and

localization of targets, the total number of involved cameras, as shown in Fig. 2.13,

is much less using dynamic itinerary compared to the other schemes. In general, an

increase in the total number of deployed cameras is needed to yield more accurate

results. However, increment in total number of deployed cameras slightly decreases

the number of used cameras in the dynamic itinerary because it is more probable to

find nodes with bigger clarification regions in denser node deployments.

Effect of Target Density

In this set of experiments, the effect of deploying different numbers of targets versus

fix number of cameras is studied. We randomly deploy 200 cameras and different
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Figure 2.14: Total number of detected targets in localization for different numbers
of deployed targets. Note that the number of deployed cameras is fixed at 200.

numbers of targets. Fig. 2.14 shows the number of detected targets for different

numbers of deployed targets using different integration schemes.

We observe again that the target detection performance of dynamic itinerary

and centralized processing is almost identical and better than random itinerary by

showing less false alarms. While the density of targets increases, the false alarms of

all integration schemes increase. However, the increment in false alarms in random

itinerary is faster than others.

The total number of involved sensor nodes in centralized processing, random and

dynamic itineraries is shown in Fig. 2.15. We observe that centralized processing

uses all information available from sensor nodes so the number of used cameras is

the same. An increment in total number of deployed targets increases the number

of used cameras in dynamic itinerary because crowded targets reduce the size of the

clearance area of each node. To cover the entire 2D sensing field, dynamic itinerary

requires more cameras involved in the integration process. On the other hand, the

number of used cameras in random itinerary slightly decreases because the decrease
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Figure 2.15: Total number of involved sensor nodes in localization for different
numbers of deployed targets. Note that the number of deployed cameras is fixed at
200.

in the size of the clearance area of sensor nodes actually increases the number of

sensor nodes with inadequate clearance information and makes it more possible to

raise consecutive stopping flags that would stop the integration process before the

certainty map could cover the entire sensing field.

2.8.2 Experiments using Real Data

Besides simulation, we also conduct three sets of experiments using real data captured

from a visual sensor network composed of a number of mobile sensor platforms

(MSPs). Each MSP is equipped with a 1GHz Mini-ITX motherboard which provides

onboard processing capability to be able to apply image processing algorithms on

captured images. Each platform is mounted with a Logitech QuickCam 4000 Pro

webcam with a resolution of 640 × 480 pixels. To facilitate communication between

the nodes and a workstation serving as the processing center, a wireless network is

set up using the 802.11b wireless card. To supply the required energy, each MSP
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Figure 2.16: Experimental setup with 2 objects and 38 cameras.

is powered by a small 12V DC power supply. The operating system is Linux and

C/C++ programming language can be used for application development.

Simple Two Target Localization

In our first experimental setup shown in Fig. 2.16, two static objects are located in

a 9 by 12 feet square area surrounded by 38 mobile sensor platforms (MSPs) with

onboard processing, wireless communication and imaging capabilities. The objects

are 1 foot in height and cameras are located at 6 inches in height. Four of the MSPs

are located at the corners of the experimental area and oriented toward the center

of the area. The rest of the MSPs are located 1 foot apart and oriented to the room

with perpendicular angle with the sides of the area. In this experimental setup, each

foot square area is discretized into 100 grid locations to construct the certainty map,

corresponding to a regular grid with a 9 cm resolution.

Images are captured by each MSP with different field of views as shown in

Fig. 2.17(top). Background subtraction is first performed to obtain the foreground

objects shown in Fig. 2.17(middle). 2D visual cones of the non-occupied areas are

computed by using the planer projection, as shown in Fig. 2.17(bottom).
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Figure 2.17: (top) Images captured by cameras 1 to 38. (middle) Foreground images
from cameras 1 to 38. (bottom) Non-occluded 2D visual cones of each camera.
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Figure 2.18: (top) The clarification of the certainty map using the fix itinerary.
(bottom) The clarification of the certainty map by using the dynamic itinerary.

Fix and dynamic itineraries are tested to show the effect of the itinerary selection

on the performance of the algorithm. Fig. 2.18(top) shows the intermediate certainty

maps that is progressively improved from node to node following a fixed itinerary,

discussed in Sec. 2.5.1. After transmitting the certainty map to the 19th MSP, the

additional clearance from the certainty map is less than the threshold, δ, therefore, the

corresponding MSP raises a stopping flag to be carried to others about its inadequate

contribution to the certainty map. When there have been four consecutive flags raised

for robustness purpose, the itinerary would stop in order to save energy. In the fix

itinerary, the itinerary stopped at the 22nd MSP.
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(a) (b) (c)

Figure 2.19: (a) Experimental setup with 8 people and 42 cameras, (b) Images
captured by 5th, 9th, 22nd, 34th cameras, (c) Corresponding non-occupied 2D visual
cones of the cameras in (b).

For dynamic itinerary, since the amount of cleared areas monotonically decreases

from sensor to sensor, we do not have to wait until getting four consecutive flags to

stop the integration. The itinerary is stopped as soon as the size of the additional

clearance region is less than the threshold, δ. In Fig. 2.18(bottom), the progress of

the certainty map in dynamic itinerary is shown. The itinerary is stopped at the 12th

sensor node. We observe that the dynamic itinerary scheme generates the best route

to clarify the certainty map by using the least amount of sensor nodes.

Multiple People Localization in Crowded Scene

In the second experimental setup shown in Fig. 2.19a, eight people stand in an 8 by

13 feet square area surrounded by 42 mobile sensor platforms (MSPs). People, as

targets, are 5 to 6 feet in height and cameras are located at 3 feet in height. Four

of the MSPs are located at the corners of the experimental area and oriented toward

the center of the area. The rest of the MSPs are located 1 foot apart and oriented

to the room with perpendicular angle with the sides of the area. For the 8 by 13

feet square surveillance area, 42 MSPs are deployed. In this experimental setup, each

foot square area is discretized into 100 grid locations to construct the certainty map,
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corresponding to a regular grid with a 9 cm resolution. Noted that although 42 MSPs

are deployed to form the VSN, not all of them are used to localize the 8 targets. The

effect of the number of sensors deployed on the localization performance has been

thoroughly evaluated through simulation (See Sec. 2.8.1). In this experiment, our

main purpose is to show the certainty map-based algorithm works in a real-world

setup. By deploying a sensor network with denser sensor nodes than needed, the

factor related to sensing would not be an issue, so that we can focus on localization

performance.

We first evaluate the performance of the proposed algorithm on its capability in

localizing crowded targets, e.g., to identify eight targets within an 8× 13 square feet

area. Images are captured by each MSP with different field of views as shown in

Fig. 2.19b and background subtraction is first performed to obtain the foreground

objects. The 2D visual cones of the non-occupied areas are computed by using the

planar projection, as shown in Fig. 2.19c.

Fig. 2.20a shows the intermediate certainty maps that are progressively improved

from node to node following a fixed itinerary, discussed in Sec. 2.5.1. After

transmitting the certainty map to the 32nd MSP, the additional clearance from

the certainty map is less than the threshold, δ (30% of the size of target), so the

corresponding MSP raises a stopping flag to be carried to others about its inadequate

contribution to the certainty map. When there have been five consecutive flags (10%

of the total number of cameras deployed) raised for robustness purpose, the itinerary

would stop in order to save energy. In the fixed itinerary, the itinerary stopped at

the 36th MSP.

For dynamic itinerary, since the amount of cleared areas monotonically decreases

from sensor to sensor, we do not have to wait until getting five consecutive flags to

stop the integration. The itinerary is stopped as soon as the size of the additional

clearance region is less than the threshold, δ. In Fig. 2.20b, the progress of the

certainty map in dynamic itinerary is shown. The itinerary is stopped at the 13th
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(a)

(b)

Figure 2.20: The clarification of the certainty map using (a) the fixed itinerary and
(b) the dynamic itinerary.
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Figure 2.21: Total number of uncertain pixels in certainty map for different itinerary
selection.

sensor node. We observe that the dynamic itinerary scheme generates the best route

to clarify the certainty map by using the least amount of sensor nodes.

As we observe from Figs. 2.20a and 2.20b, both integration schemes are able to

successfully localize the target. Therefore, instead of using the detected number

of targets as a performance metric, we study the number of uncertain pixels in

the certainty map as a metric that shows how accurate the localization algorithm

performs. The results are displayed in Fig. 2.21. We see that the dynamic itinerary

shows the best performance by clarifying the certainty map at the fastest rate. In

addition, fixed selection of the itinerary clarifies the certainty map faster than random

itinerary and gives better result than random itinerary in general.

Multiple People Counting in a Video Sequence

In the third experimental setup shown in Fig. 2.22, different numbers of people enter

a 22 by 36 feet square sensing field surrounded by 24 cameras. People, as targets,

are 5 to 6 feet in height and cameras are located at 4 feet in height. Four cameras
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Figure 2.22: Total number of uncertain pixels in certainty map for different itinerary
selection.

are located at the corners of the experimental area and oriented toward the center

of the area. The rest of the cameras are located 3 to 7 feet apart from each other

and oriented to the room with perpendicular angle to the sides of the area. In this

experimental setup, each foot square area is discretized into 100 grid locations to

construct the certainty map, corresponding to a regular grid with a 9 cm resolution.

In this experiment, our main purpose is to show the certainty map-based algorithm

works in a real-world application, i.e., target counting in a video sequence.

We first evaluate the performance of the proposed algorithm through centralized

and progressive integration on its capability in counting different numbers of targets

in a video sequence where targets enter the sensing area and exit from the sensing

area. Images are captured by each camera with different field of views as shown in

Fig. 2.23a and background subtraction is first performed to obtain the foreground

objects. The 2D visual cones of the non-occupied areas are computed by using the
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(a)

(b)

Figure 2.23: (a) Images captured by each camera at 1000th frame in the video
sequence and (b) Corresponding non-occupied areas of the images in (a).
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Figure 2.24: Total number of detected targets in the final certainty map for
centralized integration and its ground truth values.

planar projection and local certainty map for each corresponding image computed,

as shown in Fig. 2.23b.

The results of target detection and counting algorithm for each frame in the video

sequence through the centralized integration is displayed in Fig. 2.24. We observe

that if the total number of targets in the sensing area is less than certain value (i.e.,

six in this data), the performance of centralized integration is good and could detect

all the targets in the sensing field. However, when the density of targets exceeds the

certain value, the performance of the algorithm begins to reduce due to the visual

occlusion among crowded targets. We observe that there exists some false alarms

at frames from 600th to 1350th where there are more than six targets in the sensing

field. The main reason for false alarms is that the density of cameras does not provide

accurate coverage in the sensing field. In addition, the false alarms are at the frame
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Figure 2.25: Total number of detected targets in the final certainty map and its
ground truth by using progressive integration through dynamic itinerary .

where a new target enters the sensing field. This is caused by the change at the

background close to the door area.

The same video sequence is also processed by using the progressive integration

by clarifying certainty maps through a dynamic itinerary. Total number of detected

targets in the final certainty map through dynamic itinerary and its ground truth

values are shown in Fig. 2.25. We observe that the dynamic itinerary shows similar

performance as the centralized integration but involving less number of visual sensor

nodes as shown in Fig. 2.26. We also observe that in the progressive integration

through dynamic itinerary, the total number of involved sensor nodes depends on the

density of targets in the sensing field. When targets are not too dense, less number

of sensor nodes are involved into progressive integration. An increment in the target
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Figure 2.26: Total number of involved sensor node during dynamic itinerary and
centralized integration.

density increases the total number of involved sensor node automatically. Therefore,

dynamic itinerary provides an adaptive integration scheme.

The false alarms in too dense environments can be eliminated by using the

information from previous frames. By assuming that targets cannot move faster than

a specific speed, we can estimate a boundary for each target to be in the next frame.

If a target appears outside its boundary, it is a false alarm due to the visual occlusion

and can be eliminated. The results of target detection and counting algorithm for

consecutive frames in the video sequence through the centralized integration by using

the information from previous frames is displayed in Fig. 2.27. We observe that by

using the time information in the video sequence helps to eliminate most of the false

alarms in too dense environments compared to centralized integration without time

information shown in Fig. 2.24.
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Figure 2.27: Total number of detected targets in the final certainty map for
centralized integration by using time information and its ground truth values.

However, we also observe that exceeding the certain value of the target density,

time information is also not adequate to eliminate some false alarms and the

performance of the algorithm begins to reduce due to the too dense visual occlusion

among crowded targets.
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2.9 Summary

In this chapter, we presented an algorithm that can reliably detect the position of

crowded targets in a distributed fashion in wireless VSNs under certain energy and

bandwidth constraints. To achieve our goal, we designed a light-weight, energy-

efficient, and robust solution where not only each camera node transmits a very

limited amount of data but that a limited number of camera nodes is used to locate

the targets. We identified and studied the non-occupied areas in the back-projected

2D cones, generated the certainty map of the non-existence of targets and defined a

dynamic itinerary for certainty map integration where the entire map is progressively

clarified from sensor to sensor until the confidence of the certainty map is satisfied.

From both analytical study and experiments with simulated and real data, the results

of the proposed progressive method showed effectiveness in detection accuracy as well

as energy and bandwidth efficiency.

53



Chapter 3

Fault Tolerance, Detection and

Correction in VSN

3.1 Introduction

Although the VSN is potentially powerful, its practical deployment could be hindered

because of the limited capability of each sensor node (i.e., low processing speed

and scarce power supply) and the low communication bandwidth among sensor

nodes. In addition, although sensor nodes are usually deployed with initial rough

calibration, the calibration of some nodes may not be accurate or may change during

the network’s lifetime because of external effects such as wind, seismic events, and

precipitation [Clouqueur et al., 2004]. These sensor nodes can provide “faulty”

information that would affect the accuracy of decision making. Therefore, the design

of a practical solution for various VSN applications, e.g., calibration, clustering, target

localization, etc., requires collaboration between sensor nodes not only to compensate

for the limitations of each sensor node but also to improve the accuracy and robustness

of the sensor network.

The work in this chapter was first published in Karakaya and Qi [2010].
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In this chapter, we focus on the problem of target localization in VSNs with

the existence of visual occlusion, partial information and a number of faulty nodes.

We assume that the VSN is calibrated already after deployment using algorithms

like [Devarajan and Radke, 2007]. However, because of some external effects or initial

calibration inaccuracies, camera orientation would include certain degree of error.

We design and develop a light-weight collaborative processing algorithm for target

localization in crowds that would detect, tolerate these errors and further correct

them before they cascade.

The chapter is organized as follows: Section 3.2 describes the background and

related works in the fault tolerance study in sensor networks. In Section 3.3,

information fusion and the fault tolerance technique in a centralized implementation

are described. Section 3.4 describes the distributed implementation of fault-tolerant

collaborative localization. Experimental results are presented in Section 3.5. Finally,

we summarize the work in Chapter 3.6.

3.2 Background and Related Works

There exist many works related to robust surveillance and monitoring using sensor

networks. Applications like target detection and localization [Clouqueur et al.,

2004; Karakaya and Qi, 2009], target tracking [Krumm et al., 2000] and target

counting [Yang et al., 2003], have been previously investigated.

In [Clouqueur et al., 2004], target detection with faulty sensors is based on

taking the “mean” of local decisions obtained by each scalar sensor with extreme

values dropped and results filtered by certain threshold. In [Ding et al., 2007],

an exploratory work is introduced toward fault-tolerant target localization in SSNs

by utilizing “median” to filter out extreme values and combining estimations of

target locations from multiple epochs/iterations. In [Zou and Chakrabarty, 2004],

an energy-aware target localization method is proposed for cluster-based SSNs by

collecting event notification from sensors within the cluster and then executing a
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probabilistic localization algorithm to determine candidate nodes to be queried for

target information.

Fault tolerance in VSNs is more challenging than in SSNs because of the unique

features of cameras, including the existence of visual occlusion and the directional

sensing characteristics with limited field of view. Accurate and periodic camera

calibration has been considered one of the effective approaches to correct “faults”.

Camera calibration is an essential prerequisite and demanding task in VSNs.

One of the widely used techniques to calibrate the cameras is to deploy additional

markers to the environment, such as a bright red LED or a set of special patterns

like checker boards, and to estimate the camera parameters by using the epipolar

geometry between cameras. In [Poelman and Kanade, 1997] and [Devarajan and

Radke, 2007], the extracted feature points from the captured images are used to

estimate the camera parameters by utilizing matrix factorization and iterative belief

propagation. However, these methods either require additional tools to deploy or

the computational complexity of the feature extraction algorithm is too high to be

deployed in real applications.

3.3 Fault-Tolerant Collaborative Localization

In Chapter 2, we assumed that the information obtained from each visual sensor node

is accurate and trustworthy. However, in real world applications, this is seldom true.

Sensor faults due to initial calibration error or external effects frequently occur that

would deviate the initial calibration results. In this section, we first model the error

incurred in camera orientations. Then, we present, voting, an ad-hoc algorithm for

fault tolerant design of the centralized and distributed integration of local certainty

maps and discuss the necessity of the normalized voting scheme. To prevent the

system from providing faulty localization results, we propose two further steps of fault

tolerance where faulty nodes are detected and errors in camera orientation corrected

before they cascade.
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3.3.1 Fault Model in Visual Sensors

We only study errors occurred in camera orientations. However, the proposed

schemes can be generalized to handle inaccuracies in other camera parameters, e.g.,

camera location. The error in orientation of the faulty nodes can be modeled by a

combination of two types of errors. First of all, the Gaussian noise models the initial

calibration inaccuracy. Secondly, the Byzantine fault [Clouqueur et al., 2004] models

the error generated by external effects where orientation becomes arbitrary and can

be any value in [0◦, 360◦]. The Byzantine fault originates from Byzantine generals’

problem [Lamport et al., 1982], an agreement problem to reach a unanimous decision

in the presence of the traitors whether to attack enemy or to withdraw. Therefore,

the camera orientation can be expressed as,

θsi = θ∗si + Nsi(0, σ) + δsi (3.1)

where θsi and θ∗si are the actual (or inaccurate) and ground truth (or calibrated)

orientations of the ith sensor node, si, respectively. Nsi(0, σ) is the Gaussian noise

with zero-mean and standard deviation σ, and δsi denotes the Byzantine fault in

orientation.

3.3.2 Voting

Single camera node, which gives inaccurate information about the location of the

targets, negatively impacts the performance and sometimes causes failure of the target

localization algorithm. To obtain more accurate and robust results, certain degree of

redundancy is necessary to tolerate the inaccurate information and failure of some

visual sensor nodes.

Voting is one of the most commonly used multiple sensor fusion techniques to

integrate individual sensor results [Klein, 1993]. In [Karakaya and Qi, 2009], we

proposed to utilize the voting approach to target detection and counting to tolerate
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(a) (b) (c) (d)

Figure 3.1: (a) Image captured by a camera and (b) its local certainty map. Data
fusion by using (c) Binary certainty map and (d) Gray-scale certainty map.

potentially inaccurate information from visual sensor nodes where each sensor node

has equal importance to contribute to the voting result. In the voting approach, if

a visual sensor node declares the target non-existence at the specific location of the

certainty map, the certainty value of that location is increased. Therefore, instead of a

binary certainty map with 1 indicating 100% certainty of non-existence of targets, as

shown in Fig. 3.1c, the voting approach generates a gray-scale certainty map, shown

in Fig. 3.1d with non-zero regions indicating certain degree of the non-existence of

targets. The higher the number of votes, the more certain it is.

A threshold value needs to be specified in the end to convert the gray-scale

certainty map to binary for decision making purpose. To choose 1 as the threshold

value means that there is no tolerance for failure of any sensor node. If one of the

sensor nodes claims the non-existence of any object at any location in the certainty

map, the algorithm believes it and clears the corresponding region from the certainty

map as in the case of the binary certainty map. To be more robust to sensor failures,

the threshold value can be chosen greater than one. For example, if the threshold

value is selected as two, to clear a specific area from the certainty map, at least two

sensors must declare the clearness of that region. Higher threshold value requires

more sensor nodes to reach a consensus. Fig. 3.2(a-e) shows the final versions of

gray-scale certainty map using the voting approach with different threshold values 2,

3, 4, 5, and 6, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Final version of the certainty map. For (a) to (e), using voting with the
threshold 2, 3, 4, 5, and 6, respectively. For (g) to (j), using normalized voting with
the threshold 0.95, 0.9, 0.85, 0.8, and 0.75, respectively.

3.3.3 Normalized Voting

In the above mentioned voting scheme, we did not consider the coverage issue. That is,

for an area that is densely covered, the number of votes would tend to be higher than

areas with sparse coverage. Hence, a constant threshold would not reflect fairness of

the decision. To this end, normalization should be applied such that coverage density

is not an issue.

Here we propose the normalized voting algorithm for certainty map integration

where the voting value of each grid pixel of the certainty map is normalized by its

sensor coverage. At coordinate (x, y), suppose the grid pixel is covered by Cx,y number

of sensor nodes, then its normalized voting algorithm value, Vx,y(S), is,

Vx,y(S) =
1

Cx,y

N∑
i=1

fx,y(vsi) (3.2)
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where fx,y(vsi) denotes the local certainty map value and S = {s1, s2, . . . , sN} is the

set of sensor nodes in the network.

Fig. 3.2(f-j) shows the final version of the certainty map using normalized voting

method with the different threshold values. We observe that the boundary effect,

caused by less coverage at the boundary, in the voting approach, shown in Fig. 3.2(c-

e), is suppressed to a great extent by using the normalized voting algorithm.

3.3.4 Fault Detection and Correction of Camera Orientation

Errors

We assume the initial errors in camera orientation estimation can be tolerated by the

proposed normalized voting algorithm. Therefore, the target locations generated by a

collaborative effort of visual sensor nodes is trustworthy. However, if the initial errors

do not get to be corrected in a timely fashion, together with potential Byzantine faults,

errors can cascade that would eventually affect the accuracy of the location result. In

Sec. 3.3.1, faults in camera orientations are modeled in two types, namely, Gaussian

noise and Byzantine fault. Gaussian noise is due to the inaccurate camera orientation

due to environmental noise or calibration error. The Byzantine fault model assumes

that camera orientation might be an arbitrary value so provided information from

that sensor node is arbitrary as well.

An algorithm is defined as t-resilient if it can continue to operate correctly until

t out of 3t + 1 processes fail [Clouqueur et al., 2004]. Similarly, the proposed

normalized voting method is t-resilient if and only if it can correctly localize the

targets in the certainty map when the ratio of the number of faulty nodes, tx,y, to

the sensor coverage, Cx,y, at a specific pixel location, (x, y), is less than one-third,

tx,y/Cx,y < 1/3.

To detect faulty nodes with inaccuracies in camera orientation estimation, we take

into account both the actual image captured by each node and the final certainty map

generated from the collaborative processing. We first utilize a so-called “generative
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Figure 3.3: Camera orientation model.

image model” to estimate the ideal foreground image of each camera based on the

target locations in the final certainty map and the camera’s orientation and location.

We then propose the fault detection and correction model to identify the faulty nodes

and correct them from orientation inaccuracies.

Generative Image Model

The generative image model was proposed in [Fleuret et al., 2008] to generate the

ideal background subtracted images if targets and camera locations are known. Let

Rsi denote the actual 2D foreground image and Esi denote the synthetic 2D image

generated by the sensor node, si, based on the final certainty map, where each

target is represented as a cylindrical object. The synthetic foreground images, esi(θ),

are generated based on all possible camera orientations in [0◦, 360◦] with a selected

step_size such that 360/step_size many candidate synthetic images are generated

as illustrated in Fig 3.4.

For each sensor node, si, we calculate the normalized pseudo-distance, Ψ, to

measure distance between actual 2D foreground image, Rsi and the synthetic 2D
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Figure 3.4: Illustration of the calculation of the pseudo-distance between two 2D
images and estimation of camera orientation.

image generated by the sensor node, Esi [Fleuret et al., 2008],

Ψ(Rsi , Esi(θ)) =
|Rsi ⊗ (1− Esi(θ)) + (1−Rsi)⊗ Esi(θ)|

|Rsi|
(3.3)

where ⊗ denotes the element-wise product between two images and |Rsi| is the sum

of its pixel values for any binary image Rsi .

The planer projection of 3D visual cones preserves the most useful information

of moving targets along a plane which is perpendicular to the projection plane in

target localization applications [Yang et al., 2003]. Therefore, instead of using 2D

images (Esi and Rsi) to estimate the orientation of each sensor node, we might use

1D scanline images (esi and rsi), that are generated by summing the rows of the

foreground image, to measure the distance between a synthetic foreground image,

Esi , and the actual foreground image, Rsi .
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For each sensor node, si, we calculate the normalized pseudo-distance, Ψ, to

measure distance between two 1D scanline images, rsi and esi(θ),

Ψ(rsi , esi(θ)) =
|rsi ⊗ (1− esi(θ)) + (1− rsi)⊗ esi(θ)|

|rsi|
(3.4)

where ⊗ denotes the element-wise product between two images and |rsi| is the sum

of its pixel values for any gray-scale image rsi . Therefore, we might decrease the

computational complexity by using 1D scanline images (esi and rsi) to measure the

distance between a synthetic foreground image, Esi , and the actual foreground image,

Rsi .

Fault Correction Model

The expected orientation of each camera, θesi , is the one which minimizes the pseudo-

distance,

θesi = argmin
θ

Ψ(Rsi , Esi(θ)) (3.5)

where the fault in camera orientation is detected if there is a difference between

expected camera orientation, θesi and actual camera orientation, θsi . We then update

the actual camera orientation,

θsi = θesi . (3.6)

Fig. 3.5 illustrates the calculation of the pseudo-distance between the actual

and the synthetic foreground images. The simple scenario for fault-tolerant target

localization is shown in Fig. 3.4 with two targets. In Fig. 3.5, the actual and synthetic

foreground images, (Rsi , Esi) and their 1-D scanline images, rsi and esi are shown

respectively. Pseudo-distances of real and synthetic 1-D scanline images for different θ

values are shown at the bottom of Fig. 3.5. The expected orientation is the orientation

value, θ which shows the minimum pseudo-distance.
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Figure 3.5: Illustration of the calculation of the pseudo-distance between two 1D
scanline images and estimation of camera orientation.

3.4 Distributed Implementation of Fault-Tolerant

Collaborative Localization

In Section 3.3, we focused on the design of the centralized fault tolerance, detection

and correction algorithm for target localization in VSNs with the existence of

visual occlusion, partial information and a number of faulty nodes. In centralized

implementation, we collect the available information from every sensor node to

tolerate the error in sensors, detect the faulty sensor nodes and correct them before

they cascade where redundant information is required to tolerate the faulty nodes.

However, in the centralized implementation, more than required amount of redundant

sensor nodes send their information to the sink which consumes large amount of

energy.
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In this section, we implement the distributed fault tolerance, detection and

correction algorithm in VSNs. In our distributed implementation, we first focus on

finding a tradeoff between energy conservation and required redundant information

based on the coverage estimation probability to be described in Chapter 4 and the

probability that an occupied grid point is determined as non-occupied by faulty

sensor nodes. Then, we tolerate the fault in the network by choosing an automatic

threshold based on this tradeoff between energy conservation and required redundant

information and localize the existing targets in the sensing field. Based on the detected

target locations, we generate the synthetic foreground images for each sensor node and

detect the faulty nodes by comparing the actual and synthetic foreground. Finally,

we correct these detected faulty nodes by using the generative image model.

3.4.1 Distributed Fault Tolerance in VSN

In order to conserve energy in an energy starving sensor network, not only each visual

sensor node transmits a very limited amount of data but that a limited number of

sensor nodes is involved in the decision making procedure to localize targets. In

Chapter 2, we presented different collaborative processing methods for certainty map

integration in detail which involves limited number of sensor nodes. However, in the

sensing field where faulty nodes are likely to exist, we cannot trust a single sensor

which might be a faulty node and declare the non-existence of a target within a

region. Therefore, adequate amount of redundant information is required to tolerate

the fault in the sensor network.

In Section 3.3, we proposed to use voting algorithms to tolerate the error of faulty

nodes in the sensor network which requires redundant information to declare target

non-existence in a region. However, the amount of required redundant information is

unknown. It has to be decided accurately before the certainty map integration based

on the estimated number of faulty nodes in the sensor network in order not only to
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reach a trustworthy final certainty map but also to save energy by involving a limited

number of sensor nodes.

Automatic Voting Threshold Selection

In order to find a tradeoff between energy conservation and required redundant

information, we first estimate the probability that a specific grid point of the sensing

field is covered by exactly w many faulty sensor nodes, Pf (w). We assume that the

infinitesimal visual sensor nodes with uniform FOV and sensing radius are randomly

deployed within a very large two-dimensional sensing field, R. Since each region in

the sensing field has equal importance based on the probability of target existence, all

sensor nodes are uniformly and independently distributed into the sensing field. Based

on this deployment strategy, the locations of visual sensor nodes can be modeled by a

two-dimensional stationary Poisson point process with sensor density λs [Wang et al.,

2010]. It is also assumed that orientations of visual sensors are uniformly distributed

over [0◦, 360◦). Let ρ and θ denote, respectively, the sensing radius and angle of view

of a sensor node. The detailed discussion about uniform random sensor deployment

will be presented in Chapter 4.

A sensor node covers a specific grid point (x, y) ∈ R, of the sensing field if the

node is located in a circular area A with radius ρ centered at the corresponding grid

point and is oriented towards the center of the circle which is illustrated in Fig. 3.6.

In the rest of the dissertation, the circular area A is referred to as the “detectability

area”. Therefore, probability that exactly w many faulty sensor nodes cover a specific

grid point is

Pf (w) =
∞∑
j=k

j∑
i=w

P(j;λs × A)Cj
i (p)

i(1− p)j−iCi
w(pf )

w(1− pf )
i−w (3.7)

where P(j;λs×A) denotes the probability that a detectability area A contains exactly

j sensor nodes from a Poisson point process with sensor density λs, i.e., P(j;λs×A) =

66



Figure 3.6: Illustration of the sensor deployment in a detectability area, A.

e−λs×A(λs×A)j/j! where A = πρ2. Also, p denotes the probability of the sensor node

facing towards the center of detectability area, A, i.e., p = θ/(2π), pf denotes the

probability of the sensor node being faulty, and Cj
i denotes the number of combinations

of i-node subset from a j-node set. Eq. 3.7 can be further derived as,

Pf (w) =
∞∑

j=w

P(j;λs × A)pwpwf (1− p)j−w

j∑
i=w

Cj
i Ci

w

(
p(1− pf )

1− p

)i−w

=
∞∑

j=w

P(j;λs × A)pwpwf (1− p)j−w

j−w∑
z=0

Cj
w+zCw+z

w

(
p(1− pf )

1− p

)z

(a)
=

∞∑
j=w

P(j;λs × A)pwpwf (1− p)j−w

j−w∑
z=0

Cj
wCj−w

z

(
p(1− pf )

1− p

)z

=
∞∑

j=w

P(j;λs × A)pwpwf (1− p)j−wCj
w

j−w∑
z=0

Cj−w
z

(
p(1− pf )

1− p

)z
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(b)
=

∞∑
j=w

P(j;λs × A)pwpwf (1− p)j−wCj
w

(
p(1− pf )

1− p
+ 1

)j−w

=
∞∑

j=w

e−λs×A(λs × A)j
1

j!
pwpwf (1− p)j−w j!

w!(j − w)!

(
1− ppf
1− p

)j−w

=
1

w!
e−λs×A(λsAppf )

w

∞∑
j=w

(
(λs × A)(1− ppf )

)j−w

(j − w)!

=
1

w!
e−λs×A(λsAppf )

w

∞∑
n=0

(
(λs × A)(1− ppf )

)n
(n)!

(c)
=

1

w!
e−λs×A(λsAppf )

we(λs×A)(1−ppf )

=
1

w!
(λsAppf )

we−λsAppf

= P(w;λs × A× p× pf )

= P(w;λf × A× p) (3.8)

where (a) follows the combination properties, Cj
w+z.Cw+z

w = Cj
w.Cj−w

z , (b) follows the

binomial coefficient property, (x + y)n =
∑n

z=0 Cn
z x

n−zyz where z = i − w, and (c)

follows property of power series,
∑∞

n=0
xn

(n)!
= ex. λf denotes the density of faulty

sensor nodes i.e., λf = λs × pf = Ns

A
× pf =

Nf

A
where Ns and Nf denote the total

number of deployed sensor nodes and expected number of faulty nodes in the sensing

field, respectively.

From the derivation result in Eq. 3.8, we observe that the probability that exactly

w many faulty sensor nodes cover a specific grid point, Pf (w), follows the Poisson

point process with density λs×p×pf in the detectability area A. In order to accurately

tolerate the faulty nodes in a sensor network, the redundant information at a specific

grid point of the sensing field should be more than the number of faulty nodes. As

described in Section 3.3.2, the amount of the redundant information is controlled by

the selection of the voting threshold. Therefore, the selected voting threshold should

ensure the probability of fault that a specific grid point in the sensing field is covered

by at least W-many faulty sensor nodes is smaller than a tolerance value ε1. This
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probability of fault follows,

Pf (w ≥W ) < ε1
∞∑

w=W

Pf (w) < ε1

∞∑
w=W

P(w;λf × A× p) < ε1

1−
W−1∑
w=0

P(w;λf × A× p) < ε1

1− FP(W − 1;λf × A× p) < ε1 (3.9)

where FP(W−1;λf×A×p) is the cumulative probability distribution (cdf) of Poisson

distribution with parameter λf × A × p. Thus, Eq. 3.9 introduces the lower bound

for the voting threshold selection.

In addition, the selected voting threshold should also ensure the visual K-coverage

probability that each grid point is covered by at least K sensor nodes is higher than

a certain probability in order to accurately tolerate the faulty sensor nodes in the

sensing field. In other words, the probability that each point is covered by less than

K sensor nodes is smaller than a tolerance value ε2. Therefore, the K-Coverage

constraint for voting threshold selection is

P (k ≥ K) > 1− ε2
∞∑

k=K

P (k) > 1− ε2

1−
K−1∑
k=0

P (k) > 1− ε2

K−1∑
k=0

P (k) < ε2

FP (K − 1) < ε2 (3.10)
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where FP (K − 1) is the cumulative probability distribution (cdf) of visual coverage

probability, P (k) which will be discussed in Chapter 4. Thus, Eq. 3.10 introduces the

upper bound for the voting threshold selection.

The optimization problem of voting threshold selection which ensures the fault-

tolerant target localization can be expressed as,

Vthr = argmin
W

s.t.FP (W−1)<ε2

|1− FP(W − 1;λf × A× p)− ε1| (3.11)

where Vthr is the selected voting threshold. Therefore, the solution for optimization

problem is that voting threshold is the smallest positive root Vthr of Eq. 3.11. However,

there is no explicit solution for Eq. 3.11. Vthr can be found by using the exhaustive

search method.

Distributed Certainty Map Integration

To conserve energy in a sensor network, one of the basic guidelines is the involvement

of limited number of sensor nodes into the decision making procedure to localize

targets. In Section 2.5, we presented different itinerary selection algorithms for

certainty map integration in detail. Dynamic itinerary is the one that guarantees that

a minimum number of sensor nodes is involved into certainty map integration. Since

visual sensor nodes in the sensing field might be faulty, dynamic itinerary requires

redundant information to declare the non-existence of a target within a region. By

selecting the voting threshold automatically, we guarantee that there is adequate

amount of redundant information in dynamic itinerary to tolerate the fault in the

sensor network. The initially occupied certainty map is progressively clarified by

migrating through the dynamic itinerary from sensor node to sensor node. Finally,

targets are localized at the uncleared areas and target locations are broadcasted to

each sensor node to detect the fault in camera orientation.
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3.4.2 Distributed Fault Detection and Correction in VSN

In order to detect faulty nodes with inaccuracies in camera orientation estimation, we

compare the actual foreground image captured by each node and synthetic foreground

image generated by generative image model based on the location of targets in the

final certainty map and the camera’s orientation and coordinates.

For each sensor node, si, we calculate the normalized pseudo-distance, Ψ, to

measure distance between actual 2D foreground image, Rsi and the synthetic 2D

image generated by the sensor node, Esi Fleuret et al. [2008]. If the pseudo-distance,

Ψ(Rsi , Esi(θ)), between actual image and synthetic image is larger than defined

threshold, the sensor is detected as faulty.

Since the existence of faulty nodes might affect the localization accuracy, we

localize targets again by excluding the faulty nodes from dynamic itinerary for

certainty map integration. In order to correct the orientation of detected faulty

nodes, we calculate the pseudo-distance for each possible orientation as described

in generative image model and update the actual camera orientation, θsi with the

expected camera orientation θesi which minimizes the pseudo-distance (see details in

Section 3.3.4).

3.5 Experiments and Results

In this section, we evaluate the performance of the centralized fault-tolerant target

localization algorithm using both simulated and real experiments with different

amount of Gaussian noise and Byzantine faults added to camera orientations. Also,

distributed implementation of fault-tolerant target localization algorithm is evaluated

by using a simulated experiment with different amount of Byzantine faults added to

camera orientations.
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Figure 3.7: Simulation setup with 20 targets and 80 sensor nodes.

3.5.1 Experiments using Simulation

In our simulation, round-shaped targets of uniform size are deployed on a 2D sensing

field, and infinitely small-size sensor nodes with uniform FOV and focal length are

located at the sides of the sensing field and directed horizontally facing the sensing

field. The orientation of each sensor node is a floating point number randomly

generated in [0◦, 360◦]. The location of targets are randomly generated assuming

there is no overlap between the targets and sensors. In all the simulations, we

assume each node is accurately calibrated and synchronized with each other after

initial deployment. Also, each node is able to find its location by using a positioning

system, such as GPS.

Following is the setup of some typical parameters: The 2D sensing field is 20m

× 20m large. The size of each target is 0.5m × 0.5m. The uniform sensing range of

sensor nodes is 20m in length and 45◦ in angle. Each node is in the communication

range of other nodes and is able to communicate with each other. Fig. 3.7 illustrates

a sample random deployment of 20 targets, represented as discs, and 80 cameras,

represented as points.
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After each deployment of targets and cameras, the simulation software generates

the corresponding foreground image of targets in the FOV of each sensor node. Each

sensor node then computes the 2D visual cones of the non-occupied areas using the

planer projection and generates local certainty map as described in Sec. 2.3. By using

the centralized integration, the certainty map is progressively clarified and targets

are located at the remaining uncertain regions in the map. To detect and correct

the faulty nodes, target locations in the final certainty map are broadcasted to each

node. Each node first estimates the camera orientation by using the generative image

model and then updates its orientation if it is not accurate.

We conduct three sets of simulation experiments to study the effect of voting

threshold, sensor node density and target density on the performance of the target

localization algorithm. In each set of experiments, different amount of Byzantine

faults and Gaussian noise with zero mean and various standard deviation values are

generated and added to orientations of sensor nodes randomly for ten times and the

results are averaged.

Effect of the Voting Threshold

In this set of experiments, we show how the usage of the voting mechanism can

help reduce the effect of faulty sensor nodes, providing robust performance based on

inaccurate sensor inputs. We deploy 10 targets and 80 sensors in the 2D sensing field

with known sensor locations and orientations.

Fig. 3.8 shows the total number of detected targets by using different voting values

with Byzantine faults added. We observe that if the threshold value is set to 1, there

is no tolerance for any sensor error. Therefore, lower voting thresholds might be

selected for fault tolerance purpose. As shown in Fig. 3.8, the algorithm successfully

tolerates the faulty nodes and accurately detects all targets until more than 16, i.e.,

20%, nodes experience Byzantine fault.

We also observe that to improve performance, a lower voting threshold value is

required. However, we cannot select the voting threshold value too low otherwise false
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Figure 3.8: Total number of localized targets for different voting threshold values
for Byzantine fault in different number nodes. Note that the number of deployed
targets is fixed at 10.

alarms would have been generated as shown in Fig. 3.8 for voting threshold values as

low as 0.7.

To evaluate the fault detection and correction performance of the proposed

method, we use the number of corrected nodes as the performance metric when

Byzantine fault is added, as shown in Fig. 3.9a. We again observe that to add more

noise reduces the fault detection and the correction performance of the algorithm,

demanding a lower voting threshold value to avoid the performance drop.

Fig. 3.9b shows the total number of detected targets by using different voting

values with Gaussian noise added. We observe that if the threshold value is set

to 1, there is no tolerance for any sensor error. Therefore, lower voting thresholds

might be selected for fault tolerance purpose. As shown in Fig. 3.9b, the algorithm
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Figure 3.9: (a) Number of corrected faulty nodes for Byzantine fault and (b) Total
number of localized targets for different voting threshold values for Gaussian noise
with different standard deviation. Note that the number of targets is fixed at 10.
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Figure 3.10: Resultant error in camera orientation for Gaussian noise. Note that
the number of deployed targets is fixed at 10.

successfully tolerates the faulty nodes and accurately detects all targets until the

standard deviation of Gaussian noise is 1.2.

We also observe that to improve performance, a lower voting threshold value is

required. However, we cannot select the voting threshold value too low otherwise

false alarms would have been generated as shown in Fig. 3.9b for voting threshold

values as low as 0.7.

To evaluate the fault detection and correction performance of the proposed

method, we use the standard deviation in the resulting camera orientation when

Gaussian noise is added, as shown in Fig. 3.10. We again observe that to add more

noise reduces the fault detection and the correction performance of the algorithm,

demanding a lower voting threshold value to avoid the performance drop.
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Figure 3.11: Total number of localized targets for different number of deployed
nodes, N for different number of Byzantine faulty node. Note that the number of
deployed targets is fixed at 10.

Effect of Node Density

In this set of experiments, the fault-tolerant target localization algorithm is tested to

show its performance against different numbers of sensor nodes versus a fixed number

of targets. In the simulation, 10 targets and different numbers of sensor nodes are

deployed.

Fig. 3.11 illustrates the total number of detected targets for different numbers of

deployed sensor nodes as a performance metric where Byzantine fault is added to the

camera orientations. We observe again that the increased level of camera orientations

inaccuracies reduces the target localization performance of the algorithm. To deploy

more nodes in the sensing field makes the target localization algorithm more robust
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Figure 3.12: Total number of localized targets for different number of deployed
nodes, N for Gaussian noise with different standard deviation. Note that the number
of deployed targets is fixed at 10.

against Byzantine fault because it is more probable to tolerate the Byzantine fault in

dense sensor deployment.

Fig. 3.12 illustrates the total number of detected targets for different numbers of

deployed sensor nodes as a performance metric where Gaussian noise is added to the

camera orientations. We observe again that the increased level of camera orientations

inaccuracies reduces the target localization performance of the algorithm. To deploy

more nodes in the sensing field makes the target localization algorithm more fragile

to Gaussian noise because it is more probable to miss a target because Gaussian

noise is added to all camera orientations and to have accurately calibrated VSN is

less probable.

The effect of the sensor node density on the resultant error of fault correction

algorithm and the number of corrected nodes are shown in Fig. 3.13a and Fig. 3.13b
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Figure 3.13: (a) Number of corrected faulty nodes for Byzantine fault and (b)
Resultant error in camera orientation for Gaussian noise. Note that the number of
deployed targets is fixed at 10.
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Figure 3.14: Total number of localized targets for different numbers of deployed
targets, M for different number of Byzantine faulty node. Note that the number of
deployed nodes is fixed at 80.

for various amount of Byzantine fault and Gaussian noise, respectively. We observe

that to have better performance on fault detection and correction, the deployment of

more sensor nodes in the sensing field is needed.

Effect of Target Density

In this set of experiments, the effect of deploying different numbers of targets, M

versus fix number of cameras, N is studied with the existence of faulty nodes because

of the Gaussian noise and Byzantine fault in their camera orientations. We deploy

80 cameras and different numbers of targets in the sensing field.

Fig. 3.14 shows the number of detected targets for different amount of Byzantine

fault by deploying different numbers of targets. We observe that the performance
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Figure 3.15: Total number of localized targets for different numbers of deployed
targets,M for Gaussian noise with different standard deviation. Note that the number
of deployed nodes is fixed at 80.

of target detection algorithms is almost identical for different numbers of deployed

targets. An increment in total number of deployed targets does not affect the

performance of target localization much compared to the effect of the number of

deployed sensor nodes.

Fig. 3.15 shows the number of detected targets for different amount of Gaussian

noise by deploying different numbers of targets. We observe that the performance

of target detection algorithms is almost identical for different numbers of deployed

targets. An increment in total number of deployed targets does not affect the

performance of target localization much compared to the effect of the number of

deployed sensor nodes.

In Fig. 3.16(a-b), the effect of the target density on the fault detection and

correction model is shown for various amount of Gaussian noise and Byzantine fault,
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Figure 3.16: (a) Resultant error in camera orientation for Gaussian noise and (b)
Number of corrected faulty nodes for Byzantine fault. Note that the number of
deployed nodes is fixed at 80.
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(a) (b)

(c) (d)

Figure 3.17: (a) Experimental setup with 8 people and 42 cameras, (b) Images
captured by 5th, 9th, 22nd, 34th cameras, (c) Corresponding non-occupied 2D visual
cones of the images in Fig. 3.17b and (d) the final certainty map.

respectively. We observe that the effect of the number of deployed targets, M on the

resultant error of fault correction algorithm for Gaussian noise and the number of

corrected sensor nodes in Byzantine fault is far less than the effect of the number of

deployed sensor nodes, N . This is especially true when M ≪ N .

3.5.2 Experiments using Real Data

Besides simulation, we also conduct a set of real experiments, shown in Fig. 3.17a,

where an 8 by 13 square feet area is surrounded by 42 mobile sensor platforms (MSPs)
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with onboard processing, wireless communication and imaging capabilities. Four of

the MSPs are located at the corners of the experimental area and oriented toward the

center of the area at 3 feet in height. The rest of the MSPs are located 1 foot apart

from each other and oriented in perpendicular angle with the sides of the room at 3

feet in height. In this experimental setup, each square foot area is discretized into 100

grid locations to construct the certainty map, corresponding to a regular grid with a

9 cm resolution.

We first evaluate the performance of the proposed algorithm on its capability

in localizing targets in a crowded scene, e.g., to identify eight targets within an

8× 13 square feet area as shown in Fig. 3.17a. Images are captured by each MSP, as

shown in Fig. 3.17b. Fig. 3.17c illustrates the local certainty maps generated at the

5th, 9th, 22nd, and 34th MSPs. After integration of local certainty maps, targets are

localized in the final certainty map as shown in Fig. 3.17d.

To study the effect of voting threshold on target localization accuracy, we add

Byzantine faults to orientations of 6 sensor nodes to evaluate the localization accuracy

of four people, whose true locations are shown in Fig. 3.18a. In Fig. 3.18(b-f), the

final version of the certainty maps are presented using different threshold values as

1, 0.95, 0.9, 0.8, and 0.7, respectively. In Fig. 3.18b, the threshold value is 1 so there

is no tolerance for any sensor failure. If one of the MSPs claims non-existence of the

target, it is 100% accepted. As a result, the algorithm failed to localize one of the

four targets in the scene. However, this missing target can be identified if using a

lower voting threshold value, as shown in Fig. 3.18(c-e), where the threshold is set

to 0.95, 0.9 and 0.85, respectively, indicating that to clear the specific area from the

certainty map at least 5%, 10% or 15% of the MSPs must agree that region should be

cleared. Nevertheless, the voting threshold value cannot be selected too low as some

of the non-occupied areas would then start to be mislabeled as target, as shown in

Fig. 3.18f.

Fig. 3.18(g-l) shows the robustness of the proposed target localization algorithm

against the Byzantine fault. We set the normalized voting threshold value to 0.85 and
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Figure 3.18: (a) True Locations of 4 people, (b) to (f) Final version of the certainty
map using different voting threshold values 1, 0.95, 0.9, 0.85, 0.8, 0.75, and 0.7,
respectively. (g) to (l) Final version of the certainty map for different number of node
with Byzantine fault as 4, 8, 9, 10, 12, 14, and 18 nodes, respectively.

add Byzantine fault to different numbers of sensor nodes, as 4, 8, 10, 12, 14, and 18

nodes, respectively. We observe that the proposed method is able to tolerate faulty

nodes inputs before its total number reaches 10 (25% of the total number of deployed

sensor nodes).

To further study the effect of voting threshold on target localization accuracy,

we add zero-mean Gaussian noise with different standard deviation values to all the

camera orientations. In Fig. 3.19, the total number of uncertain pixels in the final

certainty map is shown for different standard deviation values and for different voting

threshold values. Suppose each person should occupy 500 pixels in the final certainty

map, then we set the lower bound and upper bound of number of uncertain pixels for

one person as (375, 875), i.e., if the size of one segment is less than 75% of the target

size, we deem it as noise and if the segment size is larger than 1.75 times the target

size, we deem it as containing two targets. Therefore, the lower and upper bounds of
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Figure 3.19: Total area in the final certainty map for Gaussian noise with zero mean
and different standard deviation values added to orientation of the visual sensors for
different voting threshold values.

the number of uncertain pixels in the certainty map for detecting 4 people is (1500,

3500) pixels, as shown in Fig. 3.19.

We observe in Fig. 3.19 that if the standard deviation of Gaussian noise is σ = 3,

the performance of the system with the voting threshold of both two and three are

more appropriate as the profiles stand right between the lower and upper bounds.

To add more Gaussian noise by increasing the standard deviation value reduces

the system performance, demanding a higher voting threshold value to avoid the

performance drop. However, we cannot select the voting threshold value too high

otherwise false alarms would have been generated.
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3.5.3 Experiments for Distributed Implementation of Fault

Tolerant Collaborative Localization

In our simulation, round-shaped targets of uniform size are deployed on a 2D sensing

field, and infinitely small-size sensor nodes with uniform FOV and focal length

are randomly deployed into the sensing field and directed horizontally facing the

sensing field. The locations of each sensor node and target are randomly generated

assuming there is no overlap between the targets and sensors. The orientation of

each sensor node is a floating point number randomly generated in [0◦, 360◦]. In all

the simulations, we assume each node is accurately calibrated and synchronized with

each other after initial deployment. Also, each node is able to find its location by

using a positioning system, such as GPS.

Following is the setup of some typical parameters: The 2D sensing field is 50m

× 50m large. The size of each target is 0.5m × 0.5m. The uniform sensing range of

sensor nodes is 20m in length and 45◦ in angle. Each node is in the communication

range of other nodes and is able to communicate with each other. Fig. 3.20 illustrates

a sample random deployment of 50 targets, represented as discs, and 500 cameras,

represented as points.

After each deployment of targets and cameras, the simulation software generates

the corresponding foreground image of targets in the FOV of each sensor node. Each

sensor node then computes the 2D visual cones of the non-occupied areas using the

planer projection and generates local certainty map as described in Sec. 2.3. By

using the distributed integration through a dynamic itinerary, the certainty map is

progressively clarified where the voting threshold is automatically selected. Targets

are located at the remaining uncertain regions in the map. In order to detect and

correct the faulty nodes, target locations in the final certainty map are broadcasted

to each node. Then, each node first generates its synthetic image by using the

generative image model and compares its actual image with the synthetic image.

If the pseudo-distance between the actual image and synthetic image is not smaller
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Figure 3.20: Simulation setup with randomly deployed 50 targets and 500 sensor
nodes.

than the defined threshold, the sensor nodes determines itself as faulty and estimates

its camera orientation by using the generative image model and then updates its

orientation if it is not accurate.

We conduct five simulation experiments to study the effect of probability that

sensor node is faulty, pf , on the performance of the fault detection and fault correction

algorithm. In each set of experiments, different amount of Byzantine faults are

generated and added to orientations of sensor nodes randomly for ten times.

First, the threshold value should be selected for distributed integration through

dynamic itinerary by using the automatic threshold selection method described in

Section 3.4.1. Fig. 3.21 illustrates the probability that a specific grid point in the

sensing field is covered by at least W-many faulty sensor nodes, 1− FP(W − 1;λf ×

A×p) and the probability that each grid point is covered by less than K sensor nodes,

FP (K−1), that ensures the visual K-coverage probability.
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Figure 3.21: (a) Probability that a specific grid point is covered by at least W-many
faulty sensor nodes, 1−FP(W−1;λf×A×p) and the probability that each grid point
is covered by less than K sensor nodes, FP (K−1) for automatic threshold selection and
(b) zoom in of rectangle area in (a).

89



We observe that to decrease the probability that a specific grid point in the sensing

field is covered by at least W-many faulty sensor nodes, 1− FP(W − 1;λf × A× p),

a higher voting threshold value is required. In addition, to increase the probability

that sensor node is faulty, pf , increases probability that a specific grid point in the

sensing field is covered by at least W-many faulty sensor nodes and requires higher

voting threshold value. However, the voting threshold value cannot be selected too

high otherwise it is not ensured to have accurate K-coverage in the sensor network

for fault tolerance. In order to select the threshold value automatically based on

the solution of Eq. 3.11, we set the tolerance values as ε1 = 0.005 and ε2 = 0.0025,

threshold value for minimum pseudo-distance to 0.7 and select the probability that

sensor node is faulty, pf from 0.01 to 0.05.

In the first experiment, we set the probability that a sensor node is faulty to

0.01, i.e., pf = 0.01. Since 500 sensor nodes are deployed into the sensing field,

there are 5 faulty sensor nodes in average, i.e., Nf = 5. The voting threshold value

is automatically selected as 3, i.e., Vthr = 3. Table 3.1 shows the confusion matrix

of fault detection results and their related calculations (i.e., accuracy, sensitivity,

specificity, and precision) and fault correction results. The confusion matrix consists

of four result cells that report true positive (i.e., faulty nodes detected as faulty), false

positive (i.e., non-faulty nodes detected as faulty), true negative (i.e., non-faulty nodes

detected as non-faulty), and false negative (i.e., faulty nodes detected as non-faulty).

Accuracy is the ratio of the true results (both true positives and true negatives) to the

total number of all results. Precision measures the proportion of the true positives

against all the positive results (both true positives and false positives). Sensitivity

and specificity are defined, respectively, as the proportion of true positives which are

correctly detected faulty nodes as faulty and the proportion of true negatives which

are correctly detected non-faulty nodes as non-faulty.

We observe that the fault detection algorithm shows a high accuracy, sensitivity,

specificity, and precision. Also, 78% of the faulty nodes are corrected by fault

correction algorithm and 18% of the faulty nodes are classified as symmetric sensor
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Table 3.1: Confusion matrix of fault detection results, related calculations of fault
detection algorithm and fault correction results where pf = 0.01 and Vthr = 3.

Predicted
Faulty Not Faulty

Actual
Faulty 49 1

Not Faulty 3 4946

Accuracy 0.9990
Sensitivity 0.9800
Specificity 0.9996
Precision 0.9412

Total Number of Corrected Faulty Nodes 39
Total Number of Symmetric Faulty Nodes 9
Total Number of Faulty Nodes 50
Total Number of Falsified Non-Faulty Node 2
Total Number of Corrected Non-Faulty Node 1
Total Number of Non-Faulty Node Detected Faulty 3

Faulty Nodes
Corrected 0.780
Symmetric 0.180
Total 0.960
Non-Faulty Nodes

Falsified 0.00040

node. A sensor node is classified as a symmetric sensor node if the fault correction

algorithm gives several possible orientation for the corresponding sensor node. This

might be happen if there is no target in the field of view of the sensor node at that

specific time frame and the actual captured image of the sensor is empty. Symmetric

sensor nodes can be detected as faulty but they might not be corrected because

there are more than one possible orientation angle that shows the minimum pseudo-

distance. Whenever a symmetric node covers a target, the symmetry in their field of

view will be eliminated and its orientation will be corrected.

In addition, we observe that the fault detection algorithm misclassifies three non-

faulty sensor node as faulty node because the residual areas around the targets might

cause the localized target to slightly shift due to the digitization of sensing area as

grids. One out of three misclassified sensor nodes is reoriented to its actual orientation.

However, the orientation of two misclassified sensor node is falsified which makes the

falsification ratio as 0.00040.
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Table 3.2: Confusion matrix of fault detection results, related calculations of fault
detection algorithm and fault correction results where pf = 0.02 and Vthr = 4.

Predicted
Faulty Not Faulty

Actual
Faulty 99 1

Not Faulty 19 4881

Accuracy 0.9958
Sensitivity 0.9900
Specificity 0.9961
Precision 0.8376

Total Number of Corrected Faulty Nodes 71
Total Number of Symmetric Faulty Nodes 24
Total Number of Faulty Nodes 100
Total Number of Falsified Non-Faulty Node 16
Total Number of Corrected Non-Faulty Node 3
Total Number of Non-Faulty Node Detected Faulty 19

Faulty Nodes
Corrected 0.710
Symmetric 0.240
Total 0.950
Non-Faulty Nodes

Falsified 0.00320

In the second experiment, we set the probability that a sensor node is faulty to

0.02, i.e., pf = 0.02. Since 500 sensor nodes are deployed into the sensing field, there

are 10 faulty sensor nodes in average i.e., Nf = 10. The voting threshold value is

automatically selected as 4, i.e., Vthr = 4. Table 3.2 shows the confusion matrix and

related calculations of fault detection algorithm and fault correction results.

We observe that the fault detection algorithm shows a high accuracy, sensitivity,

specificity, and precision. Also, 71% of the faulty nodes are corrected by fault

correction algorithm and 24% of the faulty nodes are classified as symmetric sensor

node. The overall falsification ratio is 0.00320.

In the third experiment, we set the probability that a sensor node is faulty to

0.03, i.e., pf = 0.03. Since 500 sensor nodes are deployed into the sensing field, there

are fifteen faulty sensor nodes in average i.e., Nf = 15. The voting threshold value is

automatically selected as 4, i.e., Vthr = 4. Table 3.3 shows the confusion matrix and

related calculations of fault detection algorithm and fault correction results.
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Table 3.3: Confusion matrix of fault detection results, related calculations of fault
detection algorithm and fault correction results where pf = 0.03 and Vthr = 4.

Predicted
Faulty Not Faulty

Actual
Faulty 148 2

Not Faulty 25 4825

Accuracy 0.9946
Sensitivity 0.9867
Specificity 0.9948
Precision 0.8555

Total Number of Corrected Faulty Nodes 122
Total Number of Symmetric Faulty Nodes 21
Total Number of Faulty Nodes 150
Total Number of Falsified Non-Faulty Node 17
Total Number of Corrected Non-Faulty Node 8
Total Number of Non-Faulty Node Detected Faulty 25

Faulty Nodes
Corrected 0.813
Symmetric 0.140
Total 0.953
Non-Faulty Nodes

Falsified 0.00340

We observe that the fault detection algorithm shows a high accuracy, sensitivity,

specificity, and precision. Also, 81.3% of the faulty nodes are corrected by fault

correction algorithm and 14% of the faulty nodes are classified as symmetric sensor

node. The overall falsification ratio is 0.00340.

In the fourth experiment, we set the probability that a sensor node is faulty to

0.04, i.e., pf = 0.04. Since 500 sensor nodes are deployed into the sensing field, there

are twenty faulty sensor nodes in average i.e., Nf = 20. The voting threshold value is

automatically selected as 5, i.e., Vthr = 5. Table 3.4 shows the confusion matrix and

related calculations of fault detection algorithm and fault correction results.

We observe that the fault detection algorithm shows a high accuracy, sensitivity,

specificity, and precision. Also, 72.5% of the faulty nodes are corrected by fault

correction algorithm and 21% of the faulty nodes are classified as symmetric sensor

node. The overall falsification ratio is 0.00720.
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Table 3.4: Confusion matrix of fault detection results, related calculations of fault
detection algorithm and fault correction results where pf = 0.04 and Vthr = 5.

Predicted
Faulty Not Faulty

Actual
Faulty 197 3

Not Faulty 45 4755

Accuracy 0.9904
Sensitivity 0.9850
Specificity 0.9906
Precision 0.8140

Total Number of Corrected Faulty Nodes 145
Total Number of Symmetric Faulty Nodes 42
Total Number of Faulty Nodes 200
Total Number of Falsified Non-Faulty Node 36
Total Number of Corrected Non-Faulty Node 9
Total Number of Non-Faulty Node Detected Faulty 45

Faulty Nodes
Corrected 0.725
Symmetric 0.210
Total 0.935
Non-Faulty Nodes

Falsified 0.00720

In the fifth experiment, we set the probability that a sensor node is faulty to 0.05,

i.e., pf = 0.05. Since 500 sensor nodes are deployed into the sensing field, there are

twentyfive faulty sensor nodes in average i.e., Nf = 25. The voting threshold value is

automatically selected as 6, i.e., Vthr = 6. Table 3.5 shows the confusion matrix and

related calculations of fault detection algorithm and fault correction results.

We observe that the fault detection algorithm shows a high accuracy, sensitivity,

and specificity rates. However precision rate decreased to 64.5%. Also, 75.2% of

the faulty nodes are corrected by fault correction algorithm and 16.8% of the faulty

nodes are classified as symmetric sensor node. The overall falsification ratio increase

to 0.02320.

As an overall comment on these five experiments, we observe that to increase the

probability that a sensor is faulty, pf , decreases the accuracy, sensitivity, specificity

and precision rates of fault detection algorithm. Especially, the decrement on the

precision rate is obvious. In addition, the performance of the fault correction decreases
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Table 3.5: Confusion matrix of fault detection results, related calculations of fault
detection algorithm and fault correction results where pf = 0.05 and Vthr = 6.

Predicted
Faulty Not Faulty

Actual
Faulty 239 11

Not Faulty 131 4619

Accuracy 0.9716
Sensitivity 0.9560
Specificity 0.9724
Precision 0.6459

Total Number of Corrected Faulty Nodes 188
Total Number of Symmetric Faulty Nodes 42
Total Number of Faulty Nodes 250
Total Number of Falsified Non-Faulty Node 116
Total Number of Corrected Non-Faulty Node 15
Total Number of Not Faulty Node Detected Faulty 131

Faulty Nodes
Corrected 0.752
Symmetric 0.168
Total 0.920
Not Faulty Nodes

Falsified 0.02320

as the probability that a sensor is faulty, pf , increases. The falsification ratio is

increased at higher pf values. The main reason of the decrement on the precision rate

and increment on the falsification ratio is the inadequate visual coverage probability.

At the beginning, we set the tolerance value ε2 = 0.005 for the K-Coverage constraint.

However, the sensor network allows the voting threshold to be selected at most four

which satisfies the tolerance value ε2. In order to select the required voting threshold

for fault tolerance algorithm with higher pf , we relax the K-coverage constraint by

changing ε2 from 0.005 to 0.025 which means that on average there is 2.5% chance

that a grid point in the sensing field is covered by less than the selected threshold

value. Therefore, it might be possible that some non-occupied regions cannot be

removed and appear as targets. Thus, fault detection algorithm detects non-faulty

nodes as faulty.
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3.6 Summary

In this chapter, we presented a centralized and distributed collaborative target

localization algorithm that can reliably detect the position of crowded targets with the

existence of a number of faulty sensor nodes, detect the faulty nodes and correct them.

To achieve our goal, targets are localized based on centralized and distributed camera

nodes integrating the local certainty maps with a fault-tolerant fusion algorithm.

Camera orientations are estimated by a generative image model in each camera

to detect inaccuracy in camera orientations and correct faulty nodes. From both

simulation and experimental results, we showed that the proposed fault-tolerant

method is effectiveness in providing high localization accuracy as well as satisfactory

fault detection and correction performance.
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Chapter 4

Coverage Estimation in VSN

4.1 Introduction

In this chapter, coverage estimation, one of the fundamental problems in sensor

networks is described. In many multi-camera applications, expensive and high-

resolution cameras are usually deployed into large buildings and open areas to capture

the events in a controlled sensing field. In general, the position and orientation of

cameras are predetermined and well-ordered to optimize the placement of cameras.

However, in a hostile and dangerous environment (e.g., battlefield), it is not possible

or feasible to deploy the cameras with accurate position and orientation. Therefore,

camera nodes might be randomly deployed into the sensing field from a moving

platform (e.g., airplane or vehicle) in order to monitor the environment [Hynes et al.,

2004].

Due to random deployment of sensor nodes, their positions may not be predeter-

mined. Additionally, due to the large amount of sensors deployed, it is impractical

to manipulate sensor locations after deployment in order to reach a desired coverage

[Akyildiz et al., 2002]. Therefore, to have proper sensor coverage in the sensing field,

The work in this chapter was first published in Karakaya and Qi [2011a].
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some sensor related parameters, such as sensor density, sensing range, etc., should be

decided based on the estimated sensor coverage probability before deployment.

Traditionally, coverage probability has been evaluated based on the total number

of deployed omnidirectional sensor nodes that captures an arbitrary target within

their circular sensing range. If every target in the sensing field is captured by at least

K sensor nodes, it is called a K-covered sensor network [Li and Kao, 2010]. However,

coverage estimation in VSNs is more challenging than in conventional scalar sensor

networks (SSNs) because of unique challenges of cameras [Karakaya and Qi, 2011b].

Therefore, visual coverage estimation in a crowded environment depends not only on

the sensor density and deployment but also on the target density and distribution.

In this chapter, we focus on the formulation of a closed-form solution for

the visual K-coverage estimation in VSNs with the presence of visual occlusion

among crowded targets where a large number of visual sensor nodes has already

been deployed. Having a closed-form solution for the coverage estimation problem

facilitates many application deployments in VSNs. For example, efficient deployment

of the sensor nodes can be achieved with minimum sensor density. Additionally,

effective algorithms can be designed to yield optimal sensor sleep scheduling for energy

saving purpose [Cai et al., 2009].

To formulate the visual coverage probability in the crowded environment, we first

need to investigate into the target detection algorithm. Traditionally, targets are

detected based on the identification of intersections of the back-projected 2D cones of

the targets. However, the existence of visual occlusion among targets would generate

many empty intersections (false alarms) which makes the derivation of a closed-form

solution for visual coverage estimation extremely difficult. In this paper, instead of

resolving the uncertainty about target existence at the intersections, we model the

target detection algorithm based on distributed camera nodes integrating the target

non-existence information within the camera’s field of view at each sensor node.

According to this target detection model, we then construct a closed-form solution

to estimate the visual coverage probability that deals with the directional sensing
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nature of cameras and the visual occlusions among crowded targets. Based on the

closed-form solution of the coverage estimation, we further propose an estimate for

the minimum sensor density that suffices to ensure a visual K-coverage in a crowded

sensing field.

The main contributions of this chapter are two-fold:

1. We derive a closed-form solution for visual coverage estimation in a randomly

deployed VSN by adapting the non-existence information based target detection

model into formulation. Therefore, the sensor related parameters (e.g., sensor

density, sensing range, etc.) can be decided before deployment in order to have

proper visual coverage in the sensing field. This facilitates many application

deployments such as efficient sensor deployment and sensor scheduling in VSNs.

2. In a crowded environment, the visual coverage probability depends not only

on the sensor density and deployment but also on the target density and

distribution. Our closed-form solution considers both the directional sensing

nature of cameras and the visual occlusions among targets to estimate the

visual coverage in VSNs. Thus, we have more accurate and more realistic visual

coverage estimation in a crowded VSN.

The remainder of this chapter is organized as follows: Section 4.2 briefly describes

the background and related works. Section 4.3 presents the target detection model. In

Section 4.4, we provide the closed-form solution for visual coverage when occlusion is

not taken into consideration. And in Section 4.5, we consider the more complex

problem with occlusion taken into account. To show how the proposed target

detection model enables the closed-form solution for visual coverage estimation, we

present a detailed comparison between the proposed and traditional target detection

models for visual coverage estimation in Section 4.6. Section 4.7 investigates into

the complicated boundary effect for more accurate visual coverage estimation. Based

on the closed-form solution of visual coverage estimation, Section 4.8 formulates the

minimum sensor density estimation problem as an application example. Section 4.9
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presents the experimental results to validate the theoretical derivation of visual

coverage estimation and to show the effects of various parameters on the minimum

sensor density. Discussion on heterogeneous sensor deployment and target existence

in VSNs and their effect on the coverage estimation is presented in 4.10.

4.2 Background and Related Works

In literature, there exist many works related to coverage estimation in scalar sensor

networks (SSNs) where the sensing devices are normally 1-D omnidirectional (e.g.,

acoustic or seismic sensor). In order to effectively cover the given sensing region,

various criteria have been considered, including quality of surveillance [Gui and

Mohapatra, 2004], maximal or minimal exposure of a path [Veltri et al., 2003], area

coverage [Ahmed et al., 2005], etc. In SSNs, the area coverage of a sensor node is

modeled by a simple omnidirectional sensing model as a circular disk whose radius,

ρ, is the sensing range of the sensor node [Huang and Tseng, 2003].

In [Meguerdichian et al., 2001], the coverage problem in SSNs was defined

from several point of views including deterministic, statistical, worst and best

case to determine the lower and higher observability in sensing field by combining

computational geometry and graph theoretic techniques. Xing et al. [2005] presented

a design of coverage configuration protocol that can dynamically configure a network

to achieve guaranteed degrees of coverage and connectivity and provide a geometric

analysis of the relationship between coverage and connectivity. Kumar et al. [2005]

introduced the K-barrier coverage for a belt-shape region and established the optimal

deployment pattern to achieve it. In [Wan and Yi, 2006], the effect of the sensing

radius or the total number of deployed sensor nodes on the probability of the K-

coverage was studied for randomly deployed scalar sensor nodes and the boundary

effect was taken into account. In [Brass, 2007], the coverage estimation problem

was analyzed with the Boolean sensing model for either mobile or stationary sensors

and targets, under random or optimal placement. Yen et al. [2006] proposed a
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mathematical expression to predict the coverage rate for an expected area in a wireless

sensor network that can be K-covered to determine the related sensing parameters.

Wang et al. [2007] considered the coverage problem from the perspective of target

localization to estimate the minimum sensor density to keep the target localization

error within an acceptable bound.

Different from the scalar sensors, the sensing region of a camera, also referred to as

the field of view (FOV), is limited and directional which is less than 180◦ in general.

Therefore, existing works related to SSNs cannot be directly applied to visual sensor

networks. In [Ai and Abouzeid, 2006], the directional sensor coverage problem was

investigated by utilizing linear programming to maximize the sensor coverage with

minimum number of sensors. An energy-efficient target-oriented sleep scheduling

algorithm was presented in [Cai et al., 2009] to extend the lifetime of directional

sensor networks. Liu et al. [2008] proposed directional and effective sensing models

to capture the frontal view of the human face for orientation detection. Meanwhile,

other research efforts Isler and Bajcsy [2006]; Yang et al. [2004] applied directional

coverage analysis to minimize the sensor density to reach the accurate estimation for

target localization and occupancy reasoning, respectively.

Since the coverage issue in VSNs is also related to the orientations of cameras,

the problem of selecting a minimum number of sensors has been investigated based

on automatic control of visual sensors by reorienting the deployed cameras to provide

best possible coverage on a given area or targets. Munishwar and Abu-Ghazaleh [2010]

presented a novel centralized force-based approach to compute near optimal solutions

using integer linear programming in a large-scale PTZ (pan, tilt, and zoom) camera

network. Fusco and Gupta [2009] designed a simple greedy algorithm that delivers

a solution for selecting and orienting visual sensors that K-covers at least half of the

target points using at mostM log(k|C|) sensors, where |C| is the maximum number of

target points covered by a sensor andM is the minimum number of sensors required to

K-cover all the given points. For more detailed survey, readers may refer to [Guvensan

and Yavuz, 2011] where the existing coverage optimization and enhancement solutions
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for directional sensor networks were classified into four categories as target-based

coverage enhancement, area-based coverage enhancement, coverage enhancement with

guaranteed connectivity, and network lifetime prolonging. Although all these works

investigated into the directional sensing models, none of which considered the visual

occlusion problem among crowded targets.

For a target, to stand within the FOV of a visual sensor may not mean being

captured by the camera because there may be other targets standing between the

target and the camera and visually occluding them. Lin et al. [2011] developed

analytical expressions to derive expected coverage by a randomly deployed single

camera in a sensing field that is occlusion free or with occlusion. Then, they extended

this method to the expected joint coverage after deploying additional cameras into

field iteratively. Qian and Qi [2008] derived several parameters such as minimum,

maximum and expectation values for visual coverage estimation in the presence of

visual occlusions for VSNs. However, neither approach derived a closed-form solution

for visual K-coverage probability estimation due to the target detection model used.

4.3 Target Detection Model

In traditional target detection algorithms, the intersections of the back-projected

2D visual cones of the targets are calculated to localize all the individual targets

(described in detail in Chapter 2). If the cones from different sensor nodes intersect

at the same point, it can be considered there is at least one target in that intersection.

Existing coverage estimation algorithms are based on the information about the target

“existence” at the intersections. However, this information cannot be certain since in

crowded environments, many “empty” intersections that are not actually occupied by

any target are created because of the visual occlusion or ghost positioning. In addition

to this, existing coverage estimation approaches do not take the partial appearance

of targets in the FOV of sensor nodes into account. However, in a crowded scene, it

might not be realistic to have a free sight for all targets in the sensing field because of
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(a) (b) (c)

Figure 4.1: The Certainty-based Target Detection Model. (a) Visual hulls of targets
in 3D (b) Projection of 3D cones onto the ground plane, and (c) Certain areas about
target non-existence (labeled with white).

the visual occlusion among the crowd. Due to the uncertainty about real locations of

the targets and partial appearance of targets, the derivation of a closed-form solution

for the coverage estimation has been a very challenging problem. We refer to this

traditional model as “uncertainty-based or occupancy-based target detection”.

In this section, we briefly describe an inverse approach to traditional target

detection problem proposed in Chapter 2. Instead of resolving the uncertainty about

target existence, we identify and study the non-occupied areas in the visual cone. If

an area within the FOV of a sensor node is not occupied or occluded by any object,

it is certain about target non-existence (labeled with white) and declared as a non-

occupied area. Otherwise, it is uncertain about target existence (labeled with black)

in the corresponding region. The occupied areas are the ones where it is possible that

there exist targets. The uncertainty is due to either occlusion or outside of the FOV

of the camera. We refer to this model as the “certainty-based target detection”.

The certainty-based target detection model is illustrated in Fig. 4.1. Each target is

modeled by a uniform size cylindrical object in 3D where texture and shape signatures

of the target are contained within the cylinder space around the axis as shown in
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Fig. 4.1a. Yang et al. [2003] showed that it is reasonable to model the objects of

similar heights and widths using cylinders for people and vehicle detection algorithms.

After background subtraction, each target can be extracted from the scene, which

sweeps a cone in 3D space as shown in Fig. 4.1a. To find visual cone of the target,

these 3D cones are projected onto a plane parallel to the ground as seen in Fig. 4.1b.

The non-occupied (labeled with white) areas in the visual cone are thus determined

as shown in Fig. 4.1c. The detailed comparison between certainty-based and the

traditional occupancy-based target detection models and their impact on the closed-

form solution for visual coverage estimation will be presented in Section 4.6.

In this chapter, we assume that the infinitesimal visual sensor nodes with uniform

FOV and sensing radius are randomly deployed within a very large two-dimensional

sensing field, R. Since each region in the sensing field has equal importance based on

the probability of target existence, all sensor nodes are uniformly and independently

distributed into the sensing field. Based on this deployment strategy, the locations

of visual sensor nodes can be modeled by a two-dimensional stationary Poisson

point process with sensor density λs [Wang et al., 2010]. It is also assumed that

orientations of visual sensors are uniformly distributed over [0◦, 360◦). Let ρ and θ

denote, respectively, the sensing radius and angle of view of a sensor node.

Let us model a target as a uniform disc on the 2D plane, R, with radius, r, when

the cylindrical object is projected onto a plane parallel to the ground. In addition,

there is no overlap between the targets and sensors in R. We further assume that

the centers of all existing targets in the scene are uniformly distributed which means

that the probability of any point in R to be occupied by a target is the same across

the sensing field. Based on this random and uniform target distribution model, the

probability that a number of target centers are located within a region, A, can be

estimated by a two-dimensional stationary Poisson point process with a parameter

λt×A, where λt and A denote, respectively, the target density and the area of region

A.
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4.4 Visual Coverage without Visual Occlusions

If the radius of targets is infinitely small, i.e., r → 0, we can ignore the visual

occlusion. That is, in the “certainty-based target detection”, all areas within the FOV

of the sensor node would be marked as “white” (see Fig. 4.1c), for sensor coverage.

In other words, a sensor node covers a specific grid point (x, y) ∈ R, of the sensing

field and determines target non-existence, if the node is located in a circular area A

with radius ρ centered at the corresponding grid point and is oriented towards the

center of the circle. In the rest of the paper, the circular area A is referred to as

the “detectability area”. Therefore, the visual coverage probability, defined as the

probability that exactly k sensor nodes cover a specific grid point of the sensing field

and determine the target non-existence is

P (k) =
∞∑
j=k

P(j;λs × A)Cj
k(p)

k(1− p)j−k (4.1)

where P(j;λs×A) denotes the probability that a detectability area A contains exactly

j sensor nodes from a Poisson point process with sensor density λs, i.e., P(j;λs×A) =

e−λs×A(λs×A)j/j! where A = πρ2. And, p denotes the probability of the sensor node

facing towards the center of detectability area, A, i.e., p = θ/(2π) and Cj
k denotes the

number of combinations of k-node subset from a j-node set. Eq. 4.1 can be further

derived as,

P (k) =
∞∑
j=k

e−λs×A(λs × A)j

j!

j!

k!(j − k)!
(p)k(1− p)j−k

=
1

k!
e−λs×A(λs × A× p)k

∞∑
j=k

(
(λs × A)(1− p)

)j−k

(j − k)!

=
1

k!
e−λs×A(λs × A× p)ke((λs×A)(1−p))

=
1

k!
e−λs×A×p(λs × A× p)k

= P(k;λs × A× p) (4.2)
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From the derivation result in Eq. 4.2, we observe that the visual coverage

probability without visual occlusions follows the Poisson point process with sensor

density λs × θ/(2π) in the detectability area A.

4.5 Visual Coverage with Visual Occlusions

In an environment with crowded targets, it is no longer appropriate to assume an

infinitely small target and target radius r becomes a finite value, i.e., r > 0. Hence,

visual occlusions should be taken into account. To cover a specific grid point of

the sensing field and determine the target non-existence at that point, not only the

corresponding grid point must be inside the FOV of the sensor node, the centers of

all targets should also be outside of the occlusion zone between the corresponding

grid point and the node, which is illustrated as the bold-boundary region in Fig. 4.2.

The shaded region in Fig. 4.2 is the area of the occlusion zone, denoted as Ao.

The value of Ao depends on the target radius r and the distance l between the

corresponding grid point and visual sensor node and can be expressed as Ao = πr2 +

2rl. Let q denote the probability that there is no visual occlusion between the grid

point and the sensor node. Since the probability that a number of target centers are

located within a region, Ao, follows Poisson distribution, the probability of having

no targets in the occlusion zone, q equals to e−λt(πr2+2rl) which is a random value

with respect to the randomness of the distance l between the grid point and the

visual sensor node. Let Q denote the probability of covering a specific grid point of

the sensing field and determining the target non-existence. Since the visual coverage

depends on two independent factors, i.e., the grid point is within the FOV of the

sensor and that there is no occlusion between the sensor and the grid point, Q can

be expressed as

Q = p× q =
θ

2π
× e−λt(πr2+2rl) (4.3)
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Figure 4.2: Occlusion zone model.

Thus, the visual coverage probability that exactly k nodes cover a specific grid

point of the sensing field and determine the target non-existence, P (k), is

P (k) =

∫
P (k,Q)f(Q)dQ (4.4)

where P (k,Q) is the probability that exactly k sensor nodes cover a specific grid point

of the sensing field and determine the target non-existence at that point with respect

to Q, and f(Q) is the probability density function (pdf) of Q with respect to distance

li between the corresponding grid point and each node si in the circular detectability

area A with radius ρ centered at the grid point, i = 1 . . . Ns, and Ns is the number

of visual sensor nodes within area A.

Since sensor nodes are uniformly distributed at random in the sensing field, the

probability of sensor nodes appears at the same distance to the center of the circular

detectability area A is proportional to the area of the region. Therefore, f(l), the pdf

of distance li between the corresponding grid point and each sensor node si, follows
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linear distribution from 0 to ρ

f(l) =


2

ρ2
l for 0 ≤ l ≤ ρ

0 otherwise
(4.5)

To calculate the pdf of function Q, f(Q), we utilize the change of variable property

(see detailed derivation in Appendix B). Since Q is a monotonically decreasing

function of l, f(Q) is

f(Q) =


2

ρ2
×

ln
(

θ
2π

e−λtπr2

Q

)
2λtr

× 1

2λtrQ
for Q(l = ρ) ≤ Q ≤ Q(l = 0)

0 otherwise

(4.6)

P (k,Q) can be derived as

P (k,Q) =
∞∑
j=k

j∑
i=k

P(j;λs × A)Cj
i p

i(1− p)j−iCi
kq

k(1− q)i−k

=
∞∑
j=k

P(j;λs × A)pkqk(1− p)j−k

j∑
i=k

Cj
i Ci

k

(
p(1− q)

1− p

)i−k

=
∞∑
j=k

P(j;λs × A)pkqk(1− p)j−k

j−k∑
s=0

Cj
k+sC

k+s
k

(
p(1− q)

1− p

)s

(a)
=

∞∑
j=k

P(j;λs × A)pkqk(1− p)j−k

j−k∑
s=0

Cj
kC

j−k
s

(
p(1− q)

1− p

)s

=
∞∑
j=k

P(j;λs × A)pkqk(1− p)j−kCj
k

j−k∑
s=0

Cj−k
s

(
p(1− q)

1− p

)s

(b)
=

∞∑
j=k

P(j;λs × A)pkqk(1− p)j−kCj
k

(
p(1− q)

1− p
+ 1

)j−k

=
∞∑
j=k

e−λs×A(λs × A)j
1

j!
pkqk(1− p)j−k j!

k!(j − k)!

(
1− pq

1− p

)j−k
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=
1

k!
e−λs×A(λsApq)

k

∞∑
j=k

[
(λs × A)(1− pq)

]j−k 1

(j − k)!

=
1

k!
e−λs×A(λsApq)

ke(λs×A)(1−pq)

=
1

k!
(λsApq)

ke−λsApq

= P(k;λs × A×Q) (4.7)

where (a) follows the combination properties, Cj
k+s.C

k+s
k = Cj

k.Cj−k
s , and (b) follows

the binomial coefficient property, (x + y)n =
∑n

s=0 Cn
s x

n−sys where s = i − k. Also,

A = πρ2, p = θ/(2π), q = e−λt(πr2+2rl), and Q = p× q.

From the derivation result in Eq. 4.7, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

sensor density λs × θ/(2π) × e−λt(πr2+2rl) in area A. If λt → 0 or r → 0, then

Q → p = θ/(2π) which means visual occlusions among the targets can be ignored.

Therefore, Eq. 4.7 converges to Eq. 4.2.

The derivation of the visual coverage probability that exactly k sensor nodes cover

a specific grid point of the sensing field and determine the target non-existence at

that point can then be derived as

P (k) =

∫
P(k;λs × A×Q)f(Q)dQ

=

∫ Q(l=0)

Q(l=ρ)

e−λsAQ(λsAQ)
k

k!
× 2

ρ2
×

ln
(

θ
2π

e−λtπr2

Q

)
4λ2t r

2Q
dQ (4.8)

Let u = λsπρ
2Q, λc = λsπρ

2 θ
2π
e−λtπr2 and λb = λc × e−2λtrρ

P (k) =
1

2k!ρ2r2λ2t

∫ uQ(l=0)

uQ(l=ρ)

uke−u ×
ln
(

θ
2π

e−λtπr2λsπρ2

u

)
u

λsπρ2

× du

λsπρ2
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=
1

2k!ρ2r2λ2t

∫ λc

λb

uk−1e−u ln(
λc
u
)du

=
1

2k!ρ2r2λ2t

[∫ λc

λb

uk−1e−u lnλcdu︸ ︷︷ ︸
P1(k)

−
∫ λc

λb

uk−1e−u lnudu︸ ︷︷ ︸
P2(k)

]
(4.9)

where

P1(k) = lnλc

∫ λc

λb

uk−1e−udu

= lnλc

[∫ ∞

λb

uk−1e−udu−
∫ ∞

λc

uk−1e−udu

]
= lnλc [Γ(k, λb)− Γ(k, λc)] (4.10)

and

P2(k) =

∫ λc

λb

uk−1e−u lnudu

=

∫ ∞

λb

uk−1e−u lnudu−
∫ ∞

λc

uk−1e−u lnudu

=
∂

∂k
Γ(k, λb)−

∂

∂k
Γ(k, λc)

(a)
=
[
lnλbΓ(k, λb) + λbT(3, k, λb)

]
−
[
lnλcΓ(k, λc) + λcT(3, k, λc)

]
where Γ(k, λ) is the upper incomplete gamma function and ∂

∂k
Γ(k, λ) is its first

derivative with respect to k [Abramowitz, 1970]. In this derivation, (a) follows

∂
∂k
Γ(k, λ) = lnλΓ(k, λ) + λT(3, k, λ) where T(3, k, λ) is a special case of Meijer G-

function [Geddes et al., 1990]. By using the simple recurrence formula of function

T(3, k, λ), we can find its generalized recurrence formula as λT(3, k, λ) = (k −

1)!E1(λ) +
∑k−1

i=1
k−1!
i!

Γ(i, λ) where E1(λ) is the exponential integral (see detailed

derivation in Appendix B.3). These special cases of function T(3, k, λ) provide an
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extension of P2(k) as

P2(k) =

[
lnλbΓ(k, λb) + (k − 1)!E1(λb) + (k − 1!)

k−1∑
i=1

Γ(i, λb)

i!

]
−[

lnλcΓ(k, λc) + (k − 1)!E1(λc) + (k − 1)!
k−1∑
i=1

Γ(i, λc)

i!

]
(4.11)

By substituting Eqs. 4.10 and 4.11 into Eq. 4.9, a closed-form solution of the visual

coverage probability, P (k) can be further derived as,

Pk =
1

2k!ρ2r2λ2t

[
P1(k)− P2(k)

]
=

1

2k!ρ2r2λ2t

[
ln
(λc
λb

)
Γ(k, λb)− (k − 1)!

(
E1(λb)− E1(λc)

)
−

(k − 1)!
k−1∑
i=1

Γ(i, λb)− Γ(i, λc)

i!

]
(a)
=

1

2kρ2r2λ2t

[
ln
(λc
λb

)
FP(k − 1, λb)−

(
E1(λb)− E1(λc)

)
−

k−1∑
i=1

FP(i− 1, λb)− FP(i− 1, λc)

i

]
(4.12)

where (a) follows Γ(a, x) =
∫∞
x
e−tta−1dt. When a is an integer, Γ(n, x) = (n −

1)!e−x

n−1∑
j=0

xj

j!
[Press et al., 2007]. In this derivation, FP(k;λ) is the cumulative

probability distribution (cdf) of Poisson distribution with parameter λ.

4.6 Comparison between Occupancy-based and

Certainty-based Visual Coverage

In this section, we explicitly discuss the advantages of adapting the certainty-

based target detection approach that integrates target non-existence information

versus the occupancy-based target detection approach that integrates target existence
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(a) (b)

Figure 4.3: (a) Occupancy-based occlusion zone model and (b) Certainty-based
occlusion zone model.

information in deriving the closed-form solution for visual coverage estimation in

VSNs with visual occlusions.

In traditional occupancy-based target detection algorithms, since the intersections

of the back-projected 2D visual cones of the targets are calculated to localize all

the individual targets, occupancy maps hold the information about total number

of sensor nodes detecting target existence at each intersection. Therefore, existing

coverage estimation algorithms are based on the occupancy information about the

target “existence” at the intersections and define the target detection only if the front

arc of the disc bounded by two tangent viewing rays is completely visible to the sensor

node, as shown in Fig. 4.3a. More specifically, in the occupancy-based model, to

declare target existence at a specific intersection, not only the arc of the disc bounded

by tangent rays must be inside the FOV of the sensor node, the centers of all other

targets should also be outside of the occlusion zone between the corresponding target

and the sensor node, which is illustrated as the bold-boundary region in Fig. 4.3a.

The shaded regions in Fig. 4.4 are the occupancy-based occlusion zones, denoted

as Ao which are random values with respect to the randomness of the distance l
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(a) (b)

Figure 4.4: Occupancy-based occlusion zone if (a) there is free sight or (b) partial
appearance of targets exists due to another occluding target.

between the target and the sensor node. Since the visual coverage depends on two

independent factors, i.e., the target is within the FOV of the sensor and that there is

no occlusion between the sensor and the target, the probability of covering a specific

target, Q, can be

Q(l) = p× q =
θ − 2 arcsin(r/l)

2π
× e−λt×Ao (4.13)

where p denotes the probability of the sensor node facing towards the target, i.e.,

p =
(
θ − 2 arcsin(r/l)

)
/(2π) and q denotes the probability of having no targets in

the occlusion zone i.e., q = e−λt×Ao .

However, Eq. 4.13 is valid if and only if free sight is available for all targets

in the sensing field as illustrated as the bold-boundary regions in Fig. 4.4a. In a

crowded scene, it is not appropriate to assume the existence of a free sight for all

targets in the sensing field because of the visual occlusions among targets. Since

some targets partially appear in the FOV of sensor nodes, the area of the occlusion

zone, Ao becomes a random variable with respect to not only the distance l but also
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the location of other occluding targets as illustrated as the bold-boundary regions

in Fig. 4.4b. Therefore, the probability density function (pdf) of Q, f(Q) could not

be calculated explicitly. As a result, due to the partial appearance of targets, the

derivation of a closed-form solution for the occupancy-based coverage estimation has

been a very challenging problem in VSNs.

To solve this problem, we adopt certainty-based target detection model in the

derivation of visual coverage estimation in VSNs. Instead of resolving the uncertainty

about target existence, we identify and study the non-occupied areas in the visual

cone to detect targets. When the non-existence information coming from different

sensor nodes is fused in a certainty map to remove the uncertainty, the only uncertain

regions left would be the location of targets. In other words, certainty maps hold the

information about total number of sensor nodes detecting target non-existence at

any specific region. Therefore, in the certainty-based approach, to cover a specific

grid point of the sensing field and determine the target non-existence at that point,

not only the corresponding grid point must be inside the FOV of the sensor node,

the centers of all targets should also be outside of the occlusion zone between the

corresponding grid point and the node, which is illustrated as the bold-boundary

region in Fig. 4.3b.

Unlike the occupancy-based occlusion zone model, the area of the certainty-based

occlusion zone, Ao depends on only the distance l between the corresponding grid

point and sensor node and can be expressed as Ao = πr2 + 2rl. As described in

Section 4.5, the calculation the pdf of function Q(l), f(Q), is utilized by the change

of variable property on function f(l), the pdf of distance l. Therefore, the certainty-

based model enables the computation the pdf of function Q(l), f(Q). As a result,

the derivation of the closed-form solution for visual coverage estimation in VSNs has

been possible by adopting the certainty-based target detection model.
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4.7 Boundary Effect on the Visual Coverage Esti-

mation

In this section, we investigate the boundary effect on the visual coverage estimation.

For a sensor node close to the boundary of the sensing field, part of the area within

its FOV will fall outside of the sensing field R. Therefore, the visual sensor coverage

probability at the boundary of the sensing field is less than that in central areas of the

sensing field. This is commonly referred to as the boundary effect in sensor networks.

As shown in the derivation of Eq.4.12, the visual coverage probability P (k) denotes

the probability that a specific grid point within the sensing field R is covered by

exactly k many visual sensor nodes out of j many nodes distributed in a circular

detectability area A with radius ρ centered at the grid point. If the boundary effect

is ignored, A = πρ2 holds for all grid points within the sensing field, R, so P (k)

is similar at all points in R as well. However, due to the boundary effect, the grid

points close to the boundary have a partial circular detectability area A(x, y), shown

as gray regions in Fig.4.5 and A(x, y) ≤ πρ2. Therefore, visual coverage probability

P (k) depends on the location in the sensing field R.

Yen et al. [2006] discussed region partitioning to estimate the boundary effect

on the expected coverage in wireless sensor networks according to the locations

of omnidirectional scalar sensors. Following the similar partitioning idea but with

different partitioning approaches for visual sensor networks, we divide the sensing field

R into three types of sub-regions according to the location of grid point (x,y). Let

AC , AS, AM represent the sub-regions where a grid point is located in the corner sub-

regions, side sub-regions and middle sub-regions of the sensing field R, respectively.

As shown in Fig.4.5, the detectability area of each grid point in the middle sub-

region AM has circular shape because distances of a grid point to the two closest

borders of the sensing field R is more than the sensing range of the sensor, ρ.

Therefore, AM(x, y) = πρ2, ∀(x, y) ∈ AM . In the following subsections, we estimate
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Figure 4.5: Partitioned boundary sub-regions of a rectangular sensing field.

the detectability area of the corner sub-regions AC and side sub-regions AS within

the sensing field R.

4.7.1 Computing Detectability Area at the Corner Sub-

region AC

Fig.4.6 (top) illustrates the detectability area of a grid point in a corner sub-region

AC where the distance of a grid point to the closest corner is less than the sensing

range of a visual sensor, ρ. Let u and v denote the minimum distances from a grid

point in a corner sub-region AC to two borders of the M ×N rectangle sensing field

RM×N , respectively, i.e., u = min(x,M − x) , v = min(y,N − y) and u2 + v2 ≤ ρ2.
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Figure 4.6: The detectability areas in (top) corner sub-region AC , (bottom) side
sub-region AS.

By geometry, the detectability area of a grid point in a corner sub-region AC(x, y) is

expressed as,

AC(x, y) = u×v+u
√
ρ2 − u2

2
+
v
√
ρ2 − v2

2
+
( π

2
+ arcsin(u

ρ
) + arcsin(v

ρ
)

2π

)
πρ2 (4.14)

Thus, the detectability area of a grid point in a corner sub-region AC decreases as

the point is located closer to the corner of the sensing field R. Based on the decrease

in the detectability area, the visual coverage probability P (k) decreases accordingly.
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4.7.2 Computing Detectability Area at the Side Sub-region

AS

Fig.4.6 (bottom) illustrates two types of detectability areas of grid points in a side sub-

region AS where at least one of the distances between a grid point and the two closest

borders of the sensing field R is less than the sensing range of a visual sensor, ρ and

the distance of a grid point to the closest corner is larger than ρ. Let u and v, again,

denote the minimum distances from a grid point in a side sub-region AS to borders

of the M × N rectangle sensing field RM×N , respectively, i.e., u = min(x,M − x) ,

v = min(y,N − y), u2 + v2 > ρ2 and u ≤ ρ or v ≤ ρ. By geometry, three types of

detectability area of a grid point in a side sub-region AS(x, y) can be expressed as,

AS(x, y) =



u
√
ρ2 − u2 + v

√
ρ2 − v2+(

2π−2 arccos(u
ρ
)−2 arccos( v

ρ
)

2π

)
πρ2, if u ≤ ρ and v ≤ ρ

u
√
ρ2 − u2 +

(
2π−2 arccos(u

ρ
)

2π

)
πρ2, if u ≤ ρ and v > ρ

v
√
ρ2 − v2 +

(
2π−2 arccos( v

ρ
)

2π

)
πρ2, if u > ρ and v ≤ ρ

(4.15)

Thus, the detectability area of a grid point in a side sub-region AS decreases as the

point gets closer to the borders of the sensing field R. Based on the decrease in the

detectability area, the visual coverage probability P (k) decreases in a side sub-region

AS accordingly.

4.8 Minimum Sensor Density Estimation

In many visual sensor deployment applications, one of the major tasks is to find

accurate estimation of the minimum sensor density to deploy into the sensing field

which is sufficient to ensure the visual coverage probability that each point is covered

by at least K sensor nodes is higher than a certain percentage. In other words, the

probability that each point is covered by less than K sensor nodes is smaller than

a tolerance value ε. The optimization problem of minimum node density to ensure
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visual K-coverage can be expressed as,

λ̂s = argmin
λs

s.j.P (k)≥0

∣∣∣∣∣
K−1∑
k=0

P (k)− ε

∣∣∣∣∣ (4.16)

where P (k) is parameterized by λs and other fixed parameters λt, r, ρ, and θ as shown

in Eq. 4.12. Therefore, the solution for optimization problem is that minimum node

density is the smallest positive root λ̂s of the following equation

K−1∑
k=0

1

2kρ2r2λ2t

[
ln
(λc
λb

)
Fp(k − 1, λb)−

(
E1(λb)− E1(λc)

)
−

k−1∑
i=1

Fp(i− 1, λb)− Fp(i− 1, λc)

i

]
= ϵ (4.17)

where λc and λb are the Poisson distribution parameters, i.e., λc = λsπρ
2 θ
2π
e−λtπr2 and

λb = λsπρ
2 θ
2π
e−λt(πr2+2λtrρ). There is no explicit solution for Eq. 4.17, so minimum

sensor density, λ̂s can be found by using the exhaustive search method.

4.9 Experiments and Results

In this section, we first present the comparison between the simulation results and

theoretical values to validate the theoretical derivation of visual coverage probability.

Then, the results of minimum sensor density λ̂s are presented to show the effect

of visual occlusions among crowded targets on the visual coverage probability that

ensures the K-coverage in the sensing field.

In our simulations, circular targets with uniform size are deployed on a 2D sensing

field, infinitely small-size sensor nodes with uniform FOV and focal length are located

and directed horizontally facing the sensing field. The locations of each sensor node

and target are randomly generated assuming there is no overlap between the targets

and sensor nodes. The orientation of each node is a floating point number randomly

generated in [0◦, 360◦). In all the simulations, we assume each sensor node is able to
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Figure 4.7: Simulation setup with 20 targets and 100 sensor nodes.

find its orientation and location by using a digital compass and positioning system,

such as GPS.

Following is the setup of some typical parameters: The 2D sensing field is 40m

× 40m large. The radius of each target, r is 0.5m. Each sensor node has a uniform

FOV with ρ = 10m of sensing range and θ = 45◦ of angle of view. Each node is in

the communication range of other nodes and is able to communicate with each other.

Fig. 4.7 illustrates a sample random deployment of 20 targets, represented as discs,

and 100 cameras, represented as points.

We conduct two sets of experiments to validate the theoretical derivation of visual

coverage probability, where one set does not consider the boundary effect and the

other one does. We also show the effect of parameter selection on the minimum sensor

density, λ̂s. In each set of experiments, different amount of coverage requirements K

(K = 1, 2, 3) are selected for ten times and the results are averaged.
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4.9.1 Comparison between Theoretical Values and

Experimental Results Without Boundary Effects

In this set of experiments, boundary effect is not considered. The effects of two groups

of parameters are studied, including sensor node related parameters and target related

parameters.

Effect of Sensor Node Related Parameters

In this experiment, we study the effect of the sensor node related parameters, sensor

node density λs, sensing range ρ, and angle of view θ on the visual coverage probability

for different visual K-coverage requirements.

In the first simulation, 20 targets and different numbers of sensor nodes are

randomly deployed into the sensing field. Fig. 4.8a shows the visual coverage

probability for different K values corresponding to different numbers of sensor nodes,

Ns. We observe that visual coverage probability decreases as K increases because of

the more demanding coverage requirement. In addition, visual coverage probability

increases as Ns increases due to more dense visual sensor nodes deployed.

Secondly, fixed number of sensor nodes and fixed number of targets are deployed

into the sensing field where Ns = 100 and Nt = 20. However, in each deployment, we

vary the value of the uniform sensing range ρ of every visual sensor node. Fig. 4.8b

shows the visual coverage probability for different K values corresponding to different

sensing range ρ. We observe that visual coverage probability increases as ρ increases

or K decreases because of larger visual coverage of each sensor node with larger FOV

and less demanding coverage requirements, respectively.

In the third simulation, we select different values for the angle of view θ of each

sensor node to show its effect on the visual coverage probability where fixed number

of targets and fixed number of sensor nodes with fixed sensing range ρ are deployed

into the sensing field, i.e. Nt = 20, Ns = 100 and ρ = 10m. Fig. 4.9 shows the visual

coverage probability for different K values corresponding to different angles of view
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Figure 4.8: Comparison of theoretical values and simulation results corresponding
to sensor node related parameters, (a) different numbers of sensor nodes Ns, (b)
different sensing range ρ and (c) different angle of views θ.
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Figure 4.9: Comparison of theoretical values and simulation results corresponding
to different angle of views θ.

θ. We observe that visual coverage probability increases as θ increases or K decreases

because of, again, larger visual coverage of each sensor node with larger FOV and less

demanding coverage requirements, respectively.

As shown in Fig. 4.8 and 4.9, the simulated experimental results for the sensor

node related parameters, sensor node density λs, sensing range ρ, and angle of view θ

are consistent with the theoretical values. However, because of the boundary effect, we

observe that the visual K-coverage probability resulted from simulated experiments

are slightly less than theoretical values. Moreover, the difference between theoretical

values and experimental results increases as either Ns or ρ or θ increases because the

boundary effect is more severe.
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Figure 4.10: Comparison of theoretical values and simulation results corresponding
to different number of targets Nt.

Effect of Target Related Parameters

In this experiment, we study the effect of the target related parameters, the number of

deployed target Nt and target radius r on the visual coverage probability for different

visual K-coverage.

First, different numbers of target, Nt, are deployed in the sensing field where the

total number of cameras, Ns, is fixed at 100. Fig. 4.10 shows the visual coverage

probability for different K values corresponding to different numbers of deployed

targets, Nt. We observe that visual coverage probability decreases as either Nt or

K increases because of presence of more visual occlusions among more dense targets

and more demanding coverage requirements, respectively.

In the second simulation, fixed number of sensor nodes and fixed number of

targets are deployed where Ns = 100 and Nt = 20. However, in each deployment
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Figure 4.11: Comparison of theoretical values and simulation results corresponding
to different target radius r.

uniform radius of each target is chosen with different values to show the effect of

the target radius r. Fig. 4.11 shows the visual coverage probability for different K

values corresponding to different target radius, r. We observe that visual coverage

probability decreases as either r or K increases because of the presence of more

visual occlusions among bigger targets and more demanding coverage requirements,

respectively.

Results in Fig. 4.10 and 4.11 further validate the theoretical derivation of

visual sensor coverage by showing the consistent theoretical values with simulated

experimental results. However, again due to the boundary effect, the visual coverage

probability from simulated experiments shows slight difference from theoretical values.
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4.9.2 Boundary Effect on the Coverage Estimation Probabil-

ity

In this experiment, we study the boundary effect on the visual coverage estimation

probability corresponding to different number of sensor nodes Ns for different visual

K-coverage requirements. Fig. 4.12a shows the visual K-coverage probability in 2D

sensing region R corresponding to Nt = 20, Ns = 100, ρ = 10, θ = 45◦ and K = 2.

We observe that the visual K-coverage probability decreases in the boundary region

as close to the edge of the sensing region because of the boundary effect.

We randomly deploy 20 targets and different numbers of sensor nodes into

the sensing field. Fig. 4.12b shows the visual coverage probability of simulated

experiment, theoretical results with and without boundary effect for different K

values. We observe that visual coverage probability decreases as K increases because

of the more demanding coverage requirement and visual coverage probability increases

as Ns increases due to more dense sensor nodes.

Results in Fig. 4.12b validate the proposed theoretical derivation of visual sensor

coverage by showing exactly the same theoretical values when boundary effect is taken

into account with simulated experimental results.

4.9.3 Minimum Sensor Density

In this set of simulation results, we compute the minimum sensor density, λ̂s, that

ensures visual K-coverage. We study the effect of different parameters, i.e. target

density λt, target radius r, sensing range ρ and angle of view θ. In each experiment,

we change the value of one of these parameters and fix other parameters by setting

λt = 0.1, r = 0.5m, ρ = 10m, θ = 45◦ and tolerance value ϵ = 0.05.

First of all, we change the number of deployed target, Nt from 10 to 300.

Fig. 4.13 shows the minimum sensor density λ̂s corresponding to different number

of deployed target, Nt under different K-coverage requirements. We observe that λ̂s

increases as Nt increases because of the presence of more visual occlusions among
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Figure 4.12: (a) Visual coverage probability for sensing field R corresponding to
Nt = 20, Ns = 100, ρ = 10, θ = 45◦, K = 2 (b) Comparison of theoretical values
with and without boundary effect with simulation results corresponding to different
number of sensor nodes Ns.
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Figure 4.13: Minimum node density λ̂s vs target density, λt.

more dense targets; λ̂s also increases as K increases due to the more demanding

coverage requirements. Moreover, we observe that to get double the K-coverage

requires less than double increment in the sensor density because of the overlapping

FOV of sensor nodes. However, to get more K-coverage in a crowded environment

requires more proportional increment in the minimum sensor density λ̂s than in a

sparse target environment because of the more occlusion among crowded targets.

Secondly, to show the effect of the target radius r on the minimum sensor density,

we change its value from 0.1m to 5m. Fig. 4.14 shows the minimum sensor density

λ̂s corresponding to different target radius r. We observe that λ̂s increases as either

λt or K increases because of the presence of more visual occlusions among targets

of larger size and more demanding coverage requirements, respectively. Moreover,

we observe that to update K-coverage requires less than K times increment in the

sensor density. However, in an environment with large size targets, it requires more
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Figure 4.14: Minimum node density λ̂s vs target radius, r.

proportional increment in the minimum sensor density λ̂s than in an environment

with small-size targets because of the more visual occlusion among large targets.

Third, we change the sensing range ρ from 3m to 20m. Fig. 4.15a shows the

minimum sensor density λ̂s corresponding to different sensing range ρ under different

K-coverage requirements. We observe that λ̂s decreases as ρ increases because of the

larger FOV of each sensor node; λ̂s also increases as K increases due to the more

demanding coverage requirements.

In the fourth simulation, to show the effect of angle of view θ on the minimum

sensor density, we change its value from 10◦ to 120◦). Fig. 4.15b shows the minimum

sensor density λ̂s corresponding to different angle of view θ. We observe that λ̂s

decreases as θ increases due to the larger FOV of each sensor node and λ̂s increases

as K increases because of more demanding coverage requirements.
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Figure 4.15: Minimum node density λ̂s vs (a) sensing range, ρ, (b) Angle of view,
θ.
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4.10 Discussion on Visual Coverage Estimation in

Heterogeneous VSNs

In this chapter, it is assumed that homogeneous visual sensor nodes with the same

sensing radius, ρ, and angle of view, θ, are deployed into the sensing field to detect

the homogeneous targets with uniform target radius, r. In order to make the

scenario more realistic where heterogeneous visual sensors and targets are likely to

be deployed, we can relax these assumptions by considering the heterogeneous visual

sensor deployment and heterogeneous target existence in the sensing field. In this

section, we discuss the effect of heterogeneous sensor deployment and heterogeneous

existence on the derivation of the closed-form solution for visual coverage estimation.

4.10.1 Effect of Heterogeneous Sensor Deployment on the

Visual Coverage Estimation

In the heterogeneous visual sensor deployment, we deploy different types of visual

sensor nodes into the sensing field with different sensor density, λs, sensing radius, ρ,

and angle of view, θ. If n types of sensor nodes are deployed into the sensing field,

a target can be covered by k many sensor nodes with any combinations of these n

types of sensor nodes. Therefore, in the derivation of the closed-form solution for

visual coverage estimation, we have to consider the different detection probability of

each type of sensor node in their different size of detectability area, A and derive the

closed-form solution based on their sensor related parameters (i.e., λs, ρ, and θ).

For simplicity, we consider that two types of sensor nodes are deployed in a

heterogeneous VSN: Type I and Type II with sensor density, λs1 and λs2 , sensing

radius, ρ1 and ρ2, and angle of view, θ1 and θ2, respectively. The probability that

exactly k sensor nodes cover a specific grid point of the sensing field and determine
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the target non-existence is

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

P1(i,m;λs1 , θ1, ρ1, λt, r)P2(j − i, k −m;λs2 , θ2, ρ2, λt, r) (4.18)

where P1(i,m;λs1 , θ1, ρ1) denotes the probability that a detectability area contains

exactly i many Type I sensor nodes and m of them can cover the corresponding grid

point based on its sensor related parameters (i.e., λs1 , ρ1, and θ1) and target related

parameters (i.e., λt and r). And, similarly, P2(j − i, k − m;λs2 , θ2, ρ2) denotes the

probability that a detectability area contains exactly j− i many Type II sensor nodes

and k−m of them can cover the corresponding grid point based on its sensor related

parameters (i.e., λs2 , ρ2, and θ2) target related parameters (i.e., λt and r).

In the following subsections, we present the complete analysis of the heterogeneous

visual sensor deployment in different cases of sensor related parameters (i.e., λs, ρ,

and θ) of Type I and Type II sensor nodes. For simplicity, we first ignore the visual

occlusion in VSN to derive the closed-form solution for visual coverage estimation.

Then, we relax our assumption by considering visual occlusion and discuss the visual

coverage estimation with visual occlusion in a heterogeneous VSN.

Heterogeneous Sensor Deployment without Visual Occlusions

As discussed in Section 4.4, if the radius of targets is infinitely small, i.e., r → 0,

we can ignore the visual occlusion. In this case, a sensor node covers a specific grid

point (x, y) ∈ R, of the sensing field and determines target non-existence, if the

node is located in a circular area A with radius ρ centered at the corresponding grid

point and is oriented towards the center of the circle. The probability that exactly k

sensor nodes cover a specific grid point of the sensing field and determine the target
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non-existence is

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
P(i;λs1 × A1)Ci

m(p1)
m(1− p1)

i−m×

P(j − i;λs2 × A2)Cj−i
k−m(p2)

k−m(1− p2)
j−i−(k−m)

)
(4.19)

where P(i;λs × A) denotes the probability that a detectability area A contains

exactly i sensor nodes from a Poisson point process with sensor density λs where

A = πρ2. And, p denotes the probability of the sensor node facing towards the center

of detectability area, A, and Ci
m denotes the number of combinations of m-node subset

from a i-node set. The probability of Type I sensor nodes facing towards the center of

their detectability area, A1 is p1 = θ1/(2π) where A1 = πρ21 and probability of Type II

sensor nodes facing towards the center of their detectability area, A2 is p2 = θ2/(2π)

where A2 = πρ22.

Case 1.1: θ1 ̸= θ2 where ρ1 = ρ2 = ρ and λs1 ̸= λs2

In Case 1.1, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and same sensing

range (i.e., ρ1 = ρ2 = ρ) where their detectability area, A, is the same (i.e., A1 =

A2 = A = πρ2), as shown in Fig. 4.16a. Therefore, Eq. 4.19 can be further derived

as,

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
e−λs1A(λs1A)

i

i!
Ci
m(p1)

m(1− p1)
i−m×

e−λs2A(λs2A)
j−i

(j − i)!
Cj−i
k−m(p2)

k−m(1− p2)
j−i−(k−m)

)

=
∞∑
j=k

e−A(λs1+λs2)Ajλjs2p
k
2(1− p2)

j−k

j∑
i=0

k∑
m=0

Ci
mC

j−i
k−m

i!(j − i)!

(p1
p2

)m(λs1
λs2

)i(1− p1
1− p2

)i−m

(a)
=

∞∑
j=k

e−A(λs1+λs2)Ajλjs2p
k
2(1− p2)

j−k

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m

k!(j − k)!

(p1
p2

)m(λs1
λs2

)i(1− p1
1− p2

)i−m
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=
∞∑
j=k

e−A(λs1+λs2)

k!(j − k)!
Ajλjs2p

k
2(1− p2)

j−k

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m

(λs1p1
λs2p2

)m(λs1(1− p1)

λs2(1− p2)

)i−m

(b)
=

∞∑
j=k

e−A(λs1+λs2)

k!(j − k)!
Ajλjs2p

k
2(1− p2)

j−k
(
1 +

λs1p1
λs2p2

)k(
1 +

λs1(1− p1)

λs2(1− p2)

)j−k

=
e−A(λs1+λs2 )

k!

(
A(λs1p1 + λs2p2)

)k ∞∑
j=k

(
A
(
λs1(1− p1) + λs2(1− p2)

))j−k

(j − k)!

(c)
=

1

k!
e−A(λs1+λs2 )

(
A(λs1p1 + λs2p2)

)k
eAλs1 (1−p1)+Aλs2 (1−p2)

=
1

k!
e−A(λs1p1+λs2p2)

(
A(λs1p1 + λs2p2)

)k
=P
(
k; (λs1p1 + λs2p2)× A

)
(4.20)

where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.20, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

sensor density (λs1p1 + λs2p2) in area A. If p1 = p2 = p and λs1 + λs1 = λs, then

Eq. 4.20 converges to Eq. 4.2 which means heterogeneous visual sensor deployment

becomes homogeneous.

Case 1.2: ρ1 ̸= ρ2 where θ1 = θ2 = θ and λs1 ̸= λs2

In Case 1.2, it is assumed that Type I and Type II sensor nodes have different sensing

ranges (i.e., ρ1 ̸= ρ2), different sensor densities (i.e., λs1 ̸= λs2), but same angle of

view (i.e., θ1 = θ2 = θ) where their detectability area, A1 and A2 equal to A1 = πρ21

and A2 = πρ22, respectively as shown in Fig. 4.16b. Therefore, Eq. 4.19 can be further
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Figure 4.16: Heterogenous visual sensor deployment with different angle of view
(θ1 ̸= θ2) and (a) same sensing range (ρ1 = ρ2 = ρ) or (b) different sensing range
(ρ1 ̸= ρ2)

derived as,

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
e−λs1A1(λs1A1)

i

i!
Ci
m(p)

m(1− p)i−m×

e−λs2A2(λs2A2)
j−i

(j − i)!
Cj−i
k−m(p)

k−m(1− p)j−i−(k−m)

)

=
∞∑
j=k

e−(λs1A1+λs2A2)(A2λs2)
jpk(1− p)j−k

j∑
i=0

k∑
m=0

Ci
mC

j−i
k−m

i!(j − i)!

(λs1A1

λs2A2

)i
(a)
=

∞∑
j=k

e−(λs1A1+λs2A2)(A2λs2)
jpk(1− p)j−k

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m

k!(j − k)!

(λs1A1

λs2A2

)i
=

∞∑
j=k

e−(λs1A1+λs2A2)

k!(j − k)!
(A2λs2)

jpk(1− p)j−k

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m

(λs1A1

λs2A2

)i−m(λs1A1

λs2A2

)m
(b)
=

∞∑
j=k

e−(λs1A1+λs2A2)

k!(j − k)!
(A2λs2)

jpk(1− p)j−k
(
1 +

λs1A1

λs2A2

)k(
1 +

λs1A1

λs2A2

)j−k

=
e−(λs1A1+λs2A2)

k!

(
p(A1λs1 + A2λs2)

)k ∞∑
j=k

(
(1− p)(A1λs1 + A2λs2)

)j−k

(j − k)!
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(c)
=

1

k!
e−(λs1A1+λs2A2)

(
p(A1λs1 + A2λs2)

)k
e(1−p)(A1λs1+A2λs2 )

=
1

k!
e−p(A1λs1+A2λs2 )

(
p(A1λs1 + A2λs2)

)k
=P
(
k; p× (A1λs1 + A2λs2)

)
(4.21)

where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.21, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter p × (A1λs1 + A2λs2) where A1 = πρ21 and A2 = πρ22. If ρ1 = ρ2 = ρ and

λs1 + λs1 = λs, then Eq. 4.21 converges to Eq. 4.2 which means heterogeneous visual

sensor deployment become homogeneous.

Case 1.3: θ1 ̸= θ2 and ρ1 ̸= ρ2 where λs1 ̸= λs2

In Case 1.3, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensing range (i.e., ρ1 ̸= ρ2), and different sensor

density (i.e., λs1 ̸= λs2) where their detectability area, A1 and A2 equal to A1 = πρ21

and A2 = πρ22, respectively as shown in Fig. 4.16b. Therefore, Eq. 4.19 can be further

derived as,

P (k) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
e−λs1A1(λs1A1)

i

i!
Ci
m(p1)

m(1− p1)
i−m×

e−λs2A2(λs2A2)
j−i

(j − i)!
Cj−i
k−m(p2)

k−m(1− p2)
j−i−(k−m)

)

=
∞∑
j=k

e−λs1A1+λs2A2(λs2A2)
jpk2(1− p2)

j−k×

j∑
i=0

k∑
m=0

Ci
mC

j−i
k−m

i!(j − i)!

(p1
p2

)m(1− p1
1− p2

)i−m(λs1A1

λs2A2

)i
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(a)
=

∞∑
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)k
=P
(
k;λs1A1p1 + λs2A2p2

)
(4.22)

where (a) follows the combination properties,
Ci
mCj−i

k−m

i!(j−i)!
=

Ck
mCj−k

i−m

k!(j−k)!
(see the proof

in Appendix B.5), and (b) follows the binomial coefficient property of statistical

population where (1 + x)k(1 + y)j−k =

j∑
i=0

k∑
m=0

Ck
mC

j−k
i−m(x)

m(y)i−m.

From the derivation result in Eq. 4.22, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter λs1A1p1 + λs2A2p2 where A1 = πρ21 and A2 = πρ22. If p1 = p2 = p,

ρ1 = ρ2 = ρ, and λs1 + λs1 = λs, then Eq. 4.22 converges to Eq. 4.2 which means

heterogeneous visual sensor deployment become homogeneous.

Heterogeneous Sensor Deployment with Visual Occlusions

In previous three cases for heterogeneous sensor deployment with different combi-

nations of the sensor related parameters (i.e., λs, ρ, and θ), we ignored the visual
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Figure 4.17: Occlusion zone in heterogenous visual sensor deployment

occlusion for simplicity in derivation of closed-form solution for visual coverage

estimation. To make the scenario more realistic, we relax our assumption on target

radius, r that becomes a finite value, i.e., r > 0. Therefore, it is not appropriate to

ignore the visual occlusions. To cover a specific grid point of the sensing field and

determine the target non-existence at that point, not only the corresponding grid

point must be inside the FOV of the sensor node, the centers of all targets should

also be outside of the occlusion zone between the corresponding grid point and the

node which is illustrated as the bold-boundary region in Fig. 4.17.

As describe in Section 4.5, Q denote the probability of covering a specific grid

point of the sensing field by heterogeneous visual sensor nodes and determining the

target non-existence that depends on two independent factors, i.e., the grid point is

within the FOV of the sensor, p, and that there is no occlusion between the sensor

and the grid point, q. Q can be expressed as

Q(l) = p× q =
θ

2π
× e−λt(πr2+2rl) (4.23)
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Thus, the visual coverage probability that exactly k nodes cover a specific grid

point of the sensing field by heterogeneous visual sensor nodes and determine the

target non-existence, P (k), is

P (k) =

∫
P (k,Q1(l), Q2(l))f(l)dl (4.24)

where P (k,Q1(l), Q2(l)) is the probability that exactly k sensor nodes cover a specific

grid point of the sensing field and determine the target non-existence at that point

with respect to Q1(l) and Q2(l) values of Type I and Type II sensor nodes. And f(l)

is the probability density function (pdf) of distance l between the corresponding grid

point and each sensor node in the circular detectability areas A1 and A2 with sensing

radius ρ1 and ρ2 centered at the grid point.

In order to derive the P (k,Q1, Q2), Eq. 4.18 can be further derived as,

P (k,Q1(l), Q2(l)) =
∞∑
j=k

j∑
i=0

k∑
m=0

(
P(i;λs1 × A1)Ci

m(Q1)
m(1−Q1)

i−m×

P(j − i;λs2 × A2)Cj−i
k−m(Q2)

k−m(1−Q2)
j−i−(k−m)

)
(4.25)

where Q1(l) = p1 × q = θ1
2π

× e−λt(πr2+2rl) and Q2(l) = p2 × q = θ1
2π

× e−λt(πr2+2rl).

The derivation of P (k,Q1, Q2) in Eq. 4.25 is similar with Eq. 4.19. Only difference

is replacement of p1 and p2 with Q1 and Q2, respectively. Therefore, derivation results

for three cases will be similar with parameter replacement.

Case 2.1: θ1 ̸= θ2 where ρ1 = ρ2 = ρ and λs1 ̸= λs2

In Case 2.1, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and same sensing

range (i.e., ρ1 = ρ2 = ρ) where their detectability areas, A, is the same (i.e., A1 =
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A2 = A = πρ2) and Q1 ̸= Q2. Therefore, derivation result of Eq. 4.25 is

P (k,Q1, Q2) = P
(
k; (λs1Q1 + λs2Q2)× A

)
(4.26)

Case 2.2: ρ1 ̸= ρ2 where θ1 = θ2 = θ and λs1 ̸= λs2

In Case 2.2, it is assumed that Type I and Type II sensor nodes have different sensing

range (i.e.,ρ1 ̸= ρ2), different sensor density (i.e., λs1 ̸= λs2), and same angle of view

(i.e., θ1 = θ2 = θ) where their detectability areas, A1 and A2 equal to A1 = πρ21 and

A2 = πρ22 and Q1 = Q2 = Q = θ
2π

× e−λt(πr2+2rl). Therefore, derivation result of

Eq. 4.25 is

P (k,Q1, Q2) = P
(
k;Q× (A1λs1 + A2λs2)

)
(4.27)

Case 2.3: θ1 ̸= θ2 and ρ1 ̸= ρ2 where λs1 ̸= λs2

In Case 2.3, it is assumed that Type I and Type II sensor nodes have different angle

of view (i.e., θ1 ̸= θ2), different sensor density (i.e., λs1 ̸= λs2), and different sensing

range (i.e., ρ1 ̸= ρ2) where their detectability areas, A1 and A2 equal to A1 = πρ21

and A2 = πρ22 and Q1 ̸= Q2. Therefore, derivation result of Eq. 4.25 is

P (k,Q1, Q2) = P
(
k;λs1A1Q1 + λs2A2Q2

)
(4.28)

4.10.2 Effect of Heterogeneous Target Existence on the

Visual Coverage Estimation

In addition, when heterogeneous targets exist in the sensing field with different target

radius, r, we have to consider all types of targets in order to compute the probability

that there is no occluding target between a grid point and a sensor node, q. For

example, if two types of targets exist in the sensing field with target density, λt1

and λt2 , and target radius, r1 and r2, to cover a grid point in the sensing field, and

determine the target non-existence at that point, not only the corresponding grid
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Figure 4.18: Occlusion zones, Ao1 and Ao2 , of Type I and Type II targets in case
of heterogenous target existence.

point must be inside the FOV of the sensor node, the occlusion zones between the

grid point and the sensor node, Ao1 and Ao2 should also be free of Type I and Type

II targets, respectively as shown in Fig. 4.18. Therefore, the probability of having no

Type I target in the occlusion zone, Ao1 equals to q1 = e−λt1Ao1 where Ao1 = πr21+2r1l

and the probability of having no Type II target in the occlusion zone, Ao2 equals to

q2 = e−λt2Ao2 where Ao2 = πr22 + 2r2l.

The visual coverage probability that exactly k nodes cover a specific grid point of

the sensing field and determine the target non-existence when heterogeneous targets

exist in the sensing field, P (k), is

P (k) =

∫
P (k, q1(l), q2(l))f(l)dl (4.29)

where P (k, q1(l), q2(l)) is the probability that exactly k sensor nodes cover a specific

grid point of the sensing field and determine the target non-existence at that point

with respect to q1(l) and q2(l) values of Type I and Type II targets, respectively. The
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derivation of P (k, q1(l), q2(l)) is

P (k, q1, q2) =
∞∑
j=k

j∑
i=k

i∑
h=k

P(j;λsA)Cj
i p

i(1− p)j−iCi
hq

h
1 (1− q1)

i−hCh
k q

k
2(1− q2)

h−k

=
∞∑
j=k

j∑
i=k

P(j;λsA)Cj
i p

i(1− p)j−iqk1q
k
2(1− q1)

i−k

i∑
h=k

Ci
hCh

k

(q1(1− q2)

1− q1

)h−k

=
∞∑
j=k

j∑
i=k

P(j;λsA)Cj
i p

i(1− p)j−iqk1q
k
2(1− q1)

i−k

i−k∑
s=0

Ci
k+sCk+s

k

(q1(1− q2)

1− q1

)s
(a)
=

∞∑
j=k

j∑
i=k

P(j;λsA)Cj
i p

i(1− p)j−iqk1q
k
2(1− q1)

i−k

i−k∑
s=0

Ci
kCi−k

s

(q1(1− q2)

1− q1

)s
(b)
=
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j=k

j∑
i=k

P(j;λsA)Cj
i p

i(1− p)j−iqk1q
k
2(1− q1)

i−kCi
k

(q1(1− q2)

1− q1
+ 1
)i−k

=
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j=k

P(j;λsA)p
kqk1q

k
2(1− p)j−k
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Cj
i Ci

k

(p(1− q1q2)

1− p

)i−k

=
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j=k

P(j;λsA)p
kqk1q

k
2(1− p)j−k

j−k∑
s=0

Cj
k+sC

k+s
k

(p(1− q1q2)

1− p
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(c)
=
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j=k

P(j;λsA)p
kqk1q

k
2(1− p)j−k
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Cj
kC
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s

(p(1− q1q2)

1− p

)s
(d)
=
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j=k

e−λsA(λsA)
j

j!
pkqk1q

k
2(1− p)j−kCj

k

(p(1− q1q2)

1− p
+ 1
)j−k

=
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j=k

e−λsA(λsA)
j

j!
pkqk1q

k
2

j!

k!(j − k)!
(1− pq1q2)

j−k

=
1

k!
e−λsA(λsApq1q2)

k
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j=k

(
(λsA)(1− pq1q2)

)j−k
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=
1
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e−λsA(λsApq1q2)
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1
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k
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where (a) and (c) follows the combination properties, Ci
k+s.Ck+s

k = Ci
k.Ci−k

s , and (b)

and (d) follows the binomial coefficient property, (x + y)n =
∑n

s=0 Cn
s x

n−sys where

s = i− k. Also, A = πρ2, p = θ/(2π), q1 = e−λt1 (πr
2
1+2r1l), and q2 = e−λt2 (πr

2
2+2r2l).

From the derivation result in Eq. 4.30, we observe that the visual coverage

probability with visual occlusions also follows the Poisson point process with the

parameter λspq1q2 in area A = πρ2. If r1 = r2 = r, and λt1 + λt2 = λt, then Eq. 4.30

converges to Eq. 4.2 which means heterogeneous visual sensor deployment become

homogeneous.
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4.11 Summary

In this chapter, we presented a closed-form solution for the visual coverage estimation

problem in the presence of visual occlusions among crowded targets in a VSN. By

assuming the uniform random deployment of sensor nodes into a large-scale sensing

field and taking the visual occlusions and boundary effects into account, we derived

the visual coverage estimation from a different point of view by modeling the target

detection algorithm based on the certainty map approach. Then, we further estimated

the minimum sensor density that suffices to ensure a visual K-coverage in a crowded

sensing field by using the visual coverage estimation model.

Our major contributions in this chapter were two-fold. First, we adopted the

certainty-based target detection model in coverage estimation in a randomly deployed

VSN and derived a closed-form solution for visual coverage estimation. Therefore, the

sensor related parameters (e.g., sensor density, sensing range, etc.) can be decided

before deployment in order to have proper visual coverage in the sensing field. Second,

since the visual coverage probability in a crowded environment depends not only on

the sensor density and deployment but also on the target density and distribution,

our proposed closed-form solution considers both the directional sensing nature of

cameras and the visual occlusions among targets and provides more accurate and

more realistic coverage estimation in a crowded VSN.

By comparing the simulation results and the theoretical values, we validated

the proposed closed-form solution of visual coverage estimation and showed the

effectiveness of our model to be deployed in practical scenarios. In order to make

the scenario more realistic, we relaxed the assumptions on homogeneous sensor

deployment and homogeneous target existence and extended the proposed closed-form

solution for more general scenarios where heterogeneous visual sensors and targets are

likely to be deployed into the sensing field.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this dissertation, we presented collaborative solutions to visual sensor networks

(VSNs) that are formed by significantly small size and low cost visual sensor platforms

with imaging, on-board processing and communication capabilities. A visual

sensor network covers a large surveillance area and is capable of solving computer

vision problems through distributed sensing and collaborative in-network processing.

Although many potential applications have been possible using these powerful visual

sensor platforms, VSNs also present unique challenges that could hinder their practical

deployment compared to conventional 1-D scalar sensor networks because of unique

features of cameras, including the extremely higher data rate and the directional

sensing characteristics with limited field of view and visual occlusions.

In order to address these challenges in visual sensor networks, we first presented

an energy-efficient and light-weight approach to localize targets in a crowded envi-

ronment using a visual sensor network through distributed sensing and collaborative

in-network processing by taking the directional sensing and visual occlusion issues

in visual sensors into account. Traditionally, the problem is solved by localizing the

targets at the intersections of the back-projected 2D cones of each target. However,
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the existence of visual occlusion among targets would generate many false alarms.

Instead of resolving the uncertainty about target existence at the intersections, we

identify and study the non-occupied areas in the cone and generate the so-called

certainty map of non-existence of targets.

Secondly, we proposed a data fusion algorithm to integrate certainty maps where

not only each camera node transmits a very limited amount of data but that a limited

number of camera nodes is involved. We introduced a dynamic itinerary for certainty

map integration where the entire map is progressively clarified from sensor to sensor

starting the integration with the sensor that has the greatest contribution information

to the current certainty map. When the confidence of the certainty map is satisfied,

targets are localized at the remaining unresolved regions in the certainty map.

In addition to target localization, we also focused on the design of a fault-tolerant

target localization algorithm in VSNs that would not only accurately localize targets

but also detect the faults in camera orientation, tolerate these errors and further

correct them before they cascade. Based on the locations of detected targets in the

final certainty map, we then constructed a generative image model in each camera

that estimates the camera orientation, detect inaccuracies in camera orientations and

correct them before the fault in the system cascades and reaches a point where the

performance of the algorithm dramatically drops or sometimes the algorithm fails.

We also presented the distributed implementation of the fault-tolerant collaborative

target localization by selecting the voting threshold automatically.

Finally, we derived a closed-form solution for the visual coverage estimation

problem in the presence of occlusions to guarantee the required coverage in a sensing

field. In order to have proper sensor coverage in the sensing field, some sensor related

parameters, such as sensor density, sensing range, etc., should be decided based on the

estimated sensor coverage probability before deployment. According to the coverage

estimation model, we further proposed an estimate of the minimum sensor density

that suffices to ensure a visual K-coverage in a crowded sensing field. Simulation was

conducted which shows extreme consistency with results from theoretical formulation,
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especially when the boundary effect is considered. In order to make the scenario more

realistic, we extended the proposed closed-form solution for more general scenarios

where heterogeneous visual sensors and targets are likely to be deployed into the

sensing field.

5.2 Directions for Future Research

In a visual sensor network, many sensor nodes are randomly deployed to cover a large

sensing field as long as possible and collect data from its surroundings as much as

possible. However, these two concept are inversely proportional because collecting

data consumes energy and in many scenarios, sensor nodes are powered by limited

power supplies (i.e., batteries) which is not possible to exchange or recharge the

batteries because of the harsh or inaccessible environments. When the battery is run

out, the visual sensor node dies. Therefore, energy-efficiency and power-conservation

are still important issues in a visual sensor network to maximize the network lifetime

where it is defined as time duration when every point in the sensing region is covered

by at least one camera.

In order to conserve energy in a visual sensor network and prolong its network

lifetime, we can periodically wake up some sensor nodes from sleep mode to collect

the information while others are in sleep, and sleep them back and wake up others. In

Chapter 4, we derive a closed-form solution for the visual coverage estimation in visual

sensor networks to guarantee the required coverage in a sensing field. As a further

extension of this work for a future research, we can study an optimal wake-up/sleep

scheduling algorithm for energy saving purpose. Our approach is based on that we

can estimate the number of visual sensor node by using the closed-form solution for

the visual coverage estimation that ensures the coverage requirement and organize the

disjoint subsets of sensor nodes and put the redundant sensors into different subsets.

Then, we leave the sensor nodes in one of the subsets in the active mode to cover the

sensing field and put the rest of the redundant sensor subsets into the sleep mode.
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Appendix A

List of Selected Symbols

Symbol Description Section

si Index of a visual sensor node 2.3

(xsi , ysi) Coordinates of the sensor node si in the sensing field 2.3

vsi Vector that describes the non-occupied areas within the FOV

of the sensor node, si

2.3

φi,j Starting angle of the jth non-occupied area 2.3

ψi,j Ending angle of the jth non-occupied area 2.3

jth Index of non-occupied area 2.3

Bi Total number of non-occupied areas of the image taken by

node si

2.3

S Set of the visual sensor nodes 2.3

U(S) Union formed by all the local certainty maps in S 2.3

f(vsi) Mapping function to convert vsi to the certainty map 2.3

|f(vsi)| Total area that can be cleared from the current certainty

map by sensor node si

2.5.1

δ Threshold to determine if the sensor node holds adequate

additional clarification information

2.5.1
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Symbol Description Section

N Number of visual sensor nodes 2.7

M Number of targets 2.7

Nd Number of involved sensor nodes that in dynamic itinerary 2.7

No Number of involved sensor nodes that in fixed or random

itineraries

2.7

D Size of the data vector 2.7

E Total energy consumption during the transmission of

certainty maps

2.7

c Energy cost per byte 2.7

ξ Fixed cost for different communication modes 2.7

Esend Energy consumption for sending data 2.7

Erecv Energy consumption for receiving data 2.7

Edisc Energy consumption for discarding data 2.7

θsi Actual (or inaccurate) orientation of the ith sensor node, si 3.3

θ∗si Ground truth (or calibrated) orientations of the ith sensor

node, si

3.3

Nsi(0, σ) Gaussian noise with zero-mean and standard deviation σ in

the orientation

3.3

δsi Byzantine fault in the orientation 3.3

Cx,y Number of sensor nodes that covers a grid pixel at coordinate

(x, y)

3.3

Vx,y(S) Normalized voting algorithm value a grid pixel at coordinate

(x, y)

3.3

Ψ Normalized pseudo-distance between two 1D scanline images 3.3

θesi Expected camera orientation 3.3
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Symbol Description Section

K K-coverage requirement, i.e., at least K nodes covers a

specific grid point

4.1

k Number of sensors that covers a point 4.4

r Target radius 4.3

ρ Sensing range of a camera 4.3

θ Camera angle of view in degrees 4.3

R 2D sensing field 4.3

λt Target density 4.3

λs Sensor density 4.3

A Circular detectability area 4.4

(x, y) Coordinates of a sensor node in the sensing field 4.4

P (k) Probability that exactly k sensor nodes cover a specific grid

point of the sensing field

4.4

p Probability of facing the sensor node towards the center of

detectability area

4.4

Cj
k Number of combinations of k-node subset from a j-node set 4.4

P(j;λsA) Probability that a detectability area A contains exactly j

sensor nodes from a Poisson point process

4.4

Ao Area of the occlusion zone 4.5

q Probability that there is no visual occlusion between the grid

point and the sensor node

4.5

l Distance between the grid point and the node 4.5

Q = p× q Probability of covering a specific grid point of the sensing

field R

4.5

si Index of a visual sensor node 4.5

Ns Number of visual sensor nodes 4.5

Nt Number of targets 4.5
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Symbol Description Section

f(l) probability density function (pdf) of distance li between the

corresponding grid point and each sensor node si

4.5

f(Q) probability density function (pdf) of function Q 4.5

Γ(k, λ) Upper incomplete gamma function 4.5

T(3, k, λ) A special case of Meijer G-function 4.5

E1(λ) Exponential integral 4.5

Fp(k;λ) Cumulative probability distribution (cdf) of Poisson distri-

bution with parameter k and λ

4.5

AC Detectability area of the corner sub-regions 4.7

AS Detectability area of the side sub-regions 4.7

AM Detectability area of the middle sub-regions 4.7

M ×N Size of the rectangle sensing field 4.7.1

(u, v) Minimum distances from a grid point to two borders of the

M ×N rectangle sensing field

4.7.1

ε Tolerance value 4.8

λ̂s Minimum sensor density 4.8
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Appendix B

Derivations and Proofs

B.1 Probability of Radial distance, li

Suppose sensor nodes appears at a point uniformly distributed at random on a circular

plane, A, of radius ρ in the sensing field, R. Let L be the distance of the point from

the center of the circular detectability area A.

The basic assumption is that the probability of sensor nodes appears in a particular

region of the circular detectability area A is proportional to the area of the region.

From the Fig. B.1, 0 ≤ l ≤ ρ,

P (R ∈ dl) =
Area of annulus from l to l+dl

Total area

=
π(l + dl)2 − πl2

πρ2

=
2l

ρ2
dl (B.1)

by ignoring the term involving (dl)2. Therefore, L has probability of density function

as

f(l) =


2

ρ2
l for 0 ≤ l ≤ ρ

0 for otherwise
(B.2)
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Figure B.1: Area at particular radial distance.

where f(l) is the pdf of distance li between the corresponding grid point and each

sensor node si. It follows linear distribution from 0 to ρ.

B.2 Probability of function Q(l)

To compute the pdf of the function Q, f(Q) from the pdf of distance l, Eq. B.2,

we utilized the change of variable property. Since Q is a monotonically decreasing

function, f(Q) is

f(Q) = fL(g
−1(Q))×

∣∣∣∣∣dg−1(Q)

dQ

∣∣∣∣∣ (B.3)

Let Q = g(l) = p× q =
θ

2π
× e−λt(πr2+2rl). Then,

g−1(Q) =
ln
(

θ
2π

e−λtπr2

Q

)
2λtr

and,
dg−1(Q)

dQ
= − 1

2λtrQ
.
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Hence, f(Q) is

f(Q) =


2

ρ2
×

ln
(

θ
2π

e−λtπr2

Q

)
2λtr

× 1

2λtrQ
for Q(l = ρ) ≤ Q ≤ Q(l = 0)

0 otherwise

(B.4)

B.3 Derivative of Incomplete Gamma Function

Let Γ(k, λ), the upper incomplete gamma function, is

Γ(k, λ) =

∫ ∞

λ

uk−1e−udu. (B.5)

The derivative of the upper incomplete gamma function is

∂

∂k
Γ(k, λ) =

∂

∂k

(∫ ∞

λb

uk−1e−udu

)

=

∫ ∞

λb

∂

∂k

(
uk−1e−udu

)
=

∫ ∞

λb

uk−1e−u lnudu (B.6)

To further derivation of derivative of the upper incomplete gamma function, we can

use Meijer G-function as

∂

∂k
Γ(k, λ) = lnλΓ(k, λ) + λT(3, k, λ) (B.7)

where T(3, k, λ) is a special case of Meijer G-function, Geddes et al. [1990].
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B.4 Recurrence Formula of the function T(m, k, λ)

By using integration by parts in Eq.B.5, we find the simple recurrence formula of the

upper incomplete gamma function as

Γ(k + 1, λ) = kΓ(k, λ) + e−λλk (B.8)

To find the simple recurrence formula of the function T(m, k, λ), we substitute Eq.B.8

into Eq.B.7 as

∂

∂k
Γ(k + 1, λ) =

∂

∂k

(
kΓ(k, λ) + e−λλk

)

lnλ× Γ(k + 1, λ) + λT(3, k + 1, λ) = Γ(k, λ) + k

(
lnλΓ(k, λ) + λT(3, k, λ)

)
+ e−λλk lnλ

λT(3, k + 1, λ) = kλT(3, k, λ) + Γ(k, λ) (B.9)

By repeating the recursive formula of function T(3, k, λ), we find its generalized

version as

λT(3, k + 1, λ) =kλT(3, k, λ) + Γ(k, λ)

=k
(
(k − 1)λT(3, k − 1, λ) + Γ(k − 1, λ)

)
+ Γ(k, λ)

=k(k − 1)
(
(k − 2)λT(3, k − 2, λ)+

+ Γ(k − 2, λ)
)
+ (k − 1)Γ(k − 1, λ) + Γ(k, λ)

...

=
k!

(k − 1− j)!
λT(3, k − j, λ) +

j∑
i=0

k!

(k − i)!
Γ(k − i, λ) (B.10)
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For k − 1 → k and j → k − 2,

λT(3, k, λ) =
(k − 1)!

(k − 1− 1− k + 2)!
λT(3, k − 1− k + 2, λ)+

+
k−2∑
i=0

(k − 1)!

(k − 1− i)!
Γ(k − 1− i, λ)

=(k − 1)!λT(3, 1, λ) +
k−1∑
i=1

(k − 1)!

(i)!
Γ(i, λ)

=(k − 1)!E1(λ) + (k − 1)!
k−1∑
i=1

Γ(i, λ)

(i)!
(B.11)

where λT(3, 1, λ) equals to E1(λ) which is the exponential integral.

B.5 Derivation of Heterogeneous Visual Sensor

Network

Cn
k denotes the number of combinations of k-element subset from a n-element set. The

number of k-combinations is equal to the binomial coefficient which can be written

using factorials as Cn
k = n!

k!(n−k)!
. By using this factorial enpension,

Ci
mC

j−i
k−m

i!(j − i)!
=

i!
m!(i−m)!

× (j−i)!
(k−m)!(j−i−(k−m))!

i!(j − i)!

=
1

m!(i−m)!
× 1

(k −m)!(j − i− (k −m))!

=
Ck
m

k!
×

Cj−k
i−m

(j − k)!

=
Ck
mC

j−k
i−m

k!(j − k)!
(B.12)
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