527 research outputs found

    Decision-Making with Heterogeneous Sensors - A Copula Based Approach

    Get PDF
    Statistical decision making has wide ranging applications, from communications and signal processing to econometrics and finance. In contrast to the classical one source-one receiver paradigm, several applications have been identified in the recent past that require acquiring data from multiple sources or sensors. Information from the multiple sensors are transmitted to a remotely located receiver known as the fusion center which makes a global decision. Past work has largely focused on fusion of information from homogeneous sensors. This dissertation extends the formulation to the case when the local sensors may possess disparate sensing modalities. Both the theoretical and practical aspects of multimodal signal processing are considered. The first and foremost challenge is to \u27adequately\u27 model the joint statistics of such heterogeneous sensors. We propose the use of copula theory for this purpose. Copula models are general descriptors of dependence. They provide a way to characterize the nonlinear functional relationships between the multiple modalities, which are otherwise difficult to formalize. The important problem of selecting the `best\u27 copula function from a given set of valid copula densities is addressed, especially in the context of binary hypothesis testing problems. Both, the training-testing paradigm, where a training set is assumed to be available for learning the copula models prior to system deployment, as well as generalized likelihood ratio test (GLRT) based fusion rule for the online selection and estimation of copula parameters are considered. The developed theory is corroborated with extensive computer simulations as well as results on real-world data. Sensor observations (or features extracted thereof) are most often quantized before their transmission to the fusion center for bandwidth and power conservation. A detection scheme is proposed for this problem assuming unifom scalar quantizers at each sensor. The designed rule is applicable for both binary and multibit local sensor decisions. An alternative suboptimal but computationally efficient fusion rule is also designed which involves injecting a deliberate disturbance to the local sensor decisions before fusion. The rule is based on Widrow\u27s statistical theory of quantization. Addition of controlled noise helps to \u27linearize\u27 the higly nonlinear quantization process thus resulting in computational savings. It is shown that although the introduction of external noise does cause a reduction in the received signal to noise ratio, the proposed approach can be highly accurate when the input signals have bandlimited characteristic functions, and the number of quantization levels is large. The problem of quantifying neural synchrony using copula functions is also investigated. It has been widely accepted that multiple simultaneously recorded electroencephalographic signals exhibit nonlinear and non-Gaussian statistics. While the existing and popular measures such as correlation coefficient, corr-entropy coefficient, coh-entropy and mutual information are limited to being bivariate and hence applicable only to pairs of channels, measures such as Granger causality, even though multivariate, fail to account for any nonlinear inter-channel dependence. The application of copula theory helps alleviate both these limitations. The problem of distinguishing patients with mild cognitive impairment from the age-matched control subjects is also considered. Results show that the copula derived synchrony measures when used in conjunction with other synchrony measures improve the detection of Alzheimer\u27s disease onset

    Contributions to behavioural freight transport modelling

    Get PDF

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance

    Volatility modeling and limit-order book analytics with high-frequency data

    Get PDF
    The vast amount of information characterizing nowadays’s high-frequency financial datasets poses both opportunities and challenges. Among the opportunities, existing methods can be employed to provide new insights and better understanding of market’s complexity under different perspectives, while new methods, capable of fully-exploit all the information embedded in high-frequency datasets and addressing new issues, can be devised. Challenges are driven by data complexity: limit-order book datasets constitute of hundreds of thousands of events, interacting with each other, and affecting the event-flow dynamics. This dissertation aims at improving our understanding over the effective applicability of machine learning methods for mid-price movement prediction, over the nature of long-range autocorrelations in financial time-series, and over the econometric modeling and forecasting of volatility dynamics in high-frequency settings. Our results show that simple machine learning methods can be successfully employed for mid-price forecasting, moreover adopting methods that rely on the natural tensorrepresentation of financial time series, inter-temporal connections captured by this convenient representation are shown to be of relevance for the prediction of future mid-price movements. Furthermore, by using ultra-high-frequency order book data over a considerably long period, a quantitative characterization of the long-range autocorrelation is achieved by extracting the so-called scaling exponent. By jointly considering duration series of both inter- and cross- events, for different stocks, and separately for the bid and ask side, long-range autocorrelations are found to be ubiquitous and qualitatively homogeneous. With respect to the scaling exponent, evidence of three cross-overs is found, and complex heterogeneous associations with a number of relevant economic variables discussed. Lastly, the use of copulas as the main ingredient for modeling and forecasting realized measures of volatility is explored. The modeling background resembles but generalizes, the well-known Heterogeneous Autoregressive (HAR) model. In-sample and out-of-sample analyses, based on several performance measures, statistical tests, and robustness checks, show forecasting improvements of copula-based modeling over the HAR benchmark

    Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics

    Get PDF
    Effective environmental decision-making is often challenging and complex, where final solutions frequently possess inherently subjective political and socio-economic components. Consequently, complex sustainability applications in the “real world” frequently employ computational decision-making approaches to construct solutions to problems containing numerous quantitative dimensions and considerable sources of uncertainty. This volume includes a number of such applied computational analytics papers that either create new decision-making methods or provide innovative implementations of existing methods for addressing a wide spectrum of sustainability applications, broadly defined. The disparate contributions all emphasize novel approaches of computational analytics as applied to environmental decision-making and sustainability analysis – be this on the side of optimization, simulation, modelling, computational solution procedures, visual analytics, and/or information technologies

    Unsupervised Image Regression for Heterogeneous Change Detection

    Get PDF
    Change detection (CD) in heterogeneous multitemporal satellite images is an emerging and challenging topic in remote sensing. In particular, one of the main challenges is to tackle the problem in an unsupervised manner. In this paper, we propose an unsupervised framework for bitemporal heterogeneous CD based on the comparison of affinity matrices and image regression. First, our method quantifies the similarity of affinity matrices computed from colocated image patches in the two images. This is done to automatically identify pixels that are likely to be unchanged. With the identified pixels as pseudotraining data, we learn a transformation to map the first image to the domain of the other image and vice versa. Four regression methods are selected to carry out the transformation: Gaussian process regression, support vector regression, random forest regression (RFR), and a recently proposed kernel regression method called homogeneous pixel transformation. To evaluate the potentials and limitations of our framework and also the benefits and disadvantages of each regression method, we perform experiments on two real data sets. The results indicate that the comparison of the affinity matrices can already be considered a CD method by itself. However, image regression is shown to improve the results obtained by the previous step alone and produces accurate CD maps despite of the heterogeneity of the multitemporal input data. Notably, the RFR approach excels by achieving similar accuracy as the other methods, but with a significantly lower computational cost and with fast and robust tuning of hyperparameters
    • …
    corecore