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Preface to ”Sustainability Analysis and
Environmental Decision-Making Using Simulation,
Optimization, and Computational Analytic”

In practice, environmental analytics incorporates an amalgamation of science, methods,

and techniques that combines computational intelligence, information technology, mathematical

modelling, system science, and computer technology to address “real-world”environmental and

sustainability problems. Effective environmental decision-making is often challenging and

complex, where final solutions frequently possess inherently subjective political and socio-economic

components. In addition, while certain environmental and sustainability decision-making aspects

might appear self-evident, more typical problems possess elements that cannot be directly included

in the underlying decision process without additional manipulation. Such decision-making can be

further complicated by accompanying stochastic uncertainties. Consequently, complex sustainability

applications in the “real world”frequently employ computational decision-making approaches to

construct solutions to problems containing numerous quantitative dimensions and considerable

sources of uncertainty.

This volume includes a number of such applied computational analytics papers that either

create new decision-making methods or provide innovative implementations of existing methods

for addressing a wide spectrum of sustainability applications, broadly defined. The rich diversity

of applications within the papers exemplifies the considerable range of both methodological

relevance and practical contributions to research in environmental analysis. The disparate

contributions all emphasize novel approaches of computational analytics as applied to environmental

decision-making and sustainability analysis –be this on the side of optimization, simulation,

modelling, computational solution procedures, visual analytics, and/or information technologies.
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Editorial

Sustainability Analysis and Environmental Decision-Making
Using Simulation, Optimization, and Computational Analytics
Mariia Kozlova 1,* and Julian Scott Yeomans 2

1 School of Business and Management, LUT University, FI-53851 Lappeenranta, Finland
2 Operations Management and Information Systems Area, Schulich School of Business, York University,

Toronto, ON M3J 1P3, Canada; syeomans@schulich.yorku.ca
* Correspondence: mariia.kozlova@lut.fi

In practice, environmental analytics involves an integration of science, methods, and
techniques involving a combination of computers, computational intelligence, information
technology, mathematical modelling, and system science to address “real-world” envi-
ronmental and sustainability problems. Effective environmental decision-making is often
challenging and complex where final results often involve inherently subjective political
and socio-economic facets. Furthermore, while certain environmental and sustainability
decision-making specifications may be self-evident (post hoc analysis always tends to
be incredibly accurate), more typical problems possess components that cannot be di-
rectly included in the underlying decision process without additional manipulation. Such
decision-making is frequently further compounded by additional stochastic uncertainties.
Consequently, complex “real world” sustainability problems frequently employ compu-
tational decision-making approaches to construct solutions to applications containing
numerous quantitative dimensions and considerable sources of uncertainty.

This Special Issue includes a number of applied computational analytics papers that
either create new decision-making methods or provide innovative implementations of
existing methods for assisting with a wide spectrum of sustainability applications, broadly
defined. In line with the aims and scope of this issue, the rich diversity of applications
within the papers exemplifies the considerable range of both methodological relevance and
practical contributions to research in environmental analysis. The disparate contributions
included in the Special Issue all emphasize novel approaches of computational analytics
as applied to environmental decision-making and sustainability analysis—be this on the
side of optimization, simulation, modelling, computational solution procedures, visual
analytics, and/or information technologies.

In the first paper, A C-Vine Copula-Based Quantile Regression Method for Streamflow
Forecasting in Xiangxi River Basin, China, Li, Huang, Li, Sun, and Gao introduce a C-vine
copula-based quantile regression (CVQR) model for forecasting streamflow. The CVQR
model integrates techniques for vine copulas and quantile regression into a framework that
can effectively establish relationships between the multidimensional response-independent
variables with asymmetrical extreme values and apply the model to the Xiangxi River Basin.
Multiple linear regression and artificial neural network are also compared to illustrate
the applicability of CVQR. Their findings can be directly applied to hydrological process
identification and water resource management practices.

In the second paper, A Factorial Ecological-Extended Physical Input-Output Model for
Identifying Optimal Urban Solid Waste Path in Fujian Province, China, Liu, Li, Huang, Yang,
and Wu develop a factorial ecological-extended physical input–output model to identify
an optimal urban solid waste path in an urban solid waste system. Such a model is crucial
for balancing the tradeoff between economic development and environmental protection.
Their model integrates a physical input–output model, ecological network analysis, and
fractional factorial analysis into a general framework that is applied to managing the urban
waste system of Fujian Province, China.

Sustainability 2022, 14, 1655. https://doi.org/10.3390/su14031655 https://www.mdpi.com/journal/sustainability
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In Analytical Models for Seawater and Boron Removal through Reverse Osmosis, Binns
simultaneously examines the total salt and boron concentrations in the purification process
of seawater into safe drinking water. Reverse osmosis modules are designed by computer
models to establish energy efficient configurations and operating conditions. A new analyt-
ical model is applied to two case studies and, in both cases, the new analytical approach
predicts the performance with similar accuracy to existing finite-difference numerical
models from the literature.

In Development of a Cyberinfrastructure for Assessment of the Lower Rio Grande Valley North
and Central Watersheds Characteristics, Navarro, Mahmoud, Ernest, Oubeidillah, Johnstone,
Santos Chavez, and Fuller construct a watershed characterization to determine potential
pollution sources by developing a cyberinfrastructure to collect a wide inventory of data
to identify which waterways contribute the highest concentrations of bacteria and lowest
levels of dissolved oxygen. The cyberinfrastructure development employs a Geographic
Information System database in which geospatial and non-geospatial data are incorporated
from numerous point and nonpoint pollution sources. Their results identify the potential
major sources of water quality impairments such as cultivated crops, urbanized areas,
on-site sewage facilities, colonias, and wastewater effluents.

In Eco-Efficiency for the G18: Trends and Future Outlook, Sadorsky explores eco-efficiency as
an important ecological indicator for tracking the progress of how countries’ environmental-
adjusted economic activity change over time and calculates country-level eco-efficiency for
18 major countries (G18) that are part of the G20. Eco-efficiency leaders include Australia,
Brazil, France, Germany, Great Britain, Italy, Japan, Russia, and the United States, while
the laggards include Canada, China, India, and Indonesia. The laggard countries recorded
negative growth rates in eco-efficiency over the period 1997 to 2019 and 2019 to 2040, where
negative growth points to a worsening of environmental sustainability. Large variations
in eco-efficiency between countries make it more difficult to negotiate major international
environmental/sustainability agreements and it is imperative that the G18 demonstrate
leadership by increasing their eco-efficiency.

In the paper Model Reduction Applied to Empirical Models for Biomass Gasification in
Downdraft Gasifiers, Binns and Ayub use various modeling approaches for the modeling and
simulation of gasification processes to predict gasifier performance at different condition
levels and use different feedstocks to optimally design efficient gasifiers. Complex models
require significant time and effort to develop, and are only be accurate for use with a
specific catalyst. Based on linear regression, Binns and Ayub develop linear and quadratic
expressions of the gasifier input value parameters. A shrinkage method is applied to
identify significant parameters and reduce the complexity of these expressions, thereby
revealing significant parameters from which simple models with reasonable accuracy
are obtained.

In the paper Accuracy and Predictive Power of Sell-Side Target Prices for Global Clean
Energy Companies, Lohrmann and Lohrmann focus on mean target prices for stocks on the
Standard and Poor’s Global Clean Energy Index during the time period from 2009 to 2020.
Their analysis shows that for all models, the mean target price is the most relevant variable,
whereas the number of target prices appears to be highly relevant as well. Moreover,
their results indicate that following the rare positive predictions of a random forest for the
highest target return groups may potentially represent attractive investment opportunities.

In Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a
Hybrid Model, Kozlova and Lohrmann examine the volatility of electricity system reliability
and the role played by renewable energy sources within these systems. While renewable
energy is a key element in debates on future global energy systems, more extensive use
of renewable energy sources within these systems implies a higher dependence on inter-
mittent power, which places the reliability of the entire electricity system at risk. However,
renewable energy use has often been designed without accounting for system reliability.
This paper provides a hybrid model that guides renewable energy investments toward
energy system reliability by incorporating reliability-based support for renewable energy

2
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sources. It is shown that this reliability-based support can substantially reduce backup
capacity, cut the overall costs, and reduce its environmental footprint.

In Profitability Determinants of Unlisted Renewable Energy Companies in Germany—A
Longitudinal Analysis of Financial Accounts, Luts, Savolainen, and Collan, identify key prof-
itability determinants of several unlisted, German, electricity-producing, renewable-energy
companies. A multi-year analysis based on 783 companies for the years 2010–2018 is used.
The results show that both company- and industry-specific profitability determinants are
statistically significant, but that company-specific determinants seem to be a more impor-
tant factor. The results shed new light on what drives the profitability of private German
renewable-energy companies. The implications of the study hold wider environmental and
economic importance as the performance of the renewable-energy companies is critical for
achieving the emission targets of the energy industry and for ensuring more sustainable
energy production for the future.

In Ex-Ante Study of Biofuel Policies—Analyzing Policy-Induced Flexibility, Ruponen, Ko-
zlova, and Collan examine the appropriate policy selection process to enable various
business sectors to optimize their transition toward a low-carbon economy. To accom-
plish this task efficiently, it is essential to recognize how different mechanisms incentivize
the investments in terms profitability, flexibility, and inherent uncertainty. This paper
focuses on financial incentive policies for the bio-component of fuel, in combination with
penalties and tax-relief, on transportation-biofuel policies. Using the pay-off method and
simulation-decomposition, their study shows that a combination of penalties and tax-relief
can be employed to efficiently lead fuel-production towards sustainability. Their approach
provides important insights to the decision-making process beyond more commonly-used
profitability analysis methods.

In Why Do Companies Need Operational Flexibility to Reduce Waste at Source?, Elalem,
Bicer, and Seifert analyze the environmental benefits of operational flexibility that emerge
in the form of less product waste during the sourcing process by reducing overproduc-
tion. They employ a multiplicative demand process to model the evolutionary dynamics
of demand uncertainty and quantify the impact of key modeling parameters for each
operational-flexibility strategy on the waste ratio. Their results indicate that operational-
flexibility strategies that rely on the localization of production are key to reducing waste
and improving environmental sustainability at source.

In Technical Advances in Aviation Electrification: Enhancing Strategic R&D Investment
Analysis Through Simulation Decomposition, Kozlova, Nykänen, and Yeomans examine the
climate impacts arising from the electrification of aviation using the newly created analytical
technique, Simulation-Decomposition (SimDec). It has been estimated that the carbon
contributions from aviation contribute between 2–5% of all global emissions, annually.
Consequently, decreasing carbon emissions from the aviation industry has become one of
the primary initiatives within current global climate policy formulation and represents a
significant component of the overall strategy for achieving climate neutrality by 2050. This
paper examines the sustainability of aviation electrification by concurrently integrating
environmental impacts from the ongoing technological developments of electric motors into
the R&D investment analysis. A Monte Carlo model in combination with SimDec is used to
model the flying range of an all-electric aircraft based upon improvements to its batteries
together with the specific power of its motors. At the strategic level, SimDec enables a visual
analytic display of the simultaneous interaction between multiple different factors that
affect the flying range of electrical aircraft, thereby more fully portraying the financial and
environmental benefits of aviation electrification to the decision-makers. Since SimDec can
be run concurrently with any Monte Carlo model with only negligible additional overhead,
it can easily be extended into the analysis of any environmental application that employs
simulation. This generalizability in conjunction with its straightforward visualizations of
complex stochastic uncertainties makes the practical contributions of SimDec very powerful
in sustainability analysis and environmental decision-making.
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In Effects of Weather on Iowa Nitrogen Export Estimated by Simulation-Based Decomposition,
Raul, Liu, Leifsson, and Kaleita examine the impacts of weather variability on the State of
Iowa’s food–energy–water system and the resulting agricultural nitrogen that is exported
from Iowa. The delivery of nutrients, especially nitrogen, from the upper Mississippi River
Basin, is a function not only of agricultural activity but also of hydrology and the hypoxic
zone in the Gulf of Mexico is a direct consequence of the nutrient-rich water it receives
from the Mississippi River. Extreme weather conditions, such as drought and flooding,
not only have a significant impact on the agriculture system, but also directly affect the
nitrogen loading that enters the Mississippi River. A SimDec approach is implemented
using a combined IFEW/crop-weather simulation model to better understand the impacts
of weather on the nitrogen exported from the agricultural industry in Iowa. The SimDec
analysis of the IFEW simulation model provides an enhanced understanding of weather
variability on the environmental impacts from the soil nitrogen surplus.

In A Fuzzy-Interval Dynamic Optimization Model for Regional Water Resources Allocation
under Uncertainty, Suo, Xia, and Fan propose a fuzzy-interval dynamic programming
model for regional water management under uncertainty by combining fuzzy-interval
linear programming with dynamic programming. Their model treats inherent uncertainties
expressed as intervals while simultaneously considering the dynamic characteristics in
the optimal allocation of water resources. The benefits of this modelling approach are
demonstrated on the case study of optimal allocation of water resources under uncertainty
in Handan, Hebei Province, China.

We trust that the number and quality of the papers will prove to be of significant
value to the many different researchers and practitioners who actively engage in apply-
ing disparate computational methodologies to sustainability analysis and environmental
decision-making using simulation, optimization, and analytics. It is our sincere hope that
this issue will not only enlighten readers on the current state-of-the-art applications in com-
putational sustainability, but will also serve to inspire further collaboration and cooperation
on extensions to these topics. Continuing advancement on these topics is always necessary
as "It is difficult to predict, especially the future” (Danish proverb often attributed to Niels
Bohr) but, more to the point and borrowing from the deeply philosophical characters in
the cartoon Calvin and Hobbes, “The trouble with the future is that it keeps turning into
the present”.
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Abstract: In this study, a C-vine copula-based quantile regression (CVQR) model is proposed for
forecasting monthly streamflow. The CVQR model integrates techniques for vine copulas and quantile
regression into a framework that can effectively establish relationships between the multidimensional
response-independent variables as well as capture the upper tail or asymmetric dependence (i.e.,
upper extreme values). The CVQR model is applied to the Xiangxi River basin that is located in the
Three Gorges Reservoir area in China for monthly streamflow forecasting. Multiple linear regression
(MLR) and artificial neural network (ANN) are also compared to illustrate the applicability of CVQR.
The results show that the CVQR model performs best in the calibration period for monthly streamflow
prediction. The results also indicate that MLR has the worst effects in extreme quantile (flood events)
and confidence interval predictions. Moreover, the performance of ANN tends to be overestimated
in the process of peak prediction. Notably, CVQR is the most effective at capturing upper tail
dependences among the hydrometeorological variables (i.e., floods). These findings are very helpful
to decision-makers in hydrological process identification and water resource management practices.

Keywords: streamflow forecasting; C-vine copula; quantile regression; joint dependencies; water
resource management

Highlights

• A C-vine copula-based quantile regression (CVQR) model is developed.
• The CVQR model is applied to monthly streamflow forecasting in the Xiangxi River basin.
• It can establish relationships between multidimensional response and

independent variables.
• It can also capture tail or asymmetric dependences such as extremes values.
• The results are helpful to decision-makers in water resource management practices.

1. Introduction

With continuously growing populations, water resources are becoming more and
more important for urbanization and agricultural intensification, especially for developing
countries [1–3]. In the process of water resource planning, streamflow forecasting plays a
key role in hydrological risk assessment, reservoir operations, drought/flood prevention,
and water resource allocation [4–6]. More importantly, the management efficiency of water
resource systems mainly depends on the reliability and accuracy of hydrological prediction.
Consequently, it is desirable to employ streamflow forecasting models for effective water
resources planning and management.

Sustainability 2021, 13, 4627. https://doi.org/10.3390/su13094627 https://www.mdpi.com/journal/sustainability
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Over the last few decades, great efforts have been made towards developing advanced
forecasting techniques to improve hydrological prediction, including process-driven and
data-driven statistical approaches [7–9]. Process-based modeling methods are based on the
principle of water cycle balance coupling various physical processes, such as precipitation,
evaporation, infiltration, and other processes [10,11]. These models use large amounts
of data (e.g., hydrometeorology, topography, and land use/cover) and robust calibration
techniques, while data-driven models can be easily built in practice without consider-
ing physical process information from hydrological models and have been extensively
used [12–14]. Therefore, data-driven technology is very useful and valuable as an option
for streamflow forecasting.

Previously, a variety of data-driven modeling techniques were proposed and pro-
moted for streamflow forecasting, including autoregressive moving average, multiple linear
regression (MLR), stepwise cluster analysis, artificial neural networks (ANN), genetic pro-
gramming, and support vector regression (SVR) [15–17]. For example, Besaw et al. [18]
employed the ANN method for streamflow forecasting in ungauged basins. The results
showed that local climate measurements with time delays as the input to the model are key
to improving hydrological forecasting. Guo et al. [19] coupled an SVR model with adaptive
insensitive factors to predict monthly streamflow, which was proven to be effective and
to have high accuracy in streamflow prediction. Terzi and Ergin [20] used autoregressive
(AR) modeling, gene expression programming (GEP), and adaptive neuro-fuzzy inference
system (ANFIS) to predict the monthly mean flow of a watershed in Turkey. The results
indicated that the developed models had good performance. Fan et al. [21] established
a stepwise cluster forecasting (SCF) model for monthly streamflow forecasting, which
effectively reflected the nonlinear and discrete relationships between climatic factors and
streamflow. In general, these data-driven techniques can effectively simulate hydrological
elements by capturing the complex interrelationships among the multiple hydrometeoro-
logical inputs. However, these models can often be flawed when predicting outliers (such
as flood events), leading to illusory relationships between the response and independent
variables [22].

To overcome these limitations, in this study, the copula method is proposed to flexibly
construct the joint distribution to describe the complicated dependence structure between
stochastic variables. Copula functions have been extensively applied to construct mul-
tivariate models and forecasting in several areas such as flood frequency and drought
analysis, rainfall and climate predictions, financial risks, and energy [23–26]. However, it is
difficult to derive multivariate copulas directly. Fortunately, vines known as pair copula
constructions (PCCs) can describe the correlation structures between high-dimensional
response-independent variables, providing an efficient and flexible tool to analyze the
dependency structures between complex coupled correlated variables [27]. Moreover, the
vine copulas coupling the quantile regression provide a more complete statistical analysis of
random relationships between stochastic variables, such as tail or asymmetric dependence.
Specially, quantile regression (QR) was introduced by Koenker and Bassett to estimate
the conditional quantiles [28]. Given the distribution of the variables, the QR method can
capture the total variation, heavy tail, skewness, and kurtosis of variables and can support
the calculation of confidence intervals. Moreover, the method can estimate the levels of
risk in extreme cases [29,30]. Quantile regression has been successfully applied in various
scientific fields, such as economics, finance, and medicine [31–33]. Therefore, this study
integrates the copula and quantile regression methods to explore the complex dependence
among variables. Notably, the data-driven model is often influenced by the division of
training and validation data sets. In many cases, the simulation and validation effects of the
model are often affected by the data inputs, especially in a changing climate environment.
Therefore, in order to overcome the possible influence of different data inputs on the model
and randomness errors in the simulation process, the calibration and verification data sets
are divided at certain points with the five-fold cross-validation method. In this study, the
predictions are repeated five times using different training and test data sets.
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Therefore, this study aims to develop a C-vine copula-based quantile regression
(CVQR) model for streamflow forecasting. The proposed CVQR model can construct a
conditional copula prediction model to capture the relationship between streamflow and
hydrometeorology variables. The developed method has advantages in (i) modelling the
dependence among the multidimensional response-independent variables, (ii) revealing the
complicated interrelationships among hydrometeorological factors, and (iii) outperforming
MLR and ANN on issues related to upper tail dependence (i.e., flood events). These
findings are very helpful to decision-makers in hydrological process identification and
water resource management practices.

In this study, the CVQR model is applied to the Xiangxi River basin to illustrate its
applicability in streamflow prediction with multiple hydrometeorological factors. Specially,
the structure of this article is as follows. Firstly, the MLR, ANN, and CVQR models are
introduced in Section 2. Next, the study area and database, and the method of evaluation
for the various functions are depicted in Section 3. In Sections 4 and 5, relevant results from
the proposed model applied in our research area, and a comparison with and discussion
about the results of different models are described.

2. Model Development

In this study, multiple linear regression (MLR), artificial neural network (ANN), and
the proposed C-vine copula-based quantile regression (CVQR) models are used for stream-
flow forecasting. In the model development section, the MLR, ANN, and CVQR models
are described, which together constitute the main modules of the proposed framework
shown in Figure 1. Generally, the framework of this study entails the next four steps:
(1–2) fitting and standardizing the predictors (i.e., x1, . . . xn−1) and predicted variable (xn);
(3) simulating the monthly streamflow for the calibration process using the MLR, ANN,
and proposed CVQR models; and (4) performing monthly streamflow prediction during
the calibration and verification periods based on the results of step 3 and comparing the
results of R2, RMSE, and NSE for each model.

2.1. Multiple Linear Regression (MLR)

The purpose of multiple linear regression (MLR) is to investigate the relationship be-
tween the independent variables and a dependent variable. Assuming that the dependent
variable y is a function of n independent variables x1, x2, x3, ..., xn, then the MLR can be
expressed as follows:

y = a + b1x1 + . . . + bnxn + e (1)

where a indicates the intercept; b1, . . . , bn are the slope coefficients of the corresponding
independent variables; e is the random error; and y represents the independent variable. For
more details, please refer to Yan and Su [34]. In this study, a generalized linear regression
model is used to fit the relationship between the response variable y (monthly streamflow
data) and the explanatory variables x (other hydrometeorological factors), and then, the
model is used to predict the streamflow (y) with the new observations (x).

9



Sustainability 2021, 13, 4627
Sustainability 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 
Figure 1. Framework of this study. 

2.1. Multiple Linear Regression (MLR) 
The purpose of multiple linear regression (MLR) is to investigate the relationship 

between the independent variables and a dependent variable. Assuming that the de-
pendent variable y is a function of n independent variables x1, x2, x3, ..., xn, then the MLR 
can be expressed as follows: 

1 1 ... n ny a b x b x e= + + + +  (1)

Figure 1. Framework of this study.

2.2. Artificial Neural Networks (ANNs)

An artificial neural network is an information processing system inspired by biological
neural networks (such as the brain). Artificial neural networks can model the complex
relationships between the input and output by simulating human learning [35]. Neural
networks can be described as simple processing nodes or neurons, which generally include
inputs, weights, a sum function, an activation function, and outputs and perform the
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corresponding numerical operations in a specific order [36]. An ANN model is usually
made up of three parts: the input layer, the hidden layer, and the output layer, each of
which do not have a unique number of layers. Multilayer feedforward ANNs, also known
as multilayer perceptron, are commonly used in drought and water resource management
and contain one input layer, one or more hidden compute node layers, and one output
layer [37]. The three-layered ANNs can be expressed as follows:





xj︸︷︷︸
the input layer I

⇒

Hin
i =

m

∑
j=1

wijxj + bhi

︸ ︷︷ ︸
iutput ith node f or the hidden layer H

⇒ Hout
i = ϕ

(
m

∑
j=1

wijxj + bhi

)

︸ ︷︷ ︸
output ith node f or the hidden layer H

⇒

Oin
k =

p

∑
i=1

wki
(

Hout
i
)
+ bok

︸ ︷︷ ︸
input kth node f or the output layer O

⇒ yk = ψ

(
p

∑
i=1

wki

(
ϕ

(
m

∑
j=1

wijxj + bhi

))
+ bok

)

︸ ︷︷ ︸
output kth node f or the output layer O

(2)

where wij is the weight between node i of the hidden layer and node j of the input layer;
wki is the weight between the ith hidden layer node and the kth output layer node; bhi and
bok are the bias weights of ith node for the hidden layer and of the kth node for the output
layer; and ϕ() and ψ() indicate the activation functions of the hidden and output layers,
respectively. In this study, the multilayer feedforward ANNs with the back-propagation
algorithm are used for monthly streamflow forecasting, and the number of hidden nodes is
determined as five by the trial and error method. For more details, refer to Tan et al. [38].

2.3. Development of C-Vine Copula-Based Quantile Regression (CVQR) Model

In general, vine copulas are represented using a graph called R-vine, which consists
of a series of trees (undirected acyclic graphs) [39]. Specially, the hierarchical structure,
called a regular vine (R-vine), contains a series of connected trees T := (T1, T2, . . . , Td)
along with the series of edges E(T) := E1 ∪ E2 ∪ . . .∪ Ed−1 and the series of nodes N(T) :=
N1 ∪ N2 ∪ . . . ∪ Nd−1. However, regular vines in terms of pair-copulas are still very general
and do not have unique decomposition. Thus, the canonical vine (C-vine) and the D-vine
are two most common structures of regular vines [40]. C-vine has a stellar structure in their
tree sequence, while D-vine has a path structure. In hydrological field in this study, the
monthly streamflow is affected by various climatic and hydrological factors. Therefore,
the runoff factor that has a strong dependence on all other variables is selected as the first
root for C-vine construction instead of D-vines. Here, two five-dimensional examples of
possible tree sequences are shown in Figure 2.

2.3.1. Copula Function

The general expression of bivariate copulas can be written as follows:

H(x, y) = C
(
ux, uy; θ

)
(3)

where (x, y) are correlated random variables. θ can often be derived from Kendall’s τ as a
preliminary estimation, and (ux, uy) are the marginal cumulative distribution functions of x
and y, respectively. Kendall’s τ is the rank correlation coefficient proposed by Kendall [41].
Let (x1, y1), (x2, y2), ..., (xn, yn) be a set of observations of the joint random variables X and Y,
respectively, and empirical Kendall’s τ can be defined as τ = 2(Cn − Dn)/n(n− 1), where
Cn and Dn indicate the number of concordant and discordant pairs, respectively.
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A d-dimensional copula C: [0, 1] d → [0, 1] with uniformly distributed marginals
U (0, 1) on the interval [0, 1] was introduced by Sklar [42]. According to Sklar’s theorem, ev-
ery joint cumulative distribution function (CDF) F on Rd with marginals F1(x1), F2(x2), . . . ,
Fd(xd) can be written as follows:

F(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd) ), ∀x = (x1, x2, . . . , xn) ∈ Rd (4)

Similarly, the multivariate density f (x1, x2, . . . , xd) with marginal densities
f1(x1), f2(x2), . . . , fd(xd) and join probability density of copula c (u1, u2, . . . , ud) can
be written as follows:

f (x1, x2, . . . , xd) =

[
d

∏
i=1

fi(xi)

]
c(u1, u2, . . . , ud), ∀x = (x1, x2, . . . , xn) ∈ Rd (5)

and vice versa:

C(u1, u2, . . . , ud) = F
(

F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud)

)
, ∀u = (u1, u2, . . . , ud) ∈ (0, 1) (6)

where ui = Fi(xi), (i = 1, 2, . . . , d), and F−1
1 (u1), F−1

2 (u2), . . . , F−1
d (ud) are the inverse dis-

tribution functions of the marginals.

2.3.2. Vine Copulas

For actual statistical inference, a d-dimensional copula density c can be decomposed
into a product of d (d−1)/2 so-called pair-copula constructions (PCCs) based on bivariate
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(conditional) copulas [43]. The PCCs involve marginal conditional distributions of the form
F(x |ω ). Joe [44] showed that, for every j,

h(x |ω ) := F(x |ω ) =
∂Cx,ωj |ω−j

(
F
(
x
∣∣ω−j

)
, F
(
ωj
∣∣ω−j

))

∂F
(
ωj
∣∣ω−j

) (7)

where ω =
(
ω1, . . . , ωj, . . . , ωn

)
is a n-dimensional vector, ωj is an arbitrarily selected

component of the vector ω, and ω−j is a vector of ω without the jth component; h(x |ω ) is
the conditional distribution function given the k-dimensional vector ω (i.e., h-function) [43].

Then, the C-vines with one node connected to all others is the focus of this study (as
shown in a). The density of the d-dimensional C-vine can be factorized as follows [45]:

f (x1, x2, . . . , xd) =
d

∏
k=1

fk(xk)×
d−1

∏
i=1

d−i

∏
j=1

ci,i+j|1:(i−1)

(
F(xi|x1, . . . , xi−1 ), F

(
xi+j|x1, . . . , xi−1

))
(8)

where ci,i+j|1:(i−1) are the bivariate (conditional) copula densities, index j indicates the trees,
while i runs over the edges in each tree.

In order to understand the decomposition of C-vine structures, only 5-dimensional
C-vine structure is taken as an example to show the pair-copulas of vine structure decom-
position in Figure 2a, that is, the joint density of C-vine copula can be decomposed into
the following:

f12345(x1, x2, x3, x4, x5) = f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5)
·c12(F1(x1), F2(x2)) · c13(F1(x1), F3(x3)) · c14(F1(x1), F4(x4)) · c15(F1(x1), F5(x5))

·c23|1
(

F2|1(x2|x1 ), F3|1(x3|x1 )
)
· c24|1

(
F2|1(x2|x1 ), F4|1(x4|x1 )

)
· c25|1

(
F2|1(x2|x1 ), F5|1(x5|x1 )

)

·c34|12

(
F3|12(x3|x1, x2 ), F4|12(x4|x1, x2 )

)
· c35|12

(
F3|12(x3|x1, x2 ), F5|12(x5|x1, x2 )

)

·c45|123

(
F4|123(x4|x1, x2, x3 ), F5|123(x5|x1, x2, x3 )

)

(9)

where c12(F1(x1), F2(x2)), denoted as c12, represents the density function of pair-copula with
marginal distributions F1(x1) and F2(x2).

According to the joint density of a C-vine copula presented in Equation (9), a C-
vine copula with a certain order for given data can be fitted using all of the pair-copulas
(conditional bivariate copulas). Then, the conditional distribution function C34|12 and
C35|12 from tree 3, with edges F3|12(x3|x1, x2), F4|12(x4|x1, x2), and F5|12(x5|x1, x2), can be
obtained using Equation (7) along with C3|12, C4|12, C5|12 and C12, C13, C14, C15 from the
first two trees. In general, the whole inferences for the conditional distribution function
of predicted variable x5 given x1, x2, x3, and x4 can be decomposed recursively from the
bivariate copulas as follows:





F2|1(x2|x1 ) = h2|1(F2(x2)|F1(x1) )

F3|1(x3|x1 ) = h3|1(F3(x3)|F1(x1) )

F4|1(x4|x1 ) = h4|1(F4(x4)|F1(x1) )

F5|1(x5|x1 ) = h5|1(F5(x5)|F1(x1) )





For Tree 2

F3|12(x3|x1, x2 ) = h3|12

(
F3|1(x3|x1 )

∣∣∣F2|1(x2|x1 )
)
= h3|12

(
h3|1(F3(x3)|F1(x1) )

∣∣∣h2|1(F2(x2)|F1(x1) )
)

F4|12(x4|x1, x2 ) = h4|12

(
F4|1(x4|x1 )

∣∣∣F2|1(x2|x1 )
)
= h4|12

(
h4|1(F4(x4)|F1(x1) )

∣∣∣h2|1(F2(x2)|F1(x1) )
)

F5|12(x5|x1, x2 ) = h5|12

(
F5|1(x5|x1 )

∣∣∣F2|1(x2|x1 )
)
= h5|12

(
h5|1(F5(x5)|F1(x1) )

∣∣∣h2|1(F2(x2)|F1(x1) )
)





For Tree 3

. . .
⇒ F(x5|x1, x2, x3, x4 ) = h(h(T25,1|T23,1 )|h(T24,1|T23,1 ) )

(10)

where Tij,1 = h
(
h
(
uj|u1

)
|h(ui|u1 )

)
, 2 ≤ i < j ≤ 5.
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2.3.3. CVQR Model

Generally, taking the bivariate copula as an example, the condition distribution func-
tion of Y under the condition of X = x, i.e., FY|X(y|x) can be expressed as follows:

FY|X(y|x ) = C1(FX(x), FY(y)) = ∂C(u, v)/∂u (11)

where u = FX(x), v = FY(y) are the cumulative distribution function of y and
x, respectively.

For any probabilities τ ∈ (0, 1) (e.g., τ = 0.05, 0.1, . . . , 0.95), the τth quantile function
of Y given X = x from C1(FX(x), FY(y)) can be derived from the h-function:

τ = FY|X(y|x ) ≡ C1(FX(x), FY(y)) (12)

QY(τ|X = x ) = F−1
Y

(
h−1(τ|u )

)
(13)

where h−1() indicates the inverse conditional distribution function (inverse h-function) of a
given parametric bivariate copula.

In this study, the main purpose of the C-vine copula-based quantile regression (CVQR)
model is to predict the quantile of a response variable Y given the outcome of some pre-
dictor variables. For the five-dimensional case, according to Equations (10)–(13), the τth
conditional quantile function of x5, Qx5(τ|x1, x2, x3, x4 ), can be derived from the recur-
sive formulation:

Qx5(τ|x1, x2, x3, x4 ) = F−1(u5) =
F−1(h−1{h−1[h−1(h−1(τ|h(h(u4|u1 )|h(u3|u1 ) ) )|h(h(u3|u1 )|h(u2|u1 ) )

)
|h(u2|u1 )

]
|u1
}) (14)

A C-vine copula-based quantile regression (CVQR) model is developed for monthly
streamflow forecasting coupling a C-vine copula model and a quantile regression method
within a general optimization framework. Specially, the CVQR model is constructed by
modelling the distributions of predictors (i.e., x1, . . . xn−1) and predicted variable (xn)
with the selected n-d C-vine (structure), i.e., unconditioned and conditioned pairs (e.g.,
Equation (9)); then, the predicted variable of xn is derived from the conditional distribution
function (Equations (10)–(14)). In detail, the predicted variable x5 can be obtained from
the given predictor variables x1, x2, x3, and x4. Firstly, the Monte Carlo simulation is
used to generate a sample of 5000 uniformly distributed random numbers spaced [0, 1]
as the quantiles τ. Secondly, the 5000 implementations of x5 can be generated using
Equation (14), with one random number generated for each quantile τ. Then, the average
of these realizations is considered the general prediction.

A recommended tool for statistical inference of vine copulas is statistical software R
with the VineCopula package (http://CRAN.R-project.org/, accessed on 20 January 2021).
In this study, the Archimedean copula family (Frank, Clayton, and Gumbel copulas [46,47])
and Normal and Student’s t copulas are employed to build the C-vine structures. The
optimal bivariate copula families associated with parameter estimation are selected and
calculated depending on the AIC and BIC using the maximum likelihood estimation (MLE)
for the first C-vine tree. Then, based on these pair-copula families and the corresponding
estimated parameters, the h-function can be used to calculate and specify the pair-copula
input for the second C-vine tree. The process is iterated tree by tree until the last pair-
copula is evaluated. The building steps were detailed in Brechmann and Schepsmeier [48].
Meanwhile, the goodness-of-fit test includes the λ-function and Kolmogorov–Smirnov (KS)
test with p-values and statistics (Sn) to check whether the selected copula is suitable for
describing the observed dependencies, where the λ function is defined as follows:

λ(v, θ) = v− K(v, θ) (15)

where K(v, θ) = P(C(u1, u2|θ) ≤ v) is the Kendall distribution function of copula C with
parameter θ, and v ∈ [0, 1], and (u1, u2) are the marginal cumulative distribution func-
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tions of copula C. The λ-function can be obtained by the ‘BiCopLambda’ function in the
VineCopula package. For more descriptions, please refer to Genest and Favre [49], and
Genest and Rivest [50].

In general, the main procedures of the proposed CVQR model for monthly streamflow
predictions can be expresses as follows:

Step 1: Fit optimal marginal distributions, denoted as ui = Fi(xi), (i = 1, 2, . . . , d);
Step 2: Model the joint probability distributions C (u1, u2), . . . , C (u1, ud), and

then, the C-vine copula is iterated tree by tree until the last pair-copula is evaluated
F(x1, x2, . . . , xd) = C(u1, u2, . . . , ud);

Step 3: Calculate the conditional distribution of the predictive variable (monthly
streamflow) ud, F(xd|x1, x2, . . . , xd−1 );

Step 4: Generate uniformly distributed random numbers τ, and then, predictive
variable is derived from the inverse function of the conditional distribution in Step 3, that
is, xd = F−1(τ|x1, x2, . . . , xd−1 ).

3. Application
3.1. Study Area and Datasets

Application of the proposed approach is proven to forecast monthly streamflow in the
Xiangxi River basin, which is located in the western Hubei province and is part of the Three
Gorges Reservoir region with a basin area of about 3100 km2 (between 30◦57′–31◦34′ N
and 110◦25′–111◦06′ E, shown in Figure 3) in China. The Xiangxi River, originating in the
Shennongjia Mountain area, is a tributary of the Yangtze River with a main stream length
of 94 km [51,52]. Due to the influence of typical subtropical continental monsoon climate
characteristics, the annual precipitation in this basin is between 670 and l700 mm [53]. The
annual average temperature of this region is 15.6 ◦C and ranges between 12 ◦C and 20 ◦C.

The amount of streamflow is affected by many factors, a large part of which involve
geographical and climatic conditions. Specifically, the climatic conditions consist of a
collection of meteorological variables such as the air temperature (◦C) and the precipitation
(mm). Previous studies have proven that precipitation has a significant effect on both
short- and long-term streamflow [54,55]. Therefore, the total monthly precipitation is
used as a predictor in this study. Most importantly, the initial catchment conditions are
nonnegligible factors affecting the streamflow generation and confluence. Moreover, the
monthly average temperature is also applied as a predictor for streamflow forecasting [56].
It is noted that observations of hydrological processes tend to vary with time [57]. The
occurrence of rainfall events is closely related to the fluctuation in streamflow, especially
the distribution of a rainfall event is crucial to the influence of peak discharge (i.e., flood
events). In addition, considering the climatic characteristics of the watershed, the snowmelt
runoff (mainly in winter) is relatively little, so the influence of snowmelt runoff is ignored.
The available hydrological (streamflow, unit: m3/s) and meteorological data (temperature
and precipitation) from 1962 to 2009 were obtained from the Xingshan Hydrometric Station
(located at 110◦45′0” E, 31◦13′0” N, as shown in Figure 3), which was provided by the
Hydrological Bureau of Xingshan County. Considering that Xingshan Hydrometric Station
is the largest hydrological control station in Xiangxi watershed (the representative station
of the Three Gorges Hydrological Zone between 1000–3000 km2), the hydrometeorological
data of Xingshan Station was used for the streamflow forecasting. Moreover, as a lumped
hydrological model, good results have also been achieved in the process of streamflow
simulation in the earlier study of Kong [51].

In this study, considering that the current streamflow at month t and the streamflow
(and precipitation) of the previous month has a certain correlation, the monthly streamflow
(St) and precipitation (Pt) data sets were separated into multiple lead time factors such
as Pt-1 and St-1, St-2, and St-12, where St-1, St-2, and St-12 represent streamflow at 1, 2,
and 12 months ahead of forecast month t, respectively [58,59]. These factors together with
the monthly average temperature (Tt) are potential prediction factors (inputs) to predict
the monthly streamflow St (response variable). In the out-of-sample test of this study, the
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data set at a specific time point was divided into a training data set (38 years) for model
calibration and a test data set (10 years) for validation of the model performance. Then,
the predictions were repeated five times using different training and test data sets. The
specific data set division method, namely 5-fold cross-validation models, is jointly shown
in Table 1 and Figure 4.
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3.2. Evaluation Measures

In order to evaluate the performance of the developed models, in this study, four
commonly used statistical evaluation methods are selected for model evaluation, including
the coefficient of determination (R2), the root mean square error (RMSE), and the Nash–
Sutcliffe efficiency coefficient (NSE) and Mean Absolute Error (MAE). Then, the formulae
for R2, RMSE, NSE, and MAE can be written as follows:
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(
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)2

]
(19)

where n indicates the total number of observations (or predictions), K is the number of
repeated forecasting periods (K = 5), Qi and Pi are the observed and simulated values; Qavg
and Pavg are the averages of all of the observed and simulated values, respectively.

The 90% confidential interval containing ratio (CR90) and its dispersion index (DI)
are also used to evaluated the reliability and sharpness of the probabilistic predictions,

17
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respectively. CR90 is the ratio of observations covered by the 90% prediction interval. The
range is between 0 and 1, and the best effect is 0.90. DI is the ratio of the average width of
the 90% prediction interval to the observed value, with the lower the value, the better the
prediction [60].





CR90 =

N
∑

i=1
ki

N , k =

{
1, sl(i) ≤ oi ≤ su(i)
0, oi < sl(i) or oi > su(i)

DI = 1
N

N
∑

i=1

su(i)−sl(i)
oi

(20)

where ki indicates the ith observation oi in the 90% confidence interval with the bound
[sl(i), su(i)] and N is the number of observations. Notably, from the perspective of flood
forecasting, A high CR90 is still insufficient to illustrate a good prediction, and a high
corresponding DI indicates an overestimation of uncertain boundaries.

To further illustrate the applicability of the CVQR model in streamflow forecasting,
the relative estimated root mean square error (RRMSE) and relative mean absolute error
(RMAE) are used to evaluate the comparison between the CVQR, ANN, and MLR models
at different quantiles [61]: {

RRMSE = RMSEmodel

RMSECVQR

RMAE = MAEmodel

MAECVQR

(21)

in which the RMSE and MAE of the three models are acquired from Equations (17) and (18);
RMAE and RRMSE stand for the relative performances of the proposed model (CVQR),
for which values greater than one suggest a worse relative performance compared to the
proposed model.

4. Result and Discussion
4.1. Marginal Probability Distribution Functions of C-Vine Model Variables

A two-step approach that separately evaluates the dependence function and the
marginals is of great advantage in stochastic modeling of multivariate data, since many
manageable distribution models are available for simulating the marginal distributions. In
this study, in order to build the CVQR model, firstly, after standardization, the data are fitted
with some parametric distribution functions, including the gamma, lognormal, general
extreme value (GEV), and Pearson type-III (P-III) distributions, which are commonly
used parameter distributions to quantify the probability distribution characteristics of
hydrometeorological variables in the hydrological process [62–64]. The expressions for
the gamma, GEV, lognormal, P-III, and the associated parameter values for probability
functions (PDFs) are shown in Table 2. The parameters of the above distributions were
obtained through the Maximum Likelihood Estimation (MLE) method.

Table 2. Parameters of optimal marginal distribution functions.

Name Probability Density Function
Parameters

St−1 Pt−1 St−2 St−12 Tt Pt St

P-III f (x) = βα(x−a0)
α−1e−β(x−a0)

Γ(α) ***
a0 1.88 32.12 * 1.86 2.35 Nan 32.34 * 1.83
α 1.33 2.70 1.33 1.32 Nan 2.71 1.33
β 0.04 0.02 0.04 0.04 Nan 0.02 0.04

Lognormal f (x) = 1
xσ
√

2π
e−(ln x−µ)2/2σ2 µ 3.37 3.92 3.37 3.38 2.70 3.91 3.37

σ 0.77 1.23 0.77 0.76 0.56 1.23 0.77

GEV f (x) = 1
σ (m)1+ξ exp(−m) **

ξ 0.65 0.30 0.65 0.64 -0.53 0.30 0.66
µ 20.06 44.54 20.08 20.45 15.30 44.48 20.00
σ 13.34 41.81 13.37 13.52 8.60 41.85 13.31

Gamma f (x) = βα

Γ(α) xα−1e−βx *** α 1.84 1.14 1.84 1.87 3.84 1.14 1.84
β 0.05 0.01 0.05 0.05 0.22 0.01 0.05

Note: 32.12 *, 32.34 * indicate for −32.12 and −32.34, respectively; ∗∗ m =
(

1 + ξ
(

x−µ
σ

))−1/ξ
; ∗ ∗ ∗ Γ(α) =

∞∫
0

uα−1e−udu.
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The goodness-of-fit (GOF) of each distribution was computed by using RMSE and AIC
values to select the most appropriate distribution for fitting each individual variable. The
results of GOF are presented in Table 3. The results demonstrate that all of the proposed
four distribution models can be applied for processing the distributions of the variables
(i.e., St-1, Pt-1, St-2, St-12, Tt, Pt, and St), except that the P-III distribution is not suitable
for the average temperature (Tt). Specially, the P-III distribution are most suitable for
the streamflow data series (i.e., St-1, St-2, St-12, and St), the Gamma distribution would
perform best when fitting the distributions of precipitation data (Pt-1 and Pt), and the GEV
method has advantages in quantifying the distributions of the average temperature (Tt).

Table 3. Comparison of RMSE and AIC values for marginal distribution estimation.

Name
RMSE AIC

St-1 Pt-1 St-2 St-12 Tt Pt St St-1 Pt-1 St-2 St-12 Tt Pt St

P-III 0.0340 0.0280 0.0340 0.0315 NaN 0.028 0.0343 −3076.67 −3249.25 −3076.47 −3146.55 NaN −3259.76 −3068.64
Gamma 0.0486 0.0214 0.0485 0.0466 0.060 0.021 0.0488 −2754.30 −3494.98 −2756.02 −2792.48 −2555.94 −3498.64 −2751.05

Lognormal 0.0382 0.0550 0.0385 0.0368 0.069 0.055 0.0386 −2972.55 −2632.66 −2966.17 −3007.10 −2434.36 −2636.50 −2963.20
GEV 0.0409 0.0359 0.0414 0.0415 0.050 0.036 0.0415 −2908.32 −3016.77 −2898.84 −2896.32 −2719.98 −3029.44 −2897.00

Note: The RMSE and AIC values of the optimal fitting distribution are shown in bold.

4.2. Selection and Estimation of C-Vine Copula

In this section, we introduce how to define the C-vine structures according to the
learning data obtained from Section 4.1. Figure 5 shows the pair plots of the learning data
set. The histograms along on the diagonal represent the marginal distributions discussed
in Section 4.1. Additionally, Figure 5 (above the diagonal) indicates the values of Kendall’s
τ between two pairs of the variables, and the results show that the correlation between the
variable St-1 and other variables is approximately stronger than that other pair variables
(i.e., Kendall’s τ = 0.65, 0.46, 0.33, 0.40, 0.32, and 0.46). Therefore, we define the variable
St-1 as the central variate 1 (e.g., in Figure 1) in the first tree. In detail, considering that the
monthly streamflow (S) is affected by various climatic and hydrological factors, such as
temperature and precipitation, the monthly streamflow at last month (St-1) is selected as
the first root in the first tree. Moreover, the predicted variable (St) is placed last because it is
the more convenient option to evaluate the probability of St and to predict the St. The rest of
the tree structures follow this principle and so forth (e.g., as shown in Figure 1). In general,
the order of these variables is 1-St-1, 2-Pt-1, 3-St-2, 4-St-12, 5-Tt, 6-Pt, and 7-St. Figure 5
(below the diagonal) shows scatter plots for each pair of learning data and provides a basis
for revealing the dependence structures between the variables. For example, we may find
that there exists a lower tail correlation between St-1 and St-2. Obviously, the Clayton
copula can be used to fit the relationship between variables St-1 and St-2.

According to the process of construction of the bivariate copula, the vine copula is
constructed by a series of pair-copulas iterated tree by tree. Table 4 presents the C-vine
structures consisting of 6 trees, 21 nodes, and the corresponding bivariate copulas with
the parameters for every edge and KS test statistics. As mentioned above, the variables
from 1 to 7 correspond to St-1, Pt-1, St-2, St-12, Tt, Pt, and St, respectively. In fact, due to
the flexibility of the vines’ structure, this order of the variables above is only such structure.
It is the best arrangement made by considering the dependence of the variables in practical
applications in this study. Meanwhile, in the process of constructing the paired copula, the
vine copulas are simplified by ignoring the conditional variables.

λ-function is used to test the goodness of fit for the estimation of bivariate copula
in each C-vine structure. Figure 6 illustrates the dependence of St-1 and other variables
with the main node in tree 1 using λ-function. The results indicate that the selected and
empirical copula are consistent with each other in all edges of tree 1. As shown in Figure 6a,
the empirical λ-function (black) of the observations and the theoretical λ-function (grey) of
the fitted copula coincide with each other, which means that the fitted copula is consistent
with the empirical values. Combined with the KS test results in Table 4, all other selected
pair-copulas obtained the optimal fitting results with p > 0.05 for the KS test.
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Table 4. Estimation of the 7-d C-vine model with bivariate copula-corresponding parameters of every
node and the KS test.

Trees
C-Vine KS Test

Nodes Copulas Parameters p Sn

Tree 1

12 F 9.50 0.94 0.01
13 C 2.22 0.63 0.27
14 C 1.52 0.68 0.19
15 C 1.45 0.55 0.39
16 F 3.12 0.74 0.12
17 C 2.22 0.65 0.17

Tree 2

23|1 N −0.21 0.53 0.05
24|1 N 0.25 0.59 0.04
25|1 N 0.39 0.68 0.05
26|1 F 2.11 0.98 0.00
27|1 F 1.95 0.58 0.07

Tree 3

34|12 F −0.74 0.68 0.03
35|12 F −0.51 0.54 0.00
36|12 F −0.62 0.53 0.01
37|12 F −0.69 0.55 0.13

Tree 4
45|123 T 0.46, 13.95 0.98 0.07
46|123 T 0.41, 8.72 0.61 0.28
47|123 T 0.39, 5.40 0.65 0.17

Tree 5
56|1234 F 2.81 0.75 0.11
57|1234 F 1.26 0.73 0.12

Tree 6 67|12345 G 1.94 0.68 0.28
Notes: 1–7 represent St-1, Pt-1, St-2, St-12, Tt, Pt, and St, respectively; F—Frank, C—Clayton, G—Gumbel,
N—Normal, and T—t-copula.

4.3. Predicted Monthly Streamflow of MLR, ANN, and C-Vine Models

Figure 7 shows a comparison of the predicted and observed streamflow acquired
by the MLR, ANN, and CVQR models. For the MLR model, the results indicate that the
values of R2, NSE, and RMSE are 0.73, 0.72, and 16.16 in the calibration period and 0.73,
0.66, and 16.72 in the validation period. For the MLR model (Figure 7a), the predicted
value is slightly underestimated in the case of high flow observation values (1980–1986),
and vice versa, the predicted value is slightly overestimated during 2004–2009. Due to the
inherent characteristics of the algorithm, the predicted values even become negative at
some low-flow records (e.g., 1999 and 2000).

The ANN model performs better than the MLR model in the calibration period
(Figure 7b). The ANN model obtains an R2 of 0.75, an NSE of 0.73, and an RMSE of 15.57 in
the calibration period. Similar to the results of the MLR model, the ANN model, with
values of R2 at 0.72, NSE at 0.69, and RMSE at 16.53, performs worse in the validation
period than that in the calibration period. Moreover, as presented in Figure 7b, the ANN
model also underestimates some streamflow during the high flow periods (e.g., 1963–1964)
but overestimates more records during 2004–2009.

As presented in Figure 7c, the predicted monthly streamflow using the CVQR model
could satisfy the observed values well. In the calibration period, the values of R2, NSE, and
RMSE obtained by the CVQR model are 0.73, 0.70, and 16.75, respectively. In the validation
period, the values are 0.74, 0.71, and 16.13, which shows that the performance of CVQR
model in the validation period is similar to that in the calibration period. The CVQR model
underestimates some high flow values (e.g., during 1980–1986). Generally, compared
with MLR and ANN models, the CVQR model performs best in the calibration period
for monthly streamflow prediction. The CVQR model can effectively capture both linear
and nonlinear dependence of these input variables (e.g., temperature, precipitation, and
streamflow). Additionally, the CVQR model based on the multivariate copula functions
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could effectively reveal the correlation structures between predictor–response variables,
which provides a potent and adaptable tool to model the dependence of such complex and
jointly correlated variables.
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Table 5 illustrates the general resulting statistics from the ANN, MLR, and CVQR
models for forecasting during the calibration and validation periods. For the results of R2,
NSE, and RMSE, these results indicate that the ANN model performs best in the calibration
period compared to the MLR and CVQR models while the proposed CVQR achieves the
best results among the validation period compared to other models. However, the results
show that ANN and CVQR performed best in terms of 90% confidence interval prediction
(CR90 and DI) while MLR performed worst. The result, on the other hand, shows that
MLR is not effective in quantifying nonlinear relationships among hydrological variables.
In general, the results show that CVQR performs best in the calibration period for monthly
streamflow prediction compared to ANN and MLR models. Moreover, the CVQR and
ANN models can reflect the complex nonlinear relationships between the hydrological and
meteorological factors. Therefore, in order to understand the prediction performance of
CVQR in the tail correlations, the comparison of regression predictions between the CVQR
and ANN models at different quantiles are explored in the next section.
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Table 5. Summary statistics of streamflow forecasting during the validation period through differ-
ent models.

Models
Calibration Validation

R2 NSE RMSE CR90/DI R2 NSE RMSE CR90/DI

MLR 0.73 0.72 16.16 0.43/0.46 0.73 0.66 16.72 0.47/0.48
ANN 0.75 0.73 15.57 0.89/1.14 0.72 0.69 16.53 0.81/1.32
CVQR 0.73 0.70 16.75 0.88/1.18 0.74 0.71 16.13 0.83/1.27

4.4. Probabilistic and Interval Predictions Obtained by the CVQR Model

As mentioned in Section 2.3, according to the C-vine copula-based quantile regression
(CVQR) model, for any quantile τ ∈ (0, 1), the τth conditional quantile function of the
predicted variable can be obtained. In this section, the relationships between the streamflow
(St) abnormalities and other hydrometeorological indices at different levels of quantiles τ
(i.e., τ = 0.05, 0.25, 0.50, 0.75, and 0.95) are explored.

The median prediction (i.e., α = 0.5) provides a general level about the monthly
streamflow, while extreme values (e.g., flood, drought) in the upper tail (τ ≥ 0.75) or
lower tail (τ ≤ 0.25) indicate the worst forecast scenarios. Table 6 describes the relative
performance of the ANN model with respect to the CVQR model at different quantiles.
It can be seen that the proposed CVQR model outperforms the ANN model at quantiles
τ = 0.75 and 0.95 and that the ANN model performs better than the CVQR model at
quantiles τ = 0.25 and 0.50, which indicate that the proposed CVQR model could perform
better at upper extreme events (i.e., τ = 0.75 and 0.95 quantile levels) and that the ANN
model provides good results in some cases of the mean and lower quantile values.

Table 6. The performance RRMSE and RMAE of the ANN model with respect to the CVQR model at
different quantiles.

τ
All Calibration Validation

RMAE RRMSE RMAE RRMSE RMAE RRMSE

0.05 0.93 0.97 0.92 0.95 0.97 0.95
0.25 0.95 0.92 0.93 0.92 1.00 0.96
0.50 0.96 0.95 0.93 0.93 1.06 1.02
0.75 1.01 1.05 1.01 1.03 1.05 1.11
0.95 1.03 1.02 1.02 1.00 0.99 1.07

A scatter diagram of the simulated streamflow at different quantiles (τ = 0.05, 0.25,
0.5, 0.75, and 0.95) by the ANN and CVQR models with five-fold K cross-validations is
depicted in Figure 8. The results also show that the proposed CVQR model performs
a better fit in most cases, especially in the process of upper tail predictions, which are
consistent with the earlier study of Kong in Xiangxi River basin [51]. While the ANN tends
to overfit overestimated in the aspect of upper tail prediction. In general, the CVQR model
shows a higher accuracy at upper tail levels while the ANN model provides overestimation
predictions. The results indicate that the CVQR model can effectively capture upper tail
dependences and has a relatively accurate assessment of the impact of upper extreme
conditions (i.e., flood) in Xiangxi watershed.
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quantiles τ = 5% and 95% values of the predicted variable cover most of the observations
and effectively reflect the fluctuation of the actual streamflow for the two models. Usually,
hydrological forecasting in extreme cases can help policy makers make timely policy re-
sponses within the maximum risk range. The predicted 90% CI can reflect the fluctuation
trend and abnormal value of the records well, whereas compared with the CVQR model,
the ANN model often overestimates peaks in the prediction of flood events. Therefore,
the CVQR model can effectively capture the complex nonlinear dependences among hy-
drological meteorological factors. This is of great significance to the practice of water
resource management, for example, in rainy and dry seasons, managers can well prevent
and control the occurrence of flood and make timely corresponding countermeasures.
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5. Conclusions

In this study, a C-vine copula-based quantile regression (CVQR) model was developed
to model the relationship between streamflow and other hydrometeorological variables,
such as temperature and precipitation. The proposed CVQR model couples vine copulas
(known as pair copula constructions) with a quantile regression method, which was applied
to monthly streamflow forecasting in the Xiangxi River basin.

Specifically, the CVQR model could process multidimensional data problems while
satisfying the wide range of dependence. Meanwhile, the CVQR model can effectively
capture the upper correlations between independent and dependent variables (i.e., flood
events). In this paper, comparisons between the proposed CVQR model and the MLR and
ANN models for monthly streamflow prediction are explored. The results indicate that
the performance of the CVQR model is most effective for monthly streamflow forecasting
in the calibration period. The performance of the MLR model in extreme quantile (flood
events) and confidence intervals is the worst and is mainly determined by the inherent
characteristics of the algorithm. Compared with the MLR model, the ANN model has good
advantages in this aspect of flood events and confidence intervals, but it tends to be over-fit
in the process of peaks prediction. Undeniably, the CVQR model can effectively capture
both the linear and nonlinear dependence of these input variables and to perform best
when dealing with upper tail correlation issues (i.e., flood events) in this study.

In summary, this proposed method can effectually depict the complicated dependen-
cies between the hydrometeorological variables. However, there still remain some flaws in
the process of model building. Pair-copula is joined by marginal distributions irrespective
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of the conditional variables, which simplifies the construction of vine copulas [65]. The
structure of PCCs is often not unique due to the flexibility of vine copulas [66]. Moreover,
the proposed model can be used to explore temporal and spatial dependencies among
hydrological series while spatial dependence is not considered in this study [67]. Conse-
quently, the model will be explored further in the application process of future extensions.
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Abstract: Effective management of an urban solid waste system (USWS) is crucial for balancing the
tradeoff between economic development and environment protection. A factorial ecological-extended
physical input-output model (FE-PIOM) was developed for identifying an optimal urban solid waste
path in an USWS. The FE-PIOM integrates physical input-output model (PIOM), ecological network
analysis (ENA), and fractional factorial analysis (FFA) into a general framework. The FE-PIOM
can analyze waste production flows and ecological relationships among sectors, quantify key factor
interactions on USWS performance, and finally provide a sound waste production control path.
The FE-PIOM is applied to managing the USWS of Fujian Province in China. The major findings
are: (i) waste is mainly generated from primary manufacturing (PM) and advanced manufacturing
(AM), accounting for 30% and 38% of the total amount; (ii) AM is the biggest sector that controls the
productions of other sectors (weight is from 35% to 50%); (iii) the USWS is mutualistic, where direct
consumption coefficients of AM and PM are key factors that have negative effects on solid waste
production intensity; (iv) the commodity consumption of AM and PM from other sectors, as well as
economic activities of CON, TRA and OTH, should both decrease by 20%, which would be beneficial
to the sustainability of the USWS.

Keywords: ecological relationship; factorial analysis; input-output analysis; optimal path; reduction;
urban solid waste system

1. Introduction
1.1. Importance and Motivation

With rapid urbanization and industrialization, humans consume increasing goods and
services which cause the growth of direct and indirect urban solid waste generation [1].
Urban solid waste often has harmful impacts on human health and the ecological envi-
ronment. Urban solid waste management, regarding the treatment of solid, liquid and/or
atmospheric wastes before they are released into the environment is an issue of growing
global concern [2]. In China, solid waste generation shows a trend of growth, and the corre-
sponding utilization-disposal rate is trending downward. In 2011, the amounts of industrial
solid waste and household garbage reached 3.62 billion and 0.16 billion Mg, respectively.
The disposal rate and utilization rate were about 25.88% and 54.24%, respectively. In 2019,
the amounts of industrial solid waste and household garbage increased to 3.86 billion and
0.24 billion Mg, respectively, whereas the disposal rate and utilization rate were about
24.31% and 53.33%, respectively. Investment in environmental protection occupied about
1.21% of GDP, while investment in solid waste production was much less [3]. Strategies that
can help reduce the negative impacts of large amount of urban solid waste are desired [4].
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The formulation of sound strategies requires the cooperation of numerous economic
sectors [5]. When considering the city as a complex system, various economic sectors have
direct or indirect relationships. The urban system can be treated as a network in which sec-
tors are comparable to nodes and intersectoral transactions correspond to edges [6]. There
are often sectors that are essential to reduce solid waste production as transfer centers [7].
These sectors are located in the middle of the supply chain path and simultaneously mul-
tiple supply chains of different path lengths [8]. The intermediate inputs of these sectors
indirectly promote upstream production, while the intermediate outputs of these sectors
are broadly used by downstream sectors resulting in more generation of direct solid waste
production. Therefore, it is crucial to analyze urban solid waste generation from a system-
atic perspective aimed at recognizing the direct/indirect relationships among economic
sectors, as well as assessing the direct solid waste (i.e., waste generated in the process
of production), and indirect solid waste (i.e., when sector i receives products from other
sectors, direct solid waste in the process of products production is the indirect solid waste
of sector i) embodied in goods flowing within the regional and national scale economic
system. This is helpful for global cities to achieve sustainable development target.

1.2. Literature Review

The physical input-output model (PIOM) proposed by Leontief [9] is effective for
assessing the direct/indirect solid waste embodied in the flow of goods [10]. In the PIOM,
a conventional economic system is transformed into an urban solid waste system (USWS).
It can facilitate managers to account the solid waste flows in a USWS based on the material
balance principle. Liang and Zhang [11] employed a PIOM to investigate the impacts of four
categories of solid waste recycling on urban solid waste metabolism to support sustainable
development. Wang et al. [12] used the PIOM for estimating the whole regional energy
and environmental benefits of solid waste utilization for energy recovery, where power
generation from energy recovery (e.g., waste incineration) and total mitigation potentials
for air pollutant emissions were predicted. Meyer et al. [13] utilized the PIOM to model
three streams of solid waste generated from commercial economic sectors in the United
States; the model ranked all economic sectors based on solid waste production and pointed
out potential areas to continue to pursue innovations in material use. Huang et al. [14]
employed a PIOM to quantify different types of solid waste production recycling over the
period 2005–2017 in China. The results revealed that China experienced an increment in
the recycling of five types of solid waste.

The USWS contains various sectors, diversified flows, and compounded interac-
tions [14]. Diagnosing the metabolism of the USWS by analyzing sector metabolic re-
lationships and figuring out hierarchical structure is helpful [15]. The PIOM can be ex-
tended to handle these problems through introducing ecological network analysis (ENA).
Zhang et al. [16] integrated a PIOM with ENA to analyze the directions, locations and
drivers of carbon flows resulting from global trade, where large CO2 transfers were recog-
nized and adjustments of the national mitigation targets were proposed. Wang et al. [17]
coupled a PIOM with ENA to evaluate water-related impacts of energy-related decisions,
where sectoral embodied consumption of water and energy, and their intersector flows,
were mapped. Wang [18] incorporated a PIOM with ENA to comprehensively estimate
the metabolic status of an energy system in China, in which the system properties, indi-
cators of sectors (e.g., the out-degree, betweenness, and closeness centrality degree), and
betweenness-based energy consumption were calculated. Zheng et al. [19] combined ENA
with a PIOM to investigate integral carbon emissions at the city scale; the complex structures
and relationships of carbon emission flows in 2010 due to inter-sector trade were assessed.

In fact, a USWS has complexities related to different production technologies, industry
scales, and pollution intensities. Valuable information is often hidden under the interrela-
tionships between these factors and the consequent effects [20,21]. For example, variations
in metal productive capability can affect the amount of solid waste delivered to the elec-
trical equipment manufacture sector, as well as the amount of solid waste received from
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the metal ore mining sector. Finding crucial impact factors is beneficial to develop more
specific solid waste reduction strategies. Factorial analysis (FA) has the ability to quantify the
sensitivity of model response to significant factors and their interactions [22]. One concern is
that traditional full factorial analysis may be unfeasible when many factors are taken into
account (due to a large number of calculations). Fractional factorial analysis (FFA) is effective
for quantifying the significance of factors by carrying out a small number of computed
cases, which decreases the calculation cost and ensures result accuracy [23]. FFA has been
successfully used in experimental designs for detecting response sensitivity [24–26].

Previous studies proved the feasibility and practicability of PIOM, ENA, and FFA
(a summary of previous literature is presented in Table A1); however, there are some
research gaps to be filled. First, a PIOM can assess physical direct and indirect solid waste
production flows of USWS but has difficulty in analyzing ecological relationships between
various sectors. Secondly, ENA can effectively reveal the metabolic condition including
ecological control and utility relationships but cannot screen the key factors and evaluate
their interactions. Third, FFA can help decision-makers accurately adjust key factors to
improve system performance, with few studies applied FFA to USWS. Fourth, no previous
study has been reported on the integration of PIOM, ENA and FFA for urban solid waste
reduction in USWS.

1.3. Contribution and Novelty

The objective of this study was to develop a factorial ecological-extended physical
input-output model (abbreviated as FE-PIOM) and apply it to a real USWS of Fujian
Province (in China). The innovations and contributions are: (i) a novel integrated model (FE-
PIOM) developed through incorporating a physical input-output model (PIOM), ecological
network analysis (ENA), and fractional factorial analysis (FFA) within a general framework;
(ii) FE-PIOM can analyze urban solid waste production flows and associated ecological
relationships among economic sectors; (iii) FE-PIOM can recognize key factors in complex
USWS, quantify their single and joint effects on USWS performance and provide sound
urban solid waste production control path; (iv) this is the first attempt to apply such an
integrated model (FE-PIOM) to a real case of USWS, and results can help managers to
generate desired strategies for urban solid waste reduction.

2. Materials and Methods
2.1. Physical Input-Output Model

The PIOM originates from the monetary IOM proposed by Leontief, and can reflect
urban solid waste flows among sectors and investigate the multiple sectoral linkages [5,23].
The basic form of IOM can be presented as [27]:

xi =
n

∑
j=1

zij + f di for i = 1 to n (1)

where xi is the total output of sector i, zij is the amount of goods i that sector j consumes,
and fdi is the final demand of sector i. Solid waste intensity is then introduced to transform
the monetary IOM into PIOM as follows [28,29]:

E + εZ = εX (2)

ε = E(X− Z)−1 (3)

F = diag(ε) ∗ Z (4)

where E = [ei]1×n is the amount of sectoral solid waste; ε = [εi]1×n is the solid waste intensity
vector, εi is the embodied solid waste per unit of monetary value of sector i; Z = [zij]n×n, zij
is the amount of goods i that sector j consumes; X = [xj]1×n is the total economic output
and F = [fij]n×n is the solid waste flows among various sectors. By physical units, it is
referred to mass units for presenting waste flows (e.g., Mg). Direct solid waste production
equals the initial input of the monetary-physical input-output table, and the indirect solid
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waste production of each sector equals the sum of its column elements in the physical
input-output table. For instance, sector i produces 1 Mg solid waste per unit product
production, meaning 1 Mg is the amount of direct solid waste in sector i. Sector i sells
product to sector j, implying that the 1 Mg solid waste is indirectly transferred to sector j
(i.e., the amount of indirect solid waste in sector j is 1 Mg).

Then, the amount of sectoral indirect solid waste and sectoral total flows can be
calculated based on Equations (5) and (6) [30]:

IFj =
n

∑
i=1

fij (5)

Ti =
n

∑
j=1

fij + ei (6)

where fij is the direct solid waste flowing from sector i to sector j; ei is the amount of direct
solid waste; IFj is the amount of indirect sectoral solid waste and Ti is the total amount of
waste. Taking all pathway flows with different lengths between two sectors into account,
the dimensionless integral solid waste flow intensity matrix (N) can be obtained through:

gij = fij/Ti (7)

N = (G)0 + (G)1 + (G)2 + . . . (G)∞ = (I−G)−1 (8)

where gij is the dimensionless input-oriented intercomponent flow from sector i to sector j;
Gn is the dimensionless integral flow intensity matrix with n path length and I(n×n) is the
identity matrix.

2.2. Ecological Network Analysis

The dependence and control degrees of one sector to other sectors can present the
system’s ecological hierarchy structure. The dependence degree means the ability of one
sector receives urban solid waste from other sectors, while the control degree denotes the
ability of one sector delivers urban solid waste to other sectors. The sum of all sectors’
dependence (or control) degrees is equal to 1. To reflect how the variations in solid waste
flow of a sector influence the USWS’s ecological hierarchy structure, indexes (i.e., pulling
force weight and driving force weight) in the ecological control analysis method are used
to detect the sectoral dependence and control degrees as follows [31]:

Y = diag(T) ∗N (9)

ID = Y−D = yij − fij (10)

wi =
n

∑
j=1

yij/
n

∑
i=1

n

∑
j=1

yij (11)

wj =
n

∑
i=1

yij/
n

∑
i=1

n

∑
j=1

yij (12)

where Y is the sectoral contribution weight, yij is the integral flow from sector i to j, ID is
the indirect flows of solid waste of sectors, wj is the pulling force weight (PFW) of sector
j, indicating the ability of sectors j receives solid waste from other sectors and wi is the
driving force weight (DFW) of sector i, meaning the ability of sector i delivers solid waste
to other sectors. The difference between PFW and DFW indicates the role one sector plays
in the waste flow chain.

Ecological utility analysis can be utilized to reveal the interconnection among various
sectors in the USWS. The dimensionless direct utility matrix D examines the mutual benefit,
and the integral utility intensity matrix U contains all solid waste interflows pathway. D
and U can be calculated based on Equations (13) and (14) [32,33]:
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D = [dij] = ( fij − f ji)/Ti (13)

U = (D)0 + (D)1 + (D)2 + . . . (D)∞ = (I−D)−1 (14)

Transforming U to sign(U) (including signU(+) and signU(−)) judges the integral
ecological relationships between pairwise sectors. Relationships include: (i) exploitation
(+, −) means sector i exploits j, indicating sector i receive wastes from j (the same applies
to (−, +)); (ii) competition (−, −) means the relationship is harmful to both sectors; (iii)
mutualism (+, +) means the relationship is beneficial to both sectors; (iv) neutralized
(0, 0) means there is no impact on each other. Three indexes are employed to assess the
comprehensive properties of the USWS:

SI =
n

∑
i=1

n

∑
j=1

uij (15)

MI = signU(+)/signU(−) (16)

R =
N(+,+) + N(−,−)

N
(17)

where signU(+) and signU(−) are the number of positive and negative signs in U; N(+, +)
and N(−, −) are the amounts of mutualism and competition relationships and N is the
total number of all relationships. Synergism index (SI) and mutualism index (MI) assess
fitness and symbiosis of the USWS [34]. When MI > 1 and SI > 0, the USWS is mutualistic.
Otherwise, the USWS requires to be modified.

2.3. Fractional Factorial Analysis

The USWS involves a number of economic sectors. These sectors’ solid waste production
may be interrelated to each other, increasing the complexity of the decision-making process.
Fractional factorial analysis (FFA) can be employed to recognize the main factors and detect
their interactions on the response variables of the USWS. Sectoral solid waste production (ei
in E) and sectoral direct consumption coefficient (aij = zij/xj) can be chosen as factors, which
are divided into multiple levels. Solid waste production intensity (abbreviated as SPI) can
be selected as the response when SPI = direct solid waste production (Mg)/gross domestic
product (104 RMB¥ = 1542 USD). Using a fractional factorial analysis can screen main ei and
aij as well as quantify their interactions with reduced experimental cost. Researchers select
an appropriate experimental matrix based on the number of ei and aij [35]. A set of SPI values
are gained by running the EIOM based on the matrix. Fractional factorial analysis quantifies
the sensitivity of SPI to important factors and their combinations through addressing the
curve traits of SPI when factors change at various levels. The quadratic sum for single factor
and two-factor combinations are presented as follows [36,37]:

SSA =
I

∑
i=1

(
J

∑
j=1

K

∑
k=1

Yijk

)2

/JK−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (18)

SSB =
J

∑
j=1

(
I

∑
i=1

K

∑
k=1

Yijk

)2

/IK−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (19)

SSA×B =
I

∑
i=1

J

∑
j=1

(
K

∑
k=1

Yijk

)2

/K−
(

I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK− SSA − SSB (20)

SST =
I

∑
i=1

J

∑
j=1

K

∑
k=1

Y2
ijk −

(
I

∑
i=1

J

∑
j=1

K

∑
k=1

Yijk

)2

/I JK (21)

where I and J are the designed levels of factors A and B, respectively; yijk is the observed value
in the Kth replication when A and B are at level Ith and Jth; SSA, SSB, and SSA×B denote the
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square sum of A, B, and their combinations and SST is the total of squares. The contribution
of each factor is calculated as the sum of its squares to the sum of the total squares.

3. Case Study
3.1. Study Area

Fujian Province lies between latitudes 23◦33′ and 28◦20′ N, and longitudes 115◦50′

and 120◦40′ E. It is an important economic development province with a land area of
121,400 km2 located in the southeast coast of China. The total population of Fujian reached
41.54 million in 2020. It had a gross domestic product (GDP) of 0.677 trillion USD in 2020,
occupying 4.3% of the whole country (the eighth place of all provinces in China). Over the
past 40 years, the economic output of primary industry significantly decreased and the
economic output of tertiary industry greatly increased. In 2017, the primary, secondary,
and tertiary industries accounted for 6.9%, 47.7%, and 45.4% of the total GDP. The amount
of direct urban solid waste reached 73.7 × 106 Mg in 2017, while the corresponding
comprehensive disposal-utilization rate was 66.9%. Compared with 2012, the amount of
direct solid waste decreased 23.3% and disposal-utilization rate also decreased 22.7%. The
decrease in direct waste production indicated that Fujian made some achievements in urban
solid waste production reduction; however, the problem still concerns local managers.

3.2. Data Collection and Analysis

The 42-sector IOT of Fujian Province in 2012 and 2017 were extracted from Fujian
Statistics Bureau. The 42 sectors were merged into nine sectors based on the Industrial
Classification for Nation Economic Activities (GB/T 4754-2017), as described in Table 1. Table 2
lists the merged economic input-output tables in 2012 and 2017. The data of urban solid waste
was obtained from Fujian Statistical Yearbook, related official website and literature [38,39].
A two-level fractional factorial analysis was adopted for designing a set of scenarios. Five
sectoral solid waste production (ei) and five sectoral direct consumption coefficients (aij) were
selected as deigned factors, with each divided into low (L) and high (H) levels. According
to the number of factors, a 2 (10−5) orthogonal array was chosen to present the experimental
scenarios. Thirty-two SPI values were obtained through repeatedly running the model. The
square sum of individual factor and factor combinations was calculated.

Table 1. Abbreviations of 9 sectors.

No. Abbreviation Sector

1 AGR Agriculture, Forestry, Animal Husbandry and Fishery
2 MIN Mining Industry
3 PM Food, Wine, Drink, Tea Manufacturing and Tobacco Processing

Textile Garments Products
Timber Processing

Paper Products
4 AM Petroleum Processing, Coking and Nuclear Fuel Processing

Chemical Products
Nonmetal Minerals Products

Smelting and Pressing of Metals
Metal Products

General and Special Equipment
Transportation Equipment

Electric Equipment and Machinery
Computer, Communication and Other Electronic Equipment

Instruments and Meters Machinery
Others Manufacturing

5 ELE Production and Supply of Electricity, Gas and Water
6 CON Construction
7 TRA Transportation, Storage and Postal Services
8 WHO Wholesale, Retail and Accommodation
9 OTH Other Social Services
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Figure 1. The formulation and application of the FE-PIOM model.

Figure 1 summarizes the formulation and application of the FE-PIOM model. The first
step is to merge a large number of sectors into a small number of sectors in input-output
table and transform the monetary input-output model into physical input-output model to
describe sectoral linkages; calculate the driving force weight and pulling force weight to
detect ecological hierarchy structure and then figure out the exploitation, competition, and
mutualism to calculate ecological pairwise relationships. The second step is to select a set
of proper factors, choose fractional experimental matrix, repeat the first step according to
the matrix, recognize main factors and their interactions and identify a sound strategy.
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4. Results and Discussion
4.1. Status in 2012 and 2017

Table 3 lists sectoral solid waste production, solid waste production coefficients,
and export/import of solid waste in Fujian. The total waste production approached
275.66 × 106 t in 2012, where the direct and indirect productions accounted for 34.82% and
65.18%, respectively. Total waste production decreased to 236.05 × 106 t in 2017, with
direct and indirect productions decreasing by 23.23% and 9.63%, respectively. The amount
of indirect waste production was more than that of direct waste production, implying
the significance of the indirect production flow calculation. In 2012, PM, AM, and CON
were the dominant contributors, occupying 27.73, 42.75 and 12.59% of the total solid waste
production. In 2017, the proportions of the three sectors’ production were 34.17, 34.50,
and 11.59%, respectively. These results revealed that solid waste was mainly produced by
primary manufacturing (PM) and advanced manufacturing (AM). In addition, PM was
the biggest solid waste net exporter (23.982 × 106 t in 2012 and 22.019 × 106 t in 2017) and
CON was the largest importer (13.627 × 106 t in 2012 and 10.229 × 106 t in 2017). Fujian
highly relied on clothing, lithium cells, auto parts manufacturing and food processing, and
large amounts of construction materials were purchased from other provinces. Therefore, a
future reduction strategy should focus on cutting down waste from these sectors.

Table 3. Results gained from physical input-output table in Fujian in 2012 and 2017.

Sector

Sectoral Direct
Solid Waste
Production

(106 Mg)

Sectoral Indirect
Solid Waste
Production

(106 Mg)

Total Solid Waste
Production
Coefficient

(10−6 Mg/USD)

Final
Demand

Production
(106 Mg)

Export
(106 Mg)

Import
(106 Mg)

Net Import
(106 Mg)

In 2012

AGR 1.091 5.899 3.598 2.115 0.649 0.426 −0.223
MIN 1.776 2.295 8.296 0.125 0.329 6.007 5.678
PM 30.105 46.337 9.188 11.898 30.484 6.502 −23.982
AM 40.871 76.985 10.435 20.202 31.802 31.750 −0.052
ELE 4.444 5.991 8.498 1.109 0.050 0.240 0.191
CON 12.783 21.925 9.825 46.873 1.224 14.851 13.627
TRA 0.921 6.051 4.253 1.224 0.906 1.514 0.607

WHO 1.236 4.220 2.479 1.346 1.167 0.243 −0.924
OTH 2.781 9.950 2.571 7.277 0.668 1.905 1.237

In 2017

AGR 1.138 4.164 2.080 2.331 0.054 1.257 1.204
MIN 0.807 1.526 4.582 0.009 0.018 7.780 7.762
PM 27.185 53.466 4.703 9.887 27.277 5.257 −22.019
AM 23.903 58.004 5.433 20.911 14.725 24.954 10.229
ELE 2.720 5.639 4.872 0.387 0.012 0.087 0.075
CON 10.085 17.274 4.301 26.090 0.013 0.063 0.050
TRA 1.943 8.459 2.389 2.038 0.449 0.442 −0.007

WHO 1.637 3.836 1.492 2.438 0.499 0.240 −0.259
OTH 4.283 9.985 1.487 7.149 0.220 0.722 0.503

Figure 2 describes the direct and indirect solid waste flows among sectors in 2012 and
2017. Each sector has a specific color and the line between sectors indicates the direction of
waste flows. The width of the line in each sector represents the amount of waste inflow and
outflow. All direct waste flows are positive, while indirect waste flows have positive and
negative values. A positive value means one sector receives waste from the other sector,
whereas a negative value denotes one sector delivers waste to the other sector. It can be
seen that direct waste mainly flowed to CON, while indirect waste flowed to all sectors. In
Figure 2a,b, the largest contributor of direct waste flow was AM, which contributed 54.23%
and 44.18 % of the total amount in 2012 and 2017, respectively. It contributed a large part
of its direct waste flow to CON and PM (occupying 27.62% in 2012 and 23.67% in 2017)
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and itself (accounting for 60.50% in 2012 and 66.01% in 2017). In Figure 2c,d, AM was still
the largest contributor of indirect waste flow, which contributed 73.29% and 57.62 % of the
total amount in 2012 and 2017, respectively. The indirect waste of AM flowing to all other
sectors was almost the same (occupying 20% to 30%). These results show the relationship
of indirect waste flows is more complicate than that of direct flows.

Figure 2. Direct and indirect solid waste flows among sectors. (a) 2012_direct; (b) 2017_direct;
(c) 2012_indirect; (d) 2017_indirect.

Figure 3a displays the sectoral DFW (driving force weight) and PFW (pulling force
weight) in 2012 and 2017, representing the control and dependent degrees of a sector on
the USWS. AM’s DFW and PFW were the highest; the values of DFW were 71.34% in 2012
and 55.43% in 2017; the values of PFW were 16.90% in 2012 and 17.89 % in 2017. These
results indicate that AM was the biggest control sector and dependent sector that affected
upstream sectors (basic industries that provide raw materials and primary products) and
downstream sectors (advanced industry that consumes products from upstream). The
sectoral total weight equals the difference between sectoral DFW and sectoral PFW. The
sector was a controller in the system when DFW was greater than PFW, whereas the
sector was a dependent sector in the system when DFW was smaller than PFW. Thus,
AM finally acted as a controller, since its DFW was greater than PFW (Sectoral total
weight = DFW−PFW > 0). It was obvious that AM and PM were dominant sectors that
controlled the other producers, while the seven sectors (i.e., AGR, MIN, ELE, CON, TRA,
WHO, and OTH) depended on the other sectors’ product supply. In 2017, the total weight of
AM and PM decreased by 7.34% compared with 2012 due to reduced economic production
scales. Generally, the ecological hierarchy structure was not healthy due to the high sectoral
total weight value of AM. Carrying out reduction measures from the production side
(especially from AM) could be helpful for adjusting hierarchy structure of the USWS.
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Figure 3. Ecological network analysis. (a1) sectoral DFW and PFW in 2012; (a2) sectoral DFW and PFW in 2017; (b1) sectoral
pairwise relationships in 2012; (b2) sectoral pairwise relationships in 2017.

Figure 3b shows the sectoral pairwise relationships related to solid waste production
in 2012 and 2017, with a total of 45 pairs of relationships in each year. Exploitation
relationships contributed 54.77% and 68.89% to all pairs of relationships in 2012 and 2017.
The proportions of mutualism relationships were 13.33% in 2012 and 6.67% in 2017. High
value of SI (i.e., SI = 8.96 > 0 in 2012, SI = 9.65 > 0 in 2017) indicated the synergistic effect of
the USWS. A high value of MI (i.e., MI = 1.38 > 1 in 2012, MI = 1.31 > 1 in 2017) showed that
the USWS was mutualistic. Results of sectoral pairwise relationships were acceptable for
decision makers. However, the number of mutualism relationships in 2017 was less than
that in 2012. In order to make the USWS more beneficial, exploitation relationships needed
to be transformed to mutualism relationships, as much as possible, through adjusting
strategies. It was also found that the production structure of Fujian had little changes.

4.2. Identification of Key Factors

Based on the former status analysis, the effects of different sectoral solid waste produc-
tion coefficients and sectoral direct consumption coefficients on USWS performance can be
quantified. The designed factors, and corresponding experimental scenarios, are presented
in Table A2. Figure 4 presents half-normal plots of the standardized effects. The further a
factor lies away from the red line, the corresponding effect is more obvious. The significant
factors that affected the SPI were AM_a, PM_a, AM_e and PM_e. The most important factor
causing solid waste pollution in Fujian Province was AM_a, which contributed 64.71% in
2012 and 51.14% in 2017, followed by PM_a accounting for 22.01% and 37.04%. SPI was
sensitive to the changes in sectoral direct consumption coefficients of AM and PM. These
results implied that unit GDP solid waste production of AM and PM were higher than in
other sectors. The contributions of AM_a decreased and PM_a increased in 2017, indicating
that the Fujian Province gradually focused on the economic development of PM.

Figure 5 shows the effect plots of significant factors, which described the single and
joint effects of the imperative factors on SPI. In Figure 5(a1,b1), results indicate that PM_a,
AM_a, ELE_a and OTH_a had negative effects on SPIm, while other factors had positive
effects on SPI. For example, in 2012, the average value of SPI was 0.632 under L level of
PM_a and 0.533 under H level of PM_a. To reduce the SPI of USWS, the increment of
factors that had negative effects, and the decrement of factors that had positive effects,
might be helpful. In terms of joint effects presented in Figure 5(a2,b2), the most significant
interactions between two sectors were CON_e*OTH_e in 2012 (contributed 1.53%) and
TRA_e*OTH_e in 2017 (contributed 2.53%). The two crossed lines denote that the effect
of another factor changes when one factor is at different levels. These demonstrated
that control of the economic products of social service sectors (e.g., public infrastructure
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management sub-sector, culture, sports and entertainment sub-sector) can help reduce the
SPI, even if the amounts of solid waste production of CON and TRA increased.

Figure 4. Half-normal plots of the standardized effects: (a) 2012; (b) 2017.

Figure 5. Effect plots of significant factors. (a1) main effect in 2012; (a2) joint effect in 2012; (b1) main effect in 2017; (b2) joint
effect in 2017.

4.3. Adjustment of USWS

Figure 6 presents the values of solid waste production intensity (SPI) under 32 sce-
narios, showing the value of SPI was volatile. The SPI approached 0.487 (under S32) in
2012 and reached 0.228 (under S32) in 2017. The SPI decreased by 1.43% (under S4) to
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18.89% (under S1) in 2012, and the SPI declined by 3.51% (under S6) to 17.98% (under S1)
in 2017. Under S1, the strictest direct solid waste reduction policy was implemented in all
sectors, while the sectoral direct consumption coefficients were maintained at high levels.
Under S4 and S6, the loose direct solid waste reduction policy was implemented to PM,
while the sectoral direct consumption coefficients of PM and AM were maintained at high
levels. This implies that conducting strict environmental policy on AM and PM, as well as
reducing the commodity consumption of CON, TRA, and OTH from other sectors (e.g.,
improve material usage efficiency and develop advanced material) would be useful for
reducing SPI of the USWS.

Figure 6. The values of solid waste production intensity (SPI) under 32 scenarios: (a) 2012; (b) 2017. (“S” means “Scenario).

Figures 7–9 describe results of sectoral solid waste production and ecological network
analysis under six scenarios in 2012 and 2017. Corresponding SPI values were lower than
the actual values. In Figure 7, results showed that the amounts of solid waste production
decreased by 3.82% (under S27) to 17.95% (under S1) in 2012 and decreased by 3.39%
(under S27) to 16.30% (under S1) in 2017. The reduction of AM solid waste production
was the highest among all sectors. In 2012, the amount decreased 34.438 × 106 t (under
S27) to 49.834 × 106 t (under S1); in 2017, the amount reduced 1.511 × 106 t (under S27) to
13.885 × 106 t (under S1). These results reveal that the selected scenarios can effectively
reduce solid waste production. In Figure 8, results indicate that the total weights of all
sectors changed with the varied scenarios, implying that the system hierarchy structure
was sensitive to the variations in factors. In 2012, the total weight of PM and AM were
in the range of 61.47% (under S1) and 63.71% (under S4), an increase of −0.87% to 1.37%
compared with that under S32. In 2017, the total weight of PM and AM was in the range of
53.53% (under S1) and 54.24% (under S6), a decrease by 0.75% to 1.46% compared with that
under S32. According to former descriptions in status analysis, it was desired that the total
weight of PM and AM should decrease. These results indicate that the selected designed
scenarios could help adjust the hierarchical structure of USWS. In Figure 9, results show
that the number of mutualistic, competitive, and exploitation relationships had no obvious
changes; other measurements needed to be detected.
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Figure 7. Sectoral urban solid waste production under different scenarios.

Figure 8. Sectoral total weight under different scenarios.
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Figure 9. Pairwise sectoral relationships under different scenarios. (a1) 2012_S1; (a2) 2012_S6; (a3) 2012_S7; (a4) 2012_S26;
(a5) 2012_S27; (a6) 2012_S29; (b1) 2017_S1; (b2) 2017_S6; (b3) 2017_S7; (b4) 2017_S26; (b5) 2017_S27; (b6) 2017_S29.

5. Conclusions

A factorial ecological-extended physical input-output model (FE-PIOM) was devel-
oped for enhancing urban solid waste system (USWS) performance, which integrated
techniques of physical input-output model (PIOM), ecological network analysis (ENA),
and fractional factorial analysis (FFA). The FE-PIOM could effectively assess urban solid
waste productions and embodied flow path, quantify single and joint effects of multi-
ple factors, as well as provide sound urban solid waste reduction path. The developed
FE-PIOM was employed to a real case study of Fujian, an important economic develop-
ment province in China, for supporting the tradeoff between economic development and
environmental protection.

The main findings are summarized as: (i) the amount of indirect waste production
was higher than the direct waste production, with the indirect production occupying more
than 60 to 70% of the total production (i.e., the sum of direct and indirect productions);
(ii) the indirect waste flows were more complicated than those of direct flows; (iii) solid
waste mainly was produced by primary manufacturing (PM) and advanced manufacturing
(AM), accounting for 30% and 38% of the total production, respectively; (iv) AM was the
biggest sector which controlled the other producers, while its control weight was too high
(35 to 50% of the total weight); (v) the USWS was mutualistic due to SI > 0 and MI > 1;
(vi) AM_a (i.e., direct consumption coefficient of AM) and PM_a (i.e., direct consumption
coefficient of PM) were the most important factors which had negative effects on USWS
solid waste production intensity (SPI), contributing 50–60% and 22–37% to standard effects;
(vii) the interactions between CON_e*OTH_e (i.e., solid waste production of CON*solid
waste production of OTH) and TRA_e*OTH_e were obvious; (viii) for enhancing USWS
performance, reducing the commodity consumption of AM and PM from other sectors by
20% (e.g., improve material usage efficiency and develop advanced material), as well as
decreasing economic activities of CON, TRA, and OTH by 20%, would be useful.
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This is the first attempt to apply the FE-PIOM to a real-world case, and results can
support decision makers to adjust related economic activity strategies for reducing urban
solid waste production, improving ecological hierarchy structure and promoting ecological
pairwise relationships. More efforts can be made in future work. This research used the
input-output tables of 2012 and 2017 due to data limitation; meanwhile, the production
structure of Fujian had little changes in previous years. Predicting future input-output
tables (e.g., for the periods of 2021–2025, 2026–2030, and 2031–2035) using the RAS method
could help plan an optimal urban solid waste reduction path. It is essential to integrate
fuzzy/stochastic analysis methods into the FE-PIOM to cope with the inherent uncertainties
existing in economic growth, industrial structure transition and solid waste reduction.
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Appendix A

Table A1. Summarization of Previous Literature.

Category Description References

Physical input-output model

Investigate the impacts of four categories of solid waste recycling on
urban solid waste metabolism to support sustainable development. Liang and Zhang

Estimate the regional energy and environmental benefits of solid waste
utili-zation for energy recovery. Wang et al.

Rank economic sectors based on solid waste productions and pointed
out potential areas to pursue innovations in material use. Meyer et al.

Quantify different types of solid waste production recycling over the
period 2005–2017 in China. Huang et al.

Ecological network analysis

Analyze the directions, locations, and drivers of carbon flows resulting
from global trade. Zhang et al.

Evaluate water-related impacts of energy-related decisions. Wang et al.

Estimate the metabolic status of energy system in China. Wang

Investigate integral carbon emissions at city scale. Zhang et al.

Fractional factorial analysis Experimental designs for detecting response sensitivity in
environmental fields.

Jiang et al.
Gerrewey et al.
Li et al.
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Appendix B

Table A2. Designed Scenarios.

Scenario PM_e AM_e

ELE_e
(in 2012)

CON_e
(in 2012)

OTH_e PM_a AM_a

ELE_a
(in 2012)

CON_a
(in 2012)

OTH_a
CON_e

(in 2017)
TRA_e

(in 2017)
CON_a

(in 2017)
TRA_a

(in 2017)

1 L L L L L H H H H H
2 H L L L L L L L L H
3 L H L L L L L L H L
4 H H L L L H H H L L
5 L L H L L L L H L L
6 H L H L L H H L H L
7 L H H L L H H L L H
8 H H H L L L L H H H
9 L L L H L L H L L L

10 H L L H L H L H H L
11 L H L H L H L H L H
12 H H L H L L H L H H
13 L L H H L H L L H H
14 H L H H L L H H L H
15 L H H H L L H H H L
16 H H H H L H L L L L
17 L L L L H H L L L L
18 H L L L H L H H H L
19 L H L L H L H H L H
20 H H L L H H L L H H
21 L L H L H L H L H H
22 H L H L H H L H L H
23 L H H L H H L H H L
24 H H H L H L H L L L
25 L L L H H L L H H H
26 H L L H H H H L L H
27 L H L H H H H L H L
28 H H L H H L L H L L
29 L L H H H H H H L L
30 H L H H H L L L H L
31 L H H H H L L L L H
32 H H H H H H H H H H
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Abstract: Regarding the purification of seawater, it is necessary to reduce both the total concentration
of salt and also the concentration of boron to meet purity requirements for safe drinking water.
For this purpose reverse osmosis membrane modules can be designed based on experimental data
supported by computer models to determine energy efficient configurations and operating conditions.
In previous studies numerical models have been suggested to predict the performance of the removal
with respect to difference pressures, pH values, and temperatures. Here, an analytical model is
suggested which allows for both the simplified fitting of the parameters required for predicting boron
transport coefficients and also the simple equations that can be used for the design of combined
seawater and boron removal systems. This modelling methodology is demonstrated through two
case studies including FilmTec and Saehan membrane modules. For both cases the model is shown
to be able to predict the performance with similar accuracy compared with existing finite-difference
type numerical models from the literature.

Keywords: desalination; reverse osmosis; modelling; simulation; parameter estimation; seawa-
ter; boron

1. Introduction

Due to global population growth and the spread of pollution it is becoming more
challenging to provide clean drinking. A sustainable method for obtaining clean water is
through seawater desalination by reverse osmosis. A reverse osmosis membrane system is
composed of high-pressure pumps, one or more reverse osmosis membranes, and energy
recovery devices which are designed to meet purity requirements while also minimizing
energy consumption. The pressure of the seawater supplied by the high-pressure pump
varies depending on the salt concentration of the seawater. The standard criteria in the
seawater desalination process is the concentration of TDS (total dissolved solids) and boron
in fresh water. The WHO (World Health Organization) states that the palatability of water
with TDS lower than 600 mg/L is considered good and they specify guidelines for 2.4 mg/L
of boron [1], although lower values are generally preferred. These WHO criteria have an
impact on the design of the seawater reverse osmosis (SWRO) processes such that both salt
rejection and boron rejection must be considered.

The removal of boron through reverse osmosis is complicated by the fact that boron
exists in seawater mainly as boric acid and borate ions (with negligible concentrations
of other boron compounds) [2]. This is a problem because reverse osmosis membranes
are known to easily permeate only the negatively charged borate ions while having more
difficulty removing the neutrally charged boric acid [3]. For this reason the pH should
typically be increased to give higher fractions of borate ions [2]. This has been demonstrated
using FilmTec membranes which are shown to give very high boron rejection at high pH
values [4]. Additionally, Koseoglu et al. tested FilmTec and Toray membranes and found
that around 85–90% rejection is possible at pH 8.2 while pH 11 allows for 98% or higher
rejection using both membranes [5]. More recently Ali et al. have developed a membrane
material which is able to achieve 99% boron rejection at pH 10 [6]. At a lower pH of 8 Li et al.
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have developed a membrane modification process which embeds 4-nitrobenzenesulfonyl
chloride into an existing membrane and is able to increase the boron rejection from 82.12%
up to 93.1% [7]. In addition to the development of new materials, the design of feed
spacers inside the membrane modules is also important. A review of the impact of feed
spacer design by Haidari et al. discusses their effects on pressure drop, flux through the
membrane, and fouling [8]. Additionally, it is suggested by Ruiz-Garcia and Nuez based
on experimental and modelling results that feed spacers should be chosen based on the
designed operating conditions to reduce energy consumption and enhance the quality of
the permeate [9].

In order to meet boron drinking water criteria, a multistage design of reverse osmosis
modules is typically required [2]. For example, Tu et al. state that in practice a first stage
with natural pH might be used to reduce TDS and a second stage with elevated pH might be
used to remove boron [10]. In addition to reverse osmosis, Najid et al. consider and discuss
alternative technologies for boron removal including electrocoagulation, adsorption, ion
exchange, and various other membrane processes such as forward osmosis and membrane
distillation [2]. Their comparison showed that reverse osmosis has the potential to remove
boron but can be uneconomical due to high energy requirements and the requirement to
alter pH, and hence they suggest that a hybrid process combining different technologies
could be the best solution [2]. To reduce the costs of two-stage processes Ban et al. also
consider a hybrid process with one stage of forward osmosis followed by a second stage
with reverse osmosis [11]. They compare this against a two-stage reverse osmosis design
and show that the costs associated with chemically altering the pH can be eliminated by
using the hybrid forward osmosis plus reverse osmosis process, but this comes at the
expense of higher capital costs [11]. Instead of chemical modification Jung et al. have
suggested electrochemical modification using a layer of carbon nanotubes on the membrane
surface as a cathode to increase the pH. While this does increase boron rejection over 90%
it also causes some scaling [12]. In another recent study a hybrid system is suggested
combining electro dialysis as a pretreatment with a nanofiltration reverse osmosis to
enhance the overall boron removal [13].

Despite this progress in membrane materials and potential hybrid systems there is still
the need for modelling and optimization of such systems. This would allow, for example,
the prediction of salt and boron rejection for wide ranges of possible conditions to identify
low energy and low cost designs. For example, Ruiz-Garcia et al. use modelling to compare
the performance of two different Toray membranes (TM820L-440 and TM820S-400) for
the purpose of boron removal over a range of conditions and show that the TM820L-440
generally gives lower boron concentrations of under 1ppm [14].

Modelling can also be used to simulate and compare different configurations of
separators to further enhance energy efficiency. For example, Al-Obaidi et al. evaluated the
performance of a multistage reverse osmosis system with varying operating parameters
through a modelling approach [15]. In other work Al-Obaidi et al. also utilized modelling to
compare a number of different recycling options in a multistage reverse osmosis membrane
process [16]. More recently Alsarayreh et al. also used a modelling approach to investigate
different retentate recycle ratios [17].

The review of Alsarayreh et al. shows that a larger number of models have been
developed for the prediction of performance for spiral wound reverse osmosis membrane
modules [18]. These models can be divided into two categories: numerical models which
discretize the length of the module and formulate model equations using finite difference
type methods, and analytical models which use integration of model equations to obtain
expressions for directly calculating the outlet conditions. While the majority of models
developed have been for steady state solutions, model equations can also be solved dy-
namically as shown by Joseph and Damodaran [19]. Regarding steady state modelling,
Ben Boudinar et al. have developed a numerical model solved through finite differences
and they show that their model fits well for desalination of brackish water but is less
accurate for seawater desalination [20]. They suggest that this is due to an inaccuracy in
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the mass transfer coefficient [20]. This has been addressed by Senthilmurugan et al. who
also fitted parameters for mass transfer correlations as well as solving the model equations
using finite differences [21]. In other studies, such as the work of Geraldes et al., mass
transfer correlations for “typical spiral wound modules” are assumed to be valid [22].
While Geraldes et al. do not provide validation for their model they have fitted water and
salt transport coefficients which are then used to optimize the configuration and operating
conditions of a two-stage desalination system [22].

Following these works numerical models have also been developed to predict the
removal of boron. For example, the study of Mane et al. developed a finite elements
model to predict the removal of boron [23]. In that study the parameters and correlations
for boron transport coefficients developed by Hyung and Kim based on experimental
results are used to account for the effects of pH and temperature [24]. Another study of
Ruiz-Garcia et al. proposed a function for boron permeability in terms of feed pressure,
temperature, and operating time based on plant data which might also be used in modelling
studies [25]. Alternatively the model developed by Sassi et al. [26] used a finite-difference
type numerical model which accounts for boron permeation using data and correlations
from the experimental study of Taniguchi et al. [27]. More recently the study of Du et al. [28]
also considered boron removal through numerical models based on a combination of the
equations from the studies of Geraldes et al. [22] and Hyung and Kim [24] which they use
to optimize a superstructure of different configurations.

A number of studies have also developed analytical models where the model equations
are integrated to give analytical expressions. For example, Avlonitis et al. developed
equations for calculating the variation of concentration, pressure, and flow rates along the
length of the module, although they assume that the mass transfer coefficient is constant
along the length [29]. More recently Sundaramoorthy et al. suggested an analytical model
which includes the variation of the mass transfer coefficient across the length [30]. They
have demonstrated the validity of their approach through the removal of chlorophenol [31]
and dimethylphenol [32] from waste water where they show how model parameters
and parameters for mass transfer coefficients can be estimated through linear fitting of
experimentally measured values. Following these earlier studies an analytical model
was developed by Fraidenraich et al. for the desalination of brackish water which they
showed to be accurate for the conditions tested [33]. Additionally, Al-Obaidi et al. have
published numerous models including the development of analytical expressions from
integration [34] and using average pressure and salt concentrations to simplify calculations
which can be used to evaluate and test different configurations of modules [35].

While great progress has been made simulating desalination membrane modules us-
ing finite-difference type numerical models, these models generally involve large numbers
of equations (due to the discretization) which can be solved simultaneously or possibly se-
quentially using numerical algorithms. Meanwhile, analytical models will have a relatively
small number of equations which can be solved using less computational time and simpler
algorithms; for example, in a spreadsheet program. Hence, analytical models should be
more suitable for the design and optimization of multistage configurations which require
the simulation of individual module performance a large number of times, provided they
are shown to give reasonable accuracy.

However, to the best of our knowledge, there has not been any analytical model (based
on integration of model equations) which has been developed to predict the removal of
both salt and boron simultaneously. Therefore, for this reason, a combined salt and boron
removal analytical model is developed here. Additionally, in many cases the fitting of
parameters for spiral wound reverse osmosis models are often proposed based on nonlinear
optimization using least-squares methods. In this study the methods of Sundaramoorthy
et al. [30] and Avlonitis et al. [29] are extended such that all the model parameters can
be estimated though simpler linear optimization in a new sequential parameter estima-
tion procedure.
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2. Development of a New Analytical Model for Predicting Salt and Boron Removal

The modelling equations given here are based on the method suggested by Sun-
daramoorthy et al. [30,31], who developed a model for the removal of organic solutes
using spiral wound reverse osmosis membranes. Here, this model is modified in the
following ways:

• Modified to use for seawater purification;
• Estimation of pressure drop coefficients for cases where outlet pressure is not measured;
• Including temperature dependence of water and salt transport coefficients;
• Including equations for boron transport.

2.1. Modelling Equations

The transport of water and salts through a membrane are typically described according
to the solution–diffusion model which can be used to calculate the flux of water (JW) and
salt (JS):

JW = Aw(∆P− ∆π) (1)

JS = BS
(
Cb − Cp

)
(2)

where ∆P and ∆π are the transmembrane pressure and osmotic pressure, and Cb and Cp
are the brine-side and permeate-side concentrations of salt. Aw and BS are the water and
salt transport coefficients.

Accounting for the effect of concentration polarization which causes the concentration
of salt to increase at the membrane surface, these equations should be modified to use the
concentration of salt at the membrane wall (Cw). The concentration at the membrane wall
can be calculated based on the following relation [30]:

Cw − Cp

Cb − Cp
= exp

(
JW

k

)
(3)

where k is the mass transfer coefficient and so that Equation (2) is modified:

JS = BS
(
Cw − Cp

)
(4)

The pressure drop can be estimated based on Darcy’s law which might be written
as [30]:

dP
dx

= bF(x) (5)

which gives the pressure drop as a function of volume flow rate multiplied by a fixed
parameter b. Alternatively, if knowledge about feed spacer geometry is available, pressure
drop can also be estimated using more complex equations suggested by Koutsou et al. [36].

The osmotic pressure is a function of salt concentration and temperature. For low
concentrations, such as those used in seawater, it may be approximated by the van’t Hoff
relation in Equation (6). Thus the transmembrane osmotic pressure can be calculated using
Equation (7):

π = iγTC (6)

∆π = iγT
(
Cw − Cp

)
(7)

where γ is the gas law constant, T is temperature, and i is the number of ionic species
formed. For the organic solutes considered by Sundaramoorthy, i is equal to 1 [31,32] but
for NaCl the value of i is 2.

Combining and rearranging the above equations, the flux of water and the permeate
salt concentration can be calculated as follows:

JW =
Aw∆P

1 +
(

Awiγ
BS

)
TCp

(8)
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Cp =
Cb[

1 + (JW/Bs)
exp(JW/k)

] (9)

The above equations can also be modified using a reflection coefficient, but for sim-
plicity this will be assumed to be equal to 1.

To estimate the transport flux of boron an expression similar to Equation (4) can be used:

JB = BB
(
CBw − CBp

)
(10)

where BB is the boron transport coefficient and CBw − CBp is the difference in boron
concentrations. The wall concentration of boron can also be estimated with an equation
similar to Equation (3) which also requires a mass transfer coefficient kB:

CBw − CBp

CBb − CBp
= exp

(
JW

kB

)
(11)

CBp =
CBb[

1 + (JW/BB)
exp(JW/kB)

] (12)

BB =
{H+}

{H+}+ Ka1
B(H3BO3)0e(0.067(T−T0)) +

Ka1

{H+}+ Ka1
B(H2BO3

−)0e(0.049(T−T0)) (13)

To estimate the boron transport coefficients Hyung and Kim [24] proposed Equation (13)
where they found the temperature dependence follows the same trend for all the membranes
they tested. The effect of pH is included through the calculation of the fraction of boric acid
(H3BO3) and borate ion (H2BO3

−) which have different transport coefficients: B(H3BO3)0
and B(H2BO3

−)0 (the values at T = T0).
Various correlations have been proposed in the literature for estimating the mass

transfer coefficient, although in most cases these correlations predict the Sherwood number
(sh) as a function of the feed-side Reynolds number (Ref) and Schmidt number (Sc) and
also sometimes consider the permeate-side Reynolds number

(
Rep

)
[31]. In this study the

following general expression is considered:

sh = eA
(

Ref
B
) (

Rep
C
) (

ScD
)

(14)
To model the performance of a spiral wound reverse osmosis membrane for purifica-

tion of seawater and boron, we made the following assumptions:

• Pressure drop is neglected in the permeate side;
• Darcy’s law applies for pressure drop in the feed side;
• Validity of the solution–diffusion equations;
• Feed-side: velocity in the y and z directions is neglected;
• Permeate-side: velocity in the x and z directions is neglected;
• The unwound spiral can be represented by the diagram in Figure 1;
• The boron mass transfer coefficient is the same as that used for salt.

Based on these assumptions, Sundarmoorthy et al. showed that analytical solutions
can be obtained for the pressure P, volume flow rate F, and water flux JW [30,31]. The
permeate-side fluid velocities are much lower than those on the retentate side and thus
the permeate-side pressure drop should be significantly lower, which is why it is often
neglected, allowing for the development of Equations (15)–(19) [30]. Additionally, it has
been shown by Taniguchi et al. that the mass transfer coefficient for salt is very close to that
of boron and so for simplicity they are considered equal in this study [27]. The equations
for pressure and volume flow can be used to calculate the outlet pressure and outlet volume
flow rate as given below:

Fo = Fi cosh φ− φsinhφ

bL
∆Pi (15)

51



Sustainability 2021, 13, 8999

Po = Pi −
bL

φsinhφ
[(Fi + Fo)(cosh(φ)− 1)] (16)

Co = Cp +
Fi
(
Ci − Cp

)

Fo
cosh φ− φsinhφ

bL
∆Pi (17)

where ∆Pi = Pi − Pp is the transmembrane pressure at the inlet and the φ is given by the
following equation:

φ = L

√√√√ WbAw(
1 + Aw

(
iγ
BS

)
TCp

) (18)

This parameter φ is a dimensionless number which is defined by Sundaramoorthy
et al. in the following equation relating the second order derivative of the feed channel
volume flow rate with respect to distance along the module [30]:

d2F(x)
dx

=
φ2

L2 F(x) (19)

Figure 1. Spiral wound membrane geometry (unwound diagram).

2.2. Parameter Estimation

Based on the above equations a number of parameters need to be fit in order to model
the performance of the spiral wound reverse osmosis membrane for the prediction of salt
and boron removal. Hence, in this study we suggest the sequential procedure of parameter
fitting steps as given in Figure 2. Sundaramoorthy et al. [30,31] suggested procedures for
steps 1, 2, and 4 where they suggest linear fitting for steps 1 and 2 and a least-squares
(presumably nonlinear) fitting for step 4. Additionally, in step 2 they assumed that Aw and
BS are fixed and do not change with temperature.

In the procedure shown in Figure 2, the first step should be to estimate pressure drop.
Subsequently the water and salt transport coefficients Aw and BS should be estimated for
each inlet temperature such that the temperature dependence can be predicted. Steps 3
and 4 are independent of each other but both rely on parameters fitted in steps 1 and 2. All
of these steps can be realized through linear fitting using experimentally measured values.
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Figure 2. Parameter estimation steps for a spiral wound reverse osmosis desalination membrane.

2.2.1. Step 1. Pressure Drop Parameter Estimation

As mentioned above the pressure drop on the feed/brine side can be estimated
through Darcy’s law as given by Equation (5) which is written in terms of the volume flow.
However, this can also be written as [21]:

dP
dx

= kfb µ vf
nf (20)

where vf is the feed-side fluid velocity, µ is the fluid viscosity, kfb is a friction parameter,
and nf is a constant which is commonly assumed to be 1, although some studies have
considered other values. For example, Sentilmurugan at al. also considered nf = 1.5 and
found that changing this value only had a small effect on results [21]. In this study it is
assumed nf = 1 and hence Equation (20) is equivalent to Equation (5).

The estimation of b is possible through plotting Po− Pi against L
φsinhφ [(Fi + Fo)(cosh(φ)− 1)]

(from Equation (16)) and fitting a linear expression should give b as the gradient, as suggested by
Sundaramoorthy et al. [30,31].

However, this requires knowledge of the feed/brine side outlet pressure which may
not be provided or possibly not measured as part of experimental studies looking at
reverse osmosis desalination. In these cases the pressure drop might be estimated based on the
maximum pressure drop specified by the manufacturer. For example, we might estimate that the
highest flow rate tested experimentally gives a pressure drop which is 100% of the maximum:

b =
Pdropmax

L Fi,max
(21)

Alternatively, if a friction factor is available the value of b can be readily found:

b =
kfb µ

Af
(22)
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where Af is the cross sectional area of the feed channel and the viscosity is calculated for a
single typical experimental inlet value.

2.2.2. Step 2. Water and Salt Transport Parameter Estimation

The values of coefficients Aw and BS can be estimated based on the equations given
by Sundaramoorthy et al. which are as follows [30,31]:

φ = cosh−1
[
(Fi + Fo)− β Fo

(Fi + Fo)− βFi

]
(23)

β =
Pi − Po

Pi − Pp
(24)

The value of φ can be calculated directly from inlet and outlet volumetric flow rates
and pressures. Hence, a plot of 1/φ2 against TCp should give a linear fitting which can be
used to calculate the values of Aw and BS:

1
φ2 =

(
iγ

L2WbBS

)
TCp +

(
1

L2WbAw

)
(25)

This is the same as the equation given by Sundaramoorthy et al. [30,31] except with
the addition of i to account for the presence of NaCl.

If the outlet pressures Po are not measured then this can be estimated using the fitted
b value and the following approximate expression:

Pi − Po = L b
(Fi + Fo)

2
(26)

It is also worth noting that the above fitting should utilize the inlet and outlet con-
ditions for a single feed channel, accounting for the number of leaves and the number of
feed channels per leaf. Additionally, while Sundaramoorthy et al. [30,31] assume the fitted
constants are independent of temperature, this fitting can also be performed separately for
each set of data at each temperature which can then be used to fit a temperature dependent
term. For example, Arrhenius-type equations can be used [23,37]:

Aw = Aw0 exp
[−EA

R

(
1
T
− 1

T0

)]
(27)

BS = BS0 exp
[−EB

R

(
1
T
− 1

T0

)]
(28)

where EA and EB are apparent activation energies, R is the gas constant, and Aw0 and
BS0 are the values of water and salt transport coefficients at temperature T0. The above
equations can be used to evaluate the values at other temperatures. Although Arrhenius
equations are more commonly associated with chemical reactions, Mehdizadeh et al. have
shown that this type of relation also works well for predicting fluxes through membranes
at different temperatures as they argue it is a similar phenomenological process [37].

2.2.3. Step 3. Boron Transport Parameter Estimation

The transport coefficients of boron can be estimated based on the following equation
suggested by Hyung and Kim which accounts for the transport of boric acid (H3BO3) and
borate ion (H2BO3

−) [24]:

BB = α0B(H3BO3)
+ α1B(H2BO3

−) (29)
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In this equation, α0 and α1 represent the fractions of boric acid and borate ion which
can be estimated using the apparent dissociation constant Ka1 and the H+ ion concentra-
tion [24]:

α0 =
{H+}

{H+}+ Ka1
(30)

α1 =
Ka1

{H+}+ Ka1
(31)

The value of Ka1 can be determined by a correlation in terms of salt concentration and
temperature as given by the correlation of Edmond and Gieskes as presented by Nir and
Lahav [38]:

log10 Ka1 =
2291.90

T
+ 0.01756 T − 3.3850− 0.32051

(
S

1.80655

)1/3

(32)

where T is the temperature in kelvin, and S is the concentration of salt in g/L. It was
also noted by Nir and Lahav [38] that a number of authors have missed the temperature
dependence from the 0.01756 T term when writing this correlation.

Although in principle the temperature dependent factors can also be estimated here
through fitting expressions similar to Equation (27), the temperature-dependent expressions
determined by Hyung and Kim can also be used since they show that their fitted parameters
fit well for a number of different membranes tested [24]. The work of Hyung and Kim
also gives values for the boric acid and borate ion transport coefficients for those types of
membranes, and these values are used by Mane et al. as part of their numerical simulation
model [23]. However, the simulation results of Mane et al. underpredict the rejection of
boron for higher pH values (8.5 and 9.5) compared with their experimental results [23].
This difference could be due to the fact that the transport coefficient values determined
by Hyung and Kim were based on a flat sheet membrane [24] while Mane et al. utilized a
spiral wound module with the same material [23]. To account for this, it is suggested here
that the values of B(H3BO3)0 and B(H2BO3

−)0 should be fitted for each membrane material
and for each design of membrane module.

The values of BB can be determined from experimental measurements and calculation
with Equation (12) rearranged as (assuming that kB = k):

BB =
CBp JW(

CBb − CBp
)

e(JW/k)
(33)

Since α0 + α1 = 1 then for each temperature measured the values of BB can be plotted
against α0 which should give a linear fit with intercept B(H2BO3

−) and gradient equal to(
B(H3BO3)

− B(H2BO3
−)

)
so that the transport coefficients of boric acid and borate ion can

be determined. If values are fitted at each temperature the temperature dependence can
also be included.

2.2.4. Step 4. Mass Transfer Parameter Estimation

If the mass transfer correlation is given by Equation (14), the fitting of parameters
A, B, C, and D can be realized through writing this as a linear equation in terms of
these parameters:

ln(sh) = A + B ln(Ref) + C ln
(

Rep
)
+ D ln(Sc) (34)

This is similar to the approach taken by Avlonitis et al. who sequentially determined
the parameters by plotting ln(sh) against the log of different dimensionless numbers [29].
However, depending on the membrane being used, some of these values could be sta-
tistically insignificant in which case some terms may be eliminated to give a simpler
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expression. In principle all the parameters can be fitted simultaneously using multivariable
linear fitting.

2.3. Model Prediction Algorithm

The analytical equations from Sections 2.1 and 2.2 can be solved to predict the perfor-
mance of a desalination membrane given the input conditions and fitted parameters. This
is the same procedure suggested by Sundaramoorthy et al. [31] but with some changes
including the addition of boron transport equations, accounting for a different module
design (two feed channels and a single permeate channel) and including the effect of
temperature on water and salt transport coefficients.

2.3.1. Input Membrane Geometry

• Width W;
• Length L;
• Feed channel height tf;
• Number of membrane leaves n;
• Input conditions;
• Inlet salt concentration Ci;
• Total feed flow rate Qf;
• Inlet flow rate (calculated for a single feed channel) Fi =

Qf
2n ;

• Inlet pressure Pi;
• Permeate pressure Pp;
• Temperature T;
• Potential hydrogen pH;
• Fitted parameters;
• Pressure drop coefficient b;
• Water and salt transport coefficients Aw0 and BS0 at temperature T0;
• Apparent activation energies EA and EB;
• Boric acid and borate ion transport coefficients B(H3BO3)0 and B(H2BO3

−)0 at temperature T0;
• Boron apparent activation energies EB3 and EB2;
• Mass transfer coefficients A, B, C, and D.

In cases where temperature dependent parameters (apparent activation energies) are
unavailable, fixed values for Aw, BS, B(H3BO3)

, and B(H2BO3
−) might be used.

2.3.2. Solution Procedure Using Model Equations

Step 1: Assume Cp = CpA (initial guess CpA = 0)
Step 2: Calculate {H+} = 10−pH

Step 3: Calculate ∆Pi = Pi − Pp
Step 4: Calculate Aw and BS (Equations (27) and (28))
Step 5: Calculate φ (Equation (18))
Step 6: Calculate Fo (Equation (15))
Step 7: Calculate Po (Equation (16))
Step 8: Calculate ∆Po = Po − Pp

Step 9: Calculate Jwi =
2·Aw∆Pi

1+
(

Aw iγ
BS

)
TCp

and Jwo = 2·Aw∆Po

1+
(

Aw iγ
BS

)
TCp

Step 10: Calculate vi =
Fi
Af

and vo = Fo
Af

Step 11: Calculate Co = Cp +
Fi(Ci−Cp)

Fo
Step 12: Calculate Ref,i, Rep,i, Sci and Ref,o, Rep,o, Sco
Step 13: Calculate Shi and Sho (Equation (14))
Step 14: Calculate ki =

Shi·Di
de

and ko = Sho·Do
de

Step 15: Calculate Cpi =
Ci[

1+ (JWi/Bs)
exp(JWi/ki)

] and Cpo = Co[
1+ (JWo/Bs)

exp(JWo/ko)

]

Step 16: Calculate CpA =
Cpi+Cpo

2
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Step 17: Calculate Ciw = CpA +
Jwi·CpA

BS
Step 18: Calculate Ka1 (Equation (32), where S = Ciw·MWNaCl)
Step 19: Calculate BB (Equations (29)–(31))
Step 20: Calculate CBp = CBi[

1+ (JWi/BB)
exp(JWi/ki)

]

Step 21: If
∣∣Cp − CpA

∣∣ > tolerance→ Go to step 5, otherwise stop
In step 21 a tolerance of 1× 10−6 was implemented to give a reasonable convergence

of the calculated concentration. Additionally, the dimensionless numbers were calculated
using the following correlations [22,31]:

Ref =
ρ de v

µ
(35)

Rep =
ρ de Jw

µ
(36)

Sc =
µ

ρ D
(37)

where de = tf/2 is the equivalent diameter [31]. In addition, the density and viscosity can
be estimated through the following correlations of Koroneos et al. [39]:

ρ = 498.4m +
√

248400m2 + 752.4 m S (38)

m = 1.0069− 2.757× 10−4·(T − 273.15) (39)

µ = 1.234× 10−6·exp
[

0.0212·S +
1965

T

]
(40)

D = 6.725× 10−6 × exp
[

0.1546× 10−3S− 2513
T

]
(41)

3. Case Studies

To demonstrate the parameter fitting methods and to evaluate the accuracy of the
model predictions the methodology from Section 2 is applied to two case studies including
FilmTec 2.5 inch FT30 and Saehan Industries RE4040-SR spiral wound membrane modules.

For the purpose of fitting parameters, experimental data values from the literature
have been used. This includes 32 data points using the FilmTec module with varying salt
concentrations (25–40 g/L), feed pressures (50–80 bar), and temperatures (20–35 ◦C) and
associated varying feed and permeate volume flow rates as given in Table 1 of the study of
Avlonitis et al. [29]. Unfortunately this data set does not include brine outlet pressure or
boron concentrations so steps 1 and 3 from Figure 1 are not possible based on this data.

Table 1. Spiral wound membrane module details using literature values for FilmTec [29] and Saehan
[23] modules.

Spiral Wound Module FilmTec FT30 Saehan RE4040-SR

Length (m) 0.8665 0.88

Width (m) 1.17 0.8

Number of leaves 1 5

Feed channel height (m) 7.7× 10−4 9.4× 10−4

Permeate channel height (m) 4.3× 10−4 4.0× 10−4

For the Saehan module a set of 15 data points can be found in the study of Mane
et al. [23] with varying pressures (600–800 psi or approximately 4,137,000–5,516,000 Pa)
and pH (7.5, 8.5 and 9.5) and with varying permeate flow rates (maintaining feed to
permeate flow ratio at a constant). In this study, 10 of these data points were used for fitting
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parameters (pH at 7.5 and 9.5) and the remaining 5 data points were used for validation.
These data are measured only at 25 ◦C and, as with the other case study, pressure drop
data are also not given in the literature. Hence, in this case, steps 2, 3, and 4 are possible in
the fitting procedure from Figure 1.

3.1. Determination of Pressure Coefficient b

Since the brine outlet pressures are not provided the above references, alternative
methods must be used to estimate b.

Although the study of Avlonitis et al. [29] does not give a value of the friction co-
efficient k f b, the value for this coefficient is given by the study of Senthilmurugan et al.
as 2.5008 × 108 m−2 [21]. This value is used together with the temperature and feed
concentration from a selected feed condition from the 32 data points of Avlonitis et al., in
this case 20 ◦C and 35 g/L are used together with Equations (35) and (19) to give the value
of coefficient b.

For the Saehan module, the study of Mane et al. provides a value of the friction
coefficient k f b = 5.18× 1010 m−2 [23]. However, using this value leads to a calculated
pressure drop which is much greater than the maximum pressure drop specified by the
manufacturer for similar modules [40]. For this reason, the b value is estimated for this
case using the maximum pressure drop and the highest tested flow rate in Equation (20).

The estimated values of b are in this way given in Table 2.

3.2. Determination of Water and Salt Transport Coefficients

As mentioned in Section 2.2 the values of water and salt transport coefficients can be
determined by plotting 1/φ2 against TCp. In the study of Sundaramoorthy et al. a single
value of these parameters (Aw and BS) is found to be sufficient for all the temperatures
used when considering the removal of chlorophenol [30,31]. However, for the desalination
of seawater, it is shown in Figure 3 that a separate linear fitting is required for each
temperature, each giving different values of Aw and BS.

Figure 3. Plot of the 1/φ2 against TCp with linear fitting against the data of Avlonitis et al. [29] using
the calculated value of b from Table 2.
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The data of Mane et al. is used for the fitting of Aw and BS for the Saehan module (see
Figure 4) although this is only a relatively small sample size using 10 out of the 15 data
points available. Furthermore, this data set is also measured in a relatively narrow range
of conditions including feed flow rates of 2.27 to 4 m3 day−1 and salt rejection in the very
narrow range of 99.6 to 99.7 % [23]. This is perhaps due to the study of Mane et al. focusing
on boron recovery at different conditions [23]. Despite these limited data, it is still possible
to estimate the values of water and salt coefficients with fitted values given in Table 2.

Figure 4. Plot of the 1/φ2 against TCp with linear fitting against the data of Mane et al. [23] using the
calculated value of b from Table 2.

3.3. Determination of Boron Transport Coefficients

Since the data regarding boron are not available in the data of Avlonitis et al. [29] for
the FilmTec module, parameters are fitted here only for the Saehan module based on the
data of Mane et al. [23].

This is possible through plotting BB (calculated using Equation (33)) against α0 (calcu-
lated using Equation (30)) giving the plot and linear fit shown in Figure 5. The gradient
and intercept of this linear fit are used to calculate B(H3BO3)0 and B(H2BO3

−)0 as given in
Table 2.

3.4. Determination of Mass Transfer Correlation Coefficients

The value of the Sherwood number can be calculated for each experimental point.
If both brine inlet and outlet data are available then the mass transfer coefficient and
Sherwood number can be calculated for both points. However, in this case since the outlet
pressures are not given in the case study references, only the inlet conditions are used to
estimate mass transfer correlations:

ki =
JWi

ln
[(

JWi
BS

)(
Cp

Ci−Cp

)] (42)
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shi =
kiDi

de
(43)

Table 2. Estimated and fitted parameters for case study of spiral wound membrane modules.

Spiral Wound Module FilmTec FT30 Saehan RE4040-SR

b
(
atm m−4 s−1) 2.9760× 103 1.0126× 103

T0 (K) 293.15 298.15

Aw0
(
m atm−1s−1) 2.5258× 10−7 2.7550× 10−7

BS0
(
m s−1) 4.0699× 10−8 1.7062× 10−8

EA

(
J mol−1

)
1.4192× 104

EB

(
J mol−1

)
4.2116× 104

B(H3BO3)0
(
m s−1) 5.4306× 10−7

B(H2BO3
−)0
(
m s−1) 5.3760× 10−8

A −1.2604 5.619

B 0.35923

C 0.65885 0.5641

D 0.86483

Figure 5. Plot of BB (calculated using experimental data [23] and fitted parameters b, Aw, and Bs)
against α0 together with linear fit.

These values can be calculated for the two case studies considered here which can
be used to fit values of A, B, C, and D in Equation (34). In principle, all four of these
parameters can be fitted simultaneously using linear fitting, but some of these may be
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statistically insignificant, in particular for the Saehan membrane data which are based on
10 data points [23] all with very similar salt rejection and with the same value of Sc at the
inlet. For this reason initially A, B, and C were fitted simultaneously. However, when used
in the prediction code, this sometimes led to erroneous calculations of Cp = Ci; perhaps
because the correlation is overfitted to a narrow range of conditions. Hence, a simpler
expression is tested using either A and B or A and C. In other words, trying to fit a linear
relation between either ln(sh) and ln(Ref) or ln(sh) and ln

(
Rep

)
and in this case ln

(
Rep

)

was found to more statistically significant; the values of A and C are given in Table 2.
For the FilmTec membrane module a larger set of data with 32 data points [29] was

used to fit all four parameters as given in Table 2.

4. Model Validation

To show the prediction accuracy of the analytical model proposed here the model
was tested both with the training set data and also data and conditions other than the
training data.

For the FilmTec module the data from Table 2 is used in the model to predict the per-
formance for the 32 data points used for training. The model is shown to predict reasonably
well the permeate flow rate (Figure 6) and permeate salt concentration (Figure 7).

Figure 6. Permeate flow rate of FilmTec module comparison of experimental values [29] against
model predictions for the 32 data points used to train the model.

Furthermore this model is then validated against two sets of experimental data and
associated models from the literature (11 data points and analytical model results from
Table 2 in the study of Avlonitis et al. [29] and 13 data points and numerical model results
from Table 9 in the study of Senthilmurugan et al. [21]) which are labelled as run numbers
1–11 and run numbers 12–24 in Figures 8 and 9. This validation shows that the proposed
model is reasonably accurate for all of the data points. The only exception is the permeate
concentrations for run numbers 1–11 which are overpredicted by the model. The model
of Avlonitis et al. is shown to predict these values slightly more accurately [29]. This is
presumably because the model of Avlonitis et al. has been trained/fitted using a wider
range of data which are not covered inside the training set of 32 data points [29]. The
proposed model is shown to give similar accuracy compared to the numerical model of
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Senthilmurugan et al. [21] in most of the run numbers 12–24. The overall accuracy of
the proposed model is 6.3% for water permeation and 24.7% for permeate concentration.
However, the accuracy of the model for runs 12–24 is 7.2% for water permeation and 8.9%
for permeate concentration. If the model was retrained using data from run numbers 1–11
these errors in the permeate concentration could potentially be reduced. The more complex
numerical model of Senthilmurugan et al. gives an accuracy for runs 12–24 of 8.8% for
water permeation and 4.5% for permeate concentration.

Run numbers 1–11 show the experimental and model results from Avlonitis et al. [29]
and run numbers 12–24 show the experimental and model results from Senthilmurugan
et al. [21].

Figure 7. Permeate salt concentration of FilmTec module comparison of experimental values [29]
against model predictions for the 32 data points used to train the model.

For the Saehan module the data from Table 2 is used in the model to predict the
performance for the 5 data points used for testing/validation. The model is shown to
predict reasonably well the permeate flow rate (Figure 10).

Furthermore, the boron rejection predicted by this model is compared against the
experimental and model predictions of Mane et al. [23], as shown in Figure 11. In this
Figure, the 10 data points denoted by empty circles/rings are those which were used for
training and the squares are the data points which were used for testing. In this Figure, the
literature model results are those given in the study of Mane et al. which were generated
using a complex finite elements numerical model [23]. That model uses the boric acid
(H3BO3) and borate ion (H2BO3

−) transport coefficients given by Hyung and Kim [24],
while the proposed model uses coefficients which are fitted to the experimental data of
Mane et al. [23]. It can be seen that the model of Mane et al. fits well to the values at lower
rejection data points (these values are for pH 7.5) but underpredicts the values at higher
rejection (with pH at 8.5 and 9.5). Meanwhile, the proposed model gives a reasonably
accurate prediction for all data points, except for some slight over- and underprediction
at the lower pH values. For the testing data in Figure 11, the proposed model gives an
absolute average error of 0.82% while the model of Mane et al. gives an absolute average
error of 1.44%.
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Figure 8. Permeate flow rate of FilmTec module comparison of experimental values [4,11] against
model predictions for 24 different data points for testing/validation.

Figure 9. Permeate salt concentration of FilmTec module comparison of experimental values [4,11]
against model predictions for 24 different data points for testing/validation. Run numbers 1–11
show the experimental and model results from Avlonitis et al. [29] and run numbers 12–24 show the
experimental and model results from Senthilmurugan et al. [21].
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Figure 10. Permeate volume flow rate. A comparison of experimental data [23] and model predictions.

Figure 11. Boron rejection for the Saehan module. A comparison of experimental data [23] and
model predictions.

5. Conclusions

An analytical model is proposed in this study for simultaneously predicting the
removal of both salt and boron from seawater through reverse osmosis using spiral wound
desalination membrane modules. This model and the fitting procedure is an extension of
the methods proposed by Sundaramoorthy et al. for the removal of organic solutes [30,31]
which is modified and extended to predict the removal of both salt and boron from seawater.

The fitting procedure proposed here is sequential, starting with the prediction of a
pressure drop coefficient, followed by the fitting of water and salt transport coefficients.
Subsequently the boron transport coefficients and the mass transfer correlation coefficients
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can be fitted independently of each other. In all of these steps it is shown that the parameters
can be obtained through linear fitting using experimental values and calculated parameters
from previous steps. Hence, this approach offers a very simple method for obtaining all
the parameters needed to build the predictive model.

The analytical model equations can be solved by following the steps given in Section 2.3
which offers a much simpler method for simulation of separation performance compared with the
more complex numerical finite-difference type models which require solving much larger numbers
of equations and more computational effort. A basic comparison of the CPU time required
to simulate three modules 1000 times (optimization will typically require simulation of
configurations at least 1000 times, in some cases much more) shows that the proposed
analytical model required 7.3 s while a numerical model with 100 discrete points required
4 min 21.2 s using an i7 3.30 GHz intel computer.

Although the proposed model is simpler than numerical finite-difference type mod-
els it is shown to give similar accuracy when comparing the predicted outlet permeate
flow rate, salt, and boron rejection. This type of model should be appropriate for the
design and optimization of multistage desalination systems due to its simplicity and low
computational requirements.
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.3390/su13168999/s1.
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Nomenclature

A dimensionless parameter used in Equation (14)
Af cross sectional area of feed channel (m2)
AW water transport coefficient (m atm−1 s−1)
B dimensionless parameter used in Equation (14)
BS salt transport coefficient (m s−1)
b pressure drop parameter defined by Equation (5) (atm s m−4)
C concentration (kmole m−3) or dimensionless parameter used in Equation (14)
D dimensionless parameter used in Equation (14)
D diffusivity (m2 s−1)
F volume flow rate (m3 s−1)
i number of ionic species generated when molecule is dissolved in water
JW water flux (m s−1)
JS salt flux (kmol m−2 s−1)
JB boron flux (kmol m−2 s−1)
k mass transfer coefficient (m s−1)
kfB friction parameter used in Equations (20) and (22) (m−2)
L membrane effective length (as in Figure 1) (m)
P pressure (atm)
Re Reynolds number
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Sc Schmidt number
Sh Sherwood number
T temperature (K)
W membrane effective width (un-wound as in Figure 1) (m)
x distance in x direction (see Figure 1) (m)
Greek letters
β Ratio of pressures defined by Equation (24)
π osmotic pressure (atm)
µ fluid viscosity (kg m−1 s−1)
ρ fluid density (kg m−3)
γ gas law constant (atm m3 K−1 kmole−1)
φ dimensionless parameter defined by Equation (18)
Subscripts
b or f brine side/feed side
B boron
p permeate side
S Salt
W “Water” when referring to water flux or “Wall” when referring to wall concentration
0 at a reference temperature
i feed side inlet
o feed side outlet
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Abstract: Lower Laguna Madre (LLM) is designated as an impaired waterway for high concentrations
of bacteria and low dissolved oxygen. The main freshwater sources to the LLM flow from the North
and Central waterways which are composed of three main waterways: Hidalgo/Willacy Main Drain
(HWMD), Raymondville Drain (RVD), and International Boundary & Water Commission North
Floodway (IBWCNF) that are not fully characterized. The objective of this study is to perform a
watershed characterization to determine the potential pollution sources of each watershed. The
watershed characterization was achieved by developing a cyberinfrastructure, and it collects a wide
inventory of data to identify which one of the three waterways has a major contribution to the LLM.
Cyberinfrastructure development using the Geographic Information System (GIS) database helped
to comprehend the major characteristics of each area contributing to the watershed supported by
the analysis of the data collected. The watershed characterization process started with delineating
the boundaries of each watershed. Then, geospatial and non-geospatial data were added to the
cyberinfrastructure from numerous sources including point and nonpoint sources of pollution.
Results showed that HWMD and IBWCNF watersheds were found to have a higher contribution
to the water impairments to the LLM. HWMD and IBWCNF comprise the potential major sources
of water quality impairments such as cultivated crops, urbanized areas, on-site sewage facilities,
colonias, and wastewater effluents.

Keywords: watershed management; nonpoint source pollution; point source pollution; water quality;
pollutant loadings; South Texas

1. Introduction

The Lower Rio Grande Valley (LRGV) region has undergone sudden hydrologic
change due to urbanization. This abrupt change has produced a decline in water quality in
the primary waterways of the region. The Laguna Madre is an estuarine wetland system
along the Gulf of Mexico that receives freshwater from the LRGV [1]. This watershed is
known for its recreational activities and is currently threatened by the inflows of main
drainage pathways that carry significant levels of contaminants. According to the Texas
Commission on Environmental Quality (TCEQ) 2020 Integrated Report [2], two water
segments from the Lower Laguna Madre are considered impaired due to high levels of
bacteria and low dissolved oxygen. The watershed is comprised of three waterways,
Hidalgo/Willacy Main Drain (HWMD), Raymondville Drain (RVD), and International
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Boundary & Water Commission North Floodway (IBWCNF), that provide freshwater
inflows to the Lower Laguna Madre. Prior to this study, these waterways had not been
characterized. Watershed characterization can enable proper identification of potential
sources of pollution to help reduce water impairments to the Laguna Madre and preserve
the ecosystem.

One of the emerging tools for watershed characterization is cyberinfrastructure that
can assist in both data collection and decision-making processes within the watershed.
Cyberinfrastructure supports the process of accessing data via an extensive network and
provides updated water quality data for further research. The introduction of a cyberin-
frastructure can provide an efficient data collection to well demonstrate the watershed
characteristics. In one study, cyberinfrastructure not only utilized widespread data but also
allowed researchers to analyze large amounts of data over time at different locations [3–5].
This platform offers a rapid generation of new relationships between wide inventories of
data. Cyberinfrastructure secures data and delivers interpreted information via a sequence
of web services and portals in forms that are universally coherent by distinct stakehold-
ers [6]. Further, it serves as the center for a variety of data from distinct sources, such as
non-point and point source and watershed delineation characteristics. Cyberinfrastructure
and the watershed delineation are crucial for the watershed characterization since together
they will help identify sources of pollution data within the drainage area.

An ample watershed delineation is key for a successful watershed characterization.
A watershed delineation is developed by using elevation data and computing several
elevation-based files that represent the overall drainage area as well as the hydrological
characteristics of a watershed [7]. Each watershed can be divided into sub-watersheds to
produce a more detailed drainage structure. The Geographical Information systems (GIS)
platform has facilitated the development of hydrological analysis, such as drainage areas
based on elevation data. In 2010, a watershed GIS-based applications study performed
a hydrological analysis which showed positive outcomes regarding GIS-applications for
watershed management and water quality by providing a full overview of watershed
characteristics, such as land cover [8]. Hydraulic and hydrological modelling as well as
water resource management commonly require investigation of landscape and hydrolog-
ical features, such as terrain slope, drainage networks, drainage divides, and catchment
boundaries [9]. Additionally, high resolution in data resources is important to obtain
accurate results in watershed drainage areas [10]. When the land slope is very flat and has
few contours, it is challenging for the acquisition of topographic maps. Light Detection
and Ranging (LIDAR) is a high-resolution digital elevation model (DEM) that is an ideal
source for the type of topography characterized in low elevation areas [11]. Although the
terrain in the LRGV is flat, the complex hydrologic features make the process difficult
and challenging with even high-resolution DEM. Hence, a previous study focused on
enhancing streamlines and watershed boundaries derived from a high-resolution DEM
for future hydrologic modeling and flood forecasting [12]. To determine accurate stream
networks, an effective method of eliminating pits or depressions is the stream burning
algorithm. This algorithm often identifies river channels or lakes that are not recorded
in the DEM, avoiding serious errors in the streaming [3,4]. A stream-burning algorithm
can enhance the replication of streams’ positions by using raster representation of a vector
stream network to trench known hydrological features into a DEM, resulting in a com-
prehensive watershed delineation [4,13,14]. In addition, delineation of watersheds will
not only serve to determine drainage boundaries but to distinguish existing sources of
nonpoint sources (NPS) and point sources (PS) pollution.

Part of watershed characterization is to identify potential sources of pollution within
the watershed. Pollutant sources have been divided into two different classifications: NPS
and PS; with this distinction, it becomes easier to study, analyze, understand, and propose
actions to mitigate the pollutant load. NPS pollutants are difficult to identify because they
cannot be tracked and usually come from several land uses. The major contributor of
NPS pollution is stormwater runoff originated by rainfall [15] and other forms of water
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flow through several different land uses. They ultimately discharge to lakes, canals, and
coastal waters. This runoff carries significant levels of pollution caused by fertilizers, oil,
grease, sediments, bacteria, and nutrients [16]. NPS pollutants contained a significant
amount of nutrients, such as nitrogen and phosphorus [17]. There has been increasing
emphasis on tackling NPS pollution from agricultural land for the presence of high nutrient
contamination [18]. Currently, urbanization has led to increased water transfers from
agriculture to urban uses [1,19]. These changes are altering the nature, location, and scope
of wastewater loadings into the river. Urban runoff has caused negative results on water
quality due to high bacteria and low dissolved oxygen (DO) levels [15]. Recent reports
indicated that more than 40% of all impaired waters were affected solely by NPS pollutants,
while only 10% of impairments were caused by PS pollutant discharges alone [20].

Unlike NPS pollutants, PS pollutants can be identified because they come from only
one source. However, they still present a problem when addressing the pollution issues
in primary waterways. To establish the proper actions to reduce or stop the pollutant
load into waterbodies, it is necessary to identify the source of the pollutant. PS pollution
identification is a challenging task because of the uncertainties and nonlinearity in the
transport process of pollutants [21]. The typical way to identify PS pollution requires
obtaining prior information of the pollution source, gaining complex information about
pollution such as incidents regarding flow simulation dimensions, tabulating the number
of PS pollutants involved, and evaluating the pollutant release process [22]. Determining
potential sources is the first step in acting toward reducing the effects of water quality
problems. Unlike NPS, PSs can be identified because they come from only one source.
However, they still present a problem when addressing the pollution issues in primary
waterways. To establish the proper actions to reduce or stop the pollutant load into
waterbodies, it is necessary to identify the source of the pollutant. PS identification is a
challenging task because of the uncertainties and nonlinearity in the transport process of
pollutants [21]. The typical way to identify a PS requires obtaining prior information of the
pollution source, gaining complex information about pollution such as incidents regarding
flow simulation dimensions, tabulating the number of PS involved, and evaluating the
pollutant release process [22]. Determining potential sources is the first step in acting
toward reducing the effects of water quality problems.

Almost 70% of all rivers and streams in the United States are unassessed. In the
State of Texas, 88% of all rivers and streams are unassessed. In the United States, 53%
of the assessed water bodies were considered impaired due to high levels of E. coli and
fecal coliform [23]. In addition, fecal coliform bacteria and other pathogens present in
stormwater discharges threaten public health and have been responsible for numerous
beach closings in the region [24]. Some studies have found that both livestock and manure
management can potentially be agricultural sources of fecal indicator bacteria in water-
sheds [25]. Moreover, estuaries have faced eutrophication because of increased inputs of
nutrients, such as nitrogen and phosphorus. This phenomenon is now considered to be a
worldwide issue [26–28]. Ammonia can enter the aquatic environment via direct means of
municipal effluent discharge and excretion of nitrogenous wastes from animals. It may also
contaminate certain areas through indirect means such as nitrogen fixation, air deposition,
and runoff from agricultural lands [29]. Improper wastewater management practices in
this under-served region have caused severe water quality problems, and sections of the
river have experienced poor water quality with regard to dissolved oxygen, bacteria, and
algae [30].

The Laguna Madre is identified as an impaired waterbody due to the presence of
high concentrations of bacteria and low dissolved oxygen [2]. The Lower Laguna Madre
receives freshwater inflows from three waterways located in the north and central part
of the LRGV. The three waterways are HWMD, RVD and IBWCNF, which are not fully
characterized due to insufficient data. The aim of this paper is to provide a comprehensive
characterization of the north and central watersheds to analyze pollution sources. A cyber-
infrastructure database was developed to facilitate navigating through distinct information
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to obtain potential sources of pollution. Watershed delineation was developed using as GIS
platform to determine the watersheds’ drainage areas. Quantifying this information will
support the identification of which of the three watersheds contribute the most to water
impairments in the Lower Laguna Madre by assessing each watershed independently.
The watershed characterization has been shown to support stakeholders in the region for
optimal watershed management and enhance their decision-making process.

2. Study Area

The Laguna Madre is composed of two sections: The Upper Laguna Madre and the
Lower Laguna Madre (LLM). The Laguna Madre is also unusual for being one of only
five hypersaline coastal ecosystems in the world [31,32]. This estuary encompasses 20% of
Texas’s protected coastal waters while contributing 40–51% of the state’s commercial fish
catch historically as well as providing a common ground for migratory birds [1,32,33]. The
LLM is the area of interest in this study since the north and central watersheds inflow to
two of the three segments that are currently considered impaired. The north and central
watersheds encompass an area of 3116 km2 located in South Texas in the northern and
central area of the LRGV region. The LRGV is a semiarid region in South Texas bordered by
Mexico to the south and the Gulf of Mexico to the east [16]. This watershed is comprised
of three main waterways: HWMD in the southwest extending to the east, RVD in the
north, and IBWCNF in the southeast (Figure 1). The study area takes up a large plain of
South Laguna Madre Watershed Hydrologic Unit Code 12110208 (8-digit HUC). North
and central watersheds encompass 37% of the area in the LLM watershed. The study area
has significant hydrology challenges due to flat terrain, where previous studies will be
considered when processing the data. Its elevation gradually slopes from 102 to 0 m with a
high range of precipitation between 50–70 cm/year. The Arroyo Colorado is located south
of the IBWCNF waterway. Although relatively close to one another, they are not considered
intersecting. In general, soils in the LRGV region consist of calcareous to neutral clays, clay
loams, and sandy loams [20]. Therefore, the low permeability of the soils influences the
drainage characteristics.
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3. Methodology

The methodology to collect and analyze data for the characterization of the three
watersheds was the acquisition of geospatial data and non-geospatial data. Geospatial
data were obtained to develop a GIS database through a cyberinfrastructure to recognize
the dominated attributes contributing to the watersheds. Therefore, the elaboration of
watershed maps facilitated the identification of these attributes. Due to the wide inventory
of data, a cyberinfrastructure was used to make data collection more efficient. Then, the
elevation data were reconditioned to better represent the drainage areas of the watershed
with respect to the terrain of the study area. In addition, NPS and PS pollution data
were obtained to fully characterize the watersheds and to determine relative sources of
pollution. Non-geospatial data were divided into two sections: water quality and flow
data. Water quality was incorporated to determine the relationships between potential
sources of pollution with the parameters found in each watershed. Available flow data
were used to determine the load concentrations for each water quality parameter.

3.1. Cyberinfrastructure Development

In this study, cyberinfrastructure was established by developing the River and Estuary
Observatory Network (REON) (http://dev.reon.cc:8607/ accessed on 17 August 2021).
REON provides an extensive overview of all the available data from national, state, and
local sources on this site. This platform helped in obtaining quality data for an overview
of the north and central watersheds’ characteristics, where stakeholders from the study
area could support the characterization. The website now serves as a cyber-collaboratory
platform for engaging stakeholders with an interest in data and information for a certain
location [6]. Due to the wide inventory of data, the cyberinfrastructure also supported
the acquisition of geospatial data, making the process more efficient which consisted of
having all the geospatial data in only one source, REON. The value of the REON website
in this study is that it portrays special features such as metadata, properties of the layers,
and layer attributes to enhance watershed characteristics. The REON website was used to
incorporate geospatial data and layers to show relative characteristics of the watersheds
based on the watershed boundaries. To fully demonstrate watershed characteristics, the
delineation of watershed boundaries was crucial for the assessment. Watershed delineation
played an important role in this study, especially for the REON website to understand the
extent of the study area.

3.2. Development of Watershed Delineation

The watershed delineation process is fundamental for the overall characterization to
define the watershed boundaries and subwatersheds within each watershed. Generally, the
watershed slopes from west to east through the heart of the LRGV, with an average slope of
fewer than 0.3 m per kilometer [34]. Overall, its flat terrain varies from 0 m to 100 m. The
resolution of the elevation raster-files was changed from 1 m to 60 m, which contributed
to the reduction of file size and thus provided an efficient analysis. Since watershed
delineation is key for this study, an ample watershed delineation was implemented to
better assess the drainage areas of the watersheds. Previous studies have shown positive
results for DEM reconditioning in watershed delineations in flat terrains [14]. Moreover,
the assessment of satellite data and National Hydrography Dataset (NHD) was considered
when evaluating the waterways and other laterals for the process. The satellite data were
used to determine the accuracy of the location of the North and Central waterways. The
NHD flowlines were used to determine the addition of laterals that could potentially drain
into the waterways. LIDAR elevation data were reconditioned by developing several raster-
elevation files to incorporate waterways into the data. This processing refers to burning
waterways because the elevation data are not able to detect the waterways (Figure 2).
Burning waterways consist of a rasterized version of the digital vector file to decrease the
relative elevations of stream pixels by a uniform depth. Therefore, burning new channels
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into the DEM is an attempt to force alignment between topographically derived flowlines
and independently mapped hydrography [35].
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Once processing the LIDAR elevation data, the hydrology tools were used to develop
elevation raster files such as fill, flow direction, and flow accumulation. Only three pour
points were added manually to each corresponding waterway and then automated sub-
watersheds were developed. With the subwatersheds delineated, the overall watershed
boundaries for the three watersheds were determined based on the flow accumulation
lines. The flow accumulation lines correspond to the flow path for each watershed based
on elevation data. The flow accumulation lines embody the actual waterways in mostly
all the watersheds. The watershed boundaries correspond to the flowlines and follow an
enhanced methodology for the type of terrain in the region.

3.3. Data Collection

The study was developed based on the guidelines of the United States Environmental
Protection Agency (USEPA) Handbook for Developing Watershed Plans to Restore Our
Waters [36]. A summary of the data used in the study can be found in Table 1. NPS pollutant
loads through sediment and runoff courses are highly related not only to land use/cover
characteristics but also to topography [37–39]. This study integrates land cover data from
the 2016 National Land Cover Database (NLCD) [40] with a spatial resolution of 30 m to
determine relative contributions of NPS pollution in the north and central watersheds. The
land cover type data identified as NPS pollution encompass urban and agricultural areas
only. Each watershed was treated individually to characterize the type of land cover in the
area. The NPS pollutants identified within the watersheds were cultivated crops areas and
urbanized areas and South Texas large ranches (STLR), species, wildlife management areas
(WMA), Onsite Sewage Facility (OSSF), and colonias.

Table 1. Data sources used for characterization the IBWCNF, HWMD and RVD.

Data Source Year Usage

LIDAR Data USGS, TNRIS 2018 Watershed Delineation
Hydrograph (NHD) USGS 2012–2019 Watershed Delineation

Land Cover NLCD 2016 NPS
STLR TCEQ 2018 NPS

TLAP TCEQ N/A PS
WWO TCEQ N/A PS
MSW TCEQ N/A PS
OSSF Colonias 2021 NPS
MS4s TCEQ N/A PS

Colonias TCEQ 2015 NPS; OSSF points
Desalination Plants TWDB 2021 PS

Address Points TNRIS 2018 OSSF points

IBWC Gage Stations IBWC 2012–2020 Flow data (IBWCNF)

SWQM Station TCEQ 2011–2019 Flow and water quality
(IBWCNF)

SWQM Stations TCEQ 2017–2019 Flow and Water quality
(HWMD and RVD)
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Cultivated crops and urban areas are two types of land cover that can be contributing
to NPS pollution. Agricultural and stormwater runoff generated from cultivated crops and
urban areas; respectively. Runoff carries various pollutants such as nutrients, sediments,
heavy metals, and bacteria which have a negative impact on the receiving waterbodies [41].
In peri-urban areas, agricultural/rural NPS pollution and urban NPS pollution are two
types of sources that have gained considerable concern because urban expansion and agri-
culture intensification may act as a source or sink for contaminants to move toward surface
water bodies [42]. Agricultural and urban areas in a watershed have shown in previous
studies to be the main contributors to NPS pollution. Another type of NPS pollutants
source is the STLR. The main concern with this type of NPS pollutants is the exposure to
several hazardous contaminants from the practice of livestock. The improper management
of livestock wastes (manure) can cause surface and groundwater pollution [43]. Water pol-
lution from animal production systems can be by direct discharge, runoff, and/or seepage
of pollutants to surface or groundwater [44].

OSSFs are designed to treat domestic wastewater using a septic tank for screening
and pretreatment and a drain field where pretreated septic effluent is distributed for soil
infiltration and final treatment by naturally existing microorganisms [45]. Species with
WMA were found close to the coast of each watershed. These NPS pollutants contribute
to high bacteria loadings to waterbodies from wildlife in the region. Grazing animals
and wildlife can also negatively affect the water quality of runoff and waterbodies with
bacterial contamination [46]. In Texas, non-avian wildlife, such as deer or feral hogs, are
commonly found to be significant contributors of bacteria to natural streams [43,46]. In
addition, colonias are considered the most distressed areas in the United States. They are
usually found along the U.S.–Mexico border, which often lacks necessities such as sewer
systems, drinkable water, and overall sanitary housing. Many homes within colonias
cannot meet county building codes because they lack indoor bathrooms and plumbing, a
prerequisite for connection to local water lines and sewage systems [17]. Consequently,
colonias can be a potential contributor of NPS pollutants since they lack adequate solid
waste disposal and wastewater systems. TCEQ created a classification system to identify
the colonias with adequate utilities and the ones that lack basic utilities. The red and
yellow classification was the one selected for colonias that potentially carry NPS pollution.
Based on the priority classification by the Rural Community Assistance Partnership, OSSFs
located in the colonias having a health hazard (red colonias) were assumed to have a
greater failure rate of 70%. Conversely, a 30% failure rate (determined based on local expert
knowledge) was assigned to areas having the lower priority ratings (yellow colonias) [47].
The term “colonia” refers to a settlement or neighborhood that is an unincorporated rural
and peri-urban subdivision along Texas’ border with Mexico [48].

STLR and colonias were extracted from TCEQ NPS Pollution database. There are
currently limited studies in quantifying NPS pollution in semi-urban areas such as LRGV,
where the topography is relatively flat. Furthermore, species and wildlife management
areas WMA were considered as well as part of the NPS pollution for the effort in assessing
their contaminants to the waterbodies. These were extracted from Texas Parks and Wildlife
Department (TPWD). In addition, OSSF locations were mainly extracted from the colonias
layer that identified OSSF as their wastewater collection facility. In Jeong’s study [47],
they utilized a methodology to extract OSSFs from merging address points with colonias.
To estimate the number of OSSFs within the watershed, 911 address data for Cameron,
Willacy, and Hidalgo counties were obtained. The address points represent the number of
homes within a specific area. Combing this layer with the colonias areas, the acquisition of
OSSFs was achieved. The colonias layer provided information about this classification and
identified the type of colonias with limited wastewater disposal as well as adequate solid
waste disposal. OSSFs were extracted from the red and yellow classification from colonias
as well as the wastewater community section for onsite systems.

With the collaboration of local stakeholders and state-wide resources, the compilation
of PS pollutants was obtained. The PS of pollutants identified in the north and central
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watersheds include permitted wastewater outfalls (WWO), Texas Land Application Permit
(TLAP), Municipal Solid Waste (MSW), Municipal Separate Storm Sewer System (MS4),
and desalination plants [48].

There is a substantial contribution of bacteria from wastewater outfalls, which poten-
tially discharges to the waterways. Fecal contamination of water normally results from
direct entry of wastewater from a municipal treatment plant into a water body [46,47].
There were two types of WWOs identified in these watersheds: domestic and industrial
wastewater discharge. Domestic WWOs discharge less than 1 million gallons per day
(MGD) while the ones with a discharge greater than 1 MGD may be either domestic
sources or industrial wastewater treatment plant effluent. According to TCEQ, TLAP
refers to the spreading of sewage from several applications, such as surface irrigation,
evaporation, drain fields, or subsurface land application [49]. MSW facilities not only
affect the surface water within the watershed but also groundwater. Closed landfills are
commonly unlined and poorly capped and may be sources of a large number of organic
compounds to surrounding groundwater and surface water [50]. Polluted stormwater
runoff is commonly transported through MS4s and then often discharged, untreated, into
local water bodies [51]. MS4s are identified to discharge significant levels of contaminants
to waterbodies in the United States and are now one of the major sources of water pol-
lution in the nation [24]. Information about desalination plants was obtained from the
Texas Water Development Board (TWDB) to support the PS pollution contribution to the
watersheds. Disposing the concentrate from the desalination plant in the surface water is
the most common method of concentrate disposal which is considered a point source [52].
These sources can be potential contributors to water quality impairments to the North and
Central waterways.

Water quality data were obtained for the three watersheds from the Surface Wa-
ter Quality Monitoring Information System (SWQMIS) database. The TCEQ maintains
SWQMIS database to serve as a repository for surface water data throughout Texas. All the
data available in the SWQMIS database have to be collected according to TCEQ surface
water quality monitoring standards. Moreover, data must be verified and validated prior
to its loading into SWQMIS. HWMD has a TCEQ monitoring station (ID 22003) located at
FM 1420 1.65 KM south of the intersection with FM 490 east of Raymondville (Figure 3).
In addition, RVD has a TCEQ monitoring station (ID 22004) located at Willacy County
Road 445 800 m north of the intersection with FM 3142. Both HWMD and RVD monitoring
stations have 8 water quality samples available on the SWQMIS database. Data from both
sites were collected by Clean River Programs (CRP) from 2017 to 2019 [53]. For IBWCNF,
one TCEQ monitoring station was installed to collect water quality data since 2012. IB-
WCNF station ID is 20930 and is located at US 77 2.5 KM south of the intersection of US 77
and FM 2629 in the city of Sebastian. There were 25 water quality samples for the IBWCNF
watershed available from SWQMIS from 2012 to 2019 [54,55]. The water quality parameters
assessed in this study include the following: bacteria, ammonia, total Kjeldahl nitrogen
(TKN), total phosphorus (TP), chlorophyll-a, nitrite, and nitrate. On the other hand, there
is currently limited flow data for HWMD and RVD waterways since the monitoring in
both stations started in 2017. The data were quantified on a quarterly basis for the period
of two years. However, IBWCNF has a flow monitoring station (ID 08470200) installed
by USIBWC at the same location of the SWQM near Sebastian that collected data from
2012 to 2020.
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4. Results
4.1. REON Cyberinfrastructure

With the collaboration of REON, a cyberinfrastructure website, both data collection
and the development of maps were accomplished. This platform provided an efficient
watershed characterization by exposing significant guidelines from the EPA watershed
characterization manual. This manual provides the basis to meet water quality and water-
shed management goals. Physical and natural features, land use, waterbody conditions,
pollutant sources, and waterbody monitoring information are the data needed to charac-
terize a watershed [56]. The first step for the watershed characterization was to develop
the watershed delineation for the three watersheds. The results were then uploaded to the
REON website to show watershed boundaries. Additionally, NPS and PS pollution layers
were included in each watershed to facilitate the characterization process based on EPA
watershed characterization. The cyberinfrastructure gathers existing watershed bound-
aries, hydrology, land use, NPS pollution, PS pollution, water quality stations, and flow
stations to support the overview of the watershed characteristics. Three maps were created:
Watershed delineation results, NPS pollution, and PS pollution maps. The maps created
facilitated the watershed characterization by integrating geospatial data for NPS and PS
pollutants for each watershed individually. The development of maps portrayed in the
cyberinfrastructure helped stakeholders collaborate in the characterization by providing
inputs for each potential source that could contaminate the area. The web user interface at
the regional level is available for every stakeholder regardless of time or location.

4.2. Watershed Delineation

This section introduces the watershed delineation results for the study area (Figure 4)
(Table 2). The watershed delineation encompassed a comprehensive LIDAR elevation data
reconditioning to well display the North and Central Watersheds’ characteristics. Elevation
reconditioning has revealed improved results in areas with very flat terrain. Previous
studies had positive results with respect to their watershed delineation by performing
this methodology [13]. Burning the waterways to the elevation data has enhanced the
terrain to better support the current conditions of the elevation changes in the waterways.
Generally, all the waterways within the area are man-made, which makes it challenging for
the elevation data to capture the waterways. The north and central watersheds presented a
total area of 3116 km2 of which HWMD watershed presented an area of 1357 km2, RVD
watershed is 1021 km2, and IBWCNF watershed is 737 km2 (Table 2). HWMD watershed
covers 68% of its area in Hidalgo County, 31% in Willacy County, and 1% in Cameron
County. This watershed covers a wide central area of the LRGV region. It extends across
nine cities in the region. Moreover, it covers the McAllen-Edinburg-Mission Metropolitan
Statistical Area (MSA) of the LRGV region, which is ranked the 5th largest in the state of
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Texas. The RVD watershed, located in the north area of the LRGV region, covers 30.7%
in Hidalgo County, 68.9% in Willacy County, and 0.4% in Kennedy County. The city of
Raymondville, San Perlita, and a northeast portion of the city of Edinburg are the only
cities within the watershed.
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Table 2. Watershed delineation results for the three waterways.

HWMD RVD IBWCNF

Watershed Area (km2) 1357 1021 737
Number of Sub-watersheds 91 72 73

Hidalgo County 68% 31% 52%
Willacy County 31% 69% 24%

Cameron County 1% 0% 24%

IBWCNF watershed is located 53% in Hidalgo County, 24% in Willacy County, and
24% in Cameron County. This watershed is within the southern area of the North and
Central Watersheds and intersects with the Arroyo Colorado Watershed. Eight cities are
included in the IBWCNF watershed. The IBWCNF branches off of the Main Floodway
at the Llano Grande, a shallow lake located southwest of the city of Mercedes [57]. The
IBWCNF Waterway is considered a man-made waterway approximately 77 km long and is
used to divert the Arroyo Colorado’s flow. The city of Mercedes is upstream of IBWCNF
flow and downstream of the Arroyo Colorado Waterway when the flow is exceeding its
capacity. During flood conditions, which the IBWC defines as flow exceeding 40 cubic
meters per second, approximately 80% of the flow in the Arroyo Colorado is diverted to
the IBWCNF [58].

4.3. Nonpoint Sources

In this section, the watershed sources that potentially contribute the most to NPS
pollutants were identified. Table 3 shows the results of the ratio of PS and NPS pollution
sources to the area of each watershed. The predominant land cover for the North and
Central Watersheds is cultivated crops representing 53% of the total area located mostly in
the northeast sector of the watersheds. This type of land use is within the downstream trib-
utary areas of the watersheds. Urbanization areas within the North and Central Watersheds
cover 13% of the total area. STLR were found near the coast of the three watersheds.
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Table 3. Ratio of NPS and PS pollution sources with respect to the area of each watershed.

Sources HWMD RVD IBWNF

Nonpoint Source
Pollution

Urbanized Areas 0.20 0.05 0.24
Cultivated Crops 0.47 0.52 0.59

STLR 0.06 0.20 0.04
Species * 0.03 0.10 0.20

OSSFs 3.38 0.05 6.13
Colonias 0.25 0.01 0.29

Point Source
Pollution

Texas Land Application
Permit 0.006 0.004 0.004

Wastewater Outfalls 0.008 0.005 0.012
Municipal Solid Waste 0.013 0.004 0.004

MS4 Permit 0.006 0.001 0.016
Desalination Plants 0.001 0.001 0.003

* Quantified data.

About 73% of the HWMD watershed area is covered with NPS pollutants sources. The
watershed’s cultivated crops correspond to approximately 47%, and 20% of urbanized areas.
Urban growth in the watershed will primarily occur in areas that are currently cultivated
and will influence the region’s water quality [34]. Therefore, the HWMD watershed was
identified with the highest ratio of urban areas among the other watersheds, with respect to
their watershed area. The watershed encompasses 6.4% of STLR areas. Only El Suaz ranch
pertains to the watershed. These STLR areas have grazing livestock activities that ultimately
carry significant levels of bacteria. There were 46 species identified in this watershed along
with two WMA units. La Palomas units, Longoria, and Fredrick, were found to possess
hunting activities for their diversity of species. A total of 4591 OSSFs were found in the
HWMD watershed from a total of 9170 in the north and central watersheds. All OSSFs
have a potential for adverse environmental impact if they are improperly functioning, but
those closer to streams present an elevated risk [34]. The watershed has 336 colonias, where
80 are classified with limited solid waste disposal, and 33 lack adequate solid waste and
wastewater disposal. The total area of the colonias in the watershed is 26.8 km2.

NPS pollutants sources cover almost 86% of the total area of the RVD watershed. The
watershed has 51% of cultivated crops and only 2% of urban areas. The RVD watershed
encompasses 19% of STLR areas. King Ranch, East Foundation, and El Suaz are the ranches
that cover the watershed. Not only agriculture activities take place within the STLR areas.
Livestock also grazes in this area, which can increase the relative contribution of bacteria.
Fecal pollution brought to the rivers through surface runoff and soil leaching represents
the NPS pollution; its origin can be the wild animals and grazing livestock feces and cattle
manure spread on cultivated areas [50–52]. A total of 56 OSSFs were identified in the
watershed. The RVD watershed has only 13 colonias recorded from which 1 is limited to
solid waste disposal and 3 lack of basic utilities. Colonias within the watershed cover an
area of 21.6 km2.

The IBWCNF watershed corresponds to 73% of cultivated crops and 13% of urban
areas. This watershed has the highest ratio of agricultural lands that can be a possible
source of ammonia and nitrogen in the surface water. According to the EPA, watersheds
could be affected by the level of decomposition of organic matters and some fertilizers
used in agriculture. This watershed covers a portion of El Suaz ranch with 5% of STLR
areas. There were 4523 OSSFs identified in this watershed, corresponding to a 6.33 ratio
between the total OSSFs and the total area of the watersheds. The colonias cover an area
of 23.4 km2 within the IBWCNF watershed. This watershed has 216 colonias from which
65 lack proper solid waste disposal, and 51 lack both solid waste and wastewater disposal.

In summary, the HWMD watershed was identified with the highest ratio of urban
areas among the other watersheds with respect to their watershed area. The identification
of McAllen-Edinburg-Mission MSA in this watershed demonstrates the high presence of
urban areas. The HWMD had 20.3% of urban areas and 8.8% from the three watersheds.
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In contrast, the IBWCNF presented a higher percentage of 24.3% in urban areas, but it
only had 5.8% with respect to the overall area of the North and Central Watersheds. The
RVD and IBWCNF watersheds were the ones to have greater NPS pollution derived from
cultivated crops [46]. The RVD watershed was the highest with STLR areas.

4.4. Point Source

The HWMD watershed has a total of 11 WWOs from which 5 were found to discharge
less than 1 MGD, and the rest discharged more than 1 MGD. Major PS pollutants identified
in this watershed were TLAP and MSW. The TLAP corresponds to the presence of high
levels of nitrogen in the watershed, and the MSW corresponds to the presence of high total
phosphorus levels. There were 8 TLAPs found upstream of the watershed. Currently, there
are 2 active MSW facilities in the HWMD watershed. This watershed has a total of 17 MSW
facilities recorded from which 4 are considered closed facilities, 4 are inactive, 2 posted
closed, and the rest are not constructed. HWMD watershed covers 13% of MS4s. There are
currently 7 MS4s permitted areas within the HWMD watershed. The HWMD watershed
has the highest MS4s areas among the other watersheds. Therefore, the HWMD watershed
shows severe impact by the PS pollution compared to the other watersheds

Although the RVD watershed has a greater area compared to the IBWCNF watershed,
it is limited with PS pollution (Figure 5). Five WWOs were identified within the watershed
boundaries from which 3 are considered industrial wastewater effluent and 2 domestic.
Only 4 TLAPs were found in the RVD watershed. Currently, the City of Edinburg Landfill
is an active MSW in the RVD watershed. A total of 4 MSWs were identified in the RVD
watershed: 2 not constructed, 1 closed, and 1 post closed MSWs. RVD watershed is
considered to contribute to 0% of MS4s, with only 0.3% of the city of Edinburg’s MS4 found.
This watershed covers almost the entire Willacy County, which is identified as limited in
MS4s. The IBWCNF watershed presents 9 WWOs from which 4 are domestic and 5 are
industrial wastewater effluent. For instance, only 3 TLAP were found, and 3 active MSWs
were identified. These PS pollutants are mainly located upstream of the watershed. As
a result, it is important to identify the potential PS pollutants of the downstream area of
the Arroyo Colorado Watershed that diverts to the IBWCNF watershed. The IBWCNF
watershed has 7% of MS4s permitted areas. The MS4s permitted areas include 11 cities.
Consequently, it is important to improve stormwater management within these areas
to mitigate PS pollutants. Unlike sanitary sewer systems, MS4 systems do not treat the
stormwater collected; instead MS4s are required to develop and implement stormwater
management programs (SWMP) that reduce the amount of contaminants that enter the
system and prohibit illicit discharges [24].
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4.5. Water Quality Parameters

The water quality parameters samples for the north and central watersheds are shown
in Figure 6, where the red line represents the screening level according to TCEQ wa-
ter quality standards. HWMD watershed has E. coli levels higher than the screening
level of 126 MPN/100 mL from 2017 and 2019 [2]. In 2019, the E. coli levels were above
2000 MPN/100 mL. The existence of high levels of bacteria is caused by a variety of NPS
and PS pollution sources such as urban runoff, agricultural lands, ranches, WWO, OSSF,
MS4s, and colonias. Ammonia levels in this watershed were below the screening level with
2.7 mg/L as N, which is considered the highest record. In 2018, the TKN levels were the
highest compared to the other years with more than 3.0 MGL as N. The presence of TKN
in the HWMD watershed, according to the EPA, can be traced to failing septic systems,
croplands, and industrial discharges [59]. TP levels barely exceed the screening level of
0.7 mg/L with the maximum value of 0.8 mg/L in 2017. Moreover, the nitrite and nitrate
levels found in the watershed are higher than the screening level of 1.95 mg/L [2,60].
Chlorophyll-a levels identified surpassed the screening level of 14 µg/L for the three
years [2]. In 2018, chlorophyll-a had the highest level of 98 µg/L.

The RVD watershed had higher levels of E. coli compared to the other watersheds,
which suggests that there could be several sources of NPS and PS such as septic tanks that
can be leaking. Further, sewage may overflow from poorly structured sewage systems and
create polluted stormwater runoff [61]. However, ammonia levels for the RVD watershed
are acceptable since they are below the screening level of 0.33 mg/L with a maximum
value of 0.2 mg/L in 2018 and 2019 [60]. The TKN levels mainly surpassed the screening
level of 1.0 mg/L in 2018 and 2019. TP levels were lower in all the years recorded, with a
maximum value of 0.4 mg/L in 2019. According to the USGS report, bank erosion is the
main source of total phosphorus during flooding events that can be the potential source in
these watersheds [62]. Nitrite and nitrate levels surpassed only in 2017, but the highest level
identified was almost 6 mg/L as N in 2019. For Chlorophyll-a levels, the RVD watershed
showed its highest level of 70 µg/L in 2019.

In the IBWCNF watershed, the levels of bacteria were identified to be higher in 2013,
2014, 2015, and 2019. The highest level was around 8000 MPN/100 mL in 2013. The bacteria
levels from 2016 through 2018 were determined to be slightly below the screening level of
126 MPN/100 mL. The results showed, according to Olmstead [46], that the watershed is
affected by wildlife with small contributions of domestic animals and point sources. The
ammonia levels were identified to be less than the screening level during all the years. This
finding indicates that the watershed is limited to carrying significant levels of ammonia
from agricultural runoff. TKN levels have shown to be relatively higher than the screening
level with the highest of 2 mg/L as N in 2018. High levels of total nitrogen are caused by
the decomposition of detritus and any anthropogenic loadings [63]. High levels of total
nitrogen are caused by the decomposition of detritus and any anthropogenic loadings [63].
TP levels were lower than the screening level of 0.7. The IBWNF watershed is limited
to algae growth since TP levels are low. Nitrite and nitrate levels are higher than the
screening levels; 7 mg/L was the highest level recorded in 2015. Chlorophyll-a levels were
determined to be higher than the screening levels for nearly all the years. This finding
indicates the presence of excess quantities of algae [64].
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4.6. Flow Data

Waterbody monitoring data are used to portray historical data that would represent
most conditions of the study area. Flow data encompassed the volumetric flow rate for
each waterway recorded from each station available. HWMD waterway flow data reflect
high flow values in 2019 with a mean value of 12 CMS, and in 2018 the mean value was
below 10 CMS. These levels reflect a high correlation with flooding patterns with respect
to sudden storm events from those years. Moreover, the RVD flow data showed high
flow values in 2018 of almost 10 CMS (Figure A1 in Appendix A). Both HWMD and RVD
flow data correspond to past abnormal flooding events in the LRGV region. The region
has experienced high storm events since 2018 with over 38.1 cm to 50.8 cm of rainfall
causing severe flooding damage [65]. Such flooding’s caused a halt to everyday functions
for weeks and months because of minor to destructive varying degrees of flood damage
in city roads, frontage roads, residences and businesses, and infrastructure in the LRGV
region. Hidalgo, Cameron, and Willacy counties have received the Presidential Disaster
Declaration in which have been determined to be the most impacted areas [66]. There are
limited data for this watershed since they are only available for three years with limited
monitoring campaigns. Therefore, among the three watersheds, it has been determined
that the HWMD waterway has the highest flow values that affect the loadings even if the
water quality concentrations are low.

The IBWCNF watershed has two stations: Mercedes and Sebastian. However, only
the flow values utilized for further analysis were the ones from Sebastian since the water
quality samples were obtained near that station. This finding would represent a better
overview of the IBWCNF watershed behavior with respect to load concentrations. In 2017
and 2018, flow data measured were more than 10 CMS. The flow values throughout 2012
to 2020 seem to have mean values below 5 CMS, which suggests a constant uniform flow
for this watershed.

4.7. Pollutant Loadings

Pollutant loading calculations were obtained from quantifying flow and water quality
data. To well represent the loadings with each respected watershed, the pollutant loadings
were based on the watershed area for the three watersheds. Table 4 shows the results for
the unit area loading rates for each watershed reflecting which of the three watersheds
has the highest loading. The HWMD watershed shows higher results with respect to the
flow, water quality parameters, and the overall watershed area, where both NPS and PS
pollution are potential attributes of these elevated results. These data are not representative
of the whole profile of the watersheds. More data should be quantified to better distinguish
which watershed contributes the most to water impairments to the LLM.

Table 4. Summary of the pollutant loading (kg/km2/year) for the three watersheds.

Water Quality
Parameters HWMD RVD IBWCNF

Bacteria (Log E.coli) 1 12.8 12.3 12.4
Ammonia 121 31 48

TKN 1586 670 477
Organic Nitrogen 1466 639 429.4

TP 519 63.3 122.6
Nitrite + Nitrate 2950 581.46 1512.10
Chlorophyll-a 32.6 9.9 13.2

1 Bacteria loading unit is in MPN/km2/year. Source: SWQMIS.

The pollutant loadings per unit area distribution for each water quality parameter
were provided with respect to each watershed area (Figure 7). Methods for calculating
the loadings for each pollutant can be found in the USEPA Handbook for Developing
Watershed Plans to Restore Our Waters [36]. These loadings were generated automatically
through ArcGIS properties to show the difference among pollutant loadings. Bacteria load-
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ings per unit area were determined to be slightly higher for the IBWCNF watershed than
RVD. However, IBWCNF has more potential NPS and PS sources for bacteria than RVD.
The mean value for the bacteria loadings in IBWCNF and RVD was 12.4 (kg/km2/year) and
12.3 (kg/km2/year); respectively. This can be explained by the fact that the main bacterial
sources in both watersheds come from agricultural activities. The ratio in cultivated crops
in IBWCNF was slightly higher than RVD. IBWCNF covered 59% of cultivated crops, while
RVD covered 52%. Additionally, the flow volume in RVD was higher than IBWCNF. The
average flow rate in RVD was 2.57 CMS, while in IBWCNF it was 2.38 CMS. This could be
the reason why the bacteria loadings in both watersheds have a minor difference. TKN
results proved to be higher for the HWMD, which support the relative contribution of the
TLAP to this watershed. Nitrate and nitrite and chlorophyll-a concentrations were high
in the HWMD, corresponding to the significant presence of urban areas in the watershed.
Ammonia results showed to be higher in the IBWCNF watershed, supporting the identifica-
tion of a substantial percentage of agricultural lands. The HWMD had the highest loadings
for TP and organic nitrogen, supporting the presence of MSWs. Figure 6a–g reflects the
loading with respect to the subwatersheds of the three North and Central Watersheds. The
HWMD watershed was identified to be higher in all the water quality parameters due to
the high flow recordings in this watershed.
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5. Discussion and Conclusions

The cyberinfrastructure and REON website contributed significantly to this study
in portraying relevant characteristics of each of the North and Central Watersheds. The
REON website not only collects distinct information into one single source but also allows
the stakeholders within each watershed to assess the watershed characteristics. Therefore,
this platform is an innovative tool that supports effective watershed characterization.
ArcGIS automated hydrology tools have shown to have satisfactory results in delineating
watersheds. Overall, the study showed that the watershed delineation process used
provided acceptable results to characterize the North and Central Watersheds.

Although the HWMD watershed was not the highest regarding the urban areas, it is
considered higher in NPS pollution with respect to the entire area of the North and Central
Watersheds. Urban areas have more impact on the HWMD in comparison to the other
watersheds regarding the overall watershed areas. This finding suggests that urban areas
in this watershed are linked to the presence of bacteria and chlorophyll-a. Based on the
water quality data obtained, only chlorophyll-a levels were higher than the other watershed
levels. The high levels of chlorophyll-a relate to the HWMD watershed in extensive urban
areas. Based on the total PS pollution found in the North and Central Watersheds, HWMD
is the watershed to contribute a 3.66 ratio with respect to the watershed area. While this
watershed has greater PS pollution than the other two watersheds, it is not particularly
the most affected watershed with respect to the drainage area. The NPS and PS results
for HWMD were consistent with the elevated levels of the water quality data analyzed
from the SWQMIS database. Bacteria, total nitrogen, nitrate and nitrite, chlorophyll-a,
ammonia, total phosphorus, and organic nitrogen in HWMD had significant values in this
watershed compared to the other watersheds. In addition, the high pollutant loadings in
this watershed correspond to the high flow values recorded. Therefore, more flow data
are needed in the future to further support this characterization and make the proper
connections between sources of pollution and pollutant loads.

The RVD watershed had a higher percent of 20.3% for ranches and was identified
to be higher regarding the total area of the North and Central Watersheds as well. The
water quality parameters associated with the presence of ranches are bacteria, ammonia, TP,
nitrite, and nitrate. The results showed that the RVD watershed has greater bacteria levels
in comparison to the other watersheds, which suggests ranches and the activities within
these areas are causing high levels of bacteria. The RVD watershed pollutant loadings were
generally low, but bacteria loadings were significant because of the high presence of NPS
pollutants. Bacteria loading mean value corresponds to almost 12.3 MPN/km2/year.

The IBWCNF watershed was identified to have higher crop areas with 58.5% regarding
the area as well as the overall area of the three watersheds, which suggests the presence
of significant agricultural activities. Therefore, it was determined that agricultural runoff
is prone to release higher levels of ammonia where this watershed was limited to carry
high ammonia levels. This finding indicates a possible change in land cover from 2016
to 2020. In addition to ammonia, bacteria, TKN, TP, nitrite and nitrate, and chlorophyll-
a are present in agricultural areas. The IBWCNF watershed has a greater presence of
nutrient water impairments because of the high agricultural area. This finding suggests
the high levels of nitrite and nitrate in this watershed correspond to agricultural lands.
This watershed had the higher contribution of PS pollutants such as WWO, OSSFs, MS4s,
and colonias among the watersheds. The sources contributing to the high levels of water
quality concentrations were identified. Ammonia, nitrate, and nitrite primary sources
can be related to WWO, MS4s, and colonias. The load concentration results showed the
IBWCNF to have high bacteria and ammonia loads. This finding suggests that the presence
of a significant contribution of OSSFs is linked to bacteria loadings.

To uncover which North and Central watersheds contributed the most to the LLM wa-
tershed impairment, a cyberinfrastructure was established along with an ample watershed
delineation. Then NPS pollution, PS pollution, water quality concentrations, flow data,
and pollutant loadings were enhanced to identify unique characteristics of the watershed.
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HWMD and IBWCNF were the watersheds to contribute the most in water impairments to
the LLM watershed. They were found to have significant loadings of water quality param-
eters as well as NPS and PS pollutant contributions. Urban areas, TLAP, and MSW were
related to the high contribution of chlorophyll-a, TKN, and TP. OSSFs and colonias were
linked to the major influence of bacteria concentrations and loadings of which the IBWCNF
watershed possesses the most. These results along with the user-friendly cyberinfrastruc-
ture may assist stakeholders from the region in identifying the characteristics of watersheds
and mitigate the sources of pollution. This study is essential in bringing awareness to the
local communities that reside within these watersheds, especially the people who visit
the LLM watershed. One of the limitations of this study was the acquisition of available
data for such an extensive study area of more than 3000 km2. Additional flow data and
water quality data could enhance the characterization as it was limited to only 8 samples
for the HWMD and the RVD watersheds. Flow data are essential for determining the
load concentrations and provide a better overview of the north and central watersheds’
potential sources of pollution.
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Appendix A

Table A1. Hidalgo Willacy Main Drain Water Quality.

Date Bacteria Ammonia TKN TP Nitrite Nitrate Chlorophyll-a

10/4/2017 610 0.02 1 0.733 3.02 0 57
12/3/2017 10 0.26 2.85 0.847 3.87 0 13.5
5/1/2018 120 0.002 3.63 0.755 4.71 0 91.5
7/18/2018 20 0.2 2.1 0.2 1.2 0.099 98.5
10/31/2018 80 0.1 1.5 0.67 5.6 0.09 23.9
1/29/2019 31 0.1 1.21 0.7 5.6 0.06 19.3
4/2/2019 1400 0.2 1.4 0.78 4.02 0.06 27
7/16/2019 2200 0.26 2.1 0.23 0.03 0.02 19.3
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Table A2. Raymondville Drain Water Quality.

Date Bacteria Ammonia TKN TP Nitrite Nitrate Chlorophyll-a

10/4/2017 1940 0.02 1 0.28 1.17 0 36.3
12/3/2017 150 0.1 0.42 0.2 1.52 0 18
5/1/2018 220 0.02 2.75 0.12 2.34 0 33.3
7/18/2018 150 0.1 3.1 0.2 0.8 0.05 39.8
10/31/2018 1700 0.2 1.3 0.2 1.5 0.05 11.7
1/29/2019 74 0.17 1.43 0.2 5.6 0.06 3.8
4/2/2019 2400 0.04 1.7 0.44 1.34 0.08 67
7/16/2019 130 0.2 1.6 0.19 0.64 0.11 19.8

Table A3. IBWC North Floodway Water Quality.

Date Bacteria Ammonia TKN TP Nitrate +
Nitrite Chlorophyll-a

11/3/2011 0 0.16 2.03 0.00 2.42 29.70
2/23/2012 0 0.09 0.95 0.21 5.28 35.00
5/3/2012 0 0.13 1.49 0.29 4.47 40.20
8/23/2012 0 0.12 1.04 0.23 2.26 55.70
11/19/2012 0 0.06 1.50 0.59 2.75 42.60
3/12/2013 110 0.16 1.08 0.00 2.68 40.50
8/21/2013 640 0.23 0.89 0.23 2.01 51.40
11/25/2013 7300 0.12 0.68 0.41 3.96 9.50
8/14/2014 0 0.06 1.70 0.00 2.03 82.30
11/24/2014 1100 0.11 1.36 0.34 3.82 44.40
2/25/2015 110 0.13 1.57 0.27 3.08 35.40
3/26/2015 0 0.25 1.66 0.35 6.71 26.00
8/26/2015 1400 0.12 1.84 0.32 3.10 60.20
8/27/2015 0 0.07 1.53 0.26 3.02 76.20
11/30/2015 610 0.19 3.19 0.25 4.98 23.40
5/4/2016 360 0.21 2.01 0.31 4.37 68.30
8/4/2016 0 0.00 0.00 0.27 2.08 20.10
11/2/2016 95 0.05 0.74 0.42 2.98 52.80
2/8/2017 0 0.08 1.72 0.39 4.29 11.00
5/3/2017 75 0.08 1.55 0.27 4.37 2.31
7/25/2017 120 0.05 0.00 0.25 1.07 19.60
11/29/2017 160 0.00 0.00 0.00 0.00 9.94
1/30/2018 20 0.16 0.00 0.29 3.80 6.91
4/18/2018 340 0.05 1.29 0.50 4.43 66.90
7/18/2018 96 0.05 2.30 0.39 2.36 78.10
10/16/2018 300 0.29 1.51 0.57 1.79 72.30
1/23/2019 200 0.10 1.03 0.35 4.67 28.60
4/16/2019 1600 0.05 1.03 0.24 2.65 36.30
11/7/2019 0 0.21 1.20 0.15 2.35 32.60
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Abstract: Eco-efficiency is an important ecological indicator for tracking the progress of how countries’
environmental-adjusted economic activity changes over time. The objective of this research is to
calculate country-level eco-efficiency for a group of 18 major countries (G18) that are part of the
G20. First, the data envelope analysis (DEA) method is used to calculate eco-efficiency scores.
Second, the Malmquist productivity index (MPI) is used to examine how eco-efficiency changes
over time. Eco-efficiency is forecast to the year 2040 using automated forecasting methods under a
business-as-usual (BAU) scenario. Over the period 1997 to 2040, eco-efficiency varies widely between
these countries with some countries reporting positive growth in eco-efficiency and other countries
reporting negative growth. Eco-efficiency leaders over the period 1997 to 2019 and 2019 to 2040
include Australia, Brazil, France, Germany, Great Britain, Italy, Japan, Russia, and the United States.
Laggards include Canada, China, India, and Indonesia. These laggard countries recorded negative
growth rates in eco-efficiency over the period 1997 to 2019 and 2019 to 2040. Negative eco-efficiency
growth points to a worsening of environmental sustainability. Large variations in eco-efficiency
between countries make it more difficult to negotiate international agreements on energy efficiency
and climate change. For the G18 countries, the average annual change in MPI over the period 1997
to 2019 was 0.5%, while the forecasted average annual change over the period 2019 to 2040 was a
0.1% decrease. For the G18 countries, there has been little change in eco-efficiency. The G18 are an
important group of developed and developing countries that need to show leadership when it comes
to increasing eco-efficiency.

Keywords: eco-efficiency; DEA; CO2 emissions; forecasting; ecological indicators

1. Introduction

Ecological efficiency (eco-efficiency) at the country level is an important ecological
indicator for tracking the progress of how countries’ environmental-adjusted economic
activity changes over time [1,2]. The basic idea of eco-efficiency is to produce more goods
and services while using fewer material inputs and generating less waste and pollution. In
1992, the World Business Council for Sustainable Development released their landmark
publication “Changing Course”, which introduced the terminology of eco-efficiency [2].
In the context of climate change at the country level, the eco in eco-efficiency often refers
to CO2 emissions, and this is the definition used in this paper. CO2 emissions is an
important indicator in discussions on climate change and transitioning to a low-carbon
economy [1,3–5]. A positive trend in eco-efficiency indicates that eco-efficiency is increasing
over time, while a negative trend indicates that eco-efficiency is decreasing over time. Eco-
efficiency can be calculated using either non-parametric techniques such as data envelope
analysis (DEA) or parametric methods such as stochastic frontier analysis (SFA) [6]. As
discussed below, each method has its advantages and disadvantages. Changes in eco-
efficiency over time can be analyzed using a Malmquist productivity index (MPI) [1,5,7].
The existing literature on eco-efficiency MPI at the country level reveals there is much room
for improving eco-efficiency [1,5,7].

While the existing literature has calculated eco-efficiency at the country level, there
are still some important unanswered questions. How does eco-efficiency compare across a
large group of CO2-emitting countries? Which countries are experiencing improvements
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in eco-efficiency over time, and which countries are experiencing decreases? What does
the future trend in eco-efficiency look like?

The purpose of this present paper is to estimate and forecast changes in eco-efficiency
over time using the Malmquist productivity index (MPI) for a group of 18 large polluting
countries. These 18 countries along with Saudi Arabia and the European Union form
the group of countries known collectively as the G20. The G20 is an important group
of countries that accounts for 85% of global economic output, two-thirds of the world’s
population, and 75% of international trade [8]. Comprised of important developed and
developing countries that span the world, participation and leadership from the G20 is
vital for international energy and climate change policy [9]. DEA is used to calculate
eco-efficiency, and MPI used to calculate eco-efficiency over time. DEA is a non-parametric
approach that does not specify a parametric functional form between the inputs and outputs
nor does it consider noise in the data [10,11]. SFA is an alternative approach to estimating
eco-efficiency and energy efficiency that requires an explicit parametric functional form
and allows for noise in the data [12–15]. Many existing studies of eco-efficiency use DEA
because it is a more flexible approach, and this is the method used in this paper [10]. The
DEA provides efficiency values for each year. Efficiency is a level concept, and measures
of efficiency can be used to compare the performance of countries at a given point in
time. Efficiency changes (or productivity changes) refer to movements in the efficiency
or productivity of a country over time. To see how efficiency changes across time, these
efficiency values are chained together using MPI [1,5,7]. The MPI is the product of an
efficiency change component and a technical change component. The efficiency change
component measures how a country’s efficiency changes between time periods, and the
technical change component refers to the movement of the efficient frontier between time
periods. The analysis is conducted for the period 1996 to 2040. Actual data are used for
the period 1996 to 2019, and forecasts are used for the period 2020 to 2040. Forecasts of
eco-efficiency are made under a business as usual (BAU) scenario that assumes no major
changes in economic structural or policy changes.

The analysis from this paper reveals some interesting results. Over the period 1997 to
2040, eco-efficiency varies widely between these countries with some countries reporting
positive growth in eco-efficiency and other countries reporting negative growth. Eco-
efficiency leaders over the sub-periods (1997 to 2019 and 2019 to 2040) include Australia,
Brazil, France, Germany, Great Britain, Italy, Japan, Russia, and the United States. Laggards
include Canada, China, India, and Indonesia. These laggard countries recorded negative
growth rates in over the period 1997 to 2019 and 2019 to 2040. Negative eco-efficiency
growth is particularly troublesome because it reflects a worsening of environmental sus-
tainability. Large variations in eco-efficiency between countries make it more difficult to
negotiate international agreements on energy efficiency and climate change.

This paper is organized as follows. The following sections of the paper set out the
literature review, the methods and data, results, and discussion. The last section of the
paper provides the conclusions and some policy implications.

2. Literature Review

This section presents a brief review of the literature on using DEA to estimate eco-
efficiency at the country level. Bianchi et al. [16] use DEA and metafrontier analysis to
measure eco-efficiency in 282 European regions for the period 2006 to 2014. For inputs,
they use the employment rate and domestic material consumption per capita. The output
variable is GDP per capita. They find evidence of an upward trend in eco-efficiency across
European regions, although there is no evidence that regions are converging to similar levels
of eco-efficiency. Halkos and Tzeremes [17] use DEA to calculate environmental efficiency
for 17 OECD countries over the period 1980 to 2002. The main focus of their research
is to test whether a Kuznet’s-like hypothesis exists between environmental efficiency
and income. The capital stock and labor are used as inputs to the DEA model, GDP
is the desirable output, and sulfur emissions is the undesirable output. They do not
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find evidence of such a relationship. Hsieh et al. [18] use DEA to estimate the energy
and environmental efficiency of 29 EU countries for the period 2006 to 2013. In their
DEA analysis, labor, capital, and energy consumption are inputs. GDP is the desirable
output and greenhouse gas emissions and sulfur oxide emission are undesirable outputs.
About half of the countries have room for environmental performance improvements.
Environmental performance is higher in the latter part of the sample period. Somewhat
surprising in this study is that Great Britain, Germany, France, and Italy have relatively low
environmental efficiency scores due to their greenhouse gas emissions and SO2 emissions.
Iftikhar et al. [19] use slacks-based (SBM) DEA to estimate energy and CO2 emissions
efficiency for 26 major countries for the years 2013 and 2014. The inputs are capital, labor,
and energy consumption, while the desirable and undesirable outputs are GDP and carbon
dioxide emissions, respectively. Larger countries with raw material intense production, and
weak carbon laws are the least efficient. In particular, China, India, and Russia have much
room for improvement in eco-efficiency. Lacko and Hajduova [20] study environmental
efficiency among 26 EU countries covering the years 2008 to 2016. CO2 per capita, methane
per capita, and nitrous oxide per capita are the inputs and the output is GDP per capita.
Eastern European countries tend to have low environmental efficiency and England and
Sweden have high environmental efficiency. Climate change and socioeconomic factors are
important drivers of environmental efficiency. Lozowicka [7] uses SBM DEA to analyze
ecological efficiency and MPI in selected EU member states for the years 2005, 2010, and
2015. The input variables include the share of non-renewable energy, the percentage of
the population not connected to wastewater treatment systems, the non-forested land
ratio, and the unprotected area relative to the area of the country. The output variables
include biochemical oxygen demand, the balance of nutrients, index of clean energy, and
population exposed to PM2.5 air pollution. Northern Europe states have the highest eco-
efficiency, while Central and Eastern Europe states have the least. Marti and Puertas [21]
study the efficiency of the ecological footprint and biocapacity of 45 African countries.
They use a variable returns DEA model with ecological footprint and population as the
inputs and GDP as the output. Countries are divided into two groups. One group has a
biocapacity surplus while the other has a deficit. Among the deficit countries, Gambia,
South Africa, Swaziland, Mauritius, and Nigeria are efficient. Angola, Gabon, and Guinea-
Bissau are surplus countries with high efficiency. Moutinho and Madaleno [22] use DEA
to study eco-efficiency for 27 European Union (EU) countries over the period 2008 to
2018. They use a two-step estimation approach where in the first step, eco-efficiency
scores are estimated, and in the second step, a fractional regression is used to estimate
the impact of pollutants per area on eco-efficiency. The output variable is the ratio of
GDP per capita to greenhouse gas emissions per area. The input variables are capital per
capita, labor per capita, energy use per area, electricity use per area, and a temperature
variable. From the second step regression, increases in CO2/area and CH4/area decrease
eco-efficiency. Moutinho et al. [4] use constant returns to scale (CRS) and variable returns
to scale (VRS) DEA to study environmental efficiency for 26 European countries. The DEA
input variables include labor productivity, capital productivity, and non-fossil fuel energy
share. The output variable is GDP per greenhouse gas emissions. The shares of renewable
energy and non-renewable energy sources are important factors explaining differences in
country-level environmental efficiency. Moutinho et al. [5] use CRS and VRS DEA and
MPI to study eco-efficiency in 16 Latin American countries for the time period 1994 to 2013.
The input variables include energy use, population density, labor productivity, renewable
energy consumption share, and capital productivity. The output variable is the ratio of
GDP to CO2 emissions. For most countries, the degree of technical efficiency is lower than
the degree of technological efficiency, indicating that some of the overall inefficiency is
due to producing below the production frontier. Sarkhosh-Sara et al. [23] use network
DEA to measure the sustainability of three groups of countries (high, middle, and low
income). In total, 97 developed and developing countries are studied for the year 2011.
The first stage DEA uses labor, capital, and energy as inputs. GDP is the desirable output,
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and CO2 emissions is the undesirable output. For the second stage of the network analysis,
GDP and population are used as inputs and income class is used as the output variable.
Countries with high and low incomes perform well in the sustainable production stage but
are weak performers in the sustainable distribution stage. Middle-income countries rank
low on sustainable production but are strong performance in the sustainable distribution
stage. Tsai et al. [24] use DEA-based meta frontier analysis to compare environmental
efficiency between 37 European and 36 Asian countries. The input variables include the
labor force, energy consumption, and government expenditures. The desirable output is
GDP, and the undesirable output is CO2 emissions. Mean meta-efficiency tends to be higher
in European countries. Twum et al. [3] use DEA to calculate environmental efficiency for
three Asia-Pacific regions. The desirable output is GDP and the undesirable output is
CO2 emissions. The input variables are the share of renewable energy and total patent
applications. They find that East Asia is highly efficient, while South East Asia is the least
efficient. They find evidence of an inverted U-shaped relationship between environmental
efficiency and technological innovation. Wang et al. [1] use slacks-based DEA and MPI
to investigate eco-efficiency for 17 European countries for the years 2013 to 2017. The
desirable output variable is GDP per capita and the undesirable output is CO2 emissions
per capita. The input variables are energy consumption per capita, labor productivity,
share of renewable energy consumption, and capital formation productivity. Nine of the 17
countries were found to have an eco-efficiency score of 1. As a group, the countries lacked
eco-efficiency over the period 2013 to 2017. The lack of eco-efficiency comes mostly from a
lack of technological progress.

In summary, while there is literature studying eco-efficiency at the country level for
various groups of countries, there is no study that explicitly focuses on G18 eco-efficiency
and how G18 eco-efficiency will evolve into the future.

3. Methods and Data
3.1. The DEA Method

DEA is a popular approach for analyzing eco-efficiency [6]. In order to account for
non-radial adjustments in the inputs and outputs, a DEA slack-based model (SBM) is
used [25]. The output variable is production-based CO2 productivity as measured by the
ratio of output to CO2 emissions [5,26] and the four inputs are the capital to labor ratio, the
output to labor ratio, the capital to energy ratio, and the share of non-fossil fuels in energy
consumption. This choice of variables is based on related work that estimates ecological
efficiency at the country level [4,5].

The basic set up of the model is as follows. The four inputs and output are represented
by x ∈ Rm and y ∈ Rs1, respectively. For a collection of n DMUs, define the following
matrices: X = [x1, . . . , xn] ∈ Rm x n and Y = [y1, . . . , yn] ∈ Rs x n. Assume that X > 0 and
Y > 0.

The production possibility set, P, is:

P = {(x, y)|x ≥ Xλ, y ≤ Yλ, λ ≥ 0}. (1)

In Equation (1), the intensity vector is λ, and P corresponds to constant returns to scale
(CRS) technology. Variable returns to scale can be obtained by adding the constraint that
the sum of the elements in λ equal unity. A DMU (x0, y0) is efficiency if there is no vector
(x, y ) ∈ P such that x0 ≥ x and y0 ≤ y and there is at least one strict inequality. The SBM is:

[SBM] ε = min
1− 1

m ∑m
i=1

s−i
xi0

1 + 1
s ∑S

i=1
s+r
yi0

. (2)

Subject to:
x0 = Xλ + s− (3)
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y0 = Yλ− s+ (4)

s− ≥ 0, s+ ≥ 0, λ ≥ 0. (5)

The vectors s− and s+ refer to the excess in inputs and the shortage of output, respec-
tively. The objective function in (2) satisfies 0 < ε ≤ 1. Eco-efficiency is represented by ε
with higher values indicating a higher level of eco-efficiency.

Changes in eco-efficiency over time can be estimated using the Malmquist productivity
index (MPI) [27,28]. The MPI is the product of a catch-up effect and a frontier-shift effect [7].
The catch-up effect refers to how much a DMU improves or worsens its efficiency over time
and is sometimes referred to as the efficiency change component (EFFCH). The frontier-
shift effect is the change in the efficient frontier over time and is sometimes referred to as
the technical change component (TECH).

MPI = (Catch− up)(Fronter− shi f t) (6)

Catch− up =
ε o f DMUt+1

0 wrt period t + 1 f rontier
ε o f DMUt

0 wrt period t f rontier
(7)

Frontier− shi f t =

=

√
ε o f DMUt

0 wrt period t f rontier
ε o f DMUt

0 wrt period t+1 f rontier ·
ε o f DMUt+1

0 wrt period t f rontier
ε o f DMUt+1

0 wrt period t+1 f rontier

(8)

In Equations (7) and (8), the combination of letters wrt denotes “with respect to”. A
change in catch-up greater than unity means that the efficiency of a DMU in period t + 1
is greater than the efficiency in period t. Thus, there has been a relative improvement in
efficiency. A change in frontier shift greater than unity means that the efficient frontier
in period t + 1 is higher than in period t. This indicates technological innovation. Total
productivity change is the product of catch-up and frontier-shift. The DEA estimations in
this paper were done using the R programing language [29] and the DJL package [30].

3.2. Forecasting

In order to provide forecasts of eco-efficiency to the year 2040, forecasts of the DEA
inputs and output need to be made. Since the data have a relatively short time span (annual
data from 1996 to 2019), methods suited to forecasting short time series data sets are
used. These methods include ETS, ARIMA, TBATS, and THETA [31]. ETS, which is based
on exponential smoothing, is a state-space model with error (E), trend (T), and seasonal
(S) components. The tradeoff between these components is controlled by smoothing
parameters, and the optimal smoothing parameters can be determined using an automatic
search algorithm. ARIMA is the acronym for autoregressive integrated moving average.
While ETS models describe the trend and seasonality in the data, ARIMA models describe
the autocorrelations in the data. The selection of the best-fitting ARIMA model can be
easily achieved through a search algorithm. ETS and ARMA models are widely used in
forecasting. The TBATS refers to an exponential smoothing state space model with Box-Cox
transformations, ARMA error, trend and seasonal components. TBATS is estimated using a
fully automatic modeling approach. The THETA model is equivalent to simple exponential
smoothing with drift. The ETS, ARIMA, TBATS, and THETA models can be considered as
examples of machine learning, since for each model, a fully automated search algorithm is
used to find the best-fitting model. In order to reduce the dependence on forecasts from
any one model, an average forecast is computed. Averaging forecasts often works well
in practice [31]. The average forecast from these methods is referred to as the business as
usual (BAU) scenario. Forecasting was done using the R package fpp2 [32].

The approach taken to forecasting in this paper is similar to the approach taken
by international agencies such as the International Energy Agency (IEA) in their World
Energy Outlook [33] and the US Energy Information Agency (EIA) in their Annual Energy
Outlook [34] where they make long-term projections (20–30 years or so) for energy demand.
A reference case, base case, or business as usual (BAU) scenario is taken as the benchmark
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where past data trends are assumed to continue into the future, and policy assumptions
are assumed to be fixed. The forecasting methods used in this paper are useful for creating
forecasts under a BAU scenario.

3.3. Data

Country-level data on CO2 emissions, GDP, labor, capital, energy consumption, and
non-fossil fuel energy consumption are required for the analysis. Data on GDP (real GDP
in millions of 2011 US dollars: gdpna), capital (capital stock in millions of 2011 US dollars:
rnna), and labor force (number of persons employed in millions: emp) come from the
Penn World Tables (PWT 9.1) [35]. Data on CO2 emissions (millions of tonnes) from the
consumption of energy, energy (fossil fuel and non-fossil fuel) consumption (Exajoules), and
non-fossil fuel energy consumption (Exajoules) come from the BP Statistical Review [36].
CO2 emissions from the consumption of energy include emissions that result from the
consumption of petroleum, natural gas, and coal and from natural gas flaring. Total energy
consumption includes coal, natural gas, petroleum and other liquids, nuclear, renewables,
and other. The 18 countries included in this study include Argentina (ARG), Australia
(AUS), Brazil (BRA), Canada (CAN), China (CHN), France (FRA), Germany (DEU), India
(IND), Indonesia (IDN), Italy (ITA), Japan (JPN), South Korea (KOR), Mexico (MEX), Russia
(RUS), South Africa (ZAF), Turkey (TUR), Great Britain (GBR), and the United States of
America (USA). These 18 countries along with the European Union and Saudi Arabia form
the group of countries known as the G20. The dataset covers the years 1996 to 2019. Saudi
Arabia is not included in the analysis because the share of non-fossil fuel energy is very
low (close to zero). The dataset starts in 1996 to accommodate the breakup of the Former
Soviet Union in 1991 and the turmoil that followed for those countries involved.

The inputs to the DEA analysis are the capital to labor ratio (klratio), output to
labor ratio (ylratio), capital to energy ratio (keratio), and non-fossil fuel share of energy
(nffshare). The output variable in the DEA analysis is labeled eco and is measured by
GDP/CO2 emissions.

The time-series pattern of production-based CO2 productivity varies considerably
between countries (Figures 1–3). Actual data are recorded up to and including 2019, after
which time forecasts are shown (Figures 1–3; Table 1). In order for production-based CO2
productivity to be increasing over time, GDP must grow faster than CO2 emissions.
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Table 1. Summary statistics for GDP/CO2 (US dollars per tonne of CO2 emissions).

2000 2010 2020 2030 2040 GR1 Rank GR2 Rank

ARG 5422.53 5694.28 5533.80 5534.30 5541.13 0.39 16 −0.03 17
AUS 2197.85 2653.32 3119.50 3513.58 3926.51 1.64 8 1.17 7
BRA 6648.00 7187.09 6889.25 6870.16 6865.03 0.03 17 −0.02 16
CAN 2445.83 2927.63 3405.59 3809.89 4213.27 1.69 7 1.06 8
CHN 1774.02 1712.71 2098.46 2123.93 2147.78 1.25 11 0.12 13
DEU 3992.10 4743.18 6286.36 7461.81 8772.57 2.66 4 1.57 4
FRA 6103.18 7316.91 10038.14 12078.57 14397.68 2.57 5 1.78 3
GBR 3875.79 4852.46 8055.22 10591.27 13127.32 3.80 1 2.48 1
IDN 4348.61 4555.83 4885.15 4893.71 4904.26 −0.78 18 −0.02 15
IND 2836.82 3143.15 3727.49 4087.08 4446.67 1.39 10 0.88 11
ITA 5508.29 6174.88 7656.65 8379.11 9152.01 1.48 9 0.89 10
JPN 3554.71 3893.36 4568.16 4932.84 5297.52 1.09 13 0.73 12
KOR 2432.16 2863.68 3495.61 4018.35 4541.09 2.11 6 1.33 5
MEX 4755.46 4394.05 5281.04 5232.37 5222.25 0.67 15 −0.06 18
RUS 1510.82 2357.20 2686.68 3091.27 3470.76 3.26 2 1.30 6
TUR 4523.68 4998.02 5826.36 5889.67 5952.98 1.02 14 0.08 14
USA 2463.67 3062.75 4225.92 5257.28 6444.34 2.76 3 2.10 2
ZAF 1223.90 1341.53 1561.66 1714.58 1867.85 1.22 12 0.95 9

GR1 and GR2 are the average annual growth rates from 1996 to 2019 and 2019 to 2040, respectively.

In 2020, the countries with the highest values of GDP per unit of CO2 were France,
Great Britain, Italy, Brazil, and Germany. The countries with the lowest values were South
Africa, China, Russia, Australia, and Canada. Notice that the economics of four of these
countries (South Africa, Russia, Australia, and Canada) are heavily reliant on natural
resource extraction. These rankings are mostly unchanged in 2040. In 2040, the countries
with the highest values of GDP per unit of CO2 are France, Great Britain, Italy, Germany,
and Brazil. As in the case of 2020, the countries with the lowest values of GDP per unit of
CO2 in 2040 are South Africa, China, Russia, Australia, and Canada. In general, production-
based CO2 productivity tends to be low in countries that have a large amount of mineral or
fossil fuel resource extraction (Australia, Canada, South Africa, Russia). Canada, Australia,
Russia, and South Africa are sometimes referred to as the CARS group of countries.

Great Britain, Russia, the United States, Germany, and France have recorded the
highest growth rates in GDP per unit of CO2 over the period 1996 to 2019 (Table 1). The
lowest growth rates were recorded for Indonesia, Brazil, Argentina, Mexico, and Turkey.
Over the period 2019 to 2040, the countries with the highest growth rates are Great Britain,
United States, France, Germany, and South Korea. The countries with the lowest growth
rates are Mexico, Argentina, Indonesia, Brazil, and Turkey. Four of these countries (Mexico,
Argentina, Indonesia, Brazil) recorded negative growth rates, indicating that production-
based CO2 productivity is expected to decline over the period 2019 to 2040.

Each country in the G7 has experienced an increase in production-based CO2 produc-
tivity, but the rate of increase varies considerably (Figure 1). Great Britain has the highest
growth in production-based CO2 productivity over both periods (1996 to 2009 and 2009 to
2040). France has the highest production-based CO2 productivity and one of the highest
growth rates of the countries studied. Japan has the lowest growth rate of production-based
CO2 productivity in the G7 over the period 2019 to 2040.

Among the BRICS, Brazil has the highest production-based CO2 productivity
(Figure 2). Over the period 2019 to 2040, Russia and South Africa experience the fastest
growth. Brazil recorded the slowest growth in production-based CO2 productivity.

For the remaining group of countries, Australia and South Korea have low values of
production-based CO2 productivity (Figure 3). Notice that over the period 2019 to 2040,
Australia and South Korea also have the highest growth rates of production-based CO2
productivity in this group of countries.

Summary statistics for the inputs and output to the DEA analysis are shown in
Table 2. Each variable is increasing over time. Between 2000 and 2020, production-based

98



Sustainability 2021, 13, 11196

CO2 productivity grew the greatest followed by the capital to energy ratio. The slowest
growth was observed for the share of non-fossil fuels. In the BAU scenario, each variable
grows less over the period 2020 to 2040 than it did over the 2000 to 2020 period. For each of
the years shown, the coefficient of variation (CV) shows that the non-fossil fuel share has
the greatest amount of variability. For most of the years shown, eco has the least variability.

Table 2. Summary statistics.

2000 klratio ylratio keratio nffshare eco

mean 277,076.531 56,563.527 964,298.382 0.148 3645.413
min 21,421.861 6647.760 371,245.827 0.034 1223.902
max 685,330.501 103,538.244 2,096,226.960 0.440 6648.001
sd 181,172.821 32,356.395 444,240.280 0.126 1633.171
CV 0.654 0.572 0.461 0.853 0.448

2010 klratio ylratio keratio nffshare eco

mean 312,698.881 63,813.004 1,083,100.190 0.155 4104.001
min 42,319.065 11,167.207 405,927.151 0.027 1341.533
max 743,960.972 119,401.134 2,532,021.912 0.456 7316.906
sd 195,609.458 32,417.909 529,437.749 0.128 1751.996
CV 0.626 0.508 0.489 0.824 0.427

2020 klratio ylratio keratio nffshare eco

mean 338,651.529 69,381.077 1,276,345.426 0.181 4963.391
min 73,993.932 19,033.970 537,705.879 0.045 1561.656
max 739,140.772 131,053.041 2,992,167.107 0.486 10,038.137
sd 190,770.768 33,649.249 647,702.338 0.126 2227.819
CV 0.563 0.485 0.507 0.697 0.449

2030 klratio ylratio keratio nffshare eco

mean 363,826.895 74,172.020 1,388,752.686 0.190 5526.655
min 105,706.833 26,265.436 558,296.433 0.044 1714.577
max 756,740.844 141,610.885 3,224,594.427 0.489 12,078.572
sd 194,533.247 34,807.152 719,988.070 0.128 2729.977
CV 0.535 0.469 0.518 0.672 0.494

BAU

2040 klratio ylratio keratio nffshare eco

mean 392,150.585 78,910.716 1,504,329.735 0.201 6127.279
min 147,150.042 29,204.619 578,886.988 0.044 1867.851
max 774,340.915 150,934.140 3,457,021.748 0.492 14,397.679
sd 200,686.796 36,051.050 805,171.877 0.134 3364.628
CV 0.512 0.457 0.535 0.666 0.549

GR1 1.003 1.021 1.402 1.006 1.543
GR2 0.733 0.644 0.822 0.507 1.053

Klratio (US dollars per worker), ylratio (US dollars per worker), keratio (millions of US dollars per
Exajoules), nffshare (a ratio between 0 and 1), and eco (US dollars per tonne of CO2 emissions). BAU
is the business-as-usual scenario. GR1 and GR2 are the average annual growth rates from 2000 to
2020 and 2020 to 2040. CV is the coefficient of variation.

4. Results

The eco-efficiency MPI for the G18 in the BAU scenario shows the highest average
value in 2000 (1.020) and lowest value in 2010 (0.973) (Table 3). The drop in the average
value of the MPI between 2000 and 2010 was likely due to the global financial crisis (2008–
2009). The G18 mean value recovers after 2010 and records a value of 1.00 in 2040. Table 3
presents country-specific geometric mean values for the complete sample period (1997 to
2040) as well as two sub-periods. Calculations for the first sub-period (1997 to 2019) use
the actual data to calculate MPI. Calculations for the second sub-period (2019 to 2040) use
the forecasted values to calculate MPI. For the G18 countries, the average annual change in
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MPI over the period 1997 to 2019 was 0.5%, while the forecasted average annual change
over the period 2019 to 2040 was a 0.1% decrease. Over the complete sample (1997 to 2040),
the average annual change in MPI was 0.2%. For the G18 countries, there has been little
change in eco-efficiency.

Table 3. Eco-efficiency MPI for the BAU scenario.

2000 2010 2020 2030 2040 Geom1 Rank Geom2 Rank Geom3 Rank

ARG 0.974 1.030 0.997 1.001 1.000 1.003 11 1.000 11 1.002 10
AUS 1.002 0.944 1.003 1.003 1.003 1.012 7 1.002 8 1.008 7
BRA 1.031 0.970 1.001 1.000 1.000 1.001 12 1.001 10 1.000 12
CAN 1.019 0.678 0.988 0.970 0.983 0.940 18 0.964 17 0.951 17
CHN 0.969 0.912 0.954 0.910 0.963 0.957 17 0.916 18 0.936 18
DEU 1.023 1.016 0.996 1.013 1.009 1.021 4 1.017 5 1.017 5
FRA 1.050 0.999 1.014 1.018 1.016 1.050 1 1.019 3 1.035 2
GBR 1.028 1.010 1.031 1.020 1.015 1.050 2 1.022 2 1.036 1
IDN 0.987 0.921 1.006 0.992 0.993 0.977 16 0.990 14 0.985 15
IND 0.994 0.977 1.007 0.988 0.986 0.980 15 0.988 16 0.984 16
ITA 1.044 0.992 1.014 1.029 1.005 1.014 5 1.036 1 1.024 4
JPN 1.004 1.009 0.999 1.006 1.006 1.005 9 1.005 7 1.005 8
KOR 1.016 0.999 1.015 1.003 1.004 0.998 13 1.001 9 1.000 11
MEX 1.170 0.999 1.010 0.999 1.000 1.007 8 1.000 12 1.004 9
RUS 1.098 1.049 1.041 1.012 1.007 1.031 3 1.019 4 1.026 3
TUR 0.989 1.009 1.003 0.991 0.991 1.004 10 0.990 15 0.998 13
USA 1.014 1.008 1.000 1.010 1.014 1.014 6 1.008 6 1.011 6
ZAF 0.954 0.986 1.004 1.000 1.000 0.990 14 1.000 13 0.995 14

mean 1.020 0.973 1.005 0.998 1.000 1.005 0.999 1.002

Geometric mean computed for the periods 1997 to 2019, 2019 to 2040, and 1997 to 2040 denoted by
geom1, geom2, and geom3, respectively. Rank refers to the ranking of the geomean.

Over the period 1997 to 2019, countries that recorded geometric mean values of MPI
greater than unity include Argentina, Australia, Brazil, Germany, France, Great Britain,
Italy, Japan, Mexico, Russia, Turkey, and the USA. France, Great Britain, and Russia record
the three highest geometric mean values. Canada, China, India, Indonesia, Korea, and
South Africa recorded negative average growth over this time period. Notice that the
ranking of geometric mean values does not separate clearly on country income grouping.
Russia, an emerging economy, has a high geometric mean value, while Canada, a developed
G7 country, has a low value. The results change slightly over the second sub-period 2019 to
2040, as most countries experience lower MPI growth. One of the biggest differences is that
South Korea now has a geometric mean value greater than one. For the period 1997 to 2040,
Argentina, Australia, Germany, France, Great Britain, Italy, Japan, Mexico, Russia, and the
United States each have improved their MPI. Over the period 1997 to 2040, the highest
MPI growth is observed for Great Britain, France, and Russia, while the lowest growth is
observed for Canada, China, India, Indonesia, Turkey, and South Africa. Notice that China
and India, the two largest countries in the world by population, are experiencing a decline
in MPI over the time period 1997 to 2040.

The G18 average catch-up value is highest in 2010 and lowest in 2040 (Table 4). The
G18 experienced an increase in catch-up over the periods 1997–2019 and 1997–2040. The
average catch-up effect is positive over the period 1997 to 2019 but negative over the period
2019 to 2040.
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Table 4. Eco-efficiency catch-up for the BAU scenario.

2000 2010 2020 2030 2040 Geom1 Rank Geom2 Rank Geom3 Rank

ARG 1.000 1.000 1.000 1.000 1.000 1.000 15 1.000 9 1.000 14
AUS 1.018 0.968 0.964 1.005 1.002 1.009 10 1.005 4 1.006 10
BRA 1.000 1.000 1.000 1.000 1.000 1.000 12 1.000 6 1.000 11
CAN 1.000 1.000 1.000 0.949 0.982 1.000 13 0.970 17 0.985 17
CHN 1.000 1.000 1.000 1.000 0.963 1.000 13 0.961 18 0.980 18
DEU 1.026 1.034 0.998 1.003 1.003 1.034 6 1.007 3 1.019 4
FRA 1.046 1.811 1.000 1.000 1.000 1.036 5 1.000 10 1.019 5
GBR 1.026 1.063 1.000 1.000 1.000 1.051 2 1.000 14 1.026 2
IDN 1.000 1.000 1.000 1.000 1.000 1.000 17 1.000 12 1.000 15
IND 1.000 1.000 1.000 1.000 1.000 1.000 16 1.000 11 1.000 13
ITA 1.000 1.000 1.000 1.000 0.997 1.048 3 0.984 16 1.017 7
JPN 1.002 1.030 0.978 1.007 1.006 1.026 8 1.007 2 1.016 8
KOR 1.017 0.983 1.012 1.004 1.003 1.015 9 1.003 5 1.010 9
MEX 1.261 1.000 1.000 1.000 1.000 1.033 7 1.000 7 1.017 6
RUS 1.092 1.054 1.084 1.000 1.000 1.061 1 1.014 1 1.038 1
TUR 1.026 1.018 1.007 0.988 0.989 0.998 18 0.986 15 0.994 16
USA 1.045 0.994 1.000 1.000 1.000 1.041 4 1.000 8 1.021 3
ZAF 1.000 1.000 1.000 1.000 1.000 1.000 11 1.000 12 1.000 12

mean 1.031 1.053 1.002 0.998 0.997 1.025 0.997 1.012

Geometric mean computed for the periods 1997 to 2019, 2019 to 2040, and 1997 to 2040 denoted by
geom1, geom2, and geom3, respectively. Rank refers to the ranking of the geomean.

Countries that have an increase in catch-up over all three sub-periods include Aus-
tralia, Germany, Japan, Korea, and Russia. In other words, only five of the 18 countries
studied improved their eco-efficiency catch-up over all three sub-periods.

The G18 average frontier-shift value is highest in 2020 and 2040 and lowest in 2010
(Table 5). As a group, the G18 recorded an increase in frontier-shift in the 2019 to 2040
sub-period but not in the 1997 to 2019 or 1997 to 2040 periods. Countries that showed an
increase in frontier-shift growth over the period 2019 to 2040 are Brazil, Germany, France,
Great Britain, Italy, Russia, Turkey, and the United States. Eight out of eighteen countries
report an increase in frontier-shift over the period 2019 to 2040.

Table 5. Eco-efficiency frontier shift for the BAU scenario.

2000 2010 2020 2030 2040 Geom1 Rank Geom2 Rank Geom3 Rank

ARG 0.974 1.030 0.997 1.001 1.000 1.003 4 1.000 9 1.002 6
AUS 0.985 0.976 1.040 0.997 1.001 1.004 3 0.997 14 1.002 5
BRA 1.031 0.970 1.001 1.000 1.000 1.001 5 1.001 8 1.000 7
CAN 1.019 0.678 0.988 1.022 1.000 0.940 18 0.994 15 0.965 17
CHN 0.969 0.912 0.954 0.910 1.000 0.957 17 0.953 18 0.955 18
DEU 0.997 0.982 0.999 1.010 1.007 0.987 8 1.010 4 0.998 8
FRA 1.004 0.551 1.014 1.018 1.016 1.013 1 1.019 3 1.016 1
GBR 1.002 0.950 1.031 1.020 1.015 0.999 6 1.022 2 1.009 2
IDN 0.987 0.921 1.006 0.992 0.993 0.977 12 0.990 16 0.985 15
IND 0.994 0.977 1.007 0.988 0.986 0.980 10 0.988 17 0.984 16
ITA 1.044 0.992 1.014 1.029 1.008 0.967 16 1.053 1 1.007 3
JPN 1.002 0.980 1.022 0.999 1.000 0.980 11 0.998 13 0.990 12
KOR 0.999 1.016 1.004 0.999 1.001 0.983 9 0.999 12 0.991 10
MEX 0.928 0.999 1.010 0.999 1.000 0.976 13 1.000 10 0.987 14
RUS 1.006 0.995 0.961 1.012 1.007 0.972 15 1.005 6 0.988 13
TUR 0.964 0.991 0.996 1.003 1.002 1.006 2 1.003 7 1.005 4
USA 0.970 1.014 1.000 1.010 1.014 0.974 14 1.008 5 0.990 11
ZAF 0.954 0.986 1.004 1.000 1.000 0.990 7 1.000 11 0.995 9

mean 0.990 0.940 1.003 1.000 1.003 0.988 1.002 0.995

Geometric mean computed for the period 1997 to 2019, 2019 to 2040, and 1997 to 2040 denoted by
geom1, geom2, and geom3 respectively. Rank refers to the ranking of the geometric mean.
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5. Discussion

The analysis in the previous section shows that twelve out of eighteen countries
recorded average annual changes in eco-efficiency MPI greater than unity over the period
1997 to 2020 (Table 3). The average eco-efficiency MPI over this period for the G18 was,
at 0.5%, low. Eco-efficiency leaders over this period include France, Great Britain, Russia,
Germany, Italy, and the United States. Germany, France, Great Britain, and Italy benefited
from the European Union’s 2020 Climate and Energy Package, which aims to reduce
greenhouse gas emissions 20% from 1990 levels, target 20% of EU energy from renewables,
and accomplish a 20% improvement in energy efficiency by the year 2020 [37]. Great
Britain’s performance is partly due to fuel switching and reduced fuel consumption. Great
Britain has moved to a cleaner fuel mix in electricity generation as coal was switched for
natural gas and renewables [38]. Reduced fuel consumption by business and industry also
contributed to the reduction in carbon dioxide emissions. However, Great Britain’s decision
to exit the European Union (BREXIT) may weaken the stimulus and incentive for further
eco-efficiency improvements. In addition, Germany’s success comes from cross-partisan
policy consistency, shared goals between political leaders and renewable energy advocates,
a strong social movement for renewable energy, and decentralized energy policies [39].
These results are consistent with the results of Midova et al. [40], who study low-carbon
scenarios of six northwest European countries (Netherlands, Germany, France, Denmark,
the UK, and Belgium). In ranking these countries on ten criteria regarding low-carbon
energy scenario design, Germany comes out on top followed by the UK. France’s reliance
on nuclear energy for electricity generation has helped to reduce carbon emissions but has
also reduced technological innovation for other renewable energy sources. [41]. Russia’s
growth in eco-efficiency is related to the modernizing of the economy after the breakup of
the Soviet Union. The United States benefits from economy-wide technical progress and, at
times, environmentally favorable US presidency.

The eco-efficiency laggards over the period 1997 to 2019 include Canada, China, India,
and Indonesia. Canada is a developed country with a large resource extraction sector.
China, India, and Indonesia are populous fast-growing countries where economic growth
has taken priority over environmental stewardship.

Predicting eco-efficiency into the future under a BAU scenario shows that between
2019 and 2040, the average annual rate of change in MPI, catch-up, and frontier shift is
forecast at −0.1%, −0.3%, and 0.2%, respectively. A slowdown in technical efficiency is
predicted to be the main reason for the decline in MPI. However, these numbers are small,
indicating that even for countries where eco-efficiency MPI growth is positive, the practical
impact on eco-efficiency is likely to be insignificant.

There are some limitations to this research. The forecasts for the period 2020 to 2040
were conducted under a BAU scenario, which assumes existing data trends continue into
the future and there are no major changes in policy or economic structure. Small changes in
the growth rate (1% or 2%) of the DEA input variables and output will have a small impact
on the efficiency scores and the MPI calculations. Large changes in energy policy, the
energy mix, and CO2 emissions reductions could lead to higher eco-efficiency than those
reported in the BAU scenario. Then, the question becomes, how likely is it that these large
changes occur? Recent research by the IPCC indicates that climate change is widespread,
rapid, and intensifying [42]. A substantial increase in eco-efficiency would require the G18
to quickly enact long-term energy policy aimed at greatly reducing fossil fuel consumption.
Future research could look into conducting further scenario analysis to account for major
changes in clean energy policy. Additional analysis could also be conducted on the choice
of DEA model.

6. Conclusions and Policy Implications

Since the 1992 World Business Council for Sustainable Development publication
“Changing Course”, eco-efficiency has been an important indicator for the discussion on
environmental sustainability. The focus of this research is to study how eco-efficiency has
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changed over time and is likely to change in the future for a group of 18 major countries
(G18) that are part of the G20. DEA is used to estimate eco-efficiency, and these values
are used in constructing an eco-efficiency Malmquist productivity index, which is a useful
ecological indicator. Analysis is conducted over the period 1996 to 2040 with actual data
being used for the period 1996 to 2019 and forecasted data for the years 2020 to 2040.

For the G18, the average annual growth in MPI over the period 1997 to 2019 was 0.5%.
Over this same time period, catch-up and frontier shift average annual growth rates were
2.5% and −0.2%, respectively, indicating that efficiency change was growing positively
while technical change was regressing. Over the forecast period, 2019 to 2040, the average
annual rate of change in MPI, catch-up, and frontier shift is forecast at −0.1%, −0.3%, and
0.2%, respectively. These values indicate that a slowdown in efficiency change is forecast to
be the main reason for the decline in MPI. However, the small magnitude of these numbers
indicates that even when eco-efficiency MPI growth is positive, the practical impact on
eco-efficiency is likely to be slight.

Eco-efficiency leaders over the period 1997 to 2019 and 2019 to 2040 include Australia,
Brazil, France, Germany, Great Britain, Italy, Japan, Russia, and the United States. Laggards
include Canada, China, India, and Indonesia. These laggard countries recorded negative
growth rates in eco-efficiency over the period 1997 to 2019 and 2019 to 2040. These results
are important in establishing not only what country-level eco-efficiency currently looks
like but also what eco-efficiency is likely to look like in the future.

There are several policy implications stemming from this research. First, increasing
eco-efficiency should be a top priority for all G18 countries. A positive trend in eco-
efficiency is desirable from an environmental sustainability perspective, but it does not
mean that substantial increases in eco-efficiency are being realized or that there is no room
for further improvement. It could be that eco-efficiency is increasing but at such a slow rate
that improvements are only marginal. This is consistent with the current values of G18 eco-
efficiency and future predictions as presented in this paper. In such cases, even countries
with positive eco-efficiency growth could still fall well short of meeting their nationally
determined contributions (NDCs) targets, as specified under the Paris climate change
agreement [43]. Countries need to prioritize increasing eco-efficiency to the forefront of
economic policy making. One way to do this is to incorporate environmental sustainability
into industrial policy so that future economic growth embodies environmental quality.
For example, industrial policy could be focused on developing composite materials that
are more lightweight and less energy intensive to construct, and there could be a greater
emphasis on life-cycle analysis. The transportation sector should move away from fossil
fuel-powered engines to electric motors that use electricity generated from renewable
energy sources. Second, the large variations in eco-efficiency between countries make
it more difficult to negotiate international agreements on energy efficiency and climate
change. In general, it is easier to gain consensus on policy matters when the members share
a common ground. Third, the G18 are an important group of developed and developing
countries that need to show leadership when it comes to increasing eco-efficiency. The
G20 countries need to establish a non-partisan environment ministry that is focused on
designing and implementing aggressive goals on increasing eco-efficiency, which are
consistent with the UN’s SDGs. Under the current G20 structure, the chair of the G20 rotates
on a yearly basis, and this offers little in the way of substantial long-term commitment
to environmental policy [44]. Hopefully, the impact of COVID, record hot temperatures
in 2021, and the latest IPCC research on the effects of climate change will provide the
appropriate stimulus for the G20 to take environmental sustainability more seriously.
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Abstract: Various modeling approaches have been suggested for the modeling and simulation of
gasification processes. These models allow for the prediction of gasifier performance at different
conditions and using different feedstocks from which the system parameters can be optimized to
design efficient gasifiers. Complex models require significant time and effort to develop, and they
might only be accurate for use with a specific catalyst. Hence, various simpler models have also
been developed, including thermodynamic equilibrium models and empirical models, which can
be developed and solved more quickly, allowing such models to be used for optimization. In this
study, linear and quadratic expressions in terms of the gasifier input value parameters are developed
based on linear regression. To identify significant parameters and reduce the complexity of these
expressions, a LASSO (least absolute shrinkage and selection operator) shrinkage method is applied
together with cross validation. In this way, the significant parameters are revealed and simple models
with reasonable accuracy are obtained.

Keywords: biomass gasification; machine learning; computer modeling; computer simulation;
regression; model reduction; LASSO

1. Introduction

The gasification of biomass allows for the production of syngas, consisting of hydrogen
and carbon monoxide, which can be used as fuel or converted to other products. This is
a renewable source of energy which can take various types of biomass, including wood,
straw, and various crop residues, such as shells or husks etc.

To aid the design of gasification systems, modeling can be used to avoid the cost of
expensive experiments for the prediction of output composition using different feedstocks
and under various operating conditions [1]. The review of Patra and Sheth mentions
several categories of model biomass gasifiers including more complex models based on
kinetic rate expressions or computational fluid dynamics, in addition to relatively simpler
models based on thermodynamic equilibrium assumptions and empirical models based on
artificial neural networks [1]. In addition, they mention the possibility of modeling inside a
process simulator such as Aspen Plus, which may include kinetic or equilibrium models,
for example, inside the process units or associated subroutines [1]. For example, Safarian
et al. simulated a gasification process in Aspen Plus using a Gibbs reactor to calculate the
equilibrium point minimizing the Gibbs free energy [2]. Marcantonio et al. also modeled
gasification using a Gibbs reactor inside Aspen Plus, which they compared against a more
accurate kinetic model simulated in MATLAB [3].

To avoid the complexities associated with kinetic and CFD (computational fluid dy-
namics) models, a large number of studies have focused on equilibrium models, artificial
neural networks, and other empirical or semi-empirical models which allow for the fast
simulation, sensitivity analysis, and optimization of gasification systems. However, equi-
librium models are known to have some inaccuracy because the real gasifier does not
necessarily reach equilibrium and can lead to an overestimation of the hydrogen and
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carbon monoxide content of producer gas and an underestimation of methane content [4].
To address this inaccuracy, a number of studies have proposed adding correction factors or
correlations to the equilibrium models to make the results closer to reality as detailed in
the review of Ferreira et al. [5].

Despite this progress, recent studies have shown that even with corrections added,
the equilibrium models still show some deviation from experimental values, leaving room
for improvement [6]. Alternatively, artificial neural networks can also be utilized to predict
the performance of gasifiers as shown by Baruah et al. [7]. Although they are shown
to give relatively accurate predictions, this is achieved by limiting the study to woody
biomass in small scale downdraft gasifiers [7]. Pandey et al. also show that an artificial
neural network can achieve accurate predictions, but in that case, limited to predicting the
results for gasification of municipal waste from a single lab-scale fluidized bed reactor [8].
Additionally, artificial intelligence-based machine learning has also been applied to predict
the output of a downdraft gasifier in the form of least-squares support vector machines [9].
Although these and other artificial intelligence have shown high accuracy, the resulting
models generally do not identify which parameters are important and their fitting requires
the identification and fitting of a relatively large number of parameters (e.g., weights and
bias values in the fitted equations). For example, the neural network of Baruah et al. for
predicting the hydrogen content requires 25 parameters and 41 parameters for predicting
the carbon monoxide content [7]. Although the sensitivity with respect to different inputs
is not required for building this type of model, the relative impact of different inputs is
calculated and shown in the study of Puig-Arnavat et al., for example, showing that carbon
content of the feed biomass has a big effect on CO (carbon monoxide) gas yield [10].

Alternatively, simpler empirical expressions have also been considered for predicting
the product gas composition as a function of the gasifier inputs and operating conditions.
These have the advantage that they will typically have fewer parameters to fit, but the
resulting model may be less accurate. For example, Chavan et al. compared a power-law
type empirical formula against artificial neural networks for the prediction of gas produc-
tion rate and heating value of gas products from coal gasification and showed that while
both methods give a good fit, the artificial neural network method was slightly more accu-
rate [11]. For the case of biomass gasification, the study of Chee looks at the experimental
evaluation of a downdraft biomass gasifier and proposes various linear and non-linear
correlation equations to predict outlet conditions [12]. However, these correlations are
in terms of only a single inlet property and are obtained by varying only that parameter
experimentally, so they cannot be used when more than one input is varied [12]. In another
example, Pradhan et al. developed a number of thermodynamic models then fitted linear
expressions to predict the results of the best fitting thermodynamic model [13]. They show
that the linear models can adequately predict the output of the equilibrium model but do
not show how well the linear expressions can predict experimental values [13]. This same
procedure of developing equilibrium models then fitting linear correlations to the model
outputs has also been demonstrated by Rupesh et al., who also show that linear models
can fit well with the output of an equilibrium type model but do not show a comparison
of experimental values against the linear correlations [14]. More recently, Pio and Tarelho
have compared the prediction accuracy of equilibrium and linear models for predicting the
performance of bubbling fluidized bed reactors for biomass gasification [4]. They show that
the linear models can accurately be used to predict the output composition of the thermo-
dynamic model (R squared values of 0.93 and 0.79 for hydrogen and carbon monoxide) but
have limited accuracy when used to predict the experimental output composition values
(R squared values of 0.04 and 0.23 for hydrogen and carbon monoxide) [4]. This could
be due to the high variability of experimental composition values for bubbling fluidized
bed reactors as suggested by Pio and Tarelho [4]. Alternatively, Mirmoshtaghi et al. have
shown through partial least squares regression that higher prediction accuracy can be
found from the resulting linear model expressions (R squared values of 0.8 and 0.53 for
hydrogen and carbon monoxide) for circulating fluidized bed gasifiers [15]. Although
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this higher accuracy achieved by Mirmoshtaghi et al. could be explained by the fact that
they use a much larger number of different input values (18 different terms in the linear
expressions) [15], compared to the two input values considered in the linear relations used
by Pio and Tarelho (only considering temperature and equivalence ratio) [4].

In addition to regression, Mirmoshtaghi et al. also present principal component
analysis and statistical analysis of p-values from the partial least squares regression to
identify significant parameters showing that the equivalence ratio is the most important
parameter [15]. The study of Gil et al. also applied principal component analysis to
investigate the influence of different biomass properties on the resulting producer gas for a
range of different biomass feedstocks when fed to a bubbling fluidized bed reactor [16].
This showed which feedstocks lead to higher production of combustible gases CO (carbon
monoxide) and CH4 (methane) [16]. In the similar study of Dellavedova et al., they also
used partial least squares regression and principal component analysis for a set of data
including different types of biomass gasifiers and while they do not report R squared values,
they do find that the most important parameters are equivalence ratio, steam-to-biomass
ratio, higher heating value, and carbon content of the feedstock and temperature [17]. They
also mention that the limited accuracy of their linear model may be due to the non-complete
homogeneity (high variability) of the data set they have used [17].

While linear models are simple, they have been shown to have relatively limited
accuracy for predicting the output of gasifiers and it might be assumed that quadratic
expressions could achieve a better prediction accuracy, accounting for interactions between
pairs of different coefficients. However, Pan and Pandey have shown that both linear and
quadratic expressions give high relative errors when they try to fit them to data for fluidized
bed gasifiers fed with municipal solid waste [18]. They also show that an artificial neural
network and their proposed Bayesian approach using Gaussian processes can achieve a
much more accurate prediction, although the main aim of their proposed method is to
incorporate uncertainty [18]. However, this high error in the quadratic regression may be
because they attempted to fit a very large number of parameters based on combinations
of the 9 input values (potentially 45 parameters or 81 parameters if interaction pairs are
counted multiple times) with a full dataset of 67 points, which could be difficult to fit [18].

In summary, a number of studies mentioned above have used simple linear empirical
models fitted to the outputs of some other model (e.g., an equilibrium model) and have
shown that linear empirical models can quite accurately reproduce the result of the other
models [4,13,14]. However, the “other model” can contain some inaccuracies when com-
pared to experimental values and so the fitted correlations will not necessarily reproduce
experimental values well. When simple empirical models are fitted directly to experimental
values, the statistical fitting appears to be worse [4] (e.g., compared to fitting an empirical
model to the output of a thermodynamic model). The use of more complex methods,
such as quadratic expressions or artificial neural networks, could achieve a better fit by
accounting for non-linear behavior. This prediction accuracy has been demonstrated by
a number of studies for artificial neural networks [7–11] but has not been demonstrated
for quadratic expressions. Additionally, while dimension reducing model reduction has
been successfully applied (e.g., using principal component analysis) to identify significant
parameters [15–17], the use of the LASSO [19] (least absolute shrinkage and selection
operator) shrinkage method, which aims to eliminate large numbers of less significant
parameters, has not so far been applied for the model reduction of biomass gasification
models.

In this study, both linear and quadratic expressions are fitted to a set of data from a
downdraft biomass gasifier. To avoid the problem of fitting large numbers of parameters,
model reduction is included using the LASSO method [19] which is implemented together
with cross validation to identify significant parameters and eliminate other parameters
such that reduced expressions are obtained. This can be used, for example, in cases where
the number of data points is less than the total number of parameters used in the full
complex expressions (since the model reduction will eliminate most of the parameters such
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that the number of fitted parameters in the reduced model is less than the number of data
points). The resulting models are evaluated based on their ability to predict the gasifier
output.

2. Development of New Empirical Models for Gasification

The empirical models are developed here relating to a number of inputs (x) to predict
some output value (ŷ) as shown in Figure 1. If there are multiple outputs to be predicted,
then regression models can be developed separately for each. For the case of gasification,
the exact input values used depends on the gasifier design and the available data but
will generally include the moisture and the elemental composition as well as the air- or
steam-to-biomass ratio (or equivalence ratio). Based on these inputs, various different
linear or non-linear expressions can be proposed relating to inputs with outputs which
might typically include the product gas composition, gas yield/production rate etc.

Figure 1. Simple schematic of a regression model used to take inputs (x) and calculate a predicted
output value (ŷ).

2.1. Linear and Quadratic Modeling Equations

The linear model is relatively simple with a form given in Equation (1).

ŷ = β0 +
n

∑
i=1

βixi (1)

where ŷ is the predicted value for output variable y, the xi terms are the input values (there
are n different inputs with subscripts i) and the β values are fitted parameters. Considering
a quadratic expression, there will be a number of additional terms:

ŷ = β0 +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j=i

βijxixj (2)

Including the linear terms from Equation (1) in addition to pair-wise combinations
of different inputs, which can lead to a large number of terms and a large number of
additional parameters βij, which need to be fitted.

110



Sustainability 2021, 13, 12191

2.2. Model Reduction through LASSO Shrinkage

The most common method used for regression is the least squares formulation, which
aims to minimize the residual sum of squares (RSS):

RSS =
N

∑
z=1

(yz − ŷz)
2 (3)

which is the sum of the differences between measured outputs and predicted outputs
squared for N data points. Shrinkage methods attempt to reduce the magnitude of the
predicted β values (shrinking them). This is performed by modifying Equation (3), adding
an additional term, and in the case of LASSO shrinkage, this is given in Equation (4) [19]:

RSS =
N

∑
z=1

(yz − ŷz)
2 + λ

n

∑
i=1
|βi| (4)

where n is the number of input variables and λ is a tuning parameter. This is related to the
linear model in Equations (1) and (2) but can also be applied to quadratic expressions as
follows:

RSS =
N

∑
z=1

(yz − ŷz)
2 + λ

n

∑
i=1
|βi|+ λ

n

∑
i=1

n

∑
j=i

∣∣βij
∣∣ (5)

such that all the parameters in the linear and quadratic terms are included together. In
either case, Equations (4) or (5) are minimized during fitting, which simultaneously reduces
the error between model and measured values and reduces the magnitude the β values.
This is controlled by tuning the value of λ, and increasing this value should decrease the
values of fitted parameters. In this case, using the LASSO formulation with absolute values
of the parameters, it can be shown that this leads to increasing numbers of parameters set
to zero [19]. This in turn allows parameters set to zero to be neglected together with the
associated inputs producing a simplified or reduced model [19].

2.3. Cross Validation and Model Development

For comparison, three different types of models will be developed and tested:

• Full linear model;
• Reduced linear model;
• Reduced quadratic model.

To develop these models, the procedure shown in Figure 2 was employed here for both
the linear and quadratic reduced models. The available data were initially separated into
separate training and testing sets. Then, only data from the training set was used in cross
validation with the LASSO approach and was used to identify a λ value which minimises
the cross validation MSE (mean squared error). Utilizing the LASSO method with this λ
reveals which of the parameters have been set to zero and the non-zero parameters were
identified to generate reduced expressions. These reduced expressions were then fitted
to the full training set data giving fitted values for the identified parameters. For the full
linear model, there was no cross validation and all the parameters were obtained through
regression using the training set. Finally, all the fitted models were validated to see if they
were able to adequately predict the results of the testing data.
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Figure 2. Procedure used to develop and validate reduced linear and quadratic models.

3. Case Study Based on a Commercial Biomass Gasifier

The measured input and output values are taken from the study of Chee, who inves-
tigated the effect of different operating conditions and different wood-based feedstocks
on the performance of a commercial biomass downdraft gasifier [12]. In particular, the
gasifier used by Chee had a rotating grate at the base of the fixed bed and a fan for
driving the air flow and the rotation rate of these two components were investigated [12].
This data set consists of 34 data points with input values given in Table 1 [12]. Run
number “201” in this study was not used here because the conditions for that run were
significantly different from all the others tested (with an equivalence ratio of 0.56) [12].
From these 34 data points, 25 randomly chosen points were assigned to the training set
and the remaining 9 data points were used for testing. The data values used are also
given in the Supplementary data file together with additional data used for validation
and all the model parameters.

Table 1. Input parameters, ranges, and average values for a commercial downdraft biomass gasifier
using data from Chee [12].

Gasifier Input Range Average

Tgas = Gasification temperature (K) 961–1100 1039
ER = Equivalence ratio 0.1555–0.2607 0.2001

MC = Moisture content (% wet basis) 5.4–22.4 11.3
H = Hydrogen content (% dry basis) 47.88–49.44 48.53

112



Sustainability 2021, 13, 12191

Table 1. Cont.

Gasifier Input Range Average

O = Oxygen content (% dry basis) 5.78–6.00 5.9
C = Carbon content (% dry basis) 39.06–44.31 43.44
Ash = Ash content (% dry basis) 1.10–2.07 1.66
Gr = Grate rotation speed (rph) 2.55–20.69 5.13

Fs = Gas fan speed (rpm) 1388–2561 1750
Bulk = Wet bulk density (kg/m3) 133–230 167.35
Void = Biomass void percent (%) 32–56 46.22

These data values are used to predict the produced gas properties:

• Hydrogen (mole %);
• Carbon monoxide (mole %);
• Carbon dioxide (mole %);
• Methane (mole %);
• Nitrogen (mole %);
• Gas/fuel ratio (kg/kg).

3.1. Cross Validation and Model Development

Cross validation and fitting with the LASSO approach was carried out here using
the statistical software R and RStudio using the package “glmnet” written by Friedman
et al. [20]. This software is commonly used for both linear and non-linear regression in
addition to classification. To make this easier, various packages and subroutines have been
written in this software including machine learning-based methods such as the LASSO.
In the field of process/chemical engineering, alternative software such as Aspen Plus is a
very powerful tool which can be used for both simulation and regression of parameters
for both linear and non-linear expressions but as far as we know it does not include the
option to include shrinkage-based model reduction (although perhaps subroutines could
be written to add this functionality in the future).

An example of the output of cross validation is shown in Figure 3, which demonstrates
how the mean square error (from cross validation) varies with changing the value of the
tuning parameter λ. This particular graph shows the cross validation results for the
prediction of hydrogen mole % in the produced gas based on a linear expression in terms
of the 11 inputs. It can be seen from the number at the top edge that the number of inputs
included in the model reduces as λ increases, with a minimum MSE value given with 7 out
of 11 inputs.

In particular, the inputs that can be eliminated are shown from the data to be: C, H,
Fs, and bulk, so the reduced linear expression can be stated as

H2(%) = β0 + β1Tgas + β2ER + β3MC + β4O + β5 Ash + β6Gr + β7void (6)

If starting from a quadratic expression, it might be expected that a larger number of
inputs or combinations of inputs would result. However, the cross validation in Figure 4
shows a minimum MSE located near the point where there are only two inputs. Looking at
the data, the two remaining terms after this point are TgasER, the product of gasification
temperature and equivalence ratio, and MCAsh, the product of moisture content and ash
content, suggesting that a very simple expression can be obtained:

H2(%) = β0 + β1TgasER + β2MCAsh (7)

Although, at the exact minimum, a third product, ERGr (the product of equivalence
ratio and grate rotation speed), and fourth, Ovoid (the product of elemental oxygen content
and the void fraction), also appear.
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H2(%) = β0 + β1TgasER + β2MCAsh + β3ERGr + β4Ovoid (8)

Thus, it appears in the case of hydrogen that a quadratic expression with four terms
provides a much simpler model than both the full linear model and the reduced linear
model. Based on similar analysis, applying cross validation and fitting the resulting
expressions to the training data, the following expressions are given in Table 2.

Figure 3. Plot of cross validation MSE against the log of the tuning parameter λ from Equation (4)
for the prediction of hydrogen % using a linear expression. The numbers above the graph show the
corresponding number of inputs with non-zero parameters.

Figure 4. Plot of cross validation MSE against the log of the tuning parameter λ from Equation (5)
for the prediction of hydrogen % using a quadratic expression. The numbers above the graph show
the corresponding number of terms with non-zero parameters in the quadratic model.
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Table 2. Reduced model expressions resulting from cross validation with the LASSO approach.

Reduced Linear Model Reduced Quadratic Model

H2(%) = β0 + β1Tgas + β2ER + β3 MC +
β4O + β5 Ash + β6Gr + β7void

H2(%) = β0 + β1TgasER + β2 MCAsh +
β3ERGr + β4Ovoid

CO(%) = β0 + β1Tgas
+β2ER + β3 MC
+β4O + β5 Ash

+β6Gr + β7Fs + β8bulk
+β9void

CO(%) = β0 + β1TgasO
+β2ERO + β3ERAsh
+β4ERbulk + β5 MCGr

+β6HO + β7 AshGr + β8Fsbulk

CO2(%) = β0 + β1ER
+β2 MC + β3O
+β4 Ash + β5Gr

+β6Fs + β7bulk + β8void

CO2(%) = β0 + β1O
+β2TgasER + β3TgasO
+β4 MCAsh + β5 MCGr

+β6 MCbulk + β7Ovoid + β8Fsbulk +
β9bulkvoid

CH4(%) = β0 + β1ER
+β2 MC + β3C
+β4H + β5 Ash

+β6Gr + β7Fs + β8void

CH4(%) = β0 + β1TgasGr
+β2ERAsh + β3ERvoid
+β4 MCAsh + β5 MCFs

+β6CC + β7Hvoid + β8Grbulk

N2(%) = β0 + β1ER
+β2 MC + β3C
+β4Gr + β5void

N2(%) = β0 + β1TgasER
+β2ERO + β3ERGr

+β4 MCAsh + β5 MCvoid

G/F = β0 + β1ER
+β2C + β3H

+β4O + β5Gr + β6Fs + β7void

G/F = β0 + β1C
+β2TgasO + β3ERH
+β4ERFs + β5ERvoid

+β6CC + β7CH + β8OO + β9Grbulk

3.2. Model Validation

To evaluate the predictive power of the different models developed in Section 3.1,
which are developed and trained using the training set (25 data points), they are also
validated here through comparison with the testing set of data (9 data points). The perfor-
mance of the different models was evaluated based on comparison of the mean squared
error (MSE) and the R2 values of each model with respect to the output values from the
test set as shown in Table 3. It can be seen that while the full linear model can adequately
predict the output for some of the predicted outputs in almost all cases, the reduced linear
or quadratic models are shown to more accurately have predictions with higher R2 and
lower MSE values. An exception to this rule is the gas-to-fuel ratio, for which the full linear
model has the best fit and where all the models are shown to have very high accuracy.

Table 3. Validation of models against a testing set of data showing the prediction capability of full
linear and reduced linear and quadratic models.

Gasifier Input 1 H2 CO CO2 CH4 N2 G/F

Full linear
model

# terms 11 11 11 11 11 11
MSE(test) 0.648 6.869 1.043 0.037 5.104 0.0025

R2 0.660 −0.009 0.649 0.753 0.440 0.953

Reduced linear
model

# terms 7 9 8 8 5 7
MSE(test) 0.146 4.850 0.800 0.010 0.502 0.0032

R2 0.924 0.288 0.731 0.935 0.945 0.942

Reduced
quadratic model

# terms 4 8 9 8 5 9
MSE(test) 0.777 3.317 0.830 0.011 1.232 0.0031

R2 0.592 0.513 0.720 0.928 0.865 0.943

It is also worth noting that the model for carbon monoxide (CO) shows a very poor
prediction using the full linear model and appears to require a quadratic model to obtain
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a reasonable predictive power. Previous studies of Mirmoshtaghi et al. [15] and Pio
and Tarelho [4] have also shown difficulty fitting empirical models to the CO output of
circulating and bubbling fluidized bed reactors with R2 values of 0.53 and 0.23, respectively.
In this study, an R2 value of 0.513 was found for the downdraft gasifier data used here.

The fitting of these models is also demonstrated in Figures 5 and 6, which show the
comparison of experimental values plotted against model predictions for the test data set.
This shows that all of the models appear to predict hydrogen mole percentage reasonably
well, but there are some deviations for model predictions of carbon monoxide mole per-
centage. The reduced models are shown to give predictions closer to the experimental
values for both of these outputs.

Figure 5. Parity plot of models against experimental hydrogen mole % using data from Chee [12].

Figure 6. Parity plot of models against experimental carbon monoxide mole % using data from Chee [12].

To assess if the models generated based on fitting to the data of Chee [12] can be used
for other biomass gasifiers, the best fitting models for predicting hydrogen and carbon

116



Sustainability 2021, 13, 12191

monoxide are compared against experimental data from three other downdraft gasifier
studies. In particular, this experimental data includes the gasification of rubberwood (nine
data points) from the study of Jayah et al. [21], the gasification of sesame wood (four data
points) from the study of Sheth and Babu [22], and the gasification of wood chips (two data
points) from the study of Costa et al. [23].

Figures 7 and 8 show the parity plots of the reduced linear models against these three
sets of data. It can be seen that the model gives a reasonable prediction of the data points
from the study of Jayah et al. but has much lower accuracy for predicting the results of
Costa et al. and Sheth and Babu.

Figure 7. Parity plot of reduced linear model against experimental hydrogen mole % for data from other downdraft biomass
gasifiers using experimental data from the literature [21–23].

Figure 8. Parity plot of reduced linear model against experimental carbon monoxide mole % for data from other downdraft
biomass gasifiers using experimental data from the literature [21–23].
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Considering the reduced quadratic model, which gives the best fit to the data of Chee,
when this is compared against other experimental data in Figure 9 it is shown to give poor
or very poor predictions. These inaccuracies may be because of differences in the design
of different downdraft gasifiers or because the conditions are outside the ranges given in
Table 1. In particular, the bulk density of biomass used in all these cases are higher than
those for the experiments of Chee. Additionally, these new data sources do not include
grate or fan rotation speeds, so the average values from Table 1 have been assumed to
utilize the reduced linear and quadratic expressions given in Table 2. Due to the second
order terms in the quadratic expression, the errors associated with these assumptions lead
to a much greater inaccuracy.

Figure 9. Parity plot of reduced quadratic model against experimental carbon monoxide mole % for data from other
downdraft biomass gasifiers using experimental data from the literature [21–23].

This shows that these empirical models may only be practical for gasifiers with a
similar scale and design and within the range of conditions used to build the models.
This is supported by the results of Pio and Tarelho, who also found difficulty fitting
empirical models to a wide range of different gasifier data sources [4], and by Baruah et al.,
who suggest that data must be taken from very similar scale gasifiers and with similar
feedstocks [7]. However, if a large amount of data are collected from a single biomass
gasifier with different conditions and feedstocks, this methodology should provide accurate
models. Furthermore, due to the LASSO model reduction applied, simpler models can be
obtained with much fewer parameters, which are very practical for the design of similar
gasifiers.

4. Conclusions

Empirical models are proposed for the prediction of downdraft biomass gasifiers’
outlet values (in particular the product gas composition). Both linear and quadratic
expressions are considered, and a model reduction method is implemented based on cross
validation with the LASSO method in order to select subsets of important parameters so
that the resulting expressions can be simplified. This identifies significant parameters and
reduces the number of parameters which must be regressed. We believe this is the first
application of this LASSO model reduction method in the field of biomass gasification
which is generally formulated in terms of linear models (combining Equations (1) and
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(4)) [19] but can also be used for more complex quadratic equations (see Equations (2) and
(5)), as demonstrated here.

This model reduction is particularly important for quadratic expressions which can
contain a large number of parameters. For example, in the case study considered here,
there are 11 inputs and a quadratic expression including all combinations of these 11 (as in
Equation (2)) would have 78 different parameters to fit, but following the model reduction
in the case study, there were 5–10 parameters needing to be identified. Considering
the training data set contained only 25 data points, this means fitting the full quadratic
expression with 78 parameters would not have been feasible.

In addition to reducing the complexity of fitted correlations, it is shown here that in
almost all the outputs in the case study, the model reduction also leads to improved model
prediction accuracy when the models were evaluated using test set data (which has not
been used for training the models).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132112191/s1, Excel data file including “experimentaldatafull” tab containing experimental
data gathered from [12,21–23], “fig5+fig6” tab containing the data used to plot Figures 5 and
6, “fig7+fig8+fig9 data” tab containing data used to plot Figures 7–9, and “fitted reduced model
parameters” tab containing the fitted parameters for the models given in Table 2.
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Abstract: Target prices are often provided as a support for stock recommendations by sell-side
analysts which represent an explicit estimate of the expected future value of a company’s stock. This
research focuses on mean target prices for stocks contained in the Standard and Poor’s Global Clean
Energy Index during the time period from 2009 to 2020. The accuracy of mean target prices for these
global clean energy stocks at any point during a 12-month period (Year-Highest) is 68.1% and only
46.6% after exactly 12 months (Year-End). A random forest and an SVM classification model were
trained for both a Year-End and a Year-Highest target and compared to a random model. The random
forest demonstrates the best results with an average accuracy of 73.24% for the Year-End target and
81.15% for the Year-Highest target. The analysis of the variables shows that for all models the mean
target price is the most relevant variable, whereas the number of target prices appears to be highly
relevant as well. Moreover, the results indicate that following the rare positive predictions of the
random forest for the highest target return groups (“30% to 70%” and “Above 70%”) may potentially
represent attractive investment opportunities.

Keywords: classification; feature selection; machine learning; financial market; investing; sustainability

1. Introduction

Investors aiming to invest in the stock market to buy a company’s stock face the
challenge to select companies that will be successful in the future and whose stock will
appreciate over time. Brokerage firms spend a considerable amount of resources, including
money, on stock analysis, recommendations, and target prices, which suggests that these
institutions and their clients see value in such research [1,2]. For that reason, investors and
academics alike have been interested in the value of sell-side analysts’ reports [3]. In this
context, sell-side analyst refers to analysts employed by financial institutions such as banks,
brokers, and asset management firms, which also sell securities such as stocks to their
clients. These analysts provide research reports on stocks to the clients of their institution [4],
which contain information about the future of these companies [5]. Their reports frequently
include three elements: (1) an earnings forecast, (2) a stock recommendation, and (3) a
target price for the stock [5–7], which are the result of their own evaluation of a company [6].
Stock recommendations usually come in five distinct levels (“Strong Buy”, “Buy”, “Hold”,
“Sell”, “Strong Sell”) [1,4,5,8], whereas the target price is provided as a support for the stock
recommendation and is explicitly mentioning the expected stock value [3,6,9], usually,
for the next 12 months [2,7]. Target prices often accompany stock recommendations, but
previous research suggests that not all analyst reports contain target prices [5]. In particular,
their inclusion in reports is more likely in case of positive recommendations (e.g., 70%
for upgrades vs. 35% for downgrades [3] or 84% for “Strong Buy”/79% “Buy” vs. 27%
for “Hold” [6]). However, when target prices are included in a report, it is intuitive
that higher target prices for stocks are generally associated with more favorable stock
recommendations [6].
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Previous research has covered different aspects of stock recommendations and target
prices. This includes investigating the individual analyst’s ability to make recommenda-
tions and set target prices [7,10,11] as well as the performance of recommendations of
different institutions [8], and the value or abnormal returns associated with stock recom-
mendations [1,12] even when analysts face conflicts of interest [13].

It was shown that, even though analysts appear to be reluctant to make “Sell” (and
“Strong Sell”) and “Hold” recommendations and tend to focus on “Buy” recommendations
(and “Strong Buy”) [3,5,14] (e.g., “Buy” and “Strong Buy” account for 70.8% [5] or 68% [3]
of all recommendations), their recommendations appear to have value. In particular, there
are stock price reactions to recommendations (and recommendation revisions) [14] and
investors can benefit from such recommendations [1,4] e.g., by buying highly rated stocks
and by selling lowly rated ones [1].

In terms of target prices, the link between target prices and stock recommendations [6],
factors affecting the accuracy of target prices [2], the impact of price targets and recom-
mendation revisions [3–5], the impact of different valuation models on the target price [9],
and the dispersion of target prices as a risk measure [15] are examples of research works
found in the literature. Moreover, research has indicated that target prices and target price
revisions contain new and valuable information [3,5]. However, the fact that target prices
may contain relevant information for the stock market and investors does not necessarily
mean that target prices are accurate [11]. Moreover, as pointed out by Bonini et al. [2], the
ability to forecast future stock prices using analyst target prices is a neglected topic in the
literature. The accuracy of target prices, meaning whether stock price meet target prices
after or during the forecast period (e.g., a 12-month period), as well as their (absolute)
forecast error, meaning how far the stock prices are away from the predicted target prices,
depends on different factors. First, in terms of the institutions issuing target prices, highly
reputable institutions tend to issue more accurate target prices (those target prices with pos-
itive implied return only) [11]. The evidence towards individual analysts’ ability to suggest
accurate target prices is limited. Bradshaw, Brown, and Huang [7] find some statistical evi-
dence supporting a persistent differential ability of analysts in terms of accurate target price
predictions, but these were shown to be trivial economically. Besides, as may be expected,
analyst-specific optimism has a negative impact on the accuracy of target prices [11]. This
may be linked to the fact that analysts’ target prices may be used strategically [11] e.g., to
create a “hype” around a stock [5] and may not always reflect the actual belief of analysts
(e.g., similar for recommendations where a “Buy” recommendation is issued instead of
a more suitable “Hold”/”Sell” one [13]). In terms of analyst research, the level of detail
of research reports is positively affecting the target price accuracy [11] and the number
of analysts providing research appears to improve the information quality [16], which
may potentially also affect the target price accuracy positively. In terms of the company
covered, recommendations for stocks associated with a larger price-to-book value (P/B),
which can be called “glamour” stocks (e.g., technology companies) show lower forecast
accuracy [11], which may be problematic given that research suggests that sell-side analysts
tend to recommend such stocks more often [12]. Apart from that, setting accurate target
prices appears to be especially challenging for companies that are loss-making (not earning
profits) [2]. Volatility appears to impact target price accuracy as well, with lower volatility
of the stock price leading to a higher accuracy [7,11]. The positive development of the
stock market as a whole also affects the accuracy of target prices positively [7], which is in
line with the finding that the forecast error of analysts increases during negative market
environments [17]. Lastly, in terms of the target price, the accuracy and magnitude of
the forecast error seem to be higher the larger the difference between the target price and
current stock price (implied growth in stock price) [2,5,11].

This research work focuses on the accuracy and predictive power of target prices,
specifically consensus information, meaning mean target prices. As mentioned previously,
research on target price accuracy is very limited. Apart from that, the vast majority of
previous research on target price accuracy has centered on individual analysts and/or
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individual target prices. There is some research on using consensus recommendations
(e.g., the mean of recommendations) [1,12] but no research appears to have been done on
using the consensus of target prices and determining the accuracy of such an aggregate
estimate for the future stock price. In recent years private investors have also had easy
and free access to many financial websites (e.g., Yahoo Finance, finanzen.net) that provide
such mean target prices and related information [6] and make such an investigation also
relevant for private investors, as well as academics and practitioners. Apart from that, no
work appears to have been done using classification algorithms with target prices, which
are very intuitive from an investors’ perspective since they can be used for the binary
decision (yes/no) whether to invest in a stock or to refrain from doing so. This study aims
to address this research gap by using mean target prices and measuring the accuracy of
these consensus estimates as well as using classification methods (with embedded feature
selection) to build a model to predict when mean target prices will be met and when
they might be missed. Moreover, the variables that are relevant for the prediction will be
determined to gain further insights into potential factors that may affect the probability
that a mean target price is met.

The emphasis of this work is on clean energy stocks which have attracted increased
attention due to the Paris Agreement [18] and the rise of clean energy technologies as
a response to the threat imposed by climate change. The road to the Paris Agreement
extended multiple years, starting from around 2009 with the Copenhagen Accord [19].
The agreement was adopted by 196 Parties (almost every nation) in December 2015 to
address climate change and its harmful impacts, and about 190 of those countries formally
approved it [20]. The agreement sets up an ambitious target to limit the increase in mean
global temperature to well below 2 ◦C above pre-industrial levels by reducing global
greenhouse gas emissions. Among other measures, this includes ramping up efforts to
accelerate the implementation of clean and sustainable energy technologies.

2. S&P Global Clean Energy Index

The Standard and Poor’s Global Clean Energy Index (USD) is an equity index launched
in 2007 that aims to measure the performance of companies in developed and emerging
markets that have businesses linked to global clean energy [21,22]. In particular, companies
contained in the index are “involved in the production of clean energy or provision of clean
energy technology and equipment” [22]. Figure 1 displays the geographical location of the
headquarters of the companies (as of July 2021) contained in the S&P Global Clean Energy
Index. Gray color highlights the countries with headquarters in them and the marker size
reflects the relative size of the company in terms of the market capitalization, as obtained
from Yahoo Finance [23].

Out of the 81 companies included in this study, the headquarters of 28 companies
are located in Europe (in Austria, Denmark, France, Germany, Italy, Norway, Portugal,
Spain, Sweden, Switzerland, and United Kingdom). The headquarters of another 28 com-
panies can be found in North America (in Canada and the United States). Finally, there
are 15 headquarters in Northeast Asia (in China, South Korea, and Japan), 4 in South
America (in Brazil and Chile), 3 in Southeast Asia (in New Zealand and Singapore), 3 in
MENA (in Israel), and 1 in SAARC (in India). The largest number of companies (20) are
headquartered in the United States (24.7%). In contrast to that, none of the 81 companies
in the index is headquartered in Africa or the Eurasian regions. However, the authors of
this study acknowledge that these companies may operate/have subsidiaries in African or
Eurasian countries.

In terms of the business activity, about 52% of the companies are involved (directly or
through their subsidiaries) in the power generation process, which includes the develop-
ment, construction, and operation of power plants as well as the subsequent transmission
and distribution of electrical energy. The second-largest group of companies (about 21% of
the companies) are linked to the manufacturing of solar PV systems and their components
(for instance, production of monocrystalline and polycrystalline silicon for solar PV cells,
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solar PV modules, inverters, storage systems, software, etc.). Apart from that, the third-
largest group (10% of the companies) are developers of wind power generation systems.
This group consists of companies, which, for example, design and manufacture blades and
wind towers, construct wind turbines and wind farms, as well as provide various services
to wind power generation companies.
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Figure 2 displays the market capitalization of the companies and their corresponding
Environmental, Social, and Governance (ESG) scores obtained from Thompson Reuters
Datastream (see Appendix A Table A1).

The ESG score takes values from 0 to 100 and is based on self-reported (but verifiable)
information of companies on their performance in terms of environmental, social, and
governance indicators. In particular, the environmental score contains components such as
“resource use” and “emissions”, the social score elements such as “workforce” and “human
rights”, and the governance component for instance the “corporate social responsibility
(CSR) strategy” [24]. The point labels are the Datastream symbols for the companies (shorter
than the complete company names) and the levels of ESG scores (from “Low” to “Very
high”) were artificially created for this study for better representation of the ESG scores.
The y-axis is on a logarithmic scale. In general, companies with larger market capitalization
tend to be associated with higher Environmental, Social, and Governance (ESG) scores. One
possible explanation for this could be that the operations of larger companies might be more
in the public’s attention and more exposed, which may create pressure from stakeholders
such as society, civil organizations, as well as from (potential) investors. Additionally,
larger companies might be able to allocate larger financial resources to reporting tools
for ESG rating agencies (for instance, to provide higher quality and more comprehensive
data to better fit the ESG measurement systems). Apart from that, it could be that the
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management enumeration of larger companies may be more tied to the accomplishment
of ESG-based objectives, thus incentivizing a stronger focus on ESG-conform activities
and behavior.
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3. Data

The data for this study are from the 81 constituents of the S&P Global Clean Energy
Index from 1 January 2009 until 30 June 2021. The start of the time period was selected as
the year 2009 since this year marks the beginning of the steps leading up to the Paris Agree-
ment [19]. The time-series data were obtained from the Thompson Reuters “Datastream”
service with daily frequency. The variables downloaded for the companies consist of target
price information (from the “Institutional Brokers Estimate System” (IBES)), company-
related information such as the stock price, and the price-earnings (PE) ratio, as well
as the MSCI world index, which is a broad global equity index. A complete list of the
“raw” variables (incl. symbols) downloaded from Datastream can be found in Appendix A
Table A1.

Target prices are most commonly set for the estimated stock price in 12 months [2,7].
Thus, taking an investor’s perspective, only the information related to target prices from 1
January 2009 until 30 June 2020 were considered (a year shorter than the entire period) and
compared with the actual stock prices after one year (1 January 2010 to 30 June 2021). This
way, up to 2999 observations were available per company (less for those that did not have
any target price information at certain points in time).

The focus of this work is on mean target prices (consensus price target) since they
represent analysts’ average estimated price of a stock in the future. In order to avoid
including the same target prices for a company on consecutive days, the number of ob-
servations was reduced to the initial observation of a company and each observation for
which the mean target price had changed compared to the previous observation—so at
least a single revision/adjustment of a stock price has taken place. This decreased the
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number of observations to 0 to 139 per company with 5 out of 81 companies having 0 ob-
servations due to a lack of any target prices before the end of June 2020. For the (1:1)
American depository receipt (ADR) of “Companhia Paranaense Denga” (Brazil), usually
only a single target price was available, which was for unknown reasons consistently below
the actual price (on average 80%) and, thus, was not further considered. (This issue could
not be resolved by adjusting the target prices using the USD—BRL exchange rate.) For the
remaining 75 companies the mean number of observations is about 77 and, overall, the
data set contained 5810 observations. All target price variables (target mean price, target
low price, target high price) were converted to target returns by calculating the “implied
return” each of them represents compared to the corresponding current stock price. This
was done in line with previous research (e.g., [7]), so that the targets of companies with
target prices of different magnitude can be compared more easily. It was ensured that both
the stock prices and target prices were in the same currency (usually the domestic currency)
before the target returns were calculated. The list of all variables used for modeling, the
corresponding pre-processing, and values are presented in Table 1.

Table 1. Variables and pre-processing.

No Variable Name Pre-Processing Values

1 No Targets None Integer, [1, 39]

2 Mean Target Return Converted from Target Price
to Target Return Continuous, [−92.3%, 1384%]

3 Low Target Return Converted from Target Price
to Target Return Continuous, [−99.4%, 363.6%]

4 High Target Return Converted from Target Price
to Target Return Continuous, [−90.5%, 2403%]

5 Std Target Ratio
Converted to Ratio by

dividing by Mean Target
Price

Continuous, [0, 1.07]

6 Target Up 1 Month None Integer, [0, 22]

7 Target Down 1 Month None Integer, [0, 29]

8 Low Target Above
Price

Converted to binary (if Low >
Current Price, then 1, else 0) Binary, “0” (70.6%), “1” (29.4%)

9 High Target Below
Price

Converted to binary (if High
< Current Price, then 1, else 0) Binary, “0” (92.4%), “1” (7.6%)

10 PE Ratio None (Nearest known
imputation) Continuous, [0.3, 1766]

11 MSCI World Return
Converted from Index price
to Index Return (previous

12 months)
Continuous, [−45.6%, 53.7%]

12 Class (Year-End) If Price (year-end) >= Target
Price, then 1, else 0 Binary, “0” (51.3%), “1” (48.7%)

13 Class (Year-Highest) If Price (during year) >=
Target Price, then 1, else 0 Binary, “0” (30.8%), “1” (69.2%)

Two additional variables were created: “Low Target Above Price” and “High Target
Below Price”. The first reflects that even the lowest target price of analysts exceeds the
current stock price, highlighting a consensus that the stock may be undervalued and
suggesting a possibly positive outlook for a company. The second reflects that even the
highest target price provided by analysts is below the current stock price, indicating a
potentially overvalued stock.

There are two separate targets for the classification that are based on the mean target
price. The first target (“Year-End”) is binary and reflects whether a stock’s price after
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12 months is as high or higher than the (initial) mean target price suggested (“1”) or
whether it did not reach the target price (“0”). The second target (“Year-Highest”) is also
binary, but represents whether the highest stock price accomplished during the entire
12-month interval is as high or higher than the initial mean target price (“1”) or whether
it was at no point during that year as high as the mean target price (“0”). In other words,
the first target focuses exclusively on the year-end stock price whereas the second target
emphasizes the largest stock price during the entire 12-month period. Using these two
perspectives for the accuracy of target price was also taken in [2,7], whereas a focus on
any point during the year—which is termed in this study “Year-Highest”—was pursued
in [5,11].

4. Target Price Analysis
4.1. Analysis of Target Returns and Coverage

The average mean target return for the clean energy companies is 22.23% compared
to the stock price at that time. It is unsurprising that the average low return is −8.12%,
considerably lower, and the average high return is 58.20%, considerably higher than that.
However, as Figure 3 illustrates, the magnitude of low, mean, and high target returns can
differ considerably.
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It is apparent that the low target return distribution has the lowest mean and earliest
peak of all distributions, followed by the mean target return and, lastly, the high target
return. The first interesting observation is that low, mean, and high target returns can all
be below and above the current stock price (=0% target return). For the low target prices,
about 70% are below zero—implying an expected decline of the stock price over the next
year. However, roughly 30% of the low target returns show the expectation of a positive
return over the next year. Since the low target price reflects the lowest expectation of all
analysts covering the stock, the low target price exceeding the current stock price may
reflect the consensus belief of all analysts that the stock is undervalued. (It may be noted
that at any point some target prices may have been provided days or weeks before the date
of the observation and, thus, can potentially reflect outdated beliefs of the analysts that
may be corrected in the future. Additionally, mean target prices, especially when based on
numerous separate analyst target prices, may react slowly to changing market conditions
or stock information since this may require many analysts to revise their target prices in a
timely manner in order to affect the mean target price considerably and rapidly.) For the
mean and high target prices, most implied returns are positive. About 79% of the mean
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target returns exceed zero and for the high price, this percentage even amounts to 96.7%. It
is interesting to note that high prices tend to be highly positive but there appears to be also
a small tail for target returns below zero. A high target return below zero, which is only the
case for roughly 3.3% of the observations, reflects that all current analyst targets indicate
that the stock is likely overvalued and will decline within the next year. It is noteworthy
that all, the largest high target return (2403.5%), the largest mean target return (1835.0%),
and the largest low target (363.6%) are linked to the stock of “Fuelcell Energy”. In this
extreme example, the target prices were lagging behind the stock price, which had declined
considerably to new lows in mid-June of 2019. In general, for those 3.3% observations
with a high price below the current price, the stock prices had increased or recovered from
a decline and the target prices were lagging behind this surge. Similarly, the reason for
some low target prices (about 4%) being 50% or higher over the current stock price was a
decline in the stock price and the mean target prices’ delayed correction for this decline.
Moreover, both these cases—stock prices exceeding the high price considerably and low
prices exceeding the stock price considerably tend both to be associated with a low number
of analysts covering them (usually 1–2 analysts).

Figure 4 shows the median low, mean, and high target return as well as the median
number of analysts covering a stock for each year.
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Figure 4. Median of the low, mean, and high target returns by year.

It is apparent that the target returns vary between years, with the high returns ap-
pearing most optimistic between 2009 and 2012 with medians around 50%. The low target
return is with median values between −5.4% and −14.6%, consistently negative, whereas
the median values for the mean and high target returns are consistently positive. The
median for the mean target return ranges from 4.6% to 17.9% and for the high target return
even from 24.0% to 58.7%. The median number of analysts covering a stock is between
(about) 9 to 14. Overall, the median number of analyst target prices at any time is 10, the
minimum 1 and the maximum number of analyst targets is 39.

4.2. Analysis of Target Price Accuracy

This research will consider two forms of accuracy (or hit rate), meaning whether the
target price was met (=hit) or not (=miss)—which is a binary class label with only two
outcomes. The first version, referred to as “Year-End”, focuses on whether the stock price
has reached the target price 12 months after a change in the mean target price (Yes/No).
The second version, referred to as “Year-Highest”, determines whether the stock price
met the target price (Yes/No) at any point during the 12 months after a change in the
mean target price. In the previous literature, the measure for achieving the target price at
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year-end was termed “TPMetEnd” and for accomplishing it at any point during the year
“TPMetAny” [7].

For the given 75 clean energy companies and target prices over the time period from
2009 to 2020, the mean accuracy for the Year-End target is 46.6% whereas the mean accuracy
for the Year-Highest setup is 68.1%. It is unsurprising that the accuracy for the Year-Highest
target is higher than that of the Year-End given that it measures whether the target price
is met at any time during the 12-month window (including at year-end) whereas the
Year-End target only measures the accuracy at a single point in time, at the end of the
12-month period. A comparison of the implied return of target prices and the accuracies
found in previous studies is displayed in Table 2 (ordered by the period). The previous
studies covered different time periods and it is apparent that the average implied return is
considerably higher in time periods extending from 1997 compared to all that exclude years
before 2000. Only a few studies reported the accuracy of target prices and the results for the
clean energy stocks covered in this study seem to be in line with these results, especially
the most recent ones from Bradshaw, Brown, and Huang [7] and Kerl [11]. Since 2020
appears to have been an extraordinary year with also a very high accuracy (see Figure 5)
the accuracy values excluding this year are also presented, which are even closer to the
results found in the literature.

Table 2. Target price and accuracy comparison.

Authors Companies Target TPMetEnd TPMetAny Period

Bradshaw [6] US 36.0% - - 1996 to 1999
Asquith, Mikhail, and Au [5] Global 32.9% - 54.3% 1997 to 1999

Brav & Lehavy [3] US 32.9% (28.0% 1) - - 1997 to 1999
Gleason, Johnson, and Li [9] US 32.0% - - 1997 to 2003

Bonini, Bianchini, and Salvi [2] Italy 14.9% 20.0% 33.1% 2000 to 2006
Bradshaw, Brown, and Huang [7] US 24.0% 38.0% 64.0% 2000 to 2009

Kerl [11] Germany 18.1% - 56.5% 2002 to 2004

This Study Global (Clean
Energy) 22.2% 46.6% (41.5% 2) 68.1% (62.5% 3) 2009 to 2020

1 Brav and Lehavy [3] report a one-year-ahead target price that is 28% larger than the current stock price and 32.9% higher than the
preannouncement stock price (2-days prior recommendation/target price announcement). 2 Excluding the year 2020, which is exceptional
due to the COVID-19 pandemic. 3 Excluding the year 2020, which is exceptional due to the COVID-19 pandemic.

It is noteworthy that Bradshaw, Brown, and Huang [7] also provide the additional
inside that TPMetEnd and TPMetAny differ considerably in down and up markets with up
markets resulting in accuracies of 50% and 71% whereas down markets lead to accuracies
of only 17% and 49%.

In the following, the accuracy of the target prices (and, thus, of the target returns)
is analyzed overall and by the magnitude of the mean target return, to determine if the
predicted return appears to be linked to the accuracy of the prediction. The groups for
the mean target return are (1) “Under 0%”, reflecting an average estimate of no stock
price increase, (2) from “0% up to 9.9%”—with the upper limit being the rounded median
of the target return (11.5%), (3) from “10% to 29.9%”—representing approximately the
range from the median to the third quartile (29.8%), (4) “30% to 70%”—with the upper
limit being roughly the third quartile +1.5 times the interquartile range (72.2%), which is a
common limit for outliers, and (5) target returns “Above 70%”, which could statistically be
considered outliers.

Figure 5 displays, for the Year-End target, the accuracy for each of the target return
groups and for each year, and Figure 6 illustrates the average (actual) return achieved by
the stocks in these target return groups. The first figure illustrates that the average accuracy
of target prices can differ considerably between years (from 20.8% in 2011 to 86.3% in
2020) and generally differs considerably among target return groups. For most years, the
accuracy for the “Under 0%” target return group has the highest accuracy, followed by

129



Sustainability 2021, 13, 12746

the “0% to 9.9%” target return, which roughly represents all positive returns up to the
median target return. In contrast to that, the two highest return groups, “30% to 70%”
and the “Above 70%”, usually are characterized by the lowest accuracy and often show
2–3 times lower accuracies than the two highest target return groups. Combining this
information with the average Year-End returns for stocks in Figure 6 shows that the return
group “Above 70%” has the most extreme average returns (independent of the target being
hit or missed), showing in six years the highest average return and in three the lowest
average return.
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It is noteworthy that average Year-End returns are moderately positively correlated
(0.77, 0.44 excl. 2020) with the average MSCI world performance during the same time
period. (The MSCI world performance is not the MSCI world return during that calendar
year but the average of the 1-year return of the MSCI for the 12-month time period starting
at the time of each of the target prices. Thus, the performance is the average return of the
MSCI world from different starting points in that year up to 12 months in the future. For
instance, if the mean target price changes in March, the MSCI world return from that point
in time until March of the subsequent year is recorded. This is done so that the actual return
of stocks in a given timeframe can be compared with the MSCI world return in exactly the
same timeframe.) In particular, in nine out of eleven years with a positive average MSCI
world performance, the average return for clean energy stocks is positive as well, whereas
for the one year with a negative average MSCI world performance the clean energy stocks’
performance is also negative. However, as Figure 6 shows, the magnitude of positive and
negative returns for clean energy stocks appears to be larger than that of the MSCI world
index. The average accuracy and return for the Year-End target by target return group is
displayed in Table 3.

The decrease in the average accuracy for stocks belonging to higher target return
groups is in line with previous findings indicating that demonstrated that the predicted
growth in the stock price is negatively impacting the forecast accuracy [2,5,11]. It is
interesting to see that the average accuracy for the target prices gradually decreases with
the magnitude of the implied target returns, but the same does not hold true for the average
returns. The reason for that is two-fold: first, the average hit return, meaning the average
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return when the target price is met (=hit), tends to increase with the target return group
and (2) the average miss return, meaning the average return achieved when the target price
is not met, increases considerably with the target return group and, thus, is less negative.
Both of these developments appear plausible. For the average hit return, the result appears
plausible given that meeting higher return targets by definition means that returns below
the target return group are excluded from the hit average. For instance, the average return
of stocks that met their target price “Above 70%” by definition need to have achieved at
least a return of 70%. In contrast, it is plausible that the average miss returns are on average
negative and it appears intuitive that they increase with the target return group given that
with higher return groups they may include higher returns that were still not meeting the
target return. For instance, by definition, not accomplishing a return in the target return
group “30% to 70%” means that returns of up to 29.9% can be contained in the miss returns.
Moreover, it appears plausible that stocks with very high mean target prices tend to have
higher average returns if they miss their high targets than stocks that miss considerably
lower targets.

Table 3. Average accuracy and return by target return group (Year-End class).

Target Return
Group Under 0% 0% to 9.9% 10% to 29.9% 30% to 70% Above 70%

Average Accuracy 73.1% 57.8% 37.9% 25.9% 17.1%
Average Return 26.6% 16.9% 16.8% 32.5% 55.7%
Average Hit Return 47.9% 40.2% 67.0% 156.9% 353.0%
Average Miss Return −31.3% −15.1% −13.8% −11.0% −5.4%

Overall, it is interesting to see that the higher average hit and average miss returns
tend to outweigh the decrease in the average accuracies so that even when target prices are
rarely met (e.g., in the “30% to 70%” and “Above 70%” target return group), the average
hit return is so high, and the average miss return is still not so low as to lead to a lower
average return overall. In other words, clean energy stocks in the groups with higher mean
target returns, which represent a more favorable analyst expectation than groups with
lower mean target returns, also tend to be associated with higher average returns until
the end of the corresponding 12-month period. This trend still holds true if target prices
from the exceptional year 2020 are excluded. However, this information only provides an
incomplete picture of the returns in the target return groups. It is noteworthy that while
the average return tends to be higher for higher target return groups, the distribution tends
to be wider, with the median showing a decreasing trend and the share of Year-End returns
below zero is increasing for higher target return groups (see Figure A1 in Appendix A).
The fact that the mean tends to be further from the median for higher target return groups
in the most extreme case for the “Above 70%” target return the mean even exceeds the
third quartile shows that there is a long tail at the higher end of the returns. Thus, higher
average returns are based on a comparably small number of very high Year-End returns.
This illustrates that the risk associated with stocks in higher target return groups increases
but so does the potential reward, as highlighted by the average returns.

The next step is the analysis of the Year-Highest class that represents whether the target
price is met at any time during the 12-month period after the mean target price changes.
Figure 7 displays for the Year-Highest target the accuracy for each of the target return
groups and for each year, and Figure 8 illustrates the average of the highest achievable
(actual) return by the stocks in these target return groups during the 12-month period.
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Figure 8. Average return by target return group and by year for Year-Highest class.

The average accuracies (target hit rates) are considerably less variable for the Year-
Highest class than for the Year-End class and are also consistently higher in each year (see
also Figure 5). The average accuracy ranges from 42.8% (2011) to 95% (in 2020) with an
overall average return of 68.1%. The average accuracy for the “Under 0%” target return
group is essentially 100% every year given that the stock price is already exceeding the
target price at the start. The only exceptions are three observations for which the target
return is only 0.2% to 5.1% below the stock price, which drops below it during the first
day and never recovers from it. The tendency that lower target return groups are more
likely to be met is even stronger for the Year-Highest target. It is noteworthy that the
average accuracy for the “Above 70%” target return group is still often 2–3 times smaller
than for the “Under 0%” and “0% to 9.9%” target return group. The average (highest)
returns achievable displayed in Figure 8 follow a similar pattern to those for the average
returns by Year-End in terms of the higher magnitude of average returns for the “Above
70%” target return group. The average returns for each target return group and year are
positive, highlighting that, on average, stocks during the 12-month period at some point
increased over their initial stock price. The correlation between the average Year-Highest
returns with the MSCI world performance is still strongly to moderately positive (0.80, 0.41
excl. 2020).

The average accuracy and return for the Year-Highest target by target return group
is displayed in Table 4. Similar to the Year-End average accuracies, the Year-Highest
average accuracies also decline for higher target return groups. Moreover, the trend of
higher average returns for higher target return groups can also be observed. Similar to the
Year-End average accuracies, the Year-Highest average accuracies also decline for higher
target return groups. Moreover, the trend of higher average returns for higher target return
groups can also be observed.
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Table 4. Average accuracy and return by target return group (Year-Highest class).

Target Return
Group Under 0% 0% to 9.9% 10% to 29.9% 30% to 70% Above 70%

Average Accuracy 99.8% 85.1% 59.6% 39.9% 21.8%
Average Return 57.8% 36.4% 44.1% 78.1% 118.9%
Average Hit Return 57.9% 42.3% 68.4% 168.6% 420.3%
Average Miss Return −4.1% 2.6% 8.4% 18.0% 35.1%

Similar to the Year-End average accuracies, the Year-Highest average accuracies also
decline for higher target return groups. Moreover, the trend of higher average returns for
higher target return groups can also be observed. The average returns for the Year-Highest
class are for each target return group higher than those of the Year-End class (see Table 4),
which is intuitive given that these correspond to the highest stock price during an entire
year and not just those at the end of the year. The same holds true for the average hit
returns and the average miss returns, which are all positive (with the single exception of the
average miss return for the “Under 0%” target return group which, by definition, cannot
be positive). As for the Year-End target, for the Year-Highest target the average hit and
miss rates increase as the target return group increases. This highlights that clean energy
stocks in the groups with higher mean target returns, which represent a more favorable
analyst expectation than groups with lower mean target returns, also tend to achieve higher
stock price increases over their 12-month periods. It is noteworthy that both the average as
well as the median return increases with higher target return groups, highlighting that the
distribution has a longer tail for the high positive returns (see Figure A1 in Appendix A).
However, in contrast to the Year-End returns, the share of negative returns remains at a
low, close to constant level for all target return groups.

From an investor’s perspective, it is interesting to note that the Year-End returns
represent the returns achieved by investing in a stock at the time where the mean target
price is updated and simply holding it for the 12-month period (passive management). In
contrast, the Year-Highest returns embody the highest return accomplishable during the
12-month period starting from the change of the mean target price and, thus, may require
extensive monitoring and optimal market timing to be accomplished (active management).
This was also pointed out by Bonini et al. [2], who stated that it is effectively not possi-
ble for investors to determine when the maximum price (or minimum price) of a stock
is accomplished.

5. Feature Selection

Feature selection refers to the process of selecting features (=variables) that are relevant
for a task and, thus, discarding irrelevant or redundant features from a data set [25–29]. This
differentiates feature selection from another dimensionality reduction approach termed
feature extraction. Feature extraction transforms the existing features into “new” ones and,
subsequently, keeps only some of these new features, whereas feature selection chooses
a subset of the original features to retain [30–32]. Using feature selection is generally
associated with several advantages and motivations such as (1) improving (or at least not
considerably decreasing) the error of the final model [33–37], (2) increasing the speed of
model training, and obtaining more simple models from the data [33–36], (3) reducing
computational cost and data storage requirements [33–35], and (4) obtaining more easily
visualizable and interpretable data [33–35,38,39].

When feature selection is applied in the context of supervised learning, such as classi-
fication or regression, it is referred to as supervised feature selection [30,39]. Supervised
feature selection can be divided into three types: filter, wrapper, and embedded meth-
ods [31,39–41]. Filter methods are part of the pre-processing of the data and only use
the characteristics of features to determine their relevance, thus, they do nit involve any
learning algorithm (e.g., classifier) [31,39,41,42]. Wrapper methods deploy the learning
algorithm as a “blackbox” to evaluate different feature subsets (e.g., using classification
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accuracy) and to select the best performing one [39,43–46]. Embedded methods are as
wrapper methods classifier-dependent, but unlike wrapper methods, they are part of
the model training of the learning algorithm itself [25,33,47,48]. Thus, the feature subset
generated by embedded methods can be seen as a byproduct of model training [47].

This research will use commonly known embedded feature selection methods, in
particular random forests and support vector machines with recursive feature elimination
(RFE), to train the classification models for this study. The software used for coding is
Matlab version 2020a.

6. Classification Models
6.1. Random Forest

Random forests were suggested by Breiman [49] and are an ensemble of so-called
decision trees [50]. A common algorithm to create decision trees is CART [51], but others
exist as well [52,53]. A decision tree is a machine learning method that starts at the so-called
“root” node and uses at each step the best binary split of a variable to create two child
nodes [50]. This split can be considered a rule that aims to make resulting partitions of the
data more “pure” in terms of the distribution of classes in each of them. This procedure is
repeated until a stopping criterion is met [50], for instance, that each partition is “pure”,
meaning that only a single class is present. Following the resulting path of rules that are
applied to each new observation leads them to a so-called “leaf” or “terminal node” which
is associated with one class (either pure or majority in that partition) [52,54,55]. Thus,
following the path branched out from the root node determines the class membership of an
observation. This procedure of iteratively using binary splits to create “purer” partitions of
the data is called “recursive partitioning” meaning that it creates regions of the instance
space that belong to each of the classes in a classification problem [50,52,55].

A decision tree has multiple advantages, such as its easy interpretability due to the
rules it provides for its class assignments [52,54], its ability to handle numerical and discrete
variables, and that it does not require assumptions about the underlying distributions [52].
However, decision trees are sensitive to small perturbations of the data (high variance) [56]
and, thus, tend to overfit.

The aim of a random forest is to overcome this weakness of decision trees by combining
multiple decision trees and aggregating their class predictions [50,56]. The idea of random
forests is an extension of bagging [50]. Bagging stands for “bootstrap aggregation”, where
“bootstrap” refers to randomly sampling observations with replacement from the training
data to obtain multiple data sets of the same size as the original training data, whereas
“aggregation” highlights that the results from training models on these bootstraps are
averaged (=aggregated) [56]. The difference in random forests to classical bagging is that
not only observations are randomly drawn from the original data but also the variables
are randomly sampled (except for the target variable) [50,56]. This procedure aims to
reduce the correlation between trees to obtain de-correlated trees [56]. The algorithm for
a random forest [50,56] (in the context of classification) is illustrated in Algorithm 1. The
algorithm illustrates that a set of decision trees are used that each cast their vote and the
most common class vote is used as the class prediction for the random forest (majority
voting) [56].

For this study, the number of decision trees in the random forest is set to 50. The
minimum number of observations at each leaf node (minimum leaf size) is an optimized
hyperparameter over the values {1, 10, 20, 50, 250, 1000, 2905}, where 2905 is the number
of samples divided by two (rounded down). The Gini diversity index (GDI) is selected as
the splitting criterion, the technique for variable selection (step 1.2.1. in Algorithm 1) is the
interaction test [57], and the number of variables selected randomly (m) from the bootstrap
sample is

√
p where p is the number of all variables in the data set [50,56].
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Algorithm 1 Random forest for classification

1. For t = 1 to T (number of decision trees in the random forest)
1.1. Take a bootstrap sample of the training data
1.2. Use the bootstrap sample to fit a decision tree by repeating the following steps
(recursive partitioning) until a stopping criterion for the tree is met

1.2.1. Select a subset of the variables (denoted m) of all variables (denoted p) in the
bootstrap sample
1.2.2. Determine the best binary split for any of the m variables (best splitting criterion
value e.g., purity)
1.2.3. Split the node into two child nodes using the variable and variable value for the
best binary split

End
2. Assign observations to classes by taking each tree’s class prediction and using a majority vote
(most common class prediction) over all decision trees (=votes) to determine the class label

6.2. Support Vector Machine—Recursive Feature Elimination

The support vector machine (SVM) originated in the work of Boser, Guyon, and
Vapnik [58] and Cortes and Vapnik [59]. The general idea of an SVM is to create a decision
boundary (hyperplane) that maximizes the margin between itself and the closest observa-
tions (=data points) of each of the classes [54]. The points that are closest to the boundary
and, thus, are on the margin are called “support vectors” [60]. It is noteworthy that the
input variables, denoted x, are often mapped into a higher-dimensional feature space using
a (nonlinear) mapping that can be denoted as φ(). Following the notation in [59,61], the
decision function f for a data set x can be defined as

f (x) = wφ(x) + b (1)

where w are the weights for the optimal hyperplane (decision surface) that separates the
classes with the largest margin, φ() is a function that transforms the input, and b is the bias
value. The bias is the average over the marginal support vectors and can be calculated
using the weights w [60]. The weights w for the optimal hyperplane are calculated as

w = ∑
i

yiαiφ(xi) (2)

where xi is a support vector, αi is the weight for the support vector xi, and yi is the class label
ε{−1, 1} corresponding to the support vector [59,60]. The weights of the support vectors α
are the parameters of an SVM, which are optimized using convex optimization [60]. For
details on the optimization problem behind an SVM, please see [56,61].

The weight vector w for the hyperplane will be used in recursive feature elimination
to determine the ranking of features. Recursive feature elimination using a support vector
machine (SVM-RFE) was introduced by Guyon et al. [60]. It deploys a greedy backward
elimination procedure where in each step an SVM is trained and the variable with the
lowest squared weight w2 is removed from the set of the remaining variables [48,60,62,63].
Thus, w2 can be regarded as a ranking criterion for the variables [60]. It is noteworthy that
in each step one or more variables can be removed [48,60]. Thus, SVM-RFE is inherently
different from random forests: the former starts with a complete variable set and iteratively
removes one (or multiple) variable(s) whereas the latter functions by iteratively selecting
variables. The algorithm for SVM-RFE is depicted in Algorithm 2 (similar to [48,60]).

The logic behind this procedure is that w2 estimates the effect of each variable on
the objective function (sensitivity) with larger values indicating more important variables
so that the resulting variable subset leads to the best class separation with the SVM
classifier [48,60]. The number of variables to retain can either be user-specified (and
the number of variables to remove would, thus, be all variables minus the number of
variables to retain) [62,63] or the algorithm can be run until a single variable is left and the
optimal subset can be selected using cross-validation as the subset leading to the highest
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validation accuracy. For this study, the variables are standardized using the weighted mean
and weighted standard deviation, and the optimal variable subset is determined using
cross-validation.

Algorithm 2 Support vector machine—recursive feature elimination (SVM-RFE)

For m = 1 to M (number of features to remove)
1. Train an SVM on the training data with the remaining features (s) (initially all features p)
2. Determine the ranking criterion w2 from the trained SVM

2.1. Obtain the weights α of the support vectors from the trained SVM

2.2. Calculate the weight vector w of the optimal hyperplane
(

w = ∑
i

αiyiφ(xi)

)

3. Remove the variable associated with the smallest w2 from the set of the remaining
features s

End

7. Experimental Results and Analysis
7.1. Model Performance and Feature Importance

The performance of the random forest (RF) and SVM are compared to a simple
random approach using the two-class probabilities. In particular, for each observation, a
random uniform number is generated and if its value is below or equal to the first class’s
probability, it is assigned to that class, and otherwise, it is assigned to the second class. This
approach is taken to compare the random forest and SVM with a random approach but still
account for the class sizes (especially for the Year-Highest class, which has a higher share of
observations with the positive target class). The average classification accuracy, precision,
and recall for the three models are displayed for each of the two targets (“Year-End” and
“Year-Highest”) in Table 5. The results are based on 20 runs of a nested cross-validation
(10-fold cross-validation split for the external and also the nested cross-validation).

Table 5. Model results for the Year-End and the Year-Highest targets.

Model Target Accuracy ± Std 1 Avg Precision Avg Recall

RF Year-End 73.24 ± 1.63 *** 72.19 69.3
SVM Year-End 65.90 ± 1.75 *** 62.21 68.45

Random Year-End 50.02 ± 2.09 46.34 50.02

RF Year-Highest 81.15 ± 1.57 *** 84.51 88.55
SVM Year-Highest 75.77 ± 1.28 *** 76.15 93.8

Random Year-Highest 56.49 ± 1.93 68.02 56.49
The notation ‘***’ refer to 0.1% significance level corresponding to a one-sided Welch’s test of the accuracy of RF
and SVM versus the accuracy of the Random model for a specific target, respectively.

The results for the Year-End target show that the random forest is, with an average
accuracy of 73.24%, the most accurate model. The linear SVM model performs noticeably
worse than the random forest. However, using the one-sided Welch’s test, it can be
demonstrated that both the random forest and the SVM are highly significantly (***) more
accurate than the random model (p-value < 0.999). The average precision and recall are also
the highest for the random forest model with both values being around 70%. This indicates
that the model correctly predicts around 70% of the actual target price hits (recall) and that
also about 70% of the positive predictions are actual hits (precision). For the Year-Highest
target, the ranking of the methods is the same, with the random forest performing the best
in terms of accuracy and, both the random forest and SVM show average accuracies that
are highly significantly more accurate than that of the random model (p-value < 0.999). It
is noteworthy that all metrics—average accuracy, average precision, and average recall
are higher for all methods for the Year-Highest target than for the Year-End target. This
is likely based on the fact that it is an easier classification task to determine if a certain
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target price is exceeded at some point during a time period than for only one point in time
(year-end).

The next question investigated is that of the feature importance, meaning, which
variables are relevant and used by each of the two machine learning algorithms for their
models. The relevance of features (=variables) for these two models for both targets is
displayed in Figure 9.
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Figure 9. Feature importance by model and target.

The feature importance scores illustrate that for both the Year-End and the Year-
Highest random forest and SVM models the most relevant variable is the mean target price
of the stock. This may not be surprising given that (1) the mean target was the target price
used to set up both of the targets and (2) it represents a consensus of analysts about the
expected (average) stock price in the future. For the random forest model, the number of
target prices was the second most relevant variable whereas for the SVM models it was
only the third most relevant one. In order to analyze the obtained model performances in
more detail and understand for which type of observations the model works particularly
well, the overall accuracy accomplished is broken down by the mean target price and the
number of target prices. This breakdown for the random forest and SVM model with the
Year-End target is presented in Figure 10. The categories for the number of targets were
created with the help of the 33rd and 67th percentile of the number of analysts covering
a stock as cut-off points. Thus, the number of targets is considered “Small” when an
observation is covered by 1–6 analysts, “Medium” for 7–14 analysts, and “Large” when 15
or more analysts’ target prices are available.
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The results show that for both the random forest and SVM model, the average accura-
cies tend to be the highest for the very high mean target prices (“Above 70%” and “30%
to 70%), followed by the lowest mean target prices (“Under 0%), which imply a decrease
from the current stock price. Both models rarely predict the positive class (target price
met) for observations with very high and high mean target prices (“Above 70%”, “30% to
70%)—but the SVM is in that case more extreme by almost never predicting a “hit” for these
return groups (see in Figure A3 in Appendix A). Moreover, the precision of the random
forest for these return groups tends to be rather high, indicating that when it predicts a hit
(which it does not do often), then it is often correct with that prediction (see in Figure A2
in Appendix A). This holds true especially for stocks with high target returns (“30% to
70%”, “Above 70%”) and that are highly covered meaning that there are 15 or more (recent)
analyst prices at that time available for it. These two subgroups show a precision of 84.95%
and 93.06%, indicating that positive predictions are in the vast majority of cases correct.
It should be pointed out that the random forest model can also be considered prudent
since the recall is not high for instance 37.53% and 25.97% for these subgroups highlighting
that often observations for stocks that hit their target prices are not predicted as positive.
These results are very different for the SVM model for the Year-End target, which almost
never predicts a positive outcome for the high return groups and even when it does, the
precision is generally low. Thus, the high accuracies achieved with the SVM for the high
return groups are almost exclusively based on predicting a negative outcome (which is the
majority class label for these return groups). This likely makes this model less attractive for
potential investors since correctly predicting hits of a target price provides usually more
information than the miss. In particular, a hit states a minimum return achieved (the target
return) to be an actual hit, whereas a miss does not provide other information than that the
return is lower than the target return, which can still be positive or be negative (exception
(“Under 0%”)).

The two models are also very accurate on observations with a mean target that is below
the current stock price (“Under 0%”). For these observations the model tends to predict
the positive class (target price met) in 90% to 100% of the cases and, thus, unsurprisingly
correctly predicts most observations that are actually positive. The observations “Under
0%” have a high share of stocks that after one year are at or above the target price, which
may indicate that the mean target price is accurate or even too pessimistic. However,
investors should keep in mind that the target price is below the current price, so this
does not necessarily reflect an investment opportunity. However, the average actual
return associated with these observations is over 26% (within 12 months) with 63.9%
of observations in that group showing a positive return instead of a decline over the
12-month period.
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This breakdown for the random forest and SVM model with the Year-Highest target is
presented in Figure 11.
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The average accuracy of both models is not just higher for the Year-Highest target than
for the Year-End target (see Table 5) but there also seems to be clearly less variation among
the average accuracy values for different subgroups. It is interesting to note what for both
models there are more positive predictions for the high return groups, but the recall for
them tends to be lower (see Figures A4 and A5 in Appendix A). However, the opposite is
true for the moderate return groups such as “10% to 29.9%” or “0% to 9.9%” which tend to
have the same or a larger share of positive predictions for the Year-Highest than for the
Year-End target but have a higher recall. This means that for these moderate return groups
the share of positive predictions that turn out to the correct is higher. The simple reason
for the higher accuracy and precision on these moderate return groups is likely the fact
that the magnitude of the estimated increase is not that high, and the stock price has an
entire year to reach it at least at a single point in time. Since stock prices tend to fluctuate
over a year, it appears plausible that especially low to moderate increases can happen at
least temporarily during that entire time period. This also highlights the main problem
of models using the Year-Highest target: investors do not know at which time and for
how long targets may be met, thus requiring strict and continuous monitoring of the stock
prices and optimal market timing to accomplish the results suggested by the Year-Highest
model. However, if this is possible for an investor, then the predictions especially for the
moderate target groups may be of interest due to the high precision.

7.2. Performance Comparison

From an investor’s perspective, the accuracy of a classifier is only of secondary im-
portance compared to its usefulness as a support tool for investment decisions. Figure 12
shows the Year-End and Year-Highest return distributions for positive and negative pre-
dictions conducted by the random forest and SVM model. Since the target return group
“Under 0%” is assumed not to be of interest for investors since correctly predicting that a
stock may reach its target price, which is lower than the current price, is likely of limited
investment value, these observations are not included in the return distributions presented
in Figure 12.
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For the Year-End, especially the random forest, which was the most accurate model
for this target, showed the most interesting distributions. In particular, positive predictions
of the random forest did not just have a clearly higher median and mean than all returns
(in grey), the first quartile also exceeds zero (3.2%). This means that less than 25% of the
stocks for which the model predicted that the target price would be reached, experienced
a negative return over the subsequent year. In contrast, the negative predictions lead
to a median year-end return close to zero. Thus, close to 50% of the observations were
characterized with a negative return whereas overall this is only the case for about 39.4% of
observations. For the SVM the average year-end return is lower than that of all observations
and the third quartile for negative predictions is larger than for positive ones, indicating
that the top 25% of returns for negative predictions are actually higher than for positive
predictions. It is noteworthy that for both the random forest and the SVM the distribution
of negative predictions is wider, reflecting that for negative predictions there is a wide
variety of returns that can be obtained.

For the Year-Highest returns, the distributions look clearly different than for the Year-
End returns. Both the random forest and the SVM show higher median and average returns
than overall. Moreover, the positive predictions are characterized by a larger variation
of the returns. Again, the random forest shows better performance in terms of the actual
returns. However, it should be kept in mind that these are the Year-Highest returns, which
means that the corresponding high stock prices are accomplished at some point during
the year, likely not at year-end and not necessarily for a prolonged period of time. Thus,
achieving such returns might be extremely challenging. In this regard, the Year-End returns
might be of larger interest for investors since they only require the implementation of a
buy-and-hold strategy and do not necessarily require additional monitoring.

The subsequent analysis will, thus, focus on the Year-End returns achieved using the
most accurate model, the random forest. Figure 13 depicts the Year-End return by target
return group accomplished with negative and positive predictions of the random forest.
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It is apparent that the median and average return by year-end is considerably higher
for positive predictions of the random forest for stocks with target prices between “30% to
70%” and those “Above 70%”. The shares of these predictions compared to all predictions
made are overall very low, 1.5% and 0.4%, respectively. However, they appear of interest
as it suggests a potentially higher return for stocks with high target prices for which
the random forest predicts that they will meet the target price. Positive predictions are
with a share of only 4.1% even within the “Above 70%” target return low (0.4% overall).
Thus, positive predictions for “Above 70%” target returns are very rare but appear to be
associated with very high average and median returns.

This finding was manually verified for companies in this group (positive prediction
and “Above 70%” target return), which were characterized by the highest returns (200%
or higher). Of the 12 companies that were contained in this subset, these extremely high
positive returns were observed during recoveries of the stock prices which were prior
over 90% below their all-time highs (e.g., Vestas Wind Systems A/S in 2012, SunPower
Corp. in 2012 and 2019, Enphase Energy in 2017, First Solar in 2012). Apart from that,
some companies simply experienced a stock price surge to new all-time highs after 2020,
which has been an exceptional year due to the COVID-19 pandemic (e.g., Enphase Energy,
Sunrun Inc, Bloom Energy Corp., Sunnova Energy International). Thus, the results appear
plausible, but this does not necessarily mean that they are repeatable.

Figure 14 allows a more detailed look at the positive return predictions of the random
forest in terms of hits and misses.

It is unsurprising that when the model correctly predicts a target price being met (i.e.,
a hit), the returns achieved are higher than when a misclassification occurs (i.e., a miss).
Moreover, it is intuitive that correctly predicting higher return groups leads on average to
higher returns. Having said that, it is noteworthy that the magnitude of the actual returns
in the “30% to 70% and the “Above 70%” target return group are very high—on average
195.2% and 296.5% respectively. However, the magnitude of the returns associated with
misses appears even more interesting. The average returns are in general negative, but
their magnitude decreases for higher target return groups. In other words, the higher
the target return group, the smaller the consequences of misclassifications. This appears
plausible given that higher average target returns reflect a higher confidence of analysts in
a company’s stock. Moreover, a higher target return also means that the range of positive
returns a stock can accomplish while not meeting the target price is larger. The extreme case
is the “Above 70%” target return group for which the average return of misclassifications
is still positive with an average return of 18.6% and a median return of even 28%. The low
or even positive average returns for misclassifications is one of the contributing factors
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for the overall high average returns of positive predictions for high return groups. Lastly,
it is noteworthy that the share of hits for the positive predictions (=precision) is often
around 70% and appears rather consistent throughout the return groups. This indicates
that independently of the magnitude of the return group the positive predictions of the
random forest model are largely correct.
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From an investors’ point of view, it should be kept in mind that clean energy stocks
represent a relatively new asset class that tends to be very volatile [64]. Moreover, the
performance of clean energy companies is linked to the (crude) oil price where the oil price
has a unidirectional short-term causality on the price of alternative energy companies [65]
and the volatility of the oil price affects the profitability of these stocks [66]. Apart from that,
previous research found that the volatility of the oil market (e.g., measured by OVX) impacts
the volatility of clean energy companies [67] and vice versa [68] and that this spillover
effect of volatility is stronger than the spillover effect of returns [69]. Moreover, during
the COVID-19 pandemic, the volatility spillovers appear to have intensified [66]. Apart
from the (crude) oil market, technology stocks, and investor sentiment towards renewable
energy have been shown to affect the stocks of cleantech companies as well [69,70]. Finally,
it is noteworthy that hedging against adverse movements of clean energy stocks can be
possible using the volatility index VIX or crude oil [64] and that clean energy companies can
be part of profitable hedging strategies themselves [68] as well as contributing to portfolio
diversification, e.g., in times of extreme market events (e.g., a pandemic) [66].

8. Conclusions

In this paper, the accuracy and predictive power of mean target prices for the stocks
of companies contained in the Standard and Poor’s Global Clean Energy (USD) index were
investigated. This study shows that the mean target prices for these stocks during the
timeframe from 2009 to 2020 are on average 22.2% above the current stock price. This is in
line with recent research works that cover time periods after 2000, whereas studies covering
partially or entirely the 1990s show higher implied returns for target prices. The Year-End
accuracy of 46.6% (41.5% excl. 2020) shows that only less than half of the mean target
prices were met by year-end, whereas the Year-Highest accuracy of 68.1% (62.5% excl. 2020)
highlights that close to two thirds of mean target prices are met at some point during the
12 months. These results are similar to those found in recent research, illustrating that the
accuracy for global clean energy stocks is not considerably different than those of different
cross-sections of stocks in different stock markets. In line with previous research, the
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average accuracy of target prices decreases as the implied target return increases, meaning
that relatively higher target prices are less likely to be met.

Subsequently, a random forest and an SVM classification model were trained using
both the Year-End and the Year-Highest target for the mean target prices and were com-
pared to a random model. The random forest leads in both cases to the highest classification
accuracy but both the SVM and random forest are highly significantly more accurate than
the random model. Unsurprisingly, the best average accuracy of 73.24% for the Year-End
target is lower than the best average accuracy of 81.15% for the Year-Highest target. This
appears to reflect that meeting a target price at any point during the 12-month period is eas-
ier to predict than meeting the target price only at a single point, at the end of the 12-month
period. The analysis of the variables shows that for all models the mean target price is the
most relevant variable, whereas the number of target prices appears to be relevant as well.
This is in line with previous research that suggested that the implied return of target prices
and the number of analysts covering a stock are linked to the accuracy of target prices.
A detailed analysis of the results in terms of these two variables for the Year-End target
indicates for the random forest that this model is particularly accurate for the high target
returns (“30% to 70%” and “Above 70%”), especially when the number of target prices is
high (coverage of at least 15 analysts). For these subsets, only a few positive predictions
are made but those are in the vast majority of cases correct. Thus, it is unsurprising that
the actual mean and median returns for high target return groups are considerably higher
than for all observations. These high actual returns are based on extremely high mean and
median returns for actual hits and close to positive or even positive returns when positive
predictions for high target returns are incorrect. Consequently, following the rare positive
predictions of the random forest for the highest target return groups (“30% to 70%” and
“Above 70%”) may represent potentially attractive investment opportunities.

Some limitations apply to the results of this study. First, the results are obtained
for a selection of clean energy stocks, which may not be generalizable for stocks in other
sectors or even all clean energy stocks. Moreover, the results are in line with recent research
but show clear differences to older research, highlighting that the implied returns and
accuracies may differ in various time periods and may also be different in the future. For
future research, a set of global stocks from a wider range of sectors can be investigated to
confirm the findings. Moreover, additional variables linked to the company and the past
stock performance can be included for the classification model, and investment strategies
following the corresponding model predictions can be presented.

Author Contributions: Conceptualization, C.L. and A.L.; methodology, C.L.; software, C.L.; valida-
tion, C.L.; formal analysis, C.L.; investigation, C.L. and A.L.; data curation, C.L. and A.L.; writing—
original draft preparation, C.L. and A.L.; writing—review and editing, C.L.; visualization, C.L. and
A.L.; project administration, C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Kone Foundation, the Finnish Academy of Science and
Letters, and the Finnish Strategic Research Council, grant number 313396/MFG40 Manufacturing 4.0.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study were obtained from the commercial
Database “Datastream”. The information on the location of companies’ headquarters and current
market capitalization are obtainable free of charge from the website finance.yahoo.com (accessed on
19 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

143



Sustainability 2021, 13, 12746

Appendix A

Table A1. Selected variables from Thompson Reuters Datastream.

Name Variables Type Description

IBES Number of Price Targets PTNE Target Price Indicates IBES Number of Price Targets.

IBES Price Target High Value PTHI Target Price Indicates IBES Price Target high value.

IBES Price Target Low Value PTLO Target Price Indicates IBES Price Target low value.

IBES Price Target Mean PTMN Target Price Indicates IBES Price Target mean value.

IBES Price Target Standard Deviation PTSED Target Price Indicates IBES Price Target Standard
deviation.

Price Target Up since last monthly values PTUP1M Target Price -

Price Target down since last monthly
values PTDN1M Target Price -

Price/Earnings Ratio (Adjusted) PE Other Financial This is the price divided by the earnings
rate per share at the required date.

MSCI World Price Index MSWRLD$, PI Other Financial Price Index of the MSCI world stock
market index.

ESG Score TRESGS ESG

Refinitiv’s ESG Score is an overall
company score based on the

self-reported information in the
environmental, social, and corporate

governance pillars.
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Abstract: The global increase in electricity supply volatility due to the growing share of intermittent
renewable energy sources together with recent extreme weather events draws attention to energy
system reliability issues and the role of renewable energy sources within these systems. Renewable
energy deployment strategies have already become a key element in debates on future global
energy systems. At the same time, more extensive use of renewable energy sources implies a
higher dependence on intermittent power, which puts the reliability of the electricity system at risk.
Policymakers are introducing measures to increase the reliability of energy systems. Paradoxically,
support for renewable energy and analyses of energy system reliability have been dealt with by
two different and rarely overlapping research approaches. As a result, renewable energy promotion
has often been designed without accounting for system reliability. To our knowledge, a model that
captures those investment incentives and allows for tuning such financial support does not exist. This
paper introduces a hybrid model that can potentially steer renewable energy investments in favor of
energy system reliability. We demonstrate the idea of reliability-based support for renewable energy
sources in action using a stylized case. Depending on the complementarity of different renewable
energy power outputs available in the system, such reliability-based support can substantially reduce
the necessity for greater backup capacity, can cut the overall costs of the energy system, and can
reduce its environmental footprint.

Keywords: renewable energy support; energy modeling; sustainability; energy system design;
generation profile; environmental footprint

1. Introduction

Striving to reduce their carbon footprints, governments worldwide have been introduc-
ing renewable energy policies to decarbonize power sectors. Even the COVID-19 pandemic
has not slowed down the growth in the global renewable power capacity, reaching a record
share of almost 30% of the global energy mix in 2020 [1]. However, such development
poses challenges for energy systems. Electricity generation from many types of renewable
energy sources is intermittent. However, the overall electricity supply should match the
demand at every moment to avoid costly blackouts. Thus, the extensive deployment of
renewable energy may threaten the reliability of energy systems. In response, various flexi-
bility measures have been developed. They include storage technologies, such as batteries
and hydrogen solutions (the latter possesses a potential for electricity transmission [2,3]
and sector coupling with transportation [4]); demand-side management; smart grids; and
regulatory measures to ensure reliability [5], so-called capacity mechanisms [6,7].

Recent extreme weather events have drawn the attention of policymakers and re-
searchers towards the reliability of the power systems, with implications for widespread
renewable energy adoption as well. Extreme weather events and weather variations affect
both the energy demand and the reliability of energy systems. Numerous global cases of
extreme weather events, such as heatwaves or severe winter storms, forced interruptions
in the power generation, and even blackouts have been reported [8,9]. Perera et al. [10]
estimated that future extreme weather events induced by climate change might lead to a
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drop in power supply reliability by up to 16%. Uncertainty in the power supply associated
with weather variations may slow down the implementation of intermittent renewable
energy technologies and may increase the dependence on fossil-based power generation.
However, Perera et al. [10] demonstrated that further adoption of renewable energies is
possible without compromising the resilience of energy supply systems if potential risks
are appropriately quantified. In this regard, financial mechanisms, which promote the im-
plementation of renewable energy while ensuring the energy system reliability, should be
introduced. The idea of enabling market signals by channeling the system reliability needs
in subsidies for renewable energy, advocated in the paper, was highlighted in previous
studies as well [11].

Intermittent renewable energy is often mentioned as one of the causes of problems
with energy system reliability in Europe [12]. Norway has the highest cost for maintaining
electricity supply security in Europe partly because of their high share of small-scale
intermittent hydrogeneration in the system [13]. In the academic literature, renewable
energy sources are often treated as a threat to energy system reliability as well [14–16].
Such research normally inquires about what types of capacity mechanisms can better
tackle the problem. For example, Bhafgwat et al. [15,16] ran simulations to determine
what type of capacity mechanism would better protect against a high share of renewable
energy sources. Lara-Arango et al. [14] came to the conclusion that no capacity mechanism
can sufficiently tackle the issue because of the uncertainty in the electricity supply from
renewable energy sources.

An emerging research direction reconsiders the adverse role of renewable energy
sources for energy system reliability. Mastropietro et al. [17] demonstrated that some
countries choose to include renewable energy sources into their capacity mechanisms
because they do contribute to system reliability. In the same vein, Söder et al. [18] made an
argument for including renewable energy power plants into capacity mechanisms. Peter
and Wagner [19] showed that wind power generation in Europe is characterized by spatial
and temporal heterogeneity. Thus, if wind farms are built in places better for system
reliability instead of the most profitable locations, excessive amounts of backup capacity
could be avoided. At the same time, existing energy models are often wired to add a fixed
amount of backup capacity for every new unit of renewable energy [20], which makes it
impossible to capture the complementarity effects of renewable energy sources and their
subsequent benefits.

However, obtaining a model that accounts for those complementarities of renewable
energy sources is insufficient. The value of renewable energy sources for system reliability
needs to be translated into investment incentives. Such incentives would steer investments
towards creating an optimal mix of technologies for system reliability and towards avoiding
considerable costs for unnecessary backup capacity provisions. Thus, we need a different
type of renewable energy support mechanism that can take system reliability into account.
Such support can only be designed with the help of a model that can do both: capture the
complementarity of renewable energy sources and simulate investors’ behavior.

This paper aims to design a conceptual model that allows for bridging these two
detached phenomena: renewable energy support and energy system reliability. With such a
model, we can see whether, where, and under which conditions the support for renewable
energy sources is better to be designed based on the system reliability needs. In future
studies, when the model introduced here is expanded, we will be able to observe whether
the capacity mechanisms steer the mix of renewable energy technologies well after their
support is withdrawn, whether any modifications are required, and what the effects of
the development of storage solutions are. Overall, such a model would provide in-depth
insight for modern energy policymaking.

The remainder of the paper is structured as follows. First, we provide a short overview
of existing energy modeling approaches for: (i) renewable energy support design and
(ii) energy system reliability studies. Furthermore, we present the conceptual idea and
design of the model, illustrate it in action with a stylized case, and describe the modifica-
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tions required for the model to be applied to a real-world analysis. We conclude with an
in-depth discussion of the model’s applicability and possible policy implications.

2. Background
2.1. Modeling for Renewable Energy Support

Renewable energy support is meant to foster investments in renewable energy. In
order to understand what investment incentives a policy creates, one needs to take the
investor’s perspective and to analyze the investment profitability and how the policy affects
it. Traditionally, such an investment analysis is conducted with a cost–benefit approach
and in particular real options framework [21]. The real options framework, apart from
plain profitability, recognizes uncertainty connected to the project implementation and
possible flexibilities that allow the benefits to be captured or the shortfalls of unfolding
uncertainties to be avoided [22]. Therefore, the real options framework becomes especially
useful in understanding the effects of policies since a policy aims to reduce uncertainty for
investors that otherwise hinders technology diffusion.

A considerable share of renewable energy valuation studies specifically focused on
the analysis of policy effects [23]. The majority of such studies recognize uncertainty com-
ing from volatile electricity market prices, and the main type of flexibility is to postpone
investment. Such a study design allows for addressing the question of whether one or
another policy sufficiently shields investors from uncertainty to incentivize investments
sooner rather than later. Especially beneficial for policymaking are comparative stud-
ies, where the performance of different types of support instruments is analyzed [24,25].
Methodologically, real options research encompasses both analytical and numerical meth-
ods, including standard methods such as dynamic programming, Monte Carlo simulation,
and various trees and lattices [23,26]. However, the majority of studies take an individual
investor’s perspective.

System-level energy models rarely come down to the policy details [27]. One promi-
nent exception is the Green-X model [28], which intentionally recognizes different types
of support for renewable energy and analyzes their performance and costs on the system
level. However, GREEN-X lacks modeling of realistic investment behavior. The decisions
to invest are based on a plain cost–benefit analysis and investors, for example, are not
given a right to postpone their investments.

Meanwhile, in the real world, professional investors and utilities behave in accordance
with the real options logic [29], even if they do not use real options models for decision-
making [30]. To the best of our knowledge, the only model, so far, that integrates real
options logic into the energy system level is the one by Rios et al. [31]. However, it does
not focus on renewable energy sources or their support policies. Instead, the aim of this
model is to capture the fluctuations in investments in new power generation after electricity
market liberalization. The cyclic behavior of these new capacity additions makes it possible
to simulate the flexibility in postponing an investment in the model. Thus, this finer detail
of investment behavior—flexibility under uncertainty—is a must-have in system-level
energy models if the aim is to estimate policy effects on investments.

2.2. Modeling for System Reliability

Often in the literature, the terms security of electricity supply, power system reliability,
and power system adequacy are used interchangeably. Heylen et al. [32], in their compre-
hensive review of reliability indicators, provided a classification where system reliability is
composed of system adequacy and system security. System adequacy refers to the ability
of the supply to meet the demand in regular circumstances. System security refers to the
ability of the system to accommodate disturbances. Many different indicators exist in both
categories and, often, they are related to each other to different extents.

Peter and Wagner [19] utilize a commonly used approach with respect to the measure
of system reliability in their hybrid model. The reliability measure expected energy unserved
(EEU) characterizes the overall system reliability. It is, essentially, the expected load level
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that cannot be served over a time span and is defined based on loss of load probability (LOLP),
a common system adequacy indicator. The contribution of individual technologies to the
system reliability or their capacity value can be defined via equivalent firm capacity (EFC),
where the term ‘firm’ refers to only the amount of capacity that actually contributes to
electricity generation. Thus, the capacity of an individual technology is practically a share
of its overall installed capacity that contributes to the decrease in the loss of load probability
and, thus, improves system reliability.

System reliability is a system-level issue and, thus, should be studied by system-level
models. The reliability of electricity supply depends on all power plants, storage solutions,
and demand flexibility available in the system, and all of these actors should be taken
into account. Typically, long-term energy system optimization models have been used
for this matter. In such models, the evolution of the power-generation technology mix
can be traced, and its reliability can be assessed, usually on a year-by-year basis and
sometimes while taking into account seasonal, weekly, or day/night variations in the
supply and demand. However, with the increasing share of renewable energy sources,
in which the power output varies from hour to hour and from day to day, a necessity for
integrating more fine resolutions into those models arose [20]. Operational power system
models match the supply and demand on an hourly basis and are commonly utilized by
system operators to balance the system. Such models, however, do not have room for
new investments and long-term technology mix evolution [33]. Thus, policymakers call
for hybrid models that are able to combine short-term power variations and long-term
technology development [34].

A handful of studies attempted to integrate the finer details of operational power
system models into long-term energy system models [19,35]. Peter and Wagner [19] specifi-
cally focused their modeling efforts on accounting for the complementarity of renewable
energy. The operational detail of the model allows for capturing the temporal and spatial
heterogeneity of renewable energy power generation. When available in the region, the
anti-correlation of wind speeds is translated into a reliability value for the energy system.
The more nonsynchronous the power-generation profiles of wind farms, the larger their
overall contribution to the energy system adequacy and the less backup capacity needed to
support such a system. The authors estimate that such a wise investment approach into
renewable energy would allow for avoiding 66 GW of unnecessary backup capacities at an
annual cost of 3.8 billion euros by 2050 in Europe [19].

Methodologically wise, energy system models and operational power system models
are often simulation-based and often embody analytical and hybrid approaches [20,36].
Critical design decisions in these models include the scope and resolution of temporal,
technical, and spatial representation [20].

2.3. Summary of Models

A summary of the approaches for energy modeling is presented in Table 1. For the
purposes of this research, we distinguish three conceptual levels for all energy models. The
first one looks into the operational routines of power systems dealing with balancing supply
and demand on an hourly (or even finer) basis. The second one reviews the development
of long-term energy systems, mostly focusing on the technology mix and its implications
for system reliability, environment, economics, and so forth. Both types of model take
the system perspective. The third type is real options models, which take the investor’s
perspective to understand the effects of policies.
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Table 1. Overview of different model types in energy studies and their usual design choices.

Conceptual Level (i) Operational Power
System Models

(ii) Long-Term Energy
System Models

(iii) Investment Behavior,
Real Options

Perspective System perspective Investor’s perspective

Focus Unit commitment and
economic dispatch

Evolution of installed
generation capacity

Investment profitability and
policy effects

Time horizon 1 day–1 year Decades Investment lifetime

Time resolution 5 minutes–1 hour Year Year

Technical resolution Unit by unit Technology type
Single investment

Geographic scope Power system Countries

Methods Mixed-integer linear
programming

Bottom-up (technology-rich)

• Partial equilibrium
• Optimization
• Simulation
• Multi-agent modeling

Top-down (macroeconomic)

• Input–output
• Econometric
• Computable general

equilibrium
• System dynamics

• Simulation
• Differential equations
• Trees and lattices
• Game theory
• Fuzzy logic methods

References to reviews of
models [20,33] [20,27,33] [23,27]

Key examples of hybrid
models

[19] x

x [31]

We highlight the importance of hybrid models that combine several conceptual levels
to reveal new insights and to capture new phenomena. Peter and Wagner [19] were able to
note and quantify the benefits of an anti-correlation of power generation from renewable
energy by integrating the fine resolution of operational power system models into a long-
term energy system model. In contrast, Rios et al. [31] were able to comprehensively
capture realistic investment behavior on an energy system level by embedding the real
options logic into a long-term energy system model. However, for the purpose of designing
a support instrument for renewable energy sources to steer their deployment in favor
of system reliability, we need a model that combines all three levels: operational detail,
system-level evolution and realistic investment behavior—a hybrid three-tier model.

2.4. Solutions for System Reliability

Before discussing whether and how renewable energy sources can alleviate system
reliability issues, it is imperative to consider current measures and those deemed effective
in the future. In this section, we draw our attention to storage, sector coupling, and
regulatory solutions to support energy system reliability.

Storage solutions introduce flexibility to energy systems and allow for higher shares
of renewable energy and, thus, contribute to both system reliability and decarboniza-
tion [37,38]. Pumped storage hydro (PSH) is currently dominating the global energy
storage market (with a share of about 94% of the installed energy storage capacity and over
99% of the energy stored [39]), which is a commercially mature technology with 160 GW
of installed capacity and 9000 GWh in energy storage capacity worldwide [37]. Other
storage solutions with considerable use worldwide include thermal storage (mainly molten
salt thermal storage), electro-chemical storage (batteries and electro-chemical capacitors),
and mechanical storage technologies (compressed air storage and flywheel). The produc-
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tion of electro–chemical storage (batteries) is one of the most rapidly growing industries
nowadays [38], although battery capacities accounted for only 17 GW globally in 2020
(5 GW of storage capacity was added only in 2020) [40]. Currently, the most commercially
available battery storage technologies include lithium–ion iron phosphate (LFP) batteries,
lithium–ion nickel manganese cobalt (NMC) batteries, lead–acid batteries, and vanadium
redox flow batteries (RFBs) [41], with lithium–ion batteries being most widely used (ac-
counting for 93% of the global battery storage capacity in 2020 [40]). Benefitting from
the economic scale of lithium–ion battery production for transport applications, the cost
of stationary lithium–ion batteries is expected to decrease by 54–61% by 2030 to about
145–480 USD/kWh depending on the battery chemistry, while the number of full cycles
may grow by 90%, according to IRENA projections [38].

Sector coupling broadly refers to integrating different energy sectors in order to
achieve more flexibility in the energy system and allows for higher shares of intermittent re-
newable energy sources [42]. The classical example often studied in the academic literature
is deeming wide-spread electric vehicle usage as a storage capacity for solar power [43].
However, the sector coupling concept is broader and can include even information systems
for better balancing and control of cross-sectoral energy flows [44].

While the technological progress offers promising prospects in the future, its current
state is not sufficient to fully resolve energy system reliability issues. Therefore, govern-
ments around the world have been introducing regulatory measures to support the security
of electricity supply [5]. Five countries in the world maintain strategic reserve (selected
power plants that are kept away from the market and switched on in scarcity conditions),
eight countries implemented capacity payments (similar to strategic reserves but power
plants operate on the regular market as well), and sixteen jurisdictions operate some kind
of capacity markets (arranged in parallel with electricity market and open to the majority
or all of market participants) [7]. Capacity mechanisms are only ‘useful’ for a power
capacity that can actually contribute to electricity generation. Approaches to calculating
this contribution vary, and some of them are covered in Section 2.2.

With or without a capacity mechanism, we argue that a different approach to sup-
port for renewable energy sources can substantially alleviate the burden of intermittent
electricity generation on energy system reliability.

3. Hybrid Three-Tier Model

In this section, we propose a hybrid three-tier model to tackle the issue of steering
renewable energy in favor of energy system reliability. First, we present the conceptual
design of such a model. Then, we demonstrate the model’s power with an abstract and
highly stylized example. Finally, we discuss what needs to be accounted for when the
model is transformed from a concept to application in a real case.

3.1. Conceptual Design

The proposed hybrid three-tier model combines all three types of energy models
reviewed earlier. Its concept is depicted in Figure 1. Block A is composed of an operational
power system model. This block contains hourly demand load curves and power gener-
ation profiles of different technologies; projects hourly electricity prices; and comprises
weather and other uncertainties with relevant diurnal, weekly, and seasonal variations
in demand and supply. With hourly projections, this block is responsible for computing
system reliability measures at every hour. Block A feeds its information to Block B, where
investment incentives are created and investment decisions are made. Here, the support
instrument for renewable energy sources is based on system reliability and can be designed
and tested. If the amount of remuneration from renewable energy sources is calculated
based on their contribution to system reliability, it affects the profitability of the renewable
energy technology with different power generation profiles differently. Thus, the invest-
ment incentives are created and translated based on the investors’ behavior. The resultant
investment decisions affect the composition of the system’s technology mix, which is cap-
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tured using a long-term energy system model component, Block C. The technology mix, in
turn, affects the hourly power generation modeled in Block A. Thus, the cycle repeats. The
environmental footprint of the system is calculated within Block A based on the simulated
data of the system operations.
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The model should be run for two main scenarios:

1. Conventional/existing renewable energy support (as a reference scenario);
2. Renewable energy support via the reliability-based instrument.

The difference in technology mix evolution for these two scenarios showcase the
relevance of renewable energy support via a reliability-based instrument for a particular
region. If a region possesses spatial and temporal complementarity of its renewable
energy sources, then new investments in renewable energy sources can be optimized to
favor system reliability. This, in turn, results in a reduced overall backup capacity or
storage solutions needed. Overall, such a system would cover its peak demand with a
smaller installed capacity and, thus, less incurred costs, compared with scenario #2, where
renewable energy sources are supported in a conventional way.

Continuing the list of scenarios, the model can analyze the effects of different policy
mix arrangements and technological solutions available, though not considered in this paper:

3. Only capacity market with no support for renewable energy sources at all;
4. Capacity markets with no support for renewable energy sources, and penalties for

new investments that do not contribute to system reliability;
5. Infrastructure expansion (i.e., interconnectors to harvest complementarity of renew-

able energy sources) effects for scenarios #1–4; and
6. Storage and demand-response development effects for scenarios #1–4.

3.2. A Stylized Example
3.2.1. Assumptions

A stylized example is used to demonstrate the model’s functioning on a high level of
abstraction in an intuitively understandable way. We chose a region with high potentials
for solar energy resources; therefore, the numbers for technology-specific estimates, such
as the capacity factor and levelized cost of electricity, are taken based on California’s data
for 2018 [45], and as the lifetime of flexible generation, we use the estimated lifetime of
gas-fired power plants [46] (Table 2).

155



Sustainability 2021, 13, 13510

Table 2. Technology-specific assumptions.

Technology Type Capacity Factor Total LCOE,
USD/MWh Lifetime, Years

Flexible generation (combined cycle) 71% USD 114 34
Solar PV (standalone) 26% USD 49 25

Wind (onshore) 40% USD 54 25

In the system, 20 GW-based load facilities and 5 GW flexible generation are assumed to
exist. The intraday load profile is a classic textbook example with two consumption peaks:
morning and evening. It is assumed to vary between 20 and 45 GW (Figure 2a). Such
demand levels correspond to a region with electricity consumption similar to California [47].
The one-day profile is assumed to be representative of the whole year. The day-ahead
electricity market prices are set proportional to the demand (Figure 2a). The missing supply
is deemed to be covered by renewable energy sources, solar and wind power, and extra
flexible generation, if needed, is auctioned by the regulator. The solar and wind power
generation profiles are sketched to resemble the most common situation, with the sun
peaking during the day and winds prevailing at nighttime (Figure 2b). The power profiles
are presented for 1 MWh generation per day overall for each technology.
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Figure 2. Initial load profile, available power, and hourly day-ahead market prices (a) and assumed solar and wind power
profiles (b).

An investment decision is based on profitability by comparing the cost (LCOE) per
megawatt hour and revenue per megawatt hour comparison. If the revenue exceeds the
cost, the decision to invest is made. The model is entirely deterministic; therefore, there is
no uncertainty and, hence, value to postpone investment. That is why profitability is de-
fined by the deterministic net present value (benefits minus costs) rather than real options.
However, industrial players behave in accordance with the real options theory [30]; there-
fore, it is imperative to integrate the real options framework when uncertainty is included
into the model, as in the hybrid model discussed above [31]. The LCOE assumptions are
presented in Table 2. The revenue is composed of the market sales (with prices depicted in
Figure 2b) and a premium.

A premium is modeled in two different scenarios. The YELLOW scenario is modeled
with a classic fixed premium of 20 USD/MWh on top of electricity prices. The premium
remains constant and does not depend on the hour of the day or any other factors. In
the GREEN scenario, we present an experimental reliability-based premium. At the core
of many reliability indicators is a probability of lost load (electricity supply not meeting
demand) [32]. Since our conceptual model is entirely deterministic, no probabilities. Thus,
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our lost load LL is calculated simply as the demand D minus the available supply S for
each hour of the day h.

LLh = Dh − Sh. (1)

Then, we set the ceiling of the premium Pmax at 40 USD/MWh. We compute the
hourly premium as a fraction of the maximum premium corresponding to the hourly lost
load compared with the maximum lost load of the day.

Ph = Pmax ∗
LLh

LLmax
. (2)

Thus, when the need for power at a particular hour is greater, the reliability premium
is higher. The hourly profile of the reliability premium, in turn, defines the profitability of
technologies with different generation profiles. The need for reliability is translated into an
investment incentive.

This is a simplified calculation of the reliability-based premium for the current stylized
case with a fully deterministic model. In reality, many variable and stochastic factors should
be taken into account, including weather, electricity demand, operating profiles of power
plants, etc. With those factors taken into account, the premium should be based not on
a deterministic indicator but on one of the proper indicators for a ‘useful’ capacity, for
example, based on the loss of load probability, as discussed in Section 2.2. A detailed
analysis of existing approaches to calculating the contribution of renewable energy sources
to system reliability is presented in [17].

For the GREEN scenario, the auction is run in two phases. First, the reliability premium
is calculated based on the current reliability situation (Figure 2a), and the most profitable
technology type is selected. Then, the reliability indicator LLh is recalculated, taking into
account the generation profile of the selected technology. The reliability premium Ph is
recalculated as well, taking into account the updated reliability indicator. The updated
premium then may change the profitability of different technologies.

3.2.2. Results
Power System

The resultant economics per unit of generation for wind and solar power are presented
in Table 3. LCOE (column 2) corresponds to the assumptions presented in Table 2. Market
revenue (column 3) is calculated as the technology generation profile (Figure 2b) multiplied
by the market price (Figure 2a). Wind power makes 2 USD/MWh more revenue from the
market during the day, 34 USD/MWh, than solar power. However, it offsets the difference
in their LCOE: 5 USD/MWh. Therefore, together with the fixed equal feed-in premium in
the YELLOW scenario (column 4), solar power becomes the more profitable technology
while wind power does not generate profit (column 7). Therefore, in the YELLOW scenario,
only solar technology is auctioned.

Table 3. Unit economics of solar and wind in the model based on the one-day profile, USD/MWh.

Technology LCOE Market
Revenue

Feed-In
Premium

(FP)

Reliability Premium (RP)
Revenue Profitability

Phase I Phase II FP RP I RP II

YELLOW GREEN YELLOW GREEN

1 2 3 4 5 6 7 8 9

Solar 49 32 20 27 3 3 11 −13
Wind 54 34 20 27 24 −0 6 4

For the first round of the auction, in the GREEN scenario, the revenue from the
reliability premium for solar and wind (Table 3, column 5) is the same, resulting from
the average hourly reliability premium multiplied by the hourly generation. Due to the
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difference in costs, though, solar power is still more profitable than wind power (column
8). Thus, solar power is selected in the first phase. The reliability premium profile is
recalculated after the first phase to reflect the added solar generation in the system. Now,
the premium is zero during solar power peak and higher during mornings and evenings.
The premium revenue is thus substantially lower for solar power and comparatively
better for wind power (column 6). Overall, however, the need for power is reduced; thus,
the possible revenue from the reliability premium is lower than in the first round. With
this change in premium revenue, wind power becomes more profitable than solar power
(column 9). Thus, wind technology is auctioned in the second phase.

The resultant generation compositions are presented in Figure 3. In the YELLOW
scenario (left), the investment incentive generated by the feed-in premium favors solar
power. In the absence of other market signals or regulator’s intervention, only solar power
is auctioned and built. Such a generation fleet leads to the peak generation exceeding
demand during the day and insufficient generation during mornings and evenings, which
is compensated for by the extra combined cycle generation.
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Figure 3. Resultant power generation composition under the feed-in premium in the YELLOW scenario (a) and under the
reliability premium in the GREEN scenario (b).

In the GREEN scenario (Figure 3b), due to changing reliability premium, solar power is
produced during the first phase and wind power is produced during the second. Together,
the two resources (assumed to be complementary in this stylized case) are sufficient to
meet the demand almost entirely. The existing 5 GW of flexible generation is enough to
cover minor discrepancies during the evening. Such a scenario results in a very different
system (Table 4).

Table 4 first shows what is already visible in Figure 3. In the YELLOW scenario, a lot
of solar power needs additional flexible backup capacities to cover mornings and evenings.
In the GREEN scenario, the role of flexible generation is minimized, and complementary
wind and solar together contribute to a major part of the overall power generation. The
striking difference between the two scenarios, however, lies in their costs. The overall
investment in renewable energy sources is clearly higher in the GREEN scenario. Thus, the
costs for support policies are also higher. However, the costs of extra flexible generation
are a significant setback of the YELLOW scenario, which overrides the lower costs for
renewable energy sources.

In total, the GREEN scenario portrays a 30% more cost-effective system (not accounting
for the baseload generation costs, which are equal in both scenarios), which is a 165 billion
USD difference accumulated over 25 years, which translates to 7 billion USD saved annually.
Of course, this holds only for this idealistic case with a relatively high anti-correlation of
renewable power generation assumed. However, the lesson learned is that, if a system
possesses some complementarity of renewable energy sources, it can be harvested by
channeling the needs of system reliability into investment incentives.
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Table 4. Characteristics of the resultant power systems in the two scenarios.

Scenario YELLOW GREEN

Support Type Fixed Feed-In Premium Reliability Premium

Generation mix, GWh/year
Base load 175,200 47% 175,200 45%

Flexible generation 65,518 18% 4015 1%
Solar PV 131,948 35% 87,965 23%

Wind - - 117,895 31%
Costs (25-year lifespan), billion USD

Renewable energy fleet cost 162 24% 267 67%
New gas fleet cost 457 67% - 0%

Support cost (premiums) 66 10% 132 33%
Total 685 398

Environmental Footprint

The implementation of renewable energy technologies primarily aims to reduce the
harmful environmental footprint of the power sector. Hence, the next step of this study
was to estimate and compare the potential environmental footprint of the power systems
in the two scenarios. Since the composition of the baseload in both scenarios is unknown,
we compare the footprint of the flexible generation (gas power plants) and renewable
technologies (solar PV and wind plants).

The environmental footprint of the two power systems was investigated from the
perspective of: (i) CO2 emissions (both direct and lifecycle) and (ii) the direct water footprint
(water consumption). In this context, direct emissions refer to the emissions that appeared
during the power-generation process (e.g., from burning fuel), whereas lifecycle emissions
encompass the emissions from the foreground process (the power-generation process) and
all background processes (extraction, processing, and transportation of fuels; construction
of the power plant; etc.).

While environmental studies typically consider only CO2 emissions, the water foot-
print of power-generation facilities is often overlooked [48]. For instance, thermal power
generation consumes water for cooling purposes, and solar PV generation requires wa-
ter for the occasional cleaning of PV modules. During the process of power generation,
this water is withdrawn from the immediate water environment, which may lead to the
depletion of water resources, especially in regions already characterized by high water
stress [49]. According to the Water Resource Institute, two-thirds of California face high or
extremely high baseline water stress [50]. Hence, an assessment of the water footprint for
California’s power sector is crucial.

The results of this analysis are shown in Table 5. The values were calculated for each
generation type using the following formula

Li f ecycle or direct emmissions [gCO2eq] = Annual generation [kWh]× emission f actor
[ g

kWh

]
(3)

for the annual lifecycle and direct emissions and

Direct water f ootprint
[
m3
]
= Annual generation [MWh]× water consumption f actor

[
m3

MWh

]
(4)

for the annual water footprint.
The values presented in the table are the median estimates that were calculated using:

(i) the lifecycle and direct emission factors obtained from IPCC [51]; and (ii) the water
consumption factors for renewable and non-renewable technologies reported by Macknick
et al. [52].

As shown in the table, the replacement of the gas capacities by solar and wind
technologies in the GREEN scenario resulted in a considerable reduction in both the
lifecycle and direct CO2-eq emissions and in the direct water footprint compared with the
YELLOW scenario. Assuming the same base load in both scenarios, the YELLOW scenario
is associated with additional direct emissions of about 22.7 mln. tons of CO2-eq annually
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compared with the GREEN scenario. To put this value into perspective, it is larger than the
combined annual total CO2 emissions of Latvia and Lithuania in 2019 [53]. The results also
demonstrate that the GREEN scenario allows us to “save” approximately 30.4 mln. cubic
meters of water annually. This is equivalent to 12’160 Olympic-size swimming pools. This
“saved” water in the GREEN scenario can be conserved or reallocated for other purposes,
for instance, food production.

Table 5. The environmental footprint of the power systems in the two scenarios.

Scenario YELLOW GREEN

Support Type Fixed Feed-In Premium RELIABILITY PREMIUM

Lifecycle emissions, mln. tCO2-eq, median values
Base load NA NA NA NA

Flexible generation
(gas-combined cycle) 32.1 84% 2.0 26%

Solar PV 6.3 16% 4.2 56%
Wind - - 1.3 17%
Total 38.4 7.5

Direct emissions, mln. tCO2-eq, median values
Base load NA NA NA NA

Flexible generation
(gas-combined cycle) 24.2 100% 1.5 100%

Solar PV 0 0% 0 0%
Wind - - 0 0%
Total 24.2 1.5

Direct water footprint (water consumption), mln. cubic meters, median values
Base load NA NA NA NA

Flexible generation
(gas-combined cycle and

tower cooling)
32.2 99% 2.0 86%

Solar PV 0.5 1% 0.3 14%
Wind - - 0 0%
Total 32.7 2.3

The intention of this simple calculation was to demonstrate the potential environmen-
tal benefits of the GREEN scenario, which aims to minimize the role of flexible (commonly
fossil-based) generation in the power generation mix.

3.3. From Concept to Realization

The model presented here is highly stylized and simplified for the purposes of showing
the main principle for supporting renewable energy sources in favor of system reliability.
For the model to be useful in analyzing a real-world system, several developments on
top of the stylized example should be envisaged. Here, we list the critical aspects to be
considered when transforming the concept into a sophisticated model for a real case:

1. An existing technology mix in the power system, with its technical and
economic characteristics;

2. Realistic details for load profiles with seasonal and weekly variations. The design
solutions for integrating fine temporal resolution into long-term energy models are
well presented and discussed in [20], and the hybrid model [19] can be used as a
guiding example;

3. A unit commitment and economic dispatch model of the system used to define which
power plants generate electricity;

4. Uncertainty in the demand and supply of electricity should be introduced in order to
realistically estimate the needs of system reliability and electricity prices. These and
other uncertainties require stochasticity and simulations envisaged in the model;

5. Available investment options and possible potential of renewable energy anti-correlation
in the region;
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6. Uncertainties in the system bring complexity to the investment block of the model.
With these uncertainties, deferral decisions are possible, for example, investments are
considered real options, and thus, the policy effects can be modeled more realistically.
An example of embedding real options logic into an energy system-level model can
be found in [31];

7. Existing and potential flexibilities in the power system—storage, demand response,
interconnections, and import/export of electricity; and

8. Existing and available policy scenarios.

4. Discussion and Conclusions

Some models integrate hourly fluctuations in the demand and supply of electricity
into long-term generation technology mix planning. These models show that renewable en-
ergy sources possess a degree of complementarity that, if captured, can reduce the needed
backup capacity and can ease the requirements on system flexibility. However, a comple-
mentary renewable energy power plant might be suboptimal in terms of profitability from
an investor’s perspective. Thus, in order to steer renewable energy investments in favor of
energy system reliability, different investment incentives need to be introduced. Such incen-
tives need to capture the value of complementarity of a power plant to the existing power
system. Numerous design choices are required to create such an incentive mechanism.

This paper introduces a conceptual model that can analyze the effects of different
designs of support for reliability-based renewable energy on power system operations
and development. In its simplest deterministic form, the model is applied to a stylized
case, and the potential benefits in terms of power system reliability, overall technology,
and policy costs and the environmental footprint are demonstrated. In contrast, currently,
policymakers rely on models that are wired to calculate a fixed amount of backup capacity
for every unit of newly built renewable energy source [20], hindering the very possibility
to design a policy for a more efficient power system.

The hybrid model introduced in this paper allows us to redesign the support for
renewable energy and to analyze whether a reliability-conditioned instrument makes sense
for a particular system. The same model can be used to quantify the effects of different types
of storage and demand response. With this model, one would be able to model the effects of
different capacity mechanisms with or without separate support for renewable energy and
to optimize the overall policy mix for the power system. The model will also be able to show
the optimal limit of renewable energy adoption in a particular region. After such a limit,
any more renewable energy of any type in any location would not provide any marginal
contribution to the power capacity of the system. Pushing for the growth of renewable
energy sources beyond this limit will become a futile attempt at decarbonization since more
stable power output plants will be needed to offset the variability of renewable energy
sources, which in turn would increase fossil fuel usage and jeopardize decarbonization.
Instead, other sources of flexibility should be promoted in these system, such as storage,
hydrogen and power-to-X solutions, and demand-response programs.

The results of such a modeling exercise would heavily depend on region-specific
characteristics. They include the technology mix currently in place; the electricity demand
profile; its variability and projections; the transmission capabilities in a system and its
connections to neighboring areas; the system flexibility, in particular the development and
deployment levels of storage and demand response solutions; the availability of renewable
energy resources; and their possible complementarity. Political, economic, and social
factors clearly play their roles as well; however, their effects would depend on whether
they are wired to the model.

The complementarity of renewable energy sources has been shown in multiple cases,
such as the temporal and spatial heterogeneity of wind power among power used on the
European continent [19] and the uncaptured value of southwest-oriented solar panels in
California compared with commonly built south-oriented solar panels [47]. Some studies
suggest that one way to discover the complementarity of renewable energy resources is
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to consider them over larger geographic areas. For instance, Grams et al. [54] suggested
considering continent-scale wind patterns to implement pan-European collaborations for
the development of renewable energies. Of course, capturing that complementarity value
requires massive network investments, of which the economic viability can be thoroughly
investigated using the proposed hybrid model.

One can argue that replacing the fossil-based flexible generation with renewable
energy sources is not needed since synthetic fuels will soon replace fossil fuels. However,
even according to very optimistic estimations, the adoption of power-to-X technologies and
the corresponding massive production of synthetic fuels as well as massive installations
of storage technologies (batteries) are expected to start worldwide not earlier than in the
2030s [55]. In this light, the introduction of policies, which aim to replace the currently used
fossil-based flexible generation with the optimal mix of renewable energy technologies
remains relevant.

Departing from modeling-related matters, actual policy implementation has numerous
issues to consider as well. The transition from support for classical renewable energy
to a reliability-based instrument might not be easy due to the associated paperwork,
design, and arrangement burden. Although in the recent years, a trend has switched to
more market-oriented mechanisms in supporting renewable energy, that is, from fixed
feed-in tariffs to premiums, auctions and certificate trading [1], they still do not have a
sufficient foundation for such a change since a power system perspective and procedures
for calculating reliability are missing. However, some countries have introduced capacity
markets, where calculations for the contribution of renewable energy to system reliability
are already a routine procedure [7]. In these cases, the transition to reliability-based
support for renewable energy sources would be much smoother. Countries that have
capacity mechanisms in place and, most importantly, some procedures for calculating the
contribution of renewable energy sources to reliability, are displayed in Figure 4.

While the idea of reliability premium is conceptually simple, in reality, it faces multiple
design choices.

• Which reliability indicator should be used? The proposed model can compare the
difference in effects of various reliability indicators. However, an important factor
is the existing procedures for calculating reliability for a country. Different system
operators adopt different practices in that respect [17], and implementing perhaps
sub-efficient but already working solutions would create much less administrative
burden, better transparency, and a faster transition. The same applies to the other
design choices for the calculation of reliability and system modeling.

• Should projects be exposed to a dynamically changing premium, or should it be
fixed for a project’s lifetime once calculated? The former has higher uncertainty and
unpredictability for individual investors, computationally heavier systems, more room
for administrative disorder, and more room for human mistakes. The latter allows
for better order and provides more certainty for investors but might result in a less
dynamic and responsive system.

• If the reliability premium is fixed, how often should it be recalculated? The recalcula-
tion can be carried out for each project, for each auction, or on an annual basis.

• If a capacity market is already in place and renewable energy sources can participate in
it, how should the reliability-based premium be integrated? The two can co-exist or be
merged. The former requires carefully accounting for the economic meaning of both
types of support and prevents over-subsidization. In addition, a close collaboration
would need to be established between the departments of system reliability and
support for renewable energy sources. The latter creates a risk of distorting capacity
prices and jeopardizing the effectiveness of the market by adversely affecting other
categories of participants (non-renewable generation, storage, and demand response).
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The question of which policy mix would potentially be able to steer the mix of re-
newable energy technologies was briefly discussed in the previous research devoted to
international policy review [7]. The modeling exercise performed in this work sheds light
onto and brings additional insight into this discussion. Naturally, if renewable energy
sources are excluded from a capacity mechanism, the common types of renewable energy
support alone would not provide investment incentives favoring system reliability. If
participation in a capacity mechanism requires renewable energy sources to forgo the
corresponding amount of support, the overall revenue from renewable energy sources
stays the same, which again excludes incentives favoring system reliability. If, on the other
hand, participation in a capacity mechanism entirely prohibits receiving other types of
support, then such incentives come into the scene. The latter two points become clear with
the modeling exercise performed in this paper, whereas in the previous qualitative-only
analysis [7], these conjectures were made differently. Most importantly, however, is the
conclusion that the incentive to steer a mix of renewable energy technologies in favor
of energy system reliability can be implemented outside of a capacity mechanism and
independently of its very presence.

As we can see, the introduction of such a conceptual hybrid model with the hypotheti-
cal idea of supporting renewable energy sources via a reliability-conditioned instrument
leads to a variety of consequent design and implementation choices. However, the authors
believe that the direction is worth perusing for the sake of more reliable, cost-efficient, and
environmentally friendly energy systems.
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Abstract: The fight against a climate crisis has urged nations and the global community to cut
emissions and to define ambitious environmental goals. This has highlighted the importance of the
renewable energy (RE) industry. Germany has been one of the most active countries in RE adoption.
In this vein, the purpose of this research is to study and identify key profitability determinants of
unlisted German electricity-producing RE-companies, many of which have been supported by the
German Feed-in Tariff (FIT). A multi-year analysis based on panel data from 783 companies for the
years 2010–2018 is used. The results show that both company- and industry-specific profitability
determinants are statistically significant, but the company-specific determinants seem to be more
important. The results shed new light on what drives the profitability of private German RE
companies during the period of financial aid from the government and are of use to managers,
regulators and investors alike, e.g., when the effects of different regulatory climates and industry
environments, as well as states of business life cycle are considered. Furthermore, the implications
of this study have wider environmental and economic importance as the performance of the RE
companies is critical in achieving the emission targets of the energy industry and ensuring a more
sustainable energy production for the future.

Keywords: renewable energy; electricity production; unlisted companies; Germany; feed-in tariff

1. Introduction

After 2010, the fight against the climate crisis intensified and supranational bodies
started to act. In 2020, the EU Commission proposed a Climate Target plan of cutting
carbon dioxide (CO2) emissions by at least 55% by the year 2030 and set a goal of carbon
neutrality by 2050 [1]. Germany has been one of the most active countries in turning to
renewable energy (RE) as a remedy to tackle CO2 emissions. The German RE markets are
the fifth largest in the world (after China, US, Brazil, and India [2]) and are well established
due to the long-lasting efforts by the German government to promote green energy with
a Feed-in-Tariff (FIT) support mechanism. Transition in the RE support mechanism has
already been started and new mechanisms will most likely be introduced.

This research focuses on uncovering the profitability determinants of unlisted German
electricity-producing RE companies. Profitability is examined in terms of companies’ yearly
profit and loss statements and not from an investment or a plant operations perspective.
This research falls under the umbrella of studies that concentrate on firm performance.
Lebas and Euske (2007) [3] defined firm performance as a set of quantifiable financial and
non-financial indicators that can be illustrated with a causal model, reflecting the future
outcomes of current actions. The selected indicators of financial performance used in this
study include measures of profitability such as the Return on Investment (ROI), Return on
Assets (ROA), and Return on Equity (ROE) and measures of growth such as the growth of
revenues and assets.
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It is well known, see, e.g., [4] that the profitability indicators are prone to accounting
manipulation, undervaluation of assets, and different depreciation policies, which makes
comparing companies complicated. As we are looking only at German companies, the
accounting regulation and the legal structures that all companies in the sample use are
uniform and we expect that all companies in the sample act in a profit-maximizing way
within the limits set by the law. While profitability can also be measured by using a more
holistic set of indicators [5], we limit the focus to company-level profit indicators only.

The rest of this paper is constructed as follows: In the following section, the back-
ground and motivation of the study are discussed following the review of the literature
and hypotheses. The second chapter introduces the data, selected variables, and the panel-
data-method used in the analysis. The third chapter presents the results of the panel data
analysis and the answers to the hypotheses made about the models used and the signifi-
cance of different firm- and industry-specific determinants to firm profitability. The fourth
chapter discusses the results in light of the previous research. Finally, the contribution of
this paper is summarized and ideas for further research are discussed.

1.1. Background

This research is motivated by the lack of existing studies that focus on the profitability
and the determinants of profitability of unlisted German electricity-producing RE com-
panies. Thus, there is a research gap that the results of this research fill. In addition to
understanding the profitability issues better, we wish to know what effect the German RE
support mechanism, the Feed-in Tariffs, has had on company profitability. Understand-
ing these issues is important because of the role of the energy industry in reaching the
ambitious goals of carbon neutrality in Germany (see Figure 1).

Figure 1. CO2 emissions in Germany in millions of tons of CO2 equivalents. (* Industry: Energy and
process-related emissions from industry (1.A.2 & 2); Other emissions: Other combustion (rest of CRF
1.A.4, 1.A.5 military) & fugitive emissions from fuels (1.B) ** PYE: Previous Year-Estimate for 2020;
*** Targets 2030 and 2045: according to the revision of the Federal Climate Protection Act (KSG) as of
12 May 2021) according to [6,7].

Renewable, green, or alternative energy all describe energy either in the form of heat,
electricity, or fuel that is derived from constantly renewing natural sources and processes.
The sources usually prescribed as renewables are solar, wind, geothermal, marine, hydro,
and bioenergy. According to the European Commission (2021), in 2020, Germany’s share
of renewables in the gross final energy consumption was 18.6% and 45.4% in the gross
power consumption. Germany has set a goal to increase the share of renewables in gross
power consumption to 65% by 2030, and that by 2050 all electricity generated or consumed
in Germany be greenhouse-gas neutral. (see, e.g., [8–10]). In 2020, the largest share of
renewable electricity generation in Germany was by wind onshore power (42%), followed
by solar (20%), and biomass (7%) [11].
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Germany has been a renewable energy policy pioneer with its energy transition
“Energiewende” that started as opposition to nuclear energy in the late 1970s. The long-
term energy transition has included a reorientation of energy policy from the traditional
fossil energy forms towards renewable energies along with the nuclear energy phase-out
into concrete actions. By 2022, the last nuclear facility is set to shut down and the latest
Coal Phase-Out Act mandates a gradual phase-out of coal-burning leading to all coal plants
having to cease operations by 2038 [12,13].

In 1991, the Electricity Feed-in Law (EFL) was introduced in Germany. Its objective
was to make sure that electricity produced from renewable energy sources had access
to the grid. The electricity from renewable energy power plants was paid a premium
price (Feed-in Tariff, FIT), a cost that was borne by the electricity supply utilities and their
customers. As the support was highest for wind and solar plants, the law contributed to
the expansion of renewable energy production, especially in the form of wind farms. [14]

According to IAE [15], the Renewable Energy Sources Act (Erneuerbare-Energien-
Gesetz, EEG) replaced the EFL in 2000 and obligates grid operators, instead of the suppliers,
to buy renewable energy and to effectively pay the FIT. The tariffs were determined for
each sector separately and according to the actual production costs, and upon initialization,
the main target was to double the share of renewable electricity by 2010 [15]. The plants
initially eligible for the FIT remuneration will soon face the end of the support period as
Germany is shifting out from the FIT system. As of 2021, there is also a discussion about
completely ending the renewables levy (EEG surcharge) that has been paid by electricity
consumers. Possible discontinuation of the renewables levy may be offset by an increase in
the price of CO2 emissions, a part of the EU Emissions Trading System, and Germany’s
own national emissions trading [16,17].

The 2017 amendment to the EEG introduced public tenders, the goal of which is to
aid the shift from FIT to a market-oriented price mechanism. From 2017 onwards, on-shore
and offshore wind, solar and biomass projects have had to bid a price in an auction to
ensure contracts for 20 years [8].

1.2. Review of Literature on Profitability Determinants

The determinants that explain profitability can be examined on different levels: the
firm-level, industry-level, and country-level, or, for example, on regional or temporal
levels. Early research on the topic emphasized the importance of industry structure and a
competitive environment on firm performance through the Structure-Conduct-Performance
paradigm [18] and the Porter’s famous five competitive forces model [19]. Gradually, the
focal point of research has shifted from thinking of the industry as an aggregate as the
main determinant of profitability towards recognizing individual company characteristics
as important profitability drivers [20]. This is also the focus in this research. According
to the summary in [21], several variance decomposition analyses across industries, from
the 1980s until 2007, reported that firm-specific effects explain from zero to 66% of the
variance in firm profitability. In particular, in the manufacturing industry, the firm-level
effects explain more variance than they do in other industries [21].

Capon et al.’s (1990) [22] meta-analysis covered results from 320 published studies on
financial performance between the years 1921 and 1987 across industries, with different
performance measures (see, Table 1). More recent studies [23,24] have found that profitabil-
ity is positively affected by company size in terms of sales and as the number of employees.
Goddard et al.’s (2005) [23] study on European firms implied that the relationship between
company size in terms of assets and profitability is negative. They suggest that a rapid
expansion of successful firms may have a negative influence on short-term profitability,
while at the same time, the positive effect of market/industry concentration implies that
costly strategies may be conducted to gain a larger market share.

Adner and Helfat (2003) [25] studied 30 firms in the energy industry and con-
cluded that firm-level effects explain the largest share of variance in profitability.
Westerman et al. (2020) [26] studied publicly listed energy firms located in Western Eu-
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rope over the period of 2009–2015 and reported that firm size indicated by total assets and
EBIT/total sales are positively correlated with return on assets (ROA), especially with re-
newable firms. They also found a negative relationship between Debt-to-Assets (D/A) and
ROA, and that diversification has a negative relationship with firm profitability (ROA) in
the energy industry. Jaraite and Kažukauskas (2013) [27] provided evidence that the higher
profitability of the electricity production is related to the higher market concentration (a
percentage of a market share of the (four) largest firms).

Table 1. Selected firm- and industry-specific determinants of profitability summarized from the
results of a meta-analysis by Capon et al. (1990). +: significantly more positive than negative relation-
ship, significance level 5%, −: significantly more negative than positive relationship, significance level
5%, Ns: count of positive vs. negative relationships reported not significantly different, significance
level 5% [22].

Determinant Type Determinant Name Significance Nr of Studies

Firm-specific

Leverage/Debt − 23
Capital Investment − 29

Diversification − 17
Growth in Sales + 22

Market Share + 42
Capacity Utilization + 15
Variability in Return + 11

Size (Sales) Ns 48
Size (Assets) Ns 47

Price (relative) Ns 18

Industry-specific

Imports − 19
Exports − 10

Growth (Sales) + 59
Capital Investment + 51

Geographic dispersion
(Production; reg. vs. nat.) + 32

Economies of scale + 13
Barriers of Entry + 16

Industry Concentration + 99

A study by Tsai and Tung (2017) [28] on RE firms from across the world found that
the share of renewables in the overall primary energy consumption has a significant
and negative effect on the ROA of renewable energy companies. They also found that a
nation’s energy consumption impacts ROA negatively, whereas employee growth rate has
a positive effect on ROA. We observe that companies typically tend to hire more people
into profitable businesses. According to [29], the degree of innovation and the development
of the technology sector nationally have been found to positively affect the performance of
RE firms on the country level. Shah et al. (2018) [30] found mixed evidence on the effect of
macro-level shocks on the return on RE investments. In their study, oil prices have had both
a positive and a negative effect on the return on RE investments, depending on the level of
government subsidies: an increase in oil price boosted the profitability of RE-companies
operating in a market-driven regulatory environment.

A study by Hassan (2019) [31] analyzed 420 RE-companies from the OECD countries
and reported a significant positive relationship between different RE support mechanisms,
including the FIT, and accounting-based measures of financial performance (Earnings per
share, Return on Capital Employed = ROCE). Milanés-Montero et al. (2018) [32] specifically
analyzed the effect the FIT—which is also of interest in this paper—had on the performance
of photovoltaic (solar) farms in Germany, Italy, France, and Spain. They report that the
FIT had a positive statistically significant influence on the profitability of the firms when
measured in terms of Return on Investment (ROI). The study also confirmed that among
the firm-specific determinants, total assets and leverage had a significant positive effect on
the photovoltaic firms’ performance; the result is contrary to the one from the meta-analysis
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of [22]. Neves et al. used the generalized method of moments to study Portuguese energy
companies’ determinants during the periods of 2010–2014 [33] and 2011–2018 [34].

In summary, the previous literature across industries recognizes the determinants
“size in sales” and “size in assets” with both positive and negative effects, and the growth
in sales and assets with a positive effect on profitability. Leverage has mostly been found to
have a significant negative effect on profitability, with the exception of the above-mentioned
study on solar power firms. Liquidity has been found to have a positive effect on firm-level
profitability. Furthermore, market concentration has been found to have a significant
positive effect in most of the studies and these results are supported by the studies in
the RE industry as well. Lastly, the Feed-in-Tariffs have been found to have a significant
positive influence on profitability.

For this paper, a panel data analysis is run to investigate the subject from the perspec-
tive of unlisted German RE companies.

1.3. Hypotheses

We formulate three hypotheses based on the previous literature on profitability de-
terminants of renewable energy. Specifically, we are interested in how important the
firm-specific and industry-specific determinants are in the case of the data of non-listed
German RE producers, and which determinants explain the largest variance in the selected
profitability ratios.

The previous literature across industries has suggested that firm determinants (such as
the financials chosen for this analysis) explain more variance in profitability than industry
determinants, but that industry determinants, especially industry growth and concentra-
tion, are also significant. Furthermore, according to more recent studies on the markets,
where the FIT support has been applied, the FIT has shown to be significant in determining
the profitability of renewable electricity generators.

Based on the review of literature on profitability determinants, the following hypothe-
ses were formed:

Hypothesis 1 (H1). The model with industry-specific determinants and the model with firm-
specific determinants are both significant when a 5% significance level is adopted in the statistical
testing.

Hypothesis 2 (H2). The explanatory power of the included firm-specific determinants is higher
than that of the included industry-specific determinants.

Hypothesis 3 (H3). The average annual Feed in Tariff (FIT) has a significant positive effect on the
RE companies’ profitability.

2. Data and Methods

The data which the results are based on were acquired from the Amadeus database
(hosting the data of the 565,000 largest public and private companies in 43 European
countries) with a query (Applied industry classification code “3511”, “production of
electricity” in NACE Rev. 2 based classification system) with the following conditions:
“active and not bankrupt”; “operating in Germany”; “generating electricity in the RE
industry (solar, wind, biomass, hydro, and geothermal)”; “no conventional electricity
production”; “not publicly listed”. The query returned data for 783 electricity-producing
companies with financial accounts available for the period of 2010–2018. The sampling
period was chosen based on the availability of the data and the fact that the FIT-support
was active during the years of the sampling period for all RE technologies studied in this
paper.

The retrieved data were sorted by name and “trade description” according to the
activity of generating or transmitting renewable electricity from any RE source. The data
include companies in all the above-mentioned RE sectors except for geothermal power and
some of the firms are active with multiple RE technologies.
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Company-specific data were combined with data on feed-in tariffs and energy statis-
tics. Data on feed-in tariffs and the industry and energy statistics for the nine years in
question were obtained from the European Commission’s Eurostat statistics database [35],
the World Bank database [36], and the OECD [37] databases.

Company size was used to classify the companies into two cohorts, for which analysis
was performed separately; the cohorts were constructed by combining the companies in the
Amadeus size categories “very large” and “large” into one cohort (n = 401) and companies
in categories “medium” and “small” into another (n = 332), see Table 2 for information
about these categories. The decision was made to study the possible difference between
SMEs and large firms. That is, the category “Very Large” was excluded from the study,
representing a minor share of the overall data when taking into account the number of
companies (9/733 companies = 1.2%). Although the cohort of large companies is larger, in
the analysis used, the observations of the large companies are significantly lower than with
the SMEs and stay at around 100 observations due to the unbalanced panel.

Table 2. Company size categories and the resulting number of firms in the analyzed data. Size
categories adopted from Amadeus.

Very Large Large Medium Small

Operating Revenue ≥100 M€ ≥10 M€ ≥1 M€ <1 M€
Total Assets ≥200 M€ ≥20 M€ ≥2 M€ <2 M€
Employees ≥1000 ≥150 ≥15 <15

Firms in Data 9 392 278 54

2.1. Variable Selection

Three dependent variables in the measurement of profitability were selected: Return
on Equity (ROE), Return on Assets (ROA), and Return on Capital Employed (ROCE). ROE
implies the average annual return generated for the equity owners, ROA is the return
generated concerning the total assets in the firm and an indicator of how efficiently the
company is using its assets. ROCE is a measure for comparing companies in capital-
intensive industries (with a lot of debt), as it indicates how well a company is using its
overall available capital. The definitions used for the three dependent variables are as
follows:

ROE = [Net Income + Taxes]/[Average Stockholders’ Equity] (1)

ROA = [Net Income + Taxes]/[Average Total Assets] (2)

ROCE = [Net Income + Taxes]/([Average Total Assets]-[Current liabilities]) (3)

The independent variables were selected in such a way that they include both firm-
specific and industry-specific determinants. The variables were selected based on earlier
choices made in the previous literature. The “net income” used as a control variable
includes the effect of taxes (net of tax) in order to eliminate company-specific efforts to
minimize taxes. The firm variables were retrieved from the Amadeus database and the
industry variables from selected databases (see Table 3). The annual average Feed-in-Tariff
rates for solar-, biomass-, geothermal-, wind-, and hydro-energy are studied for the effect
on profitability for each one of the studied years.
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Two of the independent variables, [TotalAssets] and [Sales], were log-transformed
to make them approximately follow the normal distribution required in the statistical
analysis. From the industry-specific determinants, the “change from the previous year’s
share of RE in electricity consumption” was chosen as a proxy for industry growth. Market
concentration was also added as a growth rate, “a percentage increase from the previous
year’s share of the largest electricity generator in the industry”. We found it important to
study the separate effects of the company’s size in terms of assets and in terms of sales, as
well as the growth in sales and assets, as these variables have different implications.

As it is not possible to acquire the amount of FIT-support received by individual
companies from public databases, an attempt was made to include them in the quantitative
analysis model and to test whether they (partially) explain the variance. The average FIT
used in the analysis is an aggregate mean of the average annual FIT received by all the RE
sectors.

The selected variables that had a significant correlation with some another indepen-
dent variable were removed and only one variable from such a pair was kept in the analysis.
For the purposes of this research, the variables with a significant correlation larger or equal
to ±0.6 to another independent variable were removed from the analysis. More specifically,
in the SME data, a strong and statistically significant (5% level) positive correlation of 0.89
between the leverage variables D/A and D/E was found, thus D/E was excluded from
the analysis of the SMEs. A strong negative and statistically significant correlation (−0.64)
between the Electricity price (Elecpriceh) and the growth rate of the Share of Renewables
in Electricity consumption (Elecreshare_G) was found. Electricity price also correlates
strongly with the growth rate of Electricity consumption (ElecCons_G) (−0.62) and the
annual average Feed-in Tariff price (Fitavg) (−0.77); thus, the variable Electricity price was
removed from the analysis in both data sets.

2.2. Method

The collected data included both a time-series dimension and a cross-sectional dimen-
sion, and were thereby transformed into panel-data form. Each firm is observed repeatedly
in the vertical dimension with a length of (the number of individuals), I × (the number of
periods), T, and the dependent and independent variables K are presented in the horizontal
dimension. The overall size of the matrix equals I × T × K observations.

What is typical to panel data and distinguishes them from simple time-series re-
gression is the presence of unobserved heterogeneity that is due to the cross-sectional
dimension. Unobserved heterogeneity is the time persistent differences between the in-
dividual studied units also called “individual effects” that cannot be estimated with the
simple pooled (OLS) regression [38]. When heterogeneity is present in the data, which
is typically the case, a model able to take it into account should be used. For this reason,
fixed effects and random effects -models that can handle longitudinal and heterogeneous
data are used in this research. The fixed effects (FE) or “within”-estimator used has the
following form:

Yit = β0 +
K

∑
k=1

βk × Xk
it + eit + ai (4)

The within-estimator models the time-invariant heterogeneity in the unknown param-
eter ai. The data are transformed by time demeaning all the variables, a.k.a. subtracting the
variables’ individual means over time from all the variables. The result is a formulation in
terms of deviations from the individual means. The ai term, as well as the constant β0 (see,
Equation (4)) that is simply the individual mean, and all the time-invariant independent
variables cancel out in this calculation. This eliminates the problem of individual effects,
hence it is said to be “fixed” [38].

The coefficients of the FE model can be interpreted as the effect that the unit of
change from the individual mean of the respective independent variable has on the same
individual’s dependent variable from its mean. The main downside of the FE estimators is
that one cannot include time-invariant independent variables since they would be canceled
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out in the model estimation. This simplifies the estimation process but fails to account for
the time-invariant variables although they could potentially be significant in determining
the values of the dependent variable. To deal with the possible handicaps of the FE in the
context of the studied data, a random-effects (RE) model is also applied.

In the random-effects model (RE), the individual differences are allowed and the
variation between the individuals is assumed to be random and uncorrelated with the
independent variables. The random individual effects are modeled as the error term ui.
The RE-effects model used is defined as follows:

Yit = β0 +
K

∑
k=1

βk × Xk
it + eit + ui (5)

In Equation (5), the intercept corresponds to the mean of the unobserved heterogeneity
and the error term ui is the random time-invariant heterogeneity specific to the individual
unit. In the random-effects model, the generalized least squares (GLS) estimator is used.
The data are “quasi time-demeaned”, which means that a part of the within-individual
variation is taken out. For a more comprehensive introduction to the Random Effects
model, see [39].

The application of fixed-effects and random-effects models was considered to be
sufficient for the purposes of this research in terms of the reliability of the results. We point
out that the use of more advanced methods, such as the generalized method of moments
(GMM), which control for the violations of the random-effects model and the possible
endogeneity problems in the data may reveal deeper and better results from the same data.
The use of more advanced methods is left as a topic for future research.

3. Results

Both Fixed- and Random-Effects models are used to obtain results for both company-
size cohorts. The results for both the FE and RE analysis are listed in the Appendix A
(Tables A1 and A2). To find out whether the RE model provides new information in
addition to the results from the FE estimation, the Hausman test, which tests the presence
of individual effects by comparing the FE and RE models’ coefficients, was performed. If
there are no significant differences, the individual effects are random and thus either of the
estimators can be used [40]. The alternate hypothesis (p-value < 0.05) is that the FE and
RE coefficients are different from each other and in such a case, only the FE estimator is
consistent.

Tests on heteroskedasticity and autocorrelation indicate that they were present regu-
larly. Arellano’s (1987) [41] and White’s heteroskedasticity robust standard errors [42] are
used in the analysis when heteroskedasticity is present (see Tables A1 and A2).

3.1. Results for the SME Cohort

The results for the SME cohort are presented in Table 4. The results from the Hausman
test (at the 5% significance level) imply that individual effects are present in the data and
that the FE estimator should be used.

The company determinants appear significant mostly when profitability is measured
with ROA and ROCE. Net income (Netincome), controlling for the nominator in the prof-
itability ratios, is significant and positive in all six tests, with a small effect on profitability
as expected (around 0.055, see Table A1). Company size in sales (LOG_Sales) is statistically
significant and positive in three out of six of the tests, with a larger effect on profitability
when measured with ROA and ROCE (3.890, 8.081, 6.959) but the effect is non-significant
on ROE. Size in Assets (LOG_Assets) is statistically significant only at the 10% level in one
of the tests (3.658). Liquidity (CurrentRatio) is significant at the 10% level in three of the
tests and positive with a small effect on ROA and ROCE (0.649, 0.580, 0.574) and Leverage
(D_A) is significant at the 5% level once with a large negative effect on ROCE (−4.131).
Growth in sales (Sales_G) is significant at the 10% level with a positive effect on ROA
(0.013). Growth in assets (Assets_G) is not significant in any of the tests (see Table A1).
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Table 4. Summary of FE model results for both the SMEs and large firms. Legend: +: positive relationship; −: negative
relationship, ***: significance level 1%; **: significance level 5%, *: significance level 10%, Ns: not significant.

SMEs Large Firms

Determinant’s
Effect from Previous Studies Effect Occurrence n/6 Number of Tests Effect Occurrence

n (Number of Tests)

Net Income + 6/6 *** + 6/6 ***

Size (sales) + + 3/6 ** + 6/6 **

Size (assets) + + 1/6 * − 6/6 **

Liquidity + + 3/6 * − 1/6 **

Leverage − − 1/6 ** + 1/6 **

Growth in sales + + 1/6 * Not included

Growth in assets + Ns Ns + 1/6 *

Change in the Electricity Consumption − − 5/6 *** − 3/6 **

Change in the share of RE in overall
electricity consumption (industry growth) + + 3/6 *** + 3/6 **

Change in the Market Concentration + + 5/6 *** + 1/6 **

FIT average + − 5/6 *** − 3/6 **

GDP + + 1/6 ** Ns Ns

Electricity Price − Not included Not included

Among the industry determinants, the variables proxying for the industry growth
are significant at the 5% level. These include Change in the Electricity Consumption
(ElecCons_G) with a moderate (−1.343, −0.607, −0.398, −0.646, −0.486) negative effect in
five out of the six tests and Change in the share of RE in the overall electricity consumption
(Elecreshare_G) in three out of the six tests, with a smaller positive effect (0.316, 0.081,
0.114) on profitability. The change in the market concentration a.k.a. the market share of
the largest generator in the market (Marketconcentration_G) is significant at the 5% level
in five out of the six tests, with a small or moderate positive effect (0.438, 0.343, 0.122, 0.178,
0.061). The GDP growth rate (GDPG) is once significant at the 5% level with a positive
(0.146) effect on ROA. The annual average Feed-in Tariffs across the RE sectors is significant
at the 5% level in five out of the six tests with a very large negative effect on profitability
(−162.8, −110.8, −46.6, −30.4, −52.5) (see Table A1).

This significant and large effect is explained by the unlikeliness of the one unit rise in
the independent variable as the average FIT range in these data is from 0.11 to 0.19.

3.2. Results for the Large Firm Cohort

When analysis is repeated with the large firm cohort, the Hausman test again indicates
that the FE estimator should be used with all the dependent variables (see Table A2). The
results for the large companies are summarized in Table 4.

Of the company determinants, Net income is significant at the 5% level in all six
tests, with a similar small positive effect (0.011, 0.010, 0.002, 0.003) as with the SME cohort.
Company size in sales (LOG_Sales) is statistically significant at the 5% level and positive
in all tests with a larger effect on profitability ratios (12.4, 14.5, 2.7, 2.6). Size in Assets
(LOG_Assets) is statistically significant at the 5% level in all six tests, as well as showing
a larger negative effect on profitability (−16.7, −21.3, −5.04, −4.6, −5.8, −7.1). Liquidity
(CurrentRatio) is once significant at the 5% with a larger negative effect (−3.225) on ROE.
Leverage measured with Debt to Assets (D_A) is significant at the 5% level once with a
large positive effect on ROCE (7.113). Growth in sales (Sales_G) is not included in the
analysis due to the very low observation count in the large firm cohort (n = 249) Growth in
assets (Assets_G) is significant once at the 10% level with a small positive effect (0.04) on
ROA (see Table A2).

Among the industry determinants, the Change in the Electricity Consumption (Elec-
Cons_G) is significant at the 5% level in three out of the six tests, with a large or moderate
(−2.6, −0.735, −0.901) negative effect. The Change in the share of RE in the overall electric-

176



Sustainability 2021, 13, 13544

ity consumption (Elecreshare_G) is significant at the 5% level in three out of the six tests,
with a smaller positive effect (0.457, 0.112, 0.108) on profitability. The change in the market
concentration (Marketconcentration_G) is significant at the 5% level once with a moderate
positive effect (0.643) on ROE. The GDP growth rate (GDPG) is not significant in any of the
tests. The annual average FIT is significant at the 5% level in three out of the six tests, again
with a very large negative effect (−289.3, −87.5, −91.1). The industry determinants’ effects
are not significant in the tests of the model where both firm and industry determinants are
included (see Table A2).

3.3. Testing the Hypotheses

According to the analysis results, specifically based on the results from the Fixed
Effects model, there is clear evidence to support Hypothesis 1 “The model with industry-
specific determinants and the model with firm-specific determinants are both significant when 5%
significance level is adopted in the statistical testing“. In both company-size cohorts, all the
models are statistically significant.

When it comes to Hypothesis 2 “The explanatory power of the included firm-specific
determinants is higher than that of the included industry-specific determinants”, the explanatory
power for the models with firm-specific determinants for SMEs and Large firms respectively
are 0.74/0.76 (ROE), 0.77/0.91 (ROA) and 0.72/0.88 (ROCE), while the R2 for the industry-
specific determinants are 0.149/0.23 (ROE), 0.177/0.33 (ROA), and 0.155/0.28 (ROCE).
This result means that Hypothesis 2 can be accepted. The models that combine both
determinants have the explanatory power of 0.762/0.78 (ROE), 0.796/0.91 (ROA), and
0.74/0.89 (ROCE) (Appendices A and B).

The analysis results of the firm-specific determinants imply that the size in terms of
assets matters when a company is large and that the size in assets has a negative effect on
the profitability of large firms. Net income and Log of sales appear to have a consistent
and significant positive effect on profitability ratios with both firm cohorts, based on the
analysis (see Table 4).

Leverage or liquidity did not appear to be consistently significant for neither size-
group. When Debt to Assets (D_A) was significant, it was negative for the SMEs and
positive for the large firms. Growth in Assets or Sales was not consistently, or at all,
significant with either of the cohorts, indicating that the firm-specific determinants related
to size and net income, as well as, the ones related to liquidity and leverage, together
explain most of the variance in the profitability ratios.

In the analysis of the industry-specific determinants, the growth from the previous year
in the share of renewables in electricity consumption appeared to have a significant positive
effect on the profitability ratios. The change from the previous year’s market concentration
had a significant and positive effect on profitability more or less consistently with the
SMEs. The change from the previous year’s electricity consumption had a significant
negative effect on profitability ratios, without exception, in both samples. However, in the
sample of large firms, these effects disappeared, when both the firm-specific and industry-
specific determinants were included in the FE model. This finding also supports the second
hypothesis with regards to the explanatory power of the firm-specific determinants being
remarkably higher than that of the industry-level determinants.

Based on the analysis, there was no support for Hypothesis 3: “The average annual Feed
in Tariff (FIT) has a significant positive effect on the RE companies’ profitability”. The annual
average FIT does seem to have a statistically significant effect on profitability, but the
effect is opposite to what was expected. The variable had a negative effect on profitability
with both firm size categories in eight tests out of the total twelve. However, the share of
FIT-supported firms in the data was unknown in the analysis done in this research and
the negative effect could be on the firms that were not receiving any FIT at the time of the
analysis.
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4. Discussion

It can be observed that the results are generally in line with the results obtained in
previous studies of a similar type (see Tables 1 and 4). This study extends the research to
cover the unlisted German companies that have, to the best of our knowledge so far been
left “unattended” by previous research. The results presented here widen the scope of
knowledge we have about the factors that affect the profitability of companies operating
within the German RE industry. In this respect, the finding is that the unlisted companies
do not differ from the previously studied companies listed.

Based on the results, it is clear that the firm-specific determinants outrank the industry-
specific counterparts in importance, as was also suggested by the previous studies. One of
the findings is that company size in terms of assets matters when the firm is large and that
the size in assets has a negative effect on the profitability of large firms. The size of assets
is not significant with regard to the profitability of the SMEs. This result is supported by
previous research [23] that suggested that the rapid expansion of firms may have a negative
influence on profitability, implying that large firms may follow costly strategies to gain a
bigger share of the markets. One explanation could be that in an investment phase (which
is ongoing on the German RE markets), there are profitability lags. The capital investment
intensity (data which was not available for this analysis) is also proven to be a determinant
of profitability and could explain the negative effect of the assets in case the effect of the
capital investment intensity is significantly negative for larger firms, as was pointed out by
the previous research.

The positive relationship between the liquidity and profitability of the SMEs may be
an implication of the power of slack income that the firms can invest to generate profit.
Then again, leveraging profit might be the chosen strategy for large firms that have the
position to take more risks. Nonetheless, too many and/or far-fetching conclusions should
not be drawn about the determinants that appeared significant less consistently in the
analysis.

The average Feed-in-Tariff had a negative effect in most of the tests with the SMEs and
in three tests with large firms. These findings are not in line with the previous results [27,31]
and our expectations. The previous analyses found that the FIT has a positive effect on
the profitability of electricity firms, but the data used were from the companies that in fact
received support from the FIT. The share of FIT-supported firms in the data used in this
study is unknown to us. Thus, the negative effect result may be caused by the effect of FIT
on firms that did not receive FIT-support and were affected negatively by the support their
competitors received. The authors conclude that the counter-intuitive result can also be
a consequence of the aggregation method used in treating the variable and the reader is
suggested to take the result as preliminary.

The change in electricity consumption had a negative effect on profitability, as sug-
gested by previous studies (in past studies energy consumption was analyzed, instead of
electricity consumption). This result may reflect the increasing competition in the industry,
as the demand has only increased during the period of the analysis in terms of the final
electricity consumption in the country. Furthermore, the trend of the market concentration
growth rate in the data of this analysis shows that the competition is intensifying in the
industry structure, and this seems to especially benefit especially the SMEs according to
the analysis. Moreover, the share of renewables seemed to be beneficial for both the SMEs
and large companies.

5. Conclusions

The objective of this study was to examine the profitability determinants of unlisted
German renewable energy firms that produce electricity. The models with firm-specific
determinants had a higher explanatory power than models with the industry-specific
determinants only. The results are mostly in line with results from previous similar studies.
German private RE companies during a period of active remuneration have not been
studied before from the same perspective and the results should be useful in understanding
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what determines the profitability of these companies. The results are usable in forecasting
the same also in other countries that have applied Feed-in-Tariff-based support to boost
the production of renewable electricity. Furthermore, a separate analysis was conducted
for the SMEs and Large companies which offers insight into the differences between these
size cohorts.

The results of the study are of use to managers of the RE companies when the effects
of different industry environments and states of business life cycle are considered, as the
authors found that the smaller and medium sized companies in terms of returns on total
assets might be more affected by market concentration. Moreover, the result implying that
the larger companies are negatively affected by size, and that the effect is the opposite
with smaller companies, is of interest to managers and investors alike. For German policy-
makers, the results mean that within the scope of this research, no remarkable difference
between listed and unlisted companies was uncovered in terms of the determinants that
drive profitability. This information is important from the (rate-of-return) regulation point
of view as it means the same regulation model can be used for both company types, from
the point of view of this context.

One of the limitations of the analysis was the quality of data, as the number of
observations was limited. This was especially true for the data on large companies. The
analysis did not include the largest companies on the market as they were few in number
(nine out of 733 companies). In addition, according to the names and descriptions of the
companies, the data did not include any companies producing energy from geothermal
sources. The sample sizes differed depending on the model, as typically is the case with
unbalanced panel data.

There are certainly many other determinants—not addressed in this paper—that
could explain firm profitability, such as managerial capabilities, other management-related
variables, and investment intensity. As a topic of future research, the corporate-parent
and dynamic effects and the more technical variates related to the capacity of the power
facility, etc., could be added to the analysis if relevant data become available. The analysis
conducted in this paper could not distinguish the firms that benefited or suffered from
the FIT support, hence, the observed negative effect of the average FIT, calculated with
the annual FIT level of all the RE sectors, is somewhat debatable. This is another topic
for further research and for repetitive studies to understand the reasons behind these
differences. Possible methodological additions and avenues for further study would be
opened by using a correlated random effects model, which can provide an option for
estimating the random effects model even if the assumptions of the random effects model
do not hold (see, e.g., [40,43,44]) and by using the generalized method of moments, which
would provide yet another methodological perspective to the study.
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Appendix B. Descriptive Statistics for Both Cohorts

Table A3. Descriptive statistics for the SMEs.

Statistic N Mean St. Dev. Min Pctl (25) Pctl (75) Max

CurrentRatio 1062 1.320 0.813 0.000 0.702 1.869 3.608
Netincome 910 43.514 139.702 −290.132 −39.599 130.055 385.324

D_A 1523 0.833 0.153 0.418 0.737 0.951 1.270
D_E 1315 2.837 2.349 −3.287 1.157 4.247 8.877

LOG_Sales 694 7.004 0.652 5.445 6.639 7.442 8.556
LOG_Assets 1634 8.827 0.815 6.488 8.278 9.473 10.873

Assets_G 1092 −5.954 3.727 −14.918 −8.180 −3.608 3.256
Sales_G 488 1.780 13.179 −35.871 −8.158 11.301 40.249

Elecreshare_G 2696 10.672 6.054 0.317 6.356 15.022 20.000
Marketconcentration_G 2696 −1.391 5.278 −9.375 −5.057 1.490 6.338

GDPG 3033 2.085 1.273 0.418 1.268 2.602 4.180
ElecCons_G 2696 0.035 1.419 −2.165 −0.540 0.480 3.032

Fitavg 3033 0.154 0.029 0.115 0.126 0.176 0.193
Elecpriceh 3033 0.283 0.022 0.241 0.264 0.298 0.305

Elecpriceh_G 2696 2.832 3.728 −1.788 0.380 4.421 10.795
ROE 877 7.384 16.862 −37.857 −2.087 15.638 57.278
ROA 957 1.039 2.797 −6.129 −0.757 2.853 8.237

ROCE 879 3.948 3.433 −4.724 1.685 6.082 12.647

Table 4. Descriptive statistics for large firms.

Statistic N Mean St. Dev. Min Pctl (25) Pctl (75) Max

CurrentRatio 1070 1.263 0.886 0.000 0.539 1.767 3.889
Netincome 416 536.546 870.148 −1715.000 −44091 1034.094 2780.630

D_A 1315 0.852 0.148 0.429 0.760 0.973 1.288
D_E 1136 3.051 2.938 −5.431 0.792 4.712 11.245

LOG Sales 404 8.543 0.901 6.231 8.028 9.216 10.993
LOG Assets 1215 10.381 0.440 9.246 10.135 10.663 11.521

Assets_G 878 −5.162 4.447 −16.586 −7.534 −3.282 7.458
Sales_G 249 2.116 12.840 −29.960 −6.934 11.510 36.213

Elecreshare_G 3208 10.672 6.053 0.317 6.356 15.022 20.000
Marketconcentration_G 3208 −1.391 5.278 −9.375 −5.057 1.490 6.338

GDPG 3609 2.085 1.273 0.418 1.268 2.602 4.180
ElecCons_G 3208 0.035 1.419 −2.165 −0.540 0.480 3.032

Fitavg 3609 0.154 0.029 0.115 0.126 0.176 0.193
Elecpriceh 3609 0.283 0.022 0.241 0.264 0.298 0.305

Elecpriceh_G 3208 2.832 3.728 −1.788 0.380 4.421 10.795
ROE 1048 7.704 16.897 −37.857 −1.915 16.088 57.278
ROA 394 2.259 3.507 −6.645 −0.119 4.274 11.106

ROCE 424 4.754 3.985 −5.799 1.854 7.074 15.057
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Abstract: A variety of policy types are available to foster the transition to a low-carbon economy. In
every sector, including transportation, heat and power production, policymakers face the choice of
what type of policy to adopt. For this choice, it is crucial to understand how different mechanisms
incentivize investments in terms of improving their profitability, shaping the flexibility available
for investors, and how they are affected by the surrounding uncertainty. This paper focuses on
transportation-biofuel policies, particularly on the financial incentives put on the bio-component of
fuel and the combination of using penalties and tax-relief. Delivery of vital policymaking insights by
using two modern simple-to-use profitability analysis methods, the pay-off method and the simula-
tion decomposition method, is illustrated. Both methods enable the incorporation of uncertainty into
the profitability analyses, and thus generate insight about the flexibilities involved, and the factors
affecting the results. The results show that the combination of penalties and tax-relief is a way to
steer fuel-production towards sustainability. The two methods used for analysis complement each
other and provide important insights for analysis and decision-making beyond what the commonly
used profitability analysis methods typically provide.

Keywords: biofuel policy; investment profitability analysis; the pay-off method; simulation decomposition

1. Introduction

In the fight against climate change, multiple environmental policies arise to guide
the markets towards a sustainable future [1]. Such policies aim to steer new investments
towards cleaner technology choices. Better energy efficiency, greener heat and power
production, electric vehicles and biofuels in the transportation sector-are among the means
to reduce emissions [2]. In this paper we concentrate on biofuel-related support policies
and how the profitability effect of these policies can be analyzed ex-ante with modern
analysis methods.

Green investments are still generally characterized by high costs relative to older
technologies and high uncertainty is involved [3,4] (in the power sector many types of
renewables are already cheaper than conventional generation [5], but extra costs arise due
to their intermittency when the system reliability issues are taken into account [6–8]). For
these reasons support mechanisms that are meant to incentivize green investments have
been put in place. Many of the support mechanisms are based on simple policies that
guarantee profitability by way of providing extra revenue to the investment [1]. Simply
providing extra revenue however often leads to a too high subsidy level and consequently
may cause policy changes [9,10]. As predictability and a low political-risk environment is
crucial in attracting long-term investments, it is important to design policies that address
investment risks and uncertainties [11,12] in a way that does not require unexpected and
dramatic adjustments. Pre-analysis of the policy effects is important for succeeding in the
creation of such policies, thus the issue of using proper analysis-techniques is highlighted.
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The ex-ante analysis of the profitability of complex investment projects and the ex-ante
analysis of the profitability effects of specific policies often includes the use of methods
that allow for a comprehensive inclusion of the risks and uncertainties that surround the
studied cases [13,14]. Methods that underlie modern real option analysis are such methods
and real option thinking is a framework that supports the inclusion of uncertainty in the
ex-ante profitability analysis context. Real options thinking recognizes and acknowledges
the value of flexibility in the face of uncertainty and embraces the thinking that flexibility
that is, the ability to steer/change an investment when change takes place, should be
built into investments when it can be done in a cost-effective way. This observation has
instigated a whole new “world” in investment design, where flexibility is pre-planned into
investments in cases where the investment has a high likelihood of facing dramatic enough
changes in its environment (markets). These analyses combine the study of uncertainty
and flexibility simultaneously. To mention a few typical types of flexibility that allow
investment managers to steer investments towards better outcomes when change takes
place, we mention an option to delay investment, options related to scaling the size of
investments up and down, option to temporarily shut down an investment, and options
to change inputs and outputs to/from (typically production) investments [15–18]. Pre-
investment planning and testing the effect of construction of flexibility into investments
is something that can still be said to be “young” in terms of how widespread it is in the
industry, some academic research on the topic exists, see, for example, [19].

Taking this thinking of combining the study of uncertainty and policy-induced flexibil-
ity into the world of ex-ante policy evaluation is also new and in the context of supporting
policies for green investments it is very new. Some previous academic work, concentrat-
ing on renewable energy support mechanisms exists, see, e.g., [10,17,20]. In other words,
the “concept” of what we are looking at here is the study of how policies and support
mechanisms created to incentivize green investments may be constructed in a way that
they include flexibility and thus change, when changes in the “environment in which the
policy exists” take place. Furthermore, how the flexibility within the policies affects the
investments which the policies are aimed at incentivizing is focal here. It seems rational to
expect that similar methods that work for real option analysis (ex-ante analysis of effects of
flexibility) for investments work also for ex-ante policy evaluation.

In this vein, in this paper we select two modern analysis techniques used in the analysis
and the valuation of flexibility, the pay-off method [21] and (Monte Carlo) simulation based
analysis, called “simulation decomposition” [22] and use them to study incentive-policies
in the context of biofuels. The reason for selecting these two methods is the fit of these
methods to the type of uncertainty that surrounds the context of biofuel-policies [23]. These
methods have also previously been used in the analysis of environmental policies [24–26].

To the best of our knowledge this is the first time these techniques are applied in the
context of biofuel-policy evaluation. The application of the methods, the analyses, and the
obtained results are illustrative, yet helpful in understanding the benefits brought about by
using modern analysis methods in the context of ex-ante policy evaluation.

The remainder of the paper is structured as follows. First, we provide a brief overview
of the biofuel-policies to introduce the context of the case study. Then we introduce the
two methods, the pay-off method and simulation decomposition. We illustrate the use
of the methods in the analysis of a biofuel-policy. The discussion and conclusion section
summarizes and discusses the results, looks into the comparative performance of the used
methods, and outlines implications for policy analysis.

Biofuel Promotion Schemes

In the context of the transportation sector, there are two main directions in the overall
policy efforts directed at the fuels used, to make the sector more environmentally con-
scious [1,27]. One policy-direction aims at the electrification of traffic and another pursues
the substitution of fossil fuels with biofuels. As discussed above, here we concentrate on
the second-mentioned policy focus.
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As with the widely spread tariff-based support instruments in the power sector, some
countries opt for financial incentives to promote biofuels. Thailand directly subsidizes
the retail price of biofuel, while the US and Brazil chose tax-relief [1]. Nevertheless, such
financial incentives remain an unpopular policy choice in the world.

One of the most common policies is the biofuel blending mandate [1]. Such a policy
imposes a requirement on fuel-suppliers to supply a certain minimum share of biofuels
in the fuel mix. The European Union has adopted this policy. The EU 32% renewable
energy target in the overall energy consumption by 2030 has been supplemented with a
sub-target for the transport sector equaling a 14% share of renewables in the supplied fuel
mix [28]. Member states are free to set higher targets. Finland, for example, imposes a
mandate on fuel suppliers to introduce a gradually growing share of renewable fuels in
road transport, reaching 30% by 2029 [29]. Overall, 70 countries around the world have
a biofuel blending mandate, however, if left without enforcement achieving the set goals
may be jeopardized [1].

Many countries use penalties to enforce biofuel mandates, the list includes Germany,
Finland, Italy, and Sweden [30]. In Finland, if the fuel supplier fails to ensure the required
volume of biofuels on that specific year of gradual mandate increase, the fuel supplier must
pay penalties for each excess liter of fossil fuel produced [29]. The Finnish Government sets
the amount of penalty to be 0.04 EUR/MJ, which corresponds to 1355 EUR/liters of diesel
equivalent [31]. In addition to penalties, Finland employs tax-relief for renewable fuels.
Overall, the biofuel gets a 0.30 EUR/l tax discount if produced purely, and 0.26 EUR/l if in
the mix with fossil fuel [32].

Considering the world experience with different policies to support biofuels, we
choose to comparatively analyze direct financial incentive, and the combination of penalties
and tax-relief, contrasting their policy effects with the benchmark case of no policy support
in place.

2. Methods and Data

Both methods presented here are based on the fundamental concept of the time value
of money and discounted cash-flows [33]. Both methods require constructing a cash-flow
model of the investment project and computing its net present value (NPV). Both methods
are based on constructing a distribution of possible project NPVs to present and handle the
uncertainty that surrounds the investment. The fuzzy pay-off method operates partly in the
possibilistic framework and builds a possibilistic NPV distribution or, put simply, a fuzzy
number NPV. Simulation decomposition is based on probabilistic Monte Carlo simulation
and utilizes the resulting probability distribution of NPVs further to decompose it into
input-output analysis-based cohorts. The two methods are described in more detail below.

2.1. Pay-Off Method

The fuzzy pay-off method [21,34] approaches building the distribution through setting
scenarios. Usually, three scenarios are defined, pessimistic, realistic, and optimistic, al-
though more can be created if reasonable. First, managers are asked to provide estimates of
input values, like costs, prices, production volumes, etc., for every scenario. The idea is to
generate the estimates for the worst possible scenario (pessimistic) such that nothing worse
can happen, for the best possible scenario (optimistic) such that nothing “better” can be
expected to happen, and the one with the most realistic estimates (realistic or best estimate).
Second, net present value is calculated for each scenario. Third, the three NPVs are used
to form a triangular pay-off distribution for the project NPVs are mapped on the value (x)
axis, while the y-axis depicts the membership degree within the set of possible outcomes.
Full membership (equal to 1) is assigned to the “realistic” scenario value, and limit to zero
membership to the pessimistic and the optimistic scenario NPVs, implying that anything
worse or better correspondingly is not expected to take place. The relationship between the
positive and the negative and the realistic scenario value is assumed to be linear. Thus, in
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the final stage, a triangle is formed that represents the possibilistic range of the project’s
NPVs and that is treated as a triangular fuzzy number, for details see [13,26].

Descriptive statistics can be calculated directly from the pay-off distribution and
accompany the material provided for decision-making. For example, the mean value of the
distribution and the variance can be calculated. Furthermore, the real option value can be
computed based on the expected mean of the positive part of the distribution [34,35]. The
main steps of the method are visualized in Figure 1.
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The fuzzy pay-off method has been used in many application areas, including en-
ergy and oil investments [26,36–38], screening and selection of research and development
projects [39,40], and management of a patent portfolios [41].

2.2. Simulation-Based Profitability Analysis and Simulation Decomposition

Simulation-based analysis is based on two parts, one part is a (computer) model that
contains stylized (often much-simplified) structure of the studied system that nevertheless
carries a strong resemblance with reality. The system model includes a number of inputs
and outputs to and from the system that can be studied to understand what the system
“does”. The best system models have a high requisite variety (requisite complexity) [42] and
thus offer relatively high credibility by way of fidelity with the real world. System-models
may also be dynamic and change as a function of (simulation) time. The second part is
simulation, which is typically arranged by means of automated software inputting a large
number of input variable-combinations (vectors, input scenarios) into the system and col-
lecting the corresponding output values. The input value-combinations are selected from
input-value distributions that are pre-determined for each input (and may also be single
values, crisp). The output-values are typically presented as histograms or frequency distri-
butions and it is common to assume that the distribution is a probabilistic representation of
the occurrence frequency of the outputs from the system. A Monte Carlo simulation is a
simulation, where the input value selection is made randomly by the simulation software
from the input-value distributions for a typically pre-set number of times [43,44].

In the context of ex-ante profitability analysis or policy-effect analysis the system
underlying the simulation analysis is the profitability analysis cash-flow model of the
investment that is facing the policy, and the cash-flows that are received by the investment
are regulated by the policy as a function of the environment that the investment is facing,
described in terms of the input-variable value-combinations. This means that the system
used includes both the profitability analysis model and the policy-model. The simulation
software is then used to reveal the outputs from the system under various (randomly
drawn) real-world scenarios [45,46].

Simulation decomposition is based on the Monte Carlo simulation framework and
thus, in contrast with the pay-off method, belongs to the probabilistic framework. Simula-
tion Decomposition decomposes the results of the simulated output probability distribution
into sub-distributions that are matched with the input variable value range combinations
from which they result. The input range combinations can be understood as scenarios.
This input-output matching reveals important information about cause and effect and
allows decision-makers to better understand what effect the various scenarios will have
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on the output. The procedure is based on (i) identifying the relevant variables that can be
affected by the project owner, their relevant “states”, and boundaries for each state; (ii)
forming “groups” or scenarios by combining the states; (iii) running the simulation, while
keeping track on the input-output “inference”; (iv) visualizing the results such that the
outcome resulting from each input group (scenario) is separately visualized and allows
better understanding of “what leads to what”. The procedure is depicted in Figure 2. The
detailed description of the procedure, how the results from it are visualized, and available
implementation tools can be found in [22,47].
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Figure 2. Schematic visualization of the simulation decomposition procedure.

If simulation decomposition is performed by using a single variable, one can see the
influence of this variable on the outcome in the presence of other uncertainties. The two
extremes would be zero (low) influence, if all the scenarios are “lying” on top of each
other (share same output values on the x-axis), and strong influence, if the scenarios are
vertically separated from each other (do not share same output values on the x-axis). If the
decomposition is performed by using two or more variables, one can observe the interplay
of variables and possible synergies, if any are hidden in the system. The more nonlin-
earities and various what-if rules the system has, the more valuable the decomposition
potentially becomes.

Simulation decomposition has demonstrated its value in renewable energy policy
analysis [22,48], in other environmental policy issues [25,49], and can be generally applied
to any problem modeled with Monte Carlo simulation independent of the context [47].

A similar scenario decomposition can be made within the possibilistic framework,
by framing an input-output system by using a fuzzy inference system (FIS), see [24]. This
approach has benefits and drawbacks. Using FIS avoids simulation and thus requires less
computational time, however, the necessity of manual construction of the many scenarios
typically overrides the time savings. In the simulation decomposition method, scenar-
ios are created and valued automatically, based on the user-specified partitions of the
input variables.

2.3. Numerical Assumptions

This study makes numerical assumptions based on publicly available literature and
following the practice presented in [50]. The economic life of a biorefinery plant typi-
cally varies between 20–25 years, and in this study, the lifetime of 20 years is used. The
corporate tax-rate is assumed to be 20% and the discount is set at 10%. The numerical
assumptions about the biofuel production-plant investment are estimates taken from [51].
These estimates include the investment cost of a 500 million liters per year of renewable
diesel production 430 M€ and operating cost of 0.86 EUR/liter. The assumptions related to
policies supporting the use of biofuels are related to the Finnish biofuel policy. Tax-rates
used in this study are retrieved from the Finnish Tax Administration (2021), and the amount
of penalty for not achieving the required share of biofuels is retrieved from the decisions
of the Finnish Parliament (2018). All numerical assumptions made in this study are listed
in Table 1.
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Table 1. Numerical assumptions for the studied system.

Parameter Value Comment

Time horizon 20 years Corresponds to the average lifetime of a
biofuel plant, see, e.g., [52]

Corporate tax 20% The corporate tax-rate in Finland
Discount rate 10% Discount rate, see e.g., [52]
Price of fuel

(taxes included) 1.12 €/liter The average price of Diesel in Finland
2012–2019

Fossil fuel (diesel)

Plant size 1166 million liters
per year

Calculated to get 30% biofuel blend with
500 Ml/year biofuel plant

Operating costs 0.37 €/liter Estimated operating costs, [51]

Biofuel (renewable diesel)

Plant size 500 million liters per
year

Estimates from [53]Operating costs 0.86 €/liter
Investment cost 430 M€

Assumptions related to policies
Tax-relief 0.26 €/ liter Based on the Finnish biofuel policy, [32]
Penalties 1.36 €/ liter Based on the Finnish biofuel policy, [31]

Financial incentive 0.26 €/ liter The same as tax-relief to provide the exact
profitability for the 30% blend scenario

3. Results

To analyze the effects of different policies, we take an investor’s perspective. We
assume a fuel producer already has facilities for producing fossil fuel. The producer has a
choice to invest in biodiesel production to produce fuel blend, or to leave the business as is.
The profitability of the operations with and without biofuel investment is analyzed under
different policy types. In particular, we consider the cases with (i) no support (benchmark),
(ii) a financial incentive, and (iii) a biofuel mandate reinforced by tax-relief and penalties.

3.1. The Pay-Off Method Based Analysis

For the pay-off method case, instead of assuming variations in many input parameters
of the investment, we elect to let only the biofuel blend vary. This means that we calcu-
late, ceteris paribus, the net present value of an investment with three different biofuel
blend scenarios.

We assign the “30% biofuel blend” as be the base case scenario and consider two ex-
treme scenarios, “standalone conventional fuel production”, and “pure biofuel production”.
This way, we isolate the effect of different policies on the decision with respect to the fuel
blend only. The resulting fuzzy NPV distribution demonstrates the effect of different fuel
blends on the NPV. In the case of no policy support, Figure 3, only fossil fuel production is
profitable. Investment in biofuel facilities deteriorates the profitability compared to only
fossil fuel production. Already 30% share of biofuel makes the operations unprofitable,
whereas pure biofuel production is in deeply negative territory.

Paying a financial subsidy for every liter of biofuel produced shifts the profitability of
the 30% blend scenario and the biofuel only scenario, Figure 4. The 30% blend scenario
becomes profitable. Pure biofuel production lags behind and still remains unprofitable, due
to the heavier cost structure. Profitability of the fossil fuel production remains unchanged
and remains the most profitable option.

The combination of tax-relief for biofuel and penalties for not reaching the blending
target creates a very different picture, Figure 5. The tax-relief has a similar effect on the 30%
blend scenario and the biofuel only scenario, as financial incentives. The 30% blend scenario
is profitable, while the biofuel-only production remains in the negative profitability zone.
In contrast to financial benefits, the fossil fuel only scenario becomes deeply unprofitable
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due to the penalties. Only penalties create this effect since in the previous policy situations
(Figures 3 and 4) the fossil fuel production is profitable. Thus, the combination of penalties
and tax-relief generates a two-fold effect, making biofuel blend production attractive to the
investors, while discouraging fossil fuel only production.
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Overall, use of the fuzzy pay-off method, when only the change in the critical parame-
ter is analyzed, enables a clear demonstration of the effects of different policies.
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However, the system studied is surrounded by uncertainties, and the critical one is
the fuel-price uncertainty that, according to [50], has a major influence on the profitability
of the operations compared to all other factors. Therefore, to further analyze the policy
effects, we should have a method that is able to capture the interplay of several sources of
uncertainty simultaneously, for this we turn to Monte Carlo simulation and the simulation
decomposition method.

3.2. Simulation Decomposition Based Analysis

Simulation decomposition is based on the Monte Carlo simulation. The same under-
lying assumptions and NPV cash-flow model that is used for the pay-off method-based
analysis is utilized for the simulation. The variation of input variables is allowed for
multiple variables simultaneously.

The fossil fuel production is assumed to be preexistent, and its size is now considered
fixed, while the size of the biofuel production is relaxed and ranges from 0 to 1000 million
liters per year that corresponds to the variation of the share of the biofuel in the fuel blend
from 0 to 46%. For simplicity, the investment cost is assumed to be a linear function of
the production quantity. Thus, we are not looking at a separate pure biofuel production
anymore, but at the fossil fuel production supplemented with biofuel.

The second source of uncertainty is the price of the final product. We assume it to
be independent of the fuel-mix sold and to vary in the upper range from the current
level from 1.0 to 1.5 EUR/liter. Clearly, the biofuel blends are expected to be sold at
a premium compared to fully fossil fuel, however, a natural fuel-price variation exists
among countries [54] and fuel-producers might be willing to consider different price-levels
independently of their production-blend. Both sources of uncertainty are modeled with a
uniform distribution. The uniform distribution, compared to, e.g., a normal distribution,
places more weight on the extreme values and thus, creates a more detailed picture of the
extent of policy effects.

For the decomposition, we break down the biofuel production-size into two ranges–
below the 30% share blend (0–500 million liters per year) and to equal or above 30%
(500–1000 million liters per year). The price-range is divided into three equally “wide”
pieces, see Table 2. The overall number of all possible combinations of these two variables’
states or scenarios is six.

Table 2. Assumptions for Monte Carlo simulation and simulation decomposition.

Parameter Range States

Biodiesel production size,
million liters per year 0–1000 <30% [0, 500)

≥30% [500, 1000]
Price of fuel, €/liter 1.00–1.50 low [1.00, 1.17)

medium [1.17, 1.34)
high [1.34, 1.50]

In the absence of support (Figure 6) fossil fuel production with less than 30% of biofuel
(sc1–3) is profitable in the high price region and partially profitable in the medium price
region. Producing higher shares of biofuel in the blend becomes unprofitable in the low-
price region (sc4) and only slightly less profitable in the medium and high price regions
(sc5,6). This happens, because at these high prices the standalone biofuel production
becomes less unprofitable and therefore adding more production facilities does not harm
the profitability of the current fossil-fuel production that much.
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Figure 6. Simulation decomposition for fuel production net present value (NPV) with different fuel
blends and price uncertainty under no support.

Under the financial incentive, we can see a shift of the higher-share biofuel production
(sc4–6) into a more profitable range, while the less share biofuel production (sc1–3) remains
relatively unchanged (Figure 7), a similar phenomenon to what was seen with the fuzzy
pay-off method (Figure 2) is revealed. This happens, because the financial incentive is paid
per liter of biofuel produced in the blend and affects more the higher-share operations.
Nevertheless, the overall picture has not changed much. The price variation dilutes the
effect of the subsidy. Scenarios with high prices (sc3,6) are profitable in both, the no-support
situation and with the financial subsidy, which translates into a deteriorated incentive to
increase the share of biofuel production, when the future price development is uncertain.
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Figure 8. Simulation decomposition for fuel production net present value (NPV) with different fuel 
blends and price uncertainty under a combination of penalties and tax-relief. 

The above-described differences between the effects the different policies become 
even more evident, if the graphs are presented together, see Table 3.  
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Figure 7. Simulation decomposition for fuel production net present value (NPV) with different fuel
blends and price uncertainty under financial incentive.

Figure 8 demonstrates how different the profitability of fuel-blend production looks
like under the combination of penalties and tax-relief. The lower bounds of low-share
biofuel production (sc1–3), which represent the standalone conventional fuel production,
are all pushed into the negative profitability zone. of the cases within these scenarios that
are closer to the 30% biofuel requirement still stay in the positive profitability zone. The
high biofuel share operations are almost entirely found to be in the positive profitability
range due to the tax-relief and the absence of penalties. The difference remains sharp even
under the vast price uncertainty. This contrast between the green (sc4–6) and the fossil
scenarios (sc1–3) is an embodiment of the incentive to switch to the production of a high
share of biofuel blend.
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The above-described differences between the effects the different policies become even
more evident, if the graphs are presented together, see Table 3.

Table 3. Summary of the results.
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4. Discussion

All obtained graphical results are demonstrated side by side in Table 3. The pay-off
method (column 2) shows the distributions with only fuel mix variations between the
extremes of standalone fossil fuel and pure biofuel production scenarios. The simulation
decomposition technique (column 3) is applied to a case with fixed fossil fuel production
size, variable biofuel addition, and price uncertainty. The important difference is that the
pay-off distribution is constructed out of discreet scenarios, whereas probability distribu-
tions display the continuous change of the size of the biofuel production. For the simplicity
of representation, the graphs are stripped from axes and titles, however, the scale is kept
consistent within the columns and the zero profitability is marked with the red dashed line
and aligned within each column. Different policy types are shown in rows, and the final
row presents the legends for the graphs for convenience.

The general pattern that can be observed is that no matter which analysis technique
we are using, the first two rows in Table 3 look similar. Financial incentive (B) improves the
profitability of the biofuel blends production, but does not change the entire picture espe-
cially, when considering different price levels (E). It can be concluded that this policy-type
introduces more flexibility for investors by enabling other profitable options in addition to
the conventional ones. Tax-relief alone would have the same effect as the financial incentive.
One can observe that biofuel only and 30% biofuel blend scenarios have the same NPV with
the pay-off method under the financial incentive (B) and the combination of penalties and
tax-relief (C). The price-variation accounted for in the simulation decomposition method,
pushes the profitability of high-share of biofuel scenarios (sc4–6) upwards in the “penalties
& tax-relief” policy (F) in comparison to the financial incentive only policy (E). In addition,
the penalties change the profitability outlook for fossil fuel as well. Both methods show
that fossil fuel production becomes deeply unprofitable when penalized (C, F). Such an
effect translates into shrinking flexibility for investors. Under this policy type the only
profitable choice is the biofuel blend.

Biofuel production is more costly than conventional fuel production, and therefore,
requires subsidies. Production of biofuel alone seems to be too expensive under any policy.
However, co-production becomes profitable in the case of the combined penalties and
tax-relief policy and the financial incentive. Financial incentives alone do not discourage
offering 100% fossil fuel, whereas the combined policy does by means of penalties. A
policy that is a mix of penalties and incentives may help the industry navigate efficiently
towards a desired outcome. These conclusions are shown to be “obtainable” with the
pay-off method and the simulation decomposition method. This is in line with the previous
use of the pay-off method in comparing different projects [40,55] or scenarios of the same
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project [56]. Here the use of the method was not exactly what has been seen before as the
variation was in terms of policies, which makes this research novel in that respect also from
the methodological point of view.

To complement the analysis with the pay-off method, we have used the simulation
decomposition method. As a standalone technique, simulation decomposition has often
been used for policy analysis [25,57]. In this research we have combined market, fuel price,
and investment factors. Such a combination has allowed us to observe possible preferences
of investors that depend on market development. The results allow us to see the effect of
both uncertainty and the joint effect of these factors simultaneously.

While the pay-off method exposes the policy effects on a key decision of how much
biofuel to introduce to the blend, simulation decomposition complements the analysis by
incorporating market uncertainty into the investment profitability profile.

Previous academic literature has pointed out the possibility of adopting complex
and sophisticated methods for the ex-ante study of policy effects and a quasi-unanimous
conclusion found in the literature is that ex-ante policy decision-making support is crucial
also in the shift towards more renewable fuels. Araujo Enciso et al. [58] arrive at this
conclusion by using a sophisticated stochastic recursive-dynamic multi-commodity model.
Moncada et al. [59] employ a complex multi-agent model to show that a combination
of penalties for fossil fuel with incentives for biofuel provides the best biofuel adoption
results. In this paper, we demonstrate that novel, but simple-to-implement and understand
methods are able to keep up with more complex techniques in terms of analytical richness
both in the inclusion of multiple variables and especially in the provision of visual and
in-depth insights for decision-making.

Based on what has been seen here we are ready to recommend the combined use of
the fuzzy pay-off method and the simulation decomposition for ex-ante policy analysis and
more generally for gaining better understanding of profitability analysis problems with
several key factors the interplay of which have an effect on the end result.

5. Conclusions

This paper showcases the use of the two modern profitability analysis techniques, the
fuzzy pay-off method, and simulation decomposition, in the environmental policy analysis.
Both methods are able to depict uncertainty, and when used in conjunction, provide
important insights for ex-ante analysis of policy effects. Both methods are relatively easy
to implement, and their results are easy to visualize and interpret, which, coupled with
their analytical power, make them appealing candidates for tools used for policy analysis.
We analyzed policies to incentivize investments in biofuel production in the transportation
sector. The illustrative conclusion reached is that a combination of penalties and tax-relief
is a realistic policy alternative for sustainability transition.

Our conclusions are based on a stylized investment case and numerical assumptions
available for Finland. If the analysis is performed for another country, the numerical
assumptions need to be modified. However, we are employing methods that can handle
uncertainty, data variation and imprecision. Wide ranges of input factors are considered.
Therefore, we believe that our conclusions hold under a variety of circumstances and are
generalizable.

Extending the range of applications and exploring complementarity of the considered
techniques with other approaches are possible directions for future research.
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Abstract: We analyze the environmental benefits of operational flexibility that emerge in the form
of less product waste during the sourcing process by reducing overproduction. We consider three
different options for operational flexibility: (1) lead-time reduction, (2) quantity-flexibility contracts,
and (3) multiple sourcing. We use a multiplicative demand process to model the evolutionary
dynamics of demand uncertainty. We then quantify the impact of key modeling parameters for
each operational-flexibility strategy on the waste ratio, which is measured as the ratio of excess
inventory when a certain operational-flexibility strategy is employed to the amount when an offshore
supplier is utilized without any operational flexibility. We find that the lead-time reduction strategy
has the maximum capability to reduce waste in the sourcing process of buyers, followed by the
quantity-flexibility and multiple-sourcing strategies, respectively. Thus, our results indicate that
operational-flexibility strategies that rely on the localization of production are key to reducing waste
and improving environmental sustainability at source.

Keywords: sustainability; sourcing; operational flexibility

1. Introduction

Improving sustainability on the production and consumption sides of product life
cycles has proven to be critical in reducing the carbon footprint and combating global
warming [1]. For this reason, one of the United Nations Sustainable Development Goals (i.e.,
Goal #12) explicitly addresses the problems associated with unsustainable production and
consumption (https://www.un.org/sustainabledevelopment/sustainable-development-
goals/ (accessed on 22 December 2021). Many manufacturers shift production to low-cost
and distant countries to benefit from low production costs, but the long production and
shipping lead times between production and the market bases contribute to significant
amounts of excess inventory [2] that risk going to waste in retail stores without ever
reaching consumers. The cost of excess inventory in the retail industry was estimated to
be USD 471 billion in 2014 [3]. In other words, the Earth’s resources to a value of USD
471 billion are wasted in producing goods that are never sold, and hence never used, by
any consumer.

Let us consider the apparel industry, which is responsible for 8–10% of global carbon
emissions [4]. The industry is dominated by strong brands that outsource production to
contract manufacturers in offshore countries that rely on coal-fueled power plants. These
contract manufacturers sometimes even outsource production to yet other countries to
further reduce production costs and increase their capacity to fulfill increasing global
demand [5]. These offshoring waves have severe effects on the environment. The industry
is reported to be responsible for around 35% of oceanic microplastic pollution, 20% of
industrial water pollution, and more than 8% of global carbon emissions [4]. Despite
this environmental destruction, for 30–40% of clothes produced, there is no customer
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demand [6], resulting in a loss of profit for the apparel brands. Therefore, 30–40% of the
environmental disaster could be eliminated by avoiding holding excess inventory, which is
also appealing for retailers because it helps them increase their profits.

Operational flexibility has been proposed by scholars as an effective method for mini-
mizing mismatches between supply and demand under demand uncertainty [2]. If demand
exceeds supply, companies incur the opportunity cost of losing the demand. If demand falls
short of supply, companies end up with excess inventory and incur inventory holding costs.
In addition to the negative impact on profits, excess inventory has a catastrophic impact on
the environment due to the carbon emissions and pollution that arise during the production
and logistics operations for goods that are not even demanded by customers. It is therefore
important to conduct a comprehensive study of operational and environmental trade-offs
arising from the interaction between different supply chain processes such as procurement
and inventory management [7]. In the extant literature, the merits of operational flexibility
are quantified from the perspective of its impact on profits [2,8–11]. However, its benefits
for environmental sustainability have not been addressed yet. In this research, we aim to
fill this gap in the literature by addressing the following two questions:

• What is the environmental value of operational flexibility measured in the form of
waste reduction?

• What types of operational-flexibility strategies are highly effective in increasing profits
while improving environmental sustainability?

We consider three different operational-flexibility strategies. The first is lead-time
reduction, which can be achieved by localizing production near the market bases. Lead-
time reduction allows a buyer to postpone ordering decisions until credible information
from the market about the final demand has been collected. Therefore, decision makers base
their decisions on accurate demand forecasts and hence are able to reduce supply–demand
mismatches [2]. Second, we analyze quantity flexibility whereby an offshore supplier offers
the buyer flexibility to update the initial order quantity, within some limits, after the buyer
has improved its demand forecasts [10]. Compared with lead-time reduction, quantity
flexibility does not require the localization of production near the market bases. Finally,
we consider multiple sourcing, in which a buyer employs a domestic supplier and an
offshore supplier to exploit the market responsiveness of the domestic supplier and the
cost efficiency of the offshore supplier at the same time [9]. Although it has been well
established in the extant literature that these three strategies are highly effective in reducing
supply–demand mismatches, their impact on reducing waste is not well known. We assume
a profit-oriented buyer who aims to maximize profit and employs operational-flexibility
strategies just to reduce mismatch costs. Based on the profit-maximizing decisions of the
buyer, we quantify the secondary positive impacts of the operational-flexibility strategies
on environmental sustainability.

Following [12], we use a multiplicative demand process to model the evolutionary
dynamics of demand uncertainty. Then, we quantify the impact of key modeling parameters
for each operational-flexibility strategy on the waste ratio, which is measured as the ratio of
excess inventory when a certain operational-flexibility strategy is employed to the amount
when an offshore supplier is utilized without any operational flexibility. Suppose, for
example, the expected excess inventory is 100 units if a buyer sources products from an
offshore supplier. Then, the supplier offers the buyer quantity flexibility, helping the buyer
reduce the expected excess inventory to 60 units. For the quantity-flexibility strategy
employed, the waste ratio obtained is 60/100 = 60%. Our results show that the lead-time
reduction strategy has the maximum capability to reduce waste in the sourcing process
of buyers, followed by the quantity-flexibility and multiple-sourcing strategies, in order.
Therefore, operational-flexibility strategies that rely on the localization of production are
key to reducing waste and improving environmental sustainability at source.

We organize the remainder of the paper as follows. In Section 2, we position our
research by reviewing the extant literature on circular operations management and opera-
tional flexibility. We present the model preliminaries in Section 3. Then, we analyze each
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operational strategy and present some numerical examples in Section 4, where we also
discuss the environmental implications further in Section 5. Finally, we provide concluding
remarks and envision future research directions in Section 6.

2. Literature Review

Our research is connected to two streams of the operations management literature:
(1) circular operations management and (2) operational flexibility. One of the fundamental
problems in the circular operations management literature is how to transform the linear
“take-make-dispose” operational model to a circular structure, so that products can stay
in the market after their lifetime to minimize waste on the consumption side [13,14]. The
phenomenon of circular operations management is also known as closed-loop supply chain
management (CLSC). There are three different layers of CLSC, which aim to minimize
product waste on the consumption side. We depict these layers in Figure 1.

Production environment

Raw materials

Finished goods

Overproduction 
waste

Production

Finished goods
Sales

Loop 1: Reuse

Loop 2: 
Remanufacture

Loop 3: Recycle

Household waste

Disposal
Production 
exceeding 
demand

Consumption environment

Figure 1. Closing the loop in supply chains.

The first layer of the CLSC is reusing, which focuses on strategies to extend the con-
sumption length of products [14–16]. If a product is damaged or loses its functionality, it
must be repaired to increase the length of the consumption period. When a customer loses
interest in using a product, it must be sold in the secondary market or shared with other
people. Therefore, the ease of repairing, resharing, and selling in secondary markets are key
elements of the first layer [14,16]. One of the successful applications of reuse is the online
marketplace of Patagonia, an outdoor apparel firm, where customers can exchange their
clothes when they lose interest in them [17]. Another example is the product ownership
program of Xerox whereby the printing company retains ownership of the printers and
leases them to customers [14]. When a customer terminates its contract, Xerox leases the
product to a new customer, so the company’s products are shared over their lifetime.

The second layer of the CLSC is remanufacturing, whereby a set of refurbished and
new components are used to manufacture products [18–20]. There are two main challenges
regarding the implementation of remanufacturing. The first is uncertainty about the flow
of used components, which will later be refurbished for use in the manufacturing process.
The second challenge is the cannibalization of the original items because introducing the
remanufactured products to the market would result in lower sales of the original ones,
leading to lower profits. Ref. [19] address the first challenge by developing a queuing-
theory model that dynamically estimates the flow of used products and then applying
an aggregate base-stock policy to optimize the inventory policy. To address the second
challenge, [20] develop a diffusion model and categorize products depending on their
market diffusion and purchase frequency. The authors outline a decision typology that
shows the product categories with the maximum potential for remanufacturing.

The last layer of the CLSC is recycling, whereby products at the end of their life
go through a series of operations to manufacture new items. Well-known examples of
recycling are paper and plastic recycling, which are observed in the recycling centers of
municipalities of big cities. Yet, the most important challenge of recycling remains the
collection of products from households. Ref. [14] give the example of Norway, where
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the recycling rate for plastic bottles is impressively high—97%. Norwegians achieve
this by providing government funds to support retail stores in collecting plastics via
reverse vending machines (the same system can be observed in other western European
countries such as the Netherlands). Another approach to increasing the recycling rate is to
mandate manufacturers to develop collection and recycling mechanisms for their products,
which is popularly known as extended producers responsibility (EPR) [21]. EPR has been
popularized in the electronics industry, with an example being the Minnesota Electronics
Recycling Act [22]. According to this act, the state of Minnesota imposes strict collection
and recycling targets on producers as a percentage of their total sales volume [22].

Studies in the extant literature successfully address the most important problems
related to improving sustainability on the consumer side. Once a product reaches the
market, keeping it in the loop of the CLSC has certain environmental benefits. However,
the extant literature does not quantify the environmental impact of overproduction nor
develop remedies for that problem. We contribute to the literature by filling this gap.

Our research is also related to a second stream of literature that prices the value of
operational flexibility. Companies establish operational flexibility in different ways, such
as lead-time reduction [2,8], quantity-flexibility contracts [10], and multiple sourcing [9,23].
These operational-flexibility strategies make it possible for buyers to determine order
quantities after the partial or full resolution of demand uncertainty, helping them to better
match supply with uncertain demand. One of the challenges in the extant literature is
related to demand modeling because the demand model should involve the time element in
order to quantify the benefits of delaying the ordering decision. In practice, manufacturers
often employ demand planning teams that collect credible information from customers and
update demand forecasts over time. Thus, demand forecasts are improved over time as a
result of such efforts. For this reason, the modeling approaches used in the operational-
flexibility literature incorporate the evolutionary dynamics of demand forecasts in order
to price the value of operational flexibility. Ref. [8] use a multiplicative demand process
to price the value of lead-time reduction. Ref. [2] later extend the multiplicative demand
model by incorporating sudden changes in the demand forecasts and show that the value
of lead-time reduction increases with positive jumps in the demand forecasts. Ref. [10] use
a multiplicative demand model to price the value of quantity flexibility and show that the
value is jointly affected by the order-adjustment flexibility and the time when the order
adjustments are made. Ref. [23] develop a tailored capacity model, which is analogous
to the multiple-sourcing model that we consider in this research. In their model, a buyer
utilizes a speculative capacity under demand uncertainty, but also reserves a reactive
capacity that can be utilized once the demand is known. Ref. [9] extends [23] by using the
extreme-value theory, so the tailored capacity model can be applied to a wider selection of
product categories.

Our contribution to the operational-flexibility literature is that we quantify the envi-
ronmental benefits of operational flexibility that appear in the form of reduced product
waste during the sourcing process. The studies in the extant literature are based on a
profit-oriented view of the firm such that a reduction in the supply–demand mismatch
costs determines the value of operational flexibility. We hopefully expect that companies
will be less concerned about increasing their profits in the future, focusing rather on under-
standing the environmental impact of their operations. Our research aims to fill this gap
in the literature by showing how operational flexibility can help minimize product waste
during the sourcing process.

3. Model Preliminaries

To quantify the impact of operational flexibility on excess inventory, we model the
evolutionary dynamics of demand forecasts. There are two types of demand models that
can be used for such a purpose: (1) the additive demand model and (2) the multiplicative
demand model [12,24]. The difference between the successive demand forecasts follows
a normal distribution in the additive demand model, whereas the ratio of the successive
demand forecasts follows a normal distribution in the multiplicative demand model. It has
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been well established in the literature that the additive demand model fits the empirical
data well when the forecast horizon is short and the demand uncertainty is low. However,
the multiplicative demand model fits the empirical data well when the forecast horizon is
long and the demand uncertainty is high [24]. In this paper, we consider the multiplicative
demand model because the lead times are expected to be long when companies source
from offshore suppliers. Additionally, we focus on products with high demand uncertainty
because the magnitude of excess inventory is more pronounced for products with high
demand uncertainty than for those with low demand uncertainty.

We use Di to denote the demand forecast at time ti, such that t0 ≤ ti ≤ tn. The
forecast-updating process starts at time t0 and ends at tn. We fix tn to the time when the
actual demand is realized, so the final demand is fully known at tn. Therefore, the length of
the forecast horizon is tn − t0. The demand forecasts are updated at each time epoch ti for
i ∈ {0, 1, · · · , n}. According to the multiplicative demand model, the demand forecast Di
is formulated as follows:

Di = D0e(ν(ti−t0)+ε1+ε2+···+εi). (1)

The ν term denotes the drift rate, and the ε terms are the forecast adjustments that
follow a normal distribution:

εi ∼ N (−ς2/2, ς), ∀i ∈ {1, . . . , n}, (2)

where ς is the volatility parameter.
The drift rate can take non-zero values depending on the forecast-updating process.

Ref. [12] gives an example of a forecast-updating process such that demand planners use
only the advance demand information to update the demand forecasts, which is modeled
by a multiplicative demand model with a positive drift rate. When the forecasts are updated
based on an unbiased judgmental demand process, the drift rate should be set equal to
zero [12]. The multiplicative demand model, given by Equation (1), yields a lognormal
distribution for the end demand, which is conditional on the demand forecast at ti:

ln(Dn)|Di ∼ N (ln(Di) + (ν− ς2/2)(tn − ti), ς
√

tn − ti), ∀i ∈ {0, . . . , n− 1}. (3)

The location parameter of the lognormal distribution is ln(Di) + (ν− ς2/2)(tn − ti),
and the scale parameter is ς

√
tn − ti.

In Figure 2, we present an example of the multiplicative demand model with a drift
rate of zero and a volatility parameter of one. We normalize the initial demand forecast
to one and scale the length of the forecast horizon to one. Thus, D0 = 1, t0 = 0, and
t1 = 1. We simulate a random path of the evolution of demand forecasts and calculate
the 95% confidence interval over the forecast horizon. The black curve represents the
demand forecasts, and the pink area shows the 95% confidence interval. For example, the
demand forecast at t = 0 is equal to one, and the actual demand is expected to be between
zero and four at t = 0 given by the limits of the pink area. As shown in the figure, the
distance between the limits of the confidence interval decreases over time. This observation
indicates that the accuracy of the demand forecasts improves over time as the time for the
realization of the final demand approaches, which is consistent with practice. Therefore,
the multiplicative model is very effective in capturing the dynamics of demand-updating
mechanisms in practice [12,24].
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Figure 2. Evolution of demand forecasts for the multiplicative process with D0 = 1, ν = 0, and ς = 1.

We now apply the multiplicative demand model given by Equation (3) to develop the
expected profit, optimal order quantity, and expected excess inventory derivations. We
consider the classical newsvendor model such that a buyer sells the products in a market
with uncertain demand. We use p to denote the selling price of a product per unit. The
buyer incurs a purchasing cost of c per unit. Unsold inventory is salvaged at a salvage
value of s per unit. The salvage value can be negative in some industries where companies
pay to throw away the excess inventory. In the pharmaceutical industry, for example,
unsold drugs must be destroyed after their shelf life because of strict regulations, making
the salvage value negative for pharmaceutical companies. The critical-fractile solution was
developed to determine the optimal order quantity in the classic paper of Arrow et al. [25]:

β =
p− c
p− s

, (4)

where β is known as the critical fractile or the critical ratio. When the demand follows the
lognormal distribution given by Equation (3), the optimal order quantity is found by:

Q∗ = eln(Di)+(ν−ς2/2)(tn−ti)+Φ−1(β) ς
√

tn−ti , (5)

where Φ−1(·) is the inverse of the standard normal distribution function Φ(·).
To find the expected profit, we first need to derive the standardized order quantity.

When the buyer orders Q units, the standardized order quantity becomes:

zQ =
ln(Q/Di)− (ν− ς2/2)(tn − ti)

ς
√

tn − ti
. (6)

Then, the expected profit for an order quantity of Q units is given by Bicer and
Hagspiel [10]:

E(Π(Q)|Di) = (p− c)Q− (p− s)
[

QΦ(zQ)− Dieν(tn−ti)Φ(zQ − ς
√

tn − ti)
]
. (7)

The first term on the right-hand side of Equation (7) gives the total profit when all the
units ordered are sold in the market at the selling price. However, the demand is uncertain,
and it can be less than Q units. The second term on the right-hand side of the expression
can be considered as the cost of an insurance policy that fully hedges the excess inventory
risk. The term in brackets is the expected excess inventory:

E(Excess Inventory | Q, Di) = QΦ(zQ)− Dieν(tn−ti)Φ(zQ − ς
√

tn − ti). (8)

The last expression indicates that the excess inventory (hence the waste) can be reduced
using two different approaches. First, postponing the ordering decision leads to a reduction
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in the time window tn − ti, which in turn helps decrease the expected excess inventory.
Second, reducing the order quantity results in a decrease in the expected excess inventory.

These results provide useful insights regarding the use of operational flexibility to
improve sustainability by reducing waste in the sourcing process. The lead-time reduction
and quantity-flexibility practices make it possible for the buyer to postpone their ordering
decision. Therefore, these two operational-flexibility strategies help decrease excess in-
ventory. Utilizing multiple sources (one offshore supplier and one domestic supplier), the
buyer can reduce the quantity ordered from an offshore supplier. Thus, multiple sourcing
also helps reduce the excess inventory.

4. Analysis of the Impact of Operational Flexibility on Excess Inventory

We now look at the impact of the three operational-flexibility strategies (i.e., lead-time
reduction, quantity flexibility, and multiple sourcing) on the excess inventory in order to
quantify the environmental benefits of operational flexibility. The analytical derivations
of the optimal policies for these strategies are given in detail in de Treville et al. [8] for
lead-time reduction, Bicer and Hagspiel [10] for quantity-flexibility contracts, and Biçer [9]
for multiple sourcing. The following subsections first discuss the analytical derivations
of the optimal policies for these strategies and then quantify the impact of operational
flexibility on excess inventory.

4.1. Lead-Time Reduction

Suppose that a buyer purchases products from an offshore supplier and sells them
in a market with uncertain demand. The buyer places the purchase order at time tl , and
the products are delivered at time tn such that t0 ≤ tl ≤ tn. The buyer sells the products
in the market at time tn. This setting applies to fashion apparel brands that use contract
manufacturers to make their clothes and sell them to retail stores at the beginning of each
selling season. The length of tn − tl is the decision lead time, which is the time elapsed
between when the ordering decision is made and when the actual demand is observed.
The demand is highly uncertain at time tl , which in turn exposes the buyer to excess
inventory risk.

We assume that the selling price is $p per unit, and the salvage value is $s per unit. We
use cl to denote the cost of ordering from the offshore supplier per unit. Then, the optimal
order quantity can be found by Equation (5). When the buyer places the optimal order
quantity, its expected profit and expected excess inventory can be found by Equations (7)
and (8) conditional on the optimal order quantity.

We now consider the case that the buyer aims to reduce the lead time by switching
to a local responsive supplier. This makes it possible for the buyer to place the order at
time ts such that ts ≥ tl . However, the buyer incurs a higher purchasing cost when buying
products from the local supplier. We use cs to denote the cost per unit of ordering from
the local supplier such that cs ≥ cl . Therefore, the buyer is exposed to a trade-off between
postponing the ordering decision and incurring a higher ordering cost. This trade-off has a
significant impact on the buyer’s profits and the excess inventory.

In Figure 3, we present an example of a buyer who would like to decide whether to
purchase products from an offshore or a domestic supplier. The selling price of the product
is USD 300 per unit; the cost of purchasing from the offshore supplier is USD 40 per unit;
the cost of purchasing from the domestic supplier is USD 50 per unit. Unsold inventory is
thrown away, so the salvage value is set equal to zero. We normalize the initial demand
forecast to one (D0 = 1) and change the demand parameters accordingly. The drift rate of
the multiplicative demand model is set equal to zero, and the volatility is equal to one. We
also normalize the long lead time (i.e., when an order is placed with the offshore supplier)
to one such that tn − tl = 1 by setting tn = 1 and tl = 0.
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Figure 3. Analysis of lead-time reduction: (a) Impact of lead-time reduction on profit increase;
(b) Impact of lead-time reduction on waste ratio.

We present the percentage change in profit in Figure 3a when the buyer switches from
the offshore supplier to the domestic supplier. The x-axis represents the time of ordering
with the domestic supplier (i.e., ts), and the y-axis represents the percentage increase in
profits. When the domestic supplier is not responsive enough, the benefits of local sourcing
disappear, resulting in a loss of profit. As shown in the figure, the profit increase is negative
when ts < 0.29. In this case, it is not advantageous for the buyer to order from the domestic
supplier, so a buyer aiming to maximize profit would continue to source from the offshore
supplier. If the domestic supplier is responsive enough to let the buyer postpone the
ordering decision to later than t = 0.29—that is, ts > 0.29—the buyer would increase their
profit by switching from the offshore supplier to the domestic supplier. If the lead time is
reduced by half (i.e., ts = 0.5), Figure 3a shows that ordering from the domestic supplier
leads to a profit increase of around 10%. If the lead time is reduced by 90% so that ts = 0.9,
the buyer can increase their profit by around 40%.

In addition to these economic benefits, the lead-time reduction helps the buyer reduce
waste, thus having a positive environmental impact on the sourcing process. Figure 3b
shows the waste ratio, which is the ratio of excess inventory when the buyer orders from
the domestic supplier to the excess inventory when they order from the offshore supplier.
The x-axis represents the ts value, and the y-axis represents the waste ratio. When ts = 0,
the lead time for ordering from the offshore supplier is the same as the lead time for
ordering from the domestic supplier. Even if the lead times are the same for both sourcing
alternatives, the waste ratio is lower than one for ts = 0, meaning that local sourcing helps
reduce waste even in the absence of a lead-time reduction. The waste ratio of 0.8 for ts = 0
is a result of the difference in ordering costs between the domestic and offshore suppliers.
The cost of ordering from the domestic supplier is more than ordering from the offshore
supplier (cs > cl). This leads to lower ordering levels when the domestic supplier is used
rather than the offshore supplier. Therefore, the 20% reduction in waste for ts = 0 can
only be attributed to the lower ordering levels, which is independent of the benefits of a
lead-time reduction. However, this improvement is not attainable because Figure 3a shows
that the buyer prefers the offshore supplier over the domestic one when ts = 0.

When the ts value increases, Figure 3b shows that the waste ratio decreases. Therefore,
the buyer can reduce waste during the sourcing process by cutting the lead time with
the domestic supplier. When sourcing from the domestic supplier makes it possible to
reduce the lead time substantially, the buyer reaches alignment between the economic and
environmental incentives of local sourcing. On the one hand, the buyer can increase their
profit due to better matching between supply and demand. On the other hand, they can
also reduce the waste at source by minimizing the excess inventory. Apart from these direct
benefits, promoting local production may also help improve the extent of remanufacturing
and recycling because it increases product know-how in local markets.
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4.2. Quantity-Flexibility Contracts

When the buyer does not have the possibility of implementing local sourcing, a
quantity-flexibility contract can be used to increase profits and reduce excess inventory.
Under a quantity-flexibility agreement, the buyer determines the initial order quantity at
time tl and the flexibility percentage. We use Ql to denote the initial order quantity and
following the terminology in [10] we use α to denote the flexibility percentage. Then, the
buyer determines the final order quantity Q f at time ts > tl within some limits:

(1− α)Ql ≤ Q f ≤ (1 + α)Ql . (9)

If the demand forecasts are updated upward from tl to ts, the buyer would increase
the order quantity up to (1 + α)Ql units. Otherwise, the buyer would decrease the order
quantity down to (1− α)Ql units. Thus, the final order quantity depends on the demand
forecast at time ts, the initial order quantity, and the flexibility percentage. It is given
by [10]:

Q f =





Ql(1− α) i f Ds < Ds1,
Q∗f = Dse(ν−ς2/2)(tn−ts)+Φ−1(β)ς

√
tn−ts i f Ds1 ≤ Ds ≤ Ds2,

Ql(1 + α) i f Ds2 < Ds,

(10)

where:

Ds1 = Ql(1− α)e−(ν−ς2/2)(tn−ts)−Φ−1(β)ς
√

tn−ts , (11)

Ds2 = Ql(1 + α)e−(ν−ς2/2)(tn−ts)−Φ−1(β)ς
√

tn−ts . (12)

The Ds1 and Ds2 terms can be interpreted as the lower and upper critical values for
the demand forecast at time ts. If the demand forecast Ds turns out to be higher than Ds2,
the buyer should order the maximum allowable quantity based on the quantity-flexibility
contract, which is equal to Ql(1 + α) units. If the demand forecast Ds turns out to be lower
than Ds1, the buyer should reduce the order quantity to the minimum allowable level,
which is equal to Ql(1− α) units. If the demand forecast Ds is between these limits, the
buyer should set the order quantity to the profit-maximizing level. Based on the final
order quantity, the expected profit and the expected excess inventory can be calculated by
Equations (7) and (8), respectively.

In Figure 4, we present an example of a buyer who orders products from an offshore
supplier and has the flexibility to update the initial order quantity based on a quantity-
flexibility contract. The cost parameters are the same as above: The selling price is USD
300 per unit, the cost of purchasing from the offshore supplier is USD 40 per unit, and
there is no salvage value for unsold inventory. Likewise, the demand parameters are the
same as above. The demand forecast at t0 is normalized to one. The drift rate and the
volatility are equal to zero and one, respectively. The initial order quantity is determined at
the very beginning such that tl = 0. The final order quantity is determined at ts within the
quantity-flexibility limits.

Figure 4a shows the impact of flexibility on the percentage profit increase. The x-axis
represents the flexibility percentage α, and the y-axis represents the percentage increase in
profits as a result of the order-adjustment flexibility. To calculate the values of the profit
increase, we generate 100,000 random demand paths for each α value. We compare the
demand realization at ts along each sample path with Ds1 and Ds2 limits to determine the
final order quantity. Then, the expected profit is calculated using Equation (7). Figure 4a
demonstrates that the percentage change in profit increases with a decreasing rate as the
flexibility increases. When α = 0.4, the buyer can achieve around 20% profit increase
compared with the no-flexibility case.
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Figure 4. Analysis of quantity flexibility: (a) Impact of the flexibility parameter on profit increase;
(b) Impact of the flexibility parameter on waste ratio.

Figure 4b depicts the waste ratio as a function of the flexibility parameter. We calculate
the waste ratio as the ratio of the expected excess inventory when the buyer has the
flexibility to update the initial order quantity to the expected excess inventory when the
buyer has no flexibility. Therefore, the waste ratio is close to one when the flexibility
percentage is near zero. As the flexibility percentage increases, the waste ratio decreases
with a decreasing rate. The curve becomes flatter for high α values such that the waste ratio
cannot be reduced below 40%. These results indicate that quantity flexibility has positive
economic and environmental impacts on the sourcing process of the buyer. However, its
environmental impact is more limited than what can be achieved with lead-time reduction.

4.3. Multiple Sourcing

In the lead-time reduction and quantity-flexibility practices, the buyer can source
products from only one supplier. In the former case, the buyer can source products from
either an offshore supplier or a domestic supplier but not from both at the same time. In the
latter case, the buyer can only order from an offshore supplier that provides the flexibility
to adjust the initial order quantity in a later time epoch. We now consider an alternative
strategy, whereby the buyer can source products from two different suppliers at the same
time: One is the offshore supplier and the other the domestic.

The multiple sourcing strategy is very effective in mitigating the risk of supply–
demand mismatches [9]. By utilizing an offshore supplier, the buyer benefits from the cost
advantages of offshore production. If the buyer orders lower quantities from the offshore
supplier, the excess inventory risk can also be minimized. If the demand turns out to
be unexpectedly high, the buyer then utilizes the domestic supplier to meet the surplus
demand. Therefore, a multiple-sourcing strategy allows the buyer to benefit from the cost
advantages of the offshore supplier and the responsiveness of the domestic supplier at
the same time. However, one of the implementation challenges of this strategy is that the
domestic supplier may not always be utilized at a high level. If the demand turns out
to be low, the quantity ordered from the domestic supplier would not be high enough to
fully utilize its available capacity. Therefore, domestic suppliers are exposed to the risk of
capacity underutilization when a multiple-sourcing strategy is employed. To compensate
for this risk, domestic suppliers often charge their buyers a capacity reservation fee.

To capture these dynamics, we consider a multiple-sourcing setting with one buyer,
one offshore supplier, and one domestic supplier. The buyer determines the order quantity
of Ql units from the offshore supplier and reserves a capacity of K units with the domestic
supplier at time tl . We use cl and ck to denote the cost of ordering from the offshore supplier
and the capacity reservation cost at the domestic supplier per unit, respectively. At time
tn > tl , the buyer observes the final demand and determines the final order quantity of Qs
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units from the domestic supplier such that Qs ≤ K. The domestic supplier is additionally
paid cs per each unit ordered. The formulation of Qs is given by Biçer [9]:

Qs = max(min(Dn, Ql + K), Ql)−Ql , (13)

where Dn is the final demand for the product, which is observed at time tn. Following up
from Biçer [9], we first define two ratios to derive the optimal values of Ql and K. They are:

β1 =
cs + ck − cl

cs − s
, (14)

β2 =
p− cs − ck

p− cs
. (15)

Then, the optimal values are given by Biçer [9]:

Q∗l = Dle(ν−ς2/2)(tn−tl)+Φ−1(β1)ς
√

tn−tl , (16)

K∗ = Dle(ν−ς2/2)(tn−tl)[eΦ−1(β2)ς
√

tn−tl − eΦ−1(β1)ς
√

tn−tl ]. (17)

Then, the profit in the multiple-sourcing setting is formulated as follows:

Π(Ql , K, Qs) = p min(Dn, Ql + K) + s max(Ql − Dn, 0)− clQl − ckK− csQs. (18)

Using this formula and simulating the demand paths, the expected inventory for the
optimal Ql and K levels can be found. The expected excess inventory can also be calculated
by plugging Ql into Equation (8).

We now present an example to demonstrate the impact of multiple sourcing on the
buyer’s profits and excess inventory. We assume the same demand parameters as the
examples given above. The cost of purchasing from the offshore supplier is USD 40 per
unit, and the cost of purchasing from the domestic supplier is USD 50 per unit. The
domestic supplier also charges USD 15 for each unit of capacity reserved. Unlike the
lead-time reduction and quantity-flexibility examples, we cannot vary the key decision
parameter that determines the magnitude of operational flexibility in the multiple-sourcing
setting. In the multiple-sourcing setting, operational flexibility is directly influenced by
the reactive capacity K. However, the reactive capacity is not a control variable. It is a
decision variable that has to be optimized depending on the cost and demand parameters.
For that reason, we vary the selling price between USD 150 and USD 300 in our analysis
because Equation (17) indicates that the optimal capacity level increases with the selling
price. In other words, we can observe the impact of responsiveness on profits and the waste
ratio by varying the selling price because the selling price is directly correlated with the
capacity level.

Figure 5a shows the impact of the selling price on the percentage profit increase such
that the profit increases with the selling price. Doubling the selling price from USD 150
to USD 300 increases the profit by almost 190%. Figure 5b demonstrates that the waste
ratio does not change depending on the selling price. This is because the optimal order
quantity from the offshore supplier does not depend on the selling price but only on the
cost parameters. For this reason, there is no environmental benefit to improving operational
flexibility with the multiple-sourcing strategy. Both the profit increase and waste ratios in
Figure 5a,b are calculated with respect to the resulting profit and waste when the selling
price is set at USD 150.
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Figure 5. Analysis of multiple sourcing: (a) Expected profit depending on the selling price with
multiple sourcing; (b) Waste ratio depending on the selling price with multiple sourcing.

We summarize the results of the three operational-flexibility strategies in Table 1 below.
For each strategy, the profit increase and waste ratio reported are calculated by setting
the parameter of the strategy in the table to the maximum value in comparison to setting
the parameter to the minimum value within the given range. The results show that lead-
time reduction has the highest potential in reducing waste while improving the profits
of companies. In Section 5, we further elaborate on and discuss the results of the three
strategies.

Table 1. Summary of results of the operational-flexibility strategies.

Strategy Control Variable Control Variable Range Profit Increase Waste Ratio

Lead-time reduction Lead time with domestic supplier (ts) ts ∈ [0, 0.99] 51.94% 0.01
Quantity-flexibility contracts Flexibility parameter (α) α ∈ [0, 0.99] 29.98 % 0.42
Multiple sourcing Selling price (p) p ∈ [150, 300] 191.98% 1.00

5. Discussion

So far, we have shown the effect on the change in profit and the waste ratio of three
supply chain flexibility strategies: (1) lead-time reduction, (2) quantity-flexibility contracts,
and (3) multiple sourcing. The numerical analysis of lead-time reduction shows that when
a firm reduces its lead-time by utilizing an onshore supplier instead of an offshore supplier,
the firm can achieve both profit increase and waste reduction due to the decrease in demand
uncertainty at the order time. When ts is greater than 0.29, the firm starts experiencing a
positive change in profit, which exceeds 50% as ts increases to 1. As for the waste, even
if ts = tl = 0, the firm still experiences waste reduction of 20% due to the increased
cost, which lowers the newsvendor order quantity. The waste ratio decreases to zero as
ts increases to one, since the actual demand is known at this point and the firm does not
operate under demand uncertainty anymore.

If firms cannot order from an onshore supplier, they can still benefit from the flexibility
of an offshore supplier with a quantity flexibility contract where, up to time ts, the firm can
still adjust its order quantities by a factor of α. For a fixed ts, our analysis shows that firms
can achieve a 30% increase in profit, and waste reduction can reach more than 50% as the
flexibility parameter increases to 1.

For multiple sourcing, the numerical analysis is performed based on the selling price
of the product. It shows that doubling the selling price from USD 150 to USD 300 results in a
profit increase of almost 190%. The waste, however, does not change with different pricing
as it is calculated based on the offshore order quantity, which is independent of price.

The selection of a given flexibility strategy is also dependent on the risk associated
with it. On the one hand, although single sourcing with lead-time reduction has the highest
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effect in reducing waste while still increasing a firm’s profits, it can amplify the exposure to
risk in the presence of uncertainty. On the other hand, multiple sourcing can present higher
costs, and this is not accounted for as a result of having to manage several suppliers [26].
It is therefore critical for firms to assess all the benefits and risks arising from choosing a
specific strategy in pursuit of improved sustainability and profits.

6. Conclusions

Improving sustainability in every aspect of our lives is vital to safeguard a durable
future for the next generation. Manufacturers ought to pay special attention to sustainability
because what they produce, how they produce, and where they produce has a substantial
impact on the carbon footprint. The extant literature on sustainable operations management
mainly focuses on the consumption side of product life cycles, with an intention to extend
the product lifetime and reduce household waste. However, significant inefficiencies exist
on the production side of product life cycles, whereby manufacturers overutilize the Earth’s
limited resources and generate carbon emissions when producing products in excessive
amounts. A significant number of these products may never reach consumers. Prominent
examples reported in the media include Amazon destroying thousands of unsold TVs and
laptops in one of its warehouses [27].

In this research, we aim to fill the gap in the literature by demonstrating how opera-
tional flexibility can help organizations achieve sustainability at source. We focus on three
different operational-flexibility strategies: (1) lead-time reduction, (2) quantity-flexibility
contracts, and (3) multiple sourcing. Our results indicate that lead-time reduction has the
highest potential to reduce waste while improving the profits of companies. Therefore,
operational-flexibility strategies that promote local production are key to reducing waste
and improving sustainability.

In particular, in our numerical analysis, where ordering time varies between 0 (start of
planning horizon) and 1 (beginning of sales season), we show that lead-time reduction can
result in a profit increase when orders are placed with onshore suppliers at a time ts greater
than 0.29, compared with being placed with an offshore supplier at time tl = 0. The profit
increase can go up to around 40% when orders are placed at ts = 0.9, even if ordering costs
are higher. Waste in terms of excess unsold inventory also decreases, even when ts = tl = 0
when the onshore supplier is used, and results in a 20% waste reduction compared with
ordering from an offshore supplier as a result of the higher ordering costs, which result
in lower order quantities. The waste decreases as ts increases and finally approaches zero
when orders can be placed during the selling season, when ts = 1.

The results of our research offer some useful insights regarding the development of
effective environmental policies. Because lead-time reduction is the most effective strategy,
environmental policies should target cutting lead times, not only for inbound but also for
outbound logistics. Increasing the import and export tariffs and imposing trade barriers
would force countries to promote local production, which in turn leads to shorter lead
times and lower waste. Although such policies conflict with the free trade and economic
development ideas, we envision that environmental concerns would be highly dominant
in the near future and governments would incrementally pass some regulations to reduce
the volume of imports and exports. One of the side benefits of local production would be
to establish a close connection between local manufacturers and local authorities such that
recycling and remanufacturing can be easily implemented near the market bases. Therefore,
local production may also help increase the product life cycle along the stages of the closed
loop supply chains (Figure 1).

One of the limitations of our research is that we mainly focus on the dynamics on
the production side of the product life cycle without connecting it with the consumption
side. We mainly consider a newsvendor setting such that the buyer sells the products in
the market at a certain price. The classical utility theory [28] suggests that the life cycle of a
product is positively associated with the price paid for it. We believe that there is a need
for empirical research that investigates the relationship between price and the length of a
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product’s lifetime in the retail industry for different categories. We envision that this would
be an interesting avenue for further research.

Another direction for future research is how digital transformation could contribute
to lead-time reduction. Recent research focuses on lean manufacturing in the Industry 4.0
era [29]. Studies on lean manufacturing show that lead-time reduction is an important
factor that enhances reliability and flexibility while decreasing inventory carrying costs
and that integrating lean management and collaboration in the supply chain has important
social, environmental, and economic benefits [30]. Therefore, we foresee that studies of the
effect of Industry 4.0 on decreasing waste and increasing profit through lead-time reduction
are a potential field for future work.
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Abstract: The state of Iowa is known for its high-yield agriculture, supporting rising demands for
food and fuel production. But this productivity is also a significant contributor of nitrogen loading to
the Mississippi River basin causing the hypoxic zone in the Gulf of Mexico. The delivery of nutrients,
especially nitrogen, from the upper Mississippi River basin, is a function, not only of agricultural
activity, but also of hydrology. Thus, it is important to consider extreme weather conditions, such as
drought and flooding, and understand the effects of weather variability on Iowa’s food-energy-water
(IFEW) system and nitrogen loading to the Mississippi River from Iowa. In this work, the simulation
decomposition approach is implemented using the extended IFEW model with a crop-weather
model to better understand the cause-and-effect relationships of weather parameters on the nitrogen
export from the state of Iowa. July temperature and precipitation are used as varying input weather
parameters with normal and log normal distributions, respectively, and subdivided to generate
regular and dry weather conditions. It is observed that most variation in the soil nitrogen surplus lies
in the regular condition, while the dry condition produces the highest soil nitrogen surplus for the
state of Iowa.

Keywords: Iowa food-energy-water nexus; nitrogen export; system modeling; weather modeling;
simulation decomposition

1. Introduction

Nutrients, such as nitrogen (N), are necessary in farming for raising crop and forage
productivity, but they can also bring potential harm to the socioeconomic system. A
hypoxic zone is a phenomenon where low dissolved oxygen (hypoxia) occurs in aquatic
environments, which is primarily caused by excess nutrients running off or leaching from
the contributing watershed. Over 400 hypoxic zones have been found in the world and
the problem of hypoxia is worsening [1]. In the US, the environment and socioeconomic
system of the Gulf of Mexico are impacted by hypoxia which has one of the largest hypoxic
zones in the world [2]. Nitrogen (N) is one of the major contributors to the creation of the
hypoxic zone of the Gulf of Mexico through the nitrates (NO3) lost from watersheds within
the Mississippi River Basin, which moves downstream to the Gulf of Mexico [3]. Studies
show that the state of Iowa, one of the major producers of corn, soybean, ethanol, and
animal products, contributes a considerable amount of nitrogen loads to the Mississippi
River basin [4,5]. As the largest producer of corn in the US, nearly 57% of Iowa’s corn is
used for ethanol production [6]. The manure produced by animal agriculture is also rich in
nitrogen [7]. The current research aims at creating strategies and policies to mitigate the
excess nitrogen originating from the Iowa food-energy-water (IFEW) system.

Climate variability has major effects on FEW systems. For example, extreme events,
such as floods or droughts, can reduce water availability and quality. In southern East
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Africa, infrastructure design is challenging due to multi-year drought [8]. Furthermore,
changes in the weather impact energy usage and demands of human activities. Moreover,
in the food system, the needs for livestock watering and crop fertilizer can be severely
impacted due to climates changes. Though Iowa uses primarily rain-fed agricultural
production, in other areas irrigation water for crops is also significantly impacted (both in
supply and in requirements) by weather and climate. Arizona is a predominantly irrigated
agriculture state and supplies food to at least six major cities. It is especially vulnerable to
climate changes [9]. Therefore, it is important to investigate the effects of weather variability
on the sustainable management of FEW systems.

It is important to capture the complex interactions of the different domains to deter-
mine the exported nitrogen of the system. In this work, weather, water, agriculture, animal
agriculture, and energy are considered in modeling the IFEW system. The macro-level
simulation-based IFEW model introduced in [10] to determine the surplus nitrogen in the
state of Iowa is extended to include a crop-weather model using linear regression of histori-
cal weather parameters, which is based on a prior study [11]. Simulation decomposition
(SD) [12,13] is used to visualize the effects of weather variability on the IFEW nitrogen
export. Furthermore, SD analysis is used to distinguish the influences of different weather
scenarios affecting the surplus nitrogen.

The next section gives the details of the IFEW system model and the SD analysis tech-
nique. The following section presents the numerical results of SD applied to the proposed
IFEW simulation model for several weather scenarios. The last section summarizes the
work and discusses potential future work.

2. Methods

This section gives a high-level description of the IFEW system model interdependen-
cies. The macro-level simulation-based model of the IFEW system and the SD technique
are described.

2.1. IFEW System Model Interdependencies

The IFEW system model has five distinct macro-level domains, namely, weather, water,
agriculture, animal agriculture, and energy (Figure 1). The weather discipline provides
environmental factors, such as vapor pressure, temperature, rainfall, and solar radiation.
Rainfall and snowfall supply surface water and groundwater components for the water
discipline. The amount of crop production in the agriculture discipline is strongly related
to precipitation and temperature [11]. The water discipline supplies water for drinking and
service usage for the animal agriculture discipline, and the production and ethanol and
fertilizer for the energy system. Dry distillers’ grain soluble (DDGS) that is produced during
the ethanol production process and commercial fertilizers provide protein to animals and
fertility to soil in the animal agriculture and agricultural domains, respectively. Demand
for food protein by society is satisfied by the animal agriculture discipline. Corn yield
in the agricultural discipline is used for ethanol production in the energy discipline and
the satisfaction of socioeconomic demand. Other socioeconomic demands are satisfied
by the corresponding domains except the weather discipline. The excess nitrogen from
animal lands and crop fields is carried by water flow in the form of nitrates draining into
the Mississippi River basin and further into the Gulf of Mexico.
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2.2. IFEW Macro-Level Simulation Model

In this work, an extended simulation-based model of the IFEW system introduced
in [10] is proposed to calculate the surplus nitrogen (Ns) considering only the weather,
agriculture, and animal agriculture domains in Figure 1. Figure 2 shows the flow of
components and the process of calculation via an extended design structure matrix (XDSM)
diagram [14]. The input parameters are the weather model parameters (w1–5), May crop
planting progress (cw1), rate of commercial nitrogen for corn (x3), rate of commercial
nitrogen for soybean (x4), the total hog/pig population (x5), number of beef cows (x6),
number of milk cows (x7), and number of other cattle (x8) including the population of steers,
heifers, and slaughter cattle. Other intermediate response parameters are corn yield (x1),
soybean yield (x2), the application of commercial nitrogen (CN), nitrogen generated from
manure (MN), nitrogen fixed by soybean crop (FN), and the nitrogen present in harvested
grain (GN). The model estimates the nitrogen surplus (Ns) based on output quantities
yielded by each discipline.

This simulation model is an extension from the authors’ previous work with the
addition of the crop-weather model [10]. Westcott and Jewison [11] discovered that the
amount of corn yield is linear to mid-May planting progress, July temperature, and June
precipitation short fall, but is nonlinear to July precipitation. Meanwhile, the productivity
of soybean is linear to the average value of July and August temperatures, and June precip-
itation short fall, but is nonlinear to the average value of July and August precipitations.
The crop-weather model of the work is developed based on [11] given a set of temperature
and precipitation data of certain months over a 10-year period (2009–2019) from [15]: July
temperature (w1), July precipitation (w2), June precipitation (w3), July-August average tem-
perature (w4), and July-August average precipitation (w5). The corn yield (x1) is estimated
by a regression model with May planting progress (cw1), July temperature (w1), July precip-
itation (w2), and June precipitation (w3). Similar to the corn model, the model for soybean
yield (x2) is created using June precipitation (w3), July-August average temperature (w4),
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and July-August average precipitation (w5). For simplicity, July and August average values
are represented by July values in this work.
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The nitrogen present in harvested grain (GN) is calculated using two input parameters,
namely, the corn yield (x1) and soybean yield (x2) as

GN =

(
x1

(
1.18
100

)
Acorn + x2

(
6.4
100

)
Asoy

)
/A, (1)

where Acorn and Asoy represent the Iowa corn and the soybean acreage, whereas A represents
the total area under corn and soybean crop. It is assumed that 6.4% and 1.18% of nitrogen
are in the soybean seed and the corn seed while harvesting, respectively [16]. The biological
nitrogen fixation from the soybean crop (FN) is estimated as [17].

FN = (81.1x2 − 98.5)Asoy/A. (2)

The commercial nitrogen (CN) is estimated using the rate of commercial nitrogen for
corn (x3) and the rate of commercial nitrogen for soybean (x4) as

CN =
(
x3 Acorn + x4 Asoy

)
/A. (3)

The values of the corn and soybean acreages are obtained from the USDA [18]. The
annual manure nitrogen contribution of each animal type is estimated [19]

MNanimal = P AMN LF, (4)

where P, AMN, and LF are the livestock group population, nitrogen in animal manure, and
life cycle of animal, respectively. P is substituted by the corresponding parameters with
respect to different animal alternatives: the total hog/pig population (x5), number of beef
cows (x6), number of milk cows (x7), and number of other cattle (x8). The total nitrogen
generated from manure (MN) can be determined by the normalized sum of MN for each
livestock group with total area A as

MN =
(

MNHog/pigs + MNBee f−cattle + MNMilk−cow + MNother−cattle

)
/A. (5)
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Table 1 gives the nitrogen content in manure and life cycle for livestock groups used
in (5). Lastly, the rough agronomic annual nitrogen budget of Iowa [16,20] provides the
function calculated for the nitrogen surplus (Ns) given as

Ns = CN + MN + FN − GN. (6)

Table 1. Nitrogen content in manure and life cycle for livestock groups used in manure N
calculation [19].

Livestock Group Nitrogen in Manure (AMN)
(kg per Animal per Day)

Life Cycle (LF) (Days per
Year)

Hog/pigs 0.027 365
Beef cattle 0.15 365
Milk cows 0.204 365

Heifer/steers (0.5 × other cattle) 0.1455 365
Slaughter cattle (0.5 × other cattle) 0.104 170

2.3. Simulation Decomposition

The simulation decomposition (SD) [12] approach is an extension to the Monte Carlo
simulation [21] that enhances the explanatory capability of the simulation results by ex-
ploiting the inherent cause-and-effect relationship between the input and output parame-
ters [13].

SD has recently been developed and successfully used on problems involved in
different domains such as geology, business, and environmental science [22]. It has been
shown to provide a deeper understanding of the interaction between different sources of
uncertainties and its impact on output uncertainty and its distribution to stakeholders. The
current section provides a brief description of SD from an application point of view. A
detailed description of SD can be found in [12].

In this section, the fundamental steps of implementing SD are described using an
analytical model problem. Consider a simple analytical function given as

y = v1 + v2
2, (7)

where v1 and v2 are the real numbered input parameters and y the real number output
parameter. The SD process has the following steps [12]:

1. Identify the input parameters (v1, v2) and their corresponding distribution ranges
in which these parameters are expected to vary. Table 2 provide input parameters
and their corresponding distributions. For this example, a uniform distribution is
assumed for each parameter.

2. Next, for each parameter the states are identified. The states of each input parameter
represent a category of outcomes (e.g., low, or high). Based on the state for each
parameter, a value range is determined as seen in Table 2 for the example problem.

3. Generate every possible combination of the parameter states. Each combination of
states represents a unique scenario (Sci) of the to-be-decomposed simulation of the
output. The number of scenarios depends on the number of states of each parameter.
For the example problem, the number of scenarios is four, as shown in Table 3.

4. Run the Monte Carlo simulations by randomly sampling the parameters, identifying
parameter states, and evaluating output. Register output of each simulated iteration
for producing full output distribution and simultaneously group the output based on
the scenarios for producing decomposed sub-distribution for each scenario.

5. Finally, construct appropriate output graphs or tables to better understand the cause-
and-effect relationship between input and output parameters. In particular, the
stacked histogram is an informative graph that displays the full output distribution
and the decomposed output superimposed on full distribution. Figure 3 shows the
full and decomposed distribution of the simulated output.
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Table 2. Input parameter details.

Parameter Distribution/Range State Boundary

v1 U [0, 10]
Low [0–5)
High (5–10]

v2 U [0, 10]
Low [0–5)
High (5–10]

Table 3. Generating scenarios from parameter states.

Scenario Combination of States

Sc1 v1: Low, v2: Low
Sc2 v1: Low, v2: High
Sc3 v1: High, v2: Low
Sc4 v1: High, v2: Low

3. Results

This section presents the results of applying SD to the proposed extended nitrogen
export model which includes a weather model. In particular, the current work focuses
on understanding the effects of weather parameters on the nitrogen surplus in different
scenarios.

For this study, the weather parameters temperature (T) and precipitation (PPT) for
July are taken as input parameters, whereas soil nitrogen surplus is considered as an output
parameter computed from the IFEW simulation model. Furthermore, the July temperature
is assumed to be normally distributed with a mean of 74 ◦F and a standard deviation of
2 ◦F, whereas the July precipitation is assumed to have a lognormal distribution with a
standard deviation of 0.4 in., a shape parameter of 0, and median at 4 as shown in Table 4.
All other parameters considered in the IFEW simulation model are kept constant.

222



Sustainability 2022, 14, 1060

Table 4. Input parameter details for performing simulation decomposition with IFEW simulation
model.

Parameter Distribution/Range State Boundary

July temperature (w1) N [2, 74]
Regular ≤76 ◦F

High >76 ◦F

July precipitation (w2) LogN [0.4, 0, 4] Regular ≥2.5 in
Low <2.5 in

In the crop-weather model, May plantation progress and June precipitation is assumed
to be 80% and 5.5 in., respectively. The parameters used in the animal agriculture model
(x5–8) are based on the 2012 Iowa animal population data [19]. The commercial nitrogen
application rate for corn (x3) and soybean (x4) agriculture are considered to be constant and
set as 185 kg/ha and 17 kg/ha based on the Iowa State University extension guidelines for
the nitrogen application rate for corn [23] and on the fertilizer use and price data [24].

After setting up the IFEW model, Monte Carlo simulations are performed using
Latin hypercube sampling (LHS) [25]. The LHS sampling method ensures that the input
parameter ranges are represented appropriately. The input parameter states and boundary
details are presented in Table 4. For July temperature, any temperature above 76 ◦F is
considered to be under state high where all other temperature values are considered to be
under state regular. Similarly, for July precipitation, any precipitation value below 2.5 in. is
labeled under state low precipitation and all other values are under state regular. Table 5
presents the scenarios based on a combination of states. The parameter states are selected
to produce some of the extreme condition scenarios (e.g., Table 5 dry condition).

Table 5. Scenarios for simulation decomposition approach with IFEW model.

Scenario Combination of States Description

Sc1 w1: Regular, w2: Low Regular-T Low-PPT
Sc2 w1: Regular, w2: Regular Regular condition
Sc3 w1: High, w2: Low Dry condition
Sc4 w1: High, w2: Regular High-T Regular-PPT

A total 105 samples of input weather parameters (w1 and w2) are generated using LHS
and SD approach is implemented using the IFEW simulation model. Figure 4 shows the
distribution of sampled weather parameters in two states and four scenarios as mentioned
in Tables 4 and 5. Most of the generated samples are observed under regular condition (Sc2)
whereas the least number of samples are observed in dry condition (Sc3).

The input weather parameters are supplied to a crop-weather module which computes
corn yield (x1) and soybean yield (x2). The computed crop yield values are then passed
to an agriculture module where CN, FN, and GN values are computed as mentioned in
Section 2.2. Here, the contribution of CN will be constant for every IFEW model evaluation
due to the assumption of a constant commercial nitrogen application rate for corn (x3) and
soybean (x4).

Figure 5 shows the decomposed distribution of corn and soybean yield along with
the variation in FN and GN values. The effect of different scenarios due to combinations of
weather parameters can be clearly seen in crop yield distribution. It is interesting to note that
in dry condition (Sc3) corn yield drops compared to the yield in regular condition, whereas
higher soybean yield is observed in dry condition compared to the regular condition. The
computation of GN is influenced by both corn and soybean yield values (Figure 5c). The
computation of FN is only influenced by soybean yield values (Section 2.2); thus, the FN
distribution is observed to be similar to soybean yield distribution.
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Figure 6 shows the decomposed distribution of nitrogen surplus (Ns), the final output
of the IFEW simulation model. The soil nitrogen surplus is usually affected by CN, MN,
GN, and FN magnitudes. However, in this study, only GN and FN influence the variation
in nitrogen surplus. This is mainly because the parameters affecting CN and MN are kept
constant. The variation in nitrogen surplus shown in this work is purely due to uncertainty
in weather parameters. From Figure 6, it is observed that most of the variation in nitrogen
surplus lies in regular condition (Sc2), varying approximately between 0 and 20 kg/ha. The
scenarios with high July temperatures (Sc3 and Sc4) are observed to produce mid to high
nitrogen surplus values. Similarly, scenario Sc1, with very low July precipitation and regular
July temperature, tends to produce higher nitrogen surplus than in regular conditions. The
dry condition with high July temperature and low July precipitation produces the highest
soil nitrogen surplus, varying between 20 and 30 kg/ha. The accumulated nitrogen in the
soil is highly water-soluble and could get exported at a high rate to the Mississippi River
through melting snow or rainfall before the next growing season. Figure 6 provides the
expected magnitude of nitrogen load from state of Iowa to the Mississippi River in different
weather scenarios.

The SD in this work uses the Monte Carlo sampling approach which could be used
to provide approximate probability of a scenario occurring in any given year considering
the assumptions made earlier are true. Based on the data available in the current study,
probabilities of scenarios Sc1, Sc2, Sc3, and Sc4 occurring are 0.1, 0.74, 0.02, and 0.12,
respectively. The probability of dry condition (Sc3) occurring is lowest whereas regular
condition (Sc2) has the highest probability of occurring (Figure 6).

The SD approach implemented in the current study provides valuable results to gauge
the impact of weather parameters on soil nitrogen surplus along with crop yields and
nitrogen transfer in agriculture systems. However, the particular distributions used for the
weather parameters are not data based, and the two input weather parameters are assumed
to be independent of each during the Monte Carlo sampling process. Temperature and
precipitation are correlated. Thus, there is a possibility that some combination of scenarios
may not entirely occur. For example, high precipitation and high temperature may not
occur at the same time because with high precipitation, the average temperature drops.
Further, the probability distributions of the weather parameters are challenging to estimate
as they typically do not have continuous distributions. Thus, it is advisable to use weather
generators which have been trained on historical datasets to predict weather parameters
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rather than using continuous probability distributions. In future studies, weather gen-
erators will be included in the IFEW simulation model to predict weather data for more
realistic predictions of soil nitrogen surplus.
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4. Conclusions

In this work, the simulation decomposition (SD) approach is implemented with the
Iowa food-energy-water (IFEW) system simulation model to better understand the impact
of weather behavior on nitrogen export from Iowa. In particular, the previously developed
nitrogen export model, which computes the soil nitrogen surplus, is extended with a crop
weather model to include the dependence of weather in the IFEW system. The updated
IFEW simulation model with SD is used to provide decomposed soil nitrogen surplus
distribution in different weather scenarios.

It is observed that July temperature and precipitation directly impact corn and soybean
yields. Interestingly, it is observed that in the dry condition, corn yield reduces, whereas
soybean yield increases compared to the yield values in regular conditions. The variation
in crop yields affects nitrogen transfer in the agriculture system through fixation nitro-
gen (FN) and grain nitrogen (GN), affecting the soil nitrogen surplus. The SD approach
provides the distribution of nitrogen surplus in various scenarios. It is observed that the
regular condition covers most variation in the full distribution. Scenarios with high July
temperature and low precipitation tend to produce mid to high range of nitrogen surplus
values. The dry condition scenario produces the highest nitrogen surplus. Overall, the SD
approach provides a deeper understanding of the cause-and-effect relationship between
weather parameters and soil nitrogen surplus.

Furthermore, the current study identified that continuous distribution on weather
parameters could generate unrealistic scenarios. Thus, in future studies, highly validated
weather generators will be used for estimating weather parameters, providing a more
realistic distribution of soil nitrogen surplus based on weather. Additionally, the IFEW
simulation model will be extended to report nitrogen loads for Iowa’s nine crop reporting
districts, providing spatially resolved information from the state of Iowa.
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Abstract: Computational decision-making in “real world” environmental and sustainability contexts
frequently requires the need to contrast numerous uncertain factors and difficult-to-capture dimen-
sions. Monte Carlo simulation modelling has frequently been employed to integrate the uncertain
inputs and to construct probability distributions of the resulting outputs. Visual analytics and data
visualization can be used to support the processing, analyzing, and communicating of the influence
of multi-variable uncertainties on the decision-making process. In this paper, the novel Simulation
Decomposition (SimDec) analytical technique is used to quantitatively examine carbon emission
impacts resulting from a transformation of the aviation industry toward a state of greater airline
electrification. SimDec is used to decompose a Monte Carlo model of the flying range of all-electric
aircraft based upon improvements to batteries and motor efficiencies. Since SimDec can be run
concurrently with any Monte Carlo model with only negligible additional overhead, it can easily be
extended into the analysis of any environmental application that employs simulation. This general-
izability in conjunction with its straightforward visualizations of complex stochastic uncertainties
makes the practical contributions of SimDec very powerful in environmental decision-making.

Keywords: business aviation; turboprop; electric motor; specific power; Monte Carlo simulation

1. Introduction

Environmental sustainability problems frequently require the need for practical, “real
world” decision-making to compute solutions to situations possessing numerous uncertain
factors and unquantified dimensions [1]. This study applies a novel analytical technique to
quantitatively examine the carbon emission impacts resulting from a transformation of the
aviation industry toward a state of greater airline electrification.

The link between carbon emissions from the aviation industry to climate change was
firmly established in the 1992 report of the United Nations Framework Convention on
Climate Change (UNFCC) [2]. Today, it is estimated that aviation emissions annually
contribute between 2–5% of all global emissions [3–5] with some estimates forecasting that
with the current growth trajectory, 25% of all emissions could be attributed to flying by
2050 [5,6]. In fact, while many industry sectors have actively been reducing their carbon
footprints, the emissions from the aviation industry have increased by more than 75% from
their 1990 levels [5,7]. The biggest culprits in aviation emissions are the long-distance,
commercial flights, and this long-haul aviation segment is the hardest to decarbonize, by
far [4].

At the recent UNFCC Conference of the Parties meeting (COP26) in Glasgow—in
which, ironically, the vast majority of the 26,000 delegates arrived via air—there were
strong calls for immediate action to be taken to reduce airline emissions [8]. Consequently,
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decreasing the overall carbon contributions from the aviation industry has become one of
the primary initiatives within the current global climate policy formulation and represents a
significant component of the overall strategy for achieving climate neutrality by 2050 [2,6,9].
Clearly, technological progress can serve as the most significant, enabling factor for acceler-
ating the pace of air traffic decarbonization. While biofuels have generally been viewed
as the primary remedy for emissions from long-haul aviation [10], electrification is now
considered the more viable option for regional, short-haul flights [8,11].

In comparison to combustion engines, electric aircraft are less expensive to operate
as there is no need to acquire expensive kerosene, and the maintenance of an electric
powertrain is far less complicated and cheaper. According to some estimates, the cost
per hour from operating an electric aircraft is less than one-third that of an otherwise
similarlysized, fueled aircraft. Economically, lower costs translate into lower overall prices,
thereby enabling higher traffic volumes. Some experts envision the possibility of completely
disruptive innovation in regional traffic flows, where all-electric turboprops provide a
substitute for train-, bus-, and car-travel [12]. For example, one interesting development is
Airbus’ concept of urban air mobility that employs its all-electric, vertical-takeoff, remotely
piloted, four-seater CityAirbus. Some airlines that only engage in short distance flights
have experimented with switching to an all-electric fleet (e.g., see [13]).

Short-haul flights form a separate business community. So-called business aviation is
comprised of charter flights, corporate aviation, and air taxis, though the explicit definition
and composition differs depending on the source organization [14]. Short-haul business
aviation creates many benefits for businesses, the environment, and economies, in general.
These benefits can be expected to intensify in conjunction with an increased electrification
of aircraft fleets in combination with consequent price decreases. Improved business
aviation can connect many currently isolated communities in rural and remote locations,
contributing a significant boost to their economic growth and investments. On-demand
scheduling substantially increases efficiencies for business by saving time spent engaging
in large airport procedures and avoiding unnecessary waiting time at stopovers [15].

In aviation electrification research, prior R&D investment studies have generally ana-
lyzed only selected scenarios that tend to be focused primarily on battery technology. For
example, Brdnik et al. [16] focused on the existing specific energy levels of batteries and
their impacts on the resulting flying ranges of three different aircraft sizes. Schäfer et al. [17]
estimated the economic and environmental consequences of high-level, specific energy bat-
teries. Unfortunately, due to the weight of the batteries, electrification is practicable only for
the 20% of commercial flights under a distance of 1500 km [5]. Hence, for commercial avia-
tion implementation purposes, an appropriately realistic balance must be struck between
electrification for short-haul flights and combustion engine aircraft for longer distances.
Achieving this satisfactory balance between short- and long-haul flight strategies in avia-
tion is analogous to computing a solution to the environmental equilibrium requirements
specified in the range limited routing problem of electrical- versus combustion-engine
transportation methods in urban logistics planning [18–23].

Consequently, this paper aims to portray a more holistically sustainable aviation elec-
trification picture by concurrently integrating environmental impacts from the ongoing
technological developments of electric motors for short-haul flights into the R&D invest-
ment analysis. This is achieved by employing a Monte Carlo study in combination with a
novel computational ancillary analysis technique to model the flying range of an all-electric
aircraft based upon improvements to its batteries together with its electric motor. Monte
Carlo simulation has been applied to a wide spectrum of environmental planning problems
to incorporate disparate uncertain inputs with their corresponding outputs frequently
portrayed visually as probability distributions.

In order to progress beyond a selected scenario approach, the Monte Carlo study
undertaken will be extended using the recently introduced, innovative approach called
simulation decomposition (SimDec) [24]. The SimDec method has been created to expand
the analytical capacity of simulation by significantly broadening its cause-and-effect ex-
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planatory powers [24–27]. SimDec provides a very powerful, straightforward approach
for visually analyzing the impacts of combinations of variables on output measures [24,26].
It is a generally usable method that is not context-dependent [25]. In SimDec, selected
uncertain input variable combinations are used to “decompose” output distributions into
a number of state-influenced sub-distributions [24]. These sub-distributions are super-
imposed onto an output distribution, thereby permitting an explicit visualization of the
cause-and-effect impacts of the decomposed multi-variable groups of input combinations
and/or their various interactions [24]. The practical contributions from the decomposed
visualization facilitates subsequent decision-maker insights with respect to the underlying
simulation model. SimDec supplies both sensitivity and scenario contributions that are
frequently employed by decision-makers in conjunction with “real world” quantitative
analyses [24–27]. At the strategic level, SimDec enables a visual analytic display in continu-
ous numerical space of the simultaneous interaction between multiple different factors that
affect the flying range of electrical aircraft, thereby more fully portraying the financial and
environmental benefits of aviation electrification to the decision-makers.

The remainder of the paper is structured in the following way: Section 2 provides a
general description of the SimDec method; Section 3 summarizes the key aspects associated
with aviation electrification; Section 4 describes the computational and Monte Carlo model
used for capturing the environmental impacts from electrification; Section 5 provides
the results from the Monte Carlo and discusses the environmental impacts discovered
in the decomposition of the output; and Section 6 concludes the outcome of the SimDec
analysis for evaluating the environmental contributions of aircraft electrification to aviation
decarbonization.

2. The Simulation-Decomposition Approach

SimDec is an analytical approach that was recently introduced to expand the ex-
planatory capabilities of Monte Carlo by exploring inherent cause–effect links between
combinations of input variable groupings and their resulting impacts on output vari-
ables [24]. While this section reviews the key steps for the decomposition of a simulation,
more extensive descriptions can be found in [24–27].

The SimDec procedure constructs sub-distributions of the entire simulation output
distribution by partitioning certain input variables into pre-determined states, constructing
various multi-variable combinations of these states, and then clustering the simulated
outputs using these partition combinations [25,27]. This process enables the construction of
both an “overall” output distribution and the simultaneous projection of the decomposed
multi-variable input combinations onto this figure [26]. In decomposing an overall output
distribution, SimDec simultaneously highlights multi-variable combination impacts using
only a single simulation run, which, thereby, circumvents the need to perform individual
simulation runs to test each input combination separately. Therefore, SimDec explicitly can
be considered an explicit variance reduction approach for evaluating simulated outputs [25].
The visualization from SimDec is subsequently obtained by color-coding each portion of
the overall distribution represented by each of the multi-variable partitions [24,26]. Because
the projected effect of each subdivided partition can be clearly visualized on the output
distribution, SimDec can visually expose previously unrecognized relationships between
the multi-variable input partitions and their resulting fundamental consequences on the
outputs [26].

The specific algorithmic steps in SimDec are as follows [25,27]:
Step (1) From the complete set of input variables that are to be simulated in the Monte

Carlo model, choose a subset of variables that are of interest for more explicit scrutiny.
Step (2) Create relevant states that correspond to different outcomes for each of the

variables identified in Step 1 (e.g., good-bad, optimistic-expected-pessimistic, etc.).
Step (3) For each state of each of the variables, construct suitable numerical boundaries

that correspond to that variable’s possible value ranges. These boundary ranges must be
mutually exclusive and collectively exhaustive for the set of states of each variable.
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Step (4) Construct a listing of every possible combination of the different variable
state partitions. Each combination represents a multi-variable partition of the inputs in the
future decomposition.

Step (5) Perform a Monte Carlo simulation. On each simulated iteration, map the
randomly generated values of each selected input variable into its corresponding partition
state, then map the specific combination of all individual states for the iteration onto the
corresponding multi-variable partition combination. Allocate the result of each simulated
iteration to the output distribution corresponding to the “complete” simulation, while
simultaneously keeping track of the decomposed state combination that produced it.

Step (6) Construct output graphs and/or tables of the simulation outputs. These
graphs/tables will portray both the overall summaries of the outputs together with the
state decompositions superimposed on top of the global figures.

In summary, the SimDec procedure can be used to break down the regions of the sim-
ulation’s overall output distribution into a set of distinct partitions [24]. The corresponding
stratification enables an effective visualization and assessment of any inherent cause–effect
relationships within the simulation results [26]. The determination of which input combina-
tions to use in any given decomposition is at the discretion of the decision-maker. SimDec
can be added to any Monte Carlo study with essentially negligible additional computa-
tional overhead and can be incorporated independently of the simulation context [25]. In
the subsequent sections, SimDec will be employed to analyze the impacts from a simulation
model of aviation electrification.

3. Electrification of Aviation

In essence, there are two main types of aircraft—turbo-propeller aircraft (or turbo-
props) and jets. The turboprops were the first aircraft type to be electrified due to the
technical simplicity of such a modification: directly substituting an electric motor for the
engine and batteries for the fuel tank [28]. Regional aviation, where electrification provides
a feasible option, operates mostly in the realm of “business aviation”, as opposed to the
major airlines’ scheduled business models. In Europe, turboprops constitute 34% of the
business aviation fleet and are responsible for 26% of the flights [29], see Table 1.

Table 1. Characteristics of aircraft segments in European business aviation.

Segment Number of Movements
(Arrivals and Departures) Fleet Average

Distance, km
Average

Speed, km/h

Turboprop 242,003 26% 1085 34% 483 378
Light Jet 371,514 40% 994 31% 760 590

Midsize jet 114,428 12% 334 10% 1108 680
Heavy jet 189,585 21% 805 25% 2099 754

Total 917,530 100% 3218 100%

The European turboprop fleet of over 1000 aircraft is represented by ten main brands
of airplane from seven manufacturers in the US and Europe, Table 2.

The specific energy of batteries, defined as how much energy a battery contains per its
mass, is currently considered to be the main constraining factor for electrical aviation [30].
In a nutshell, batteries are simply too heavy. The existing specific energy levels for batteries
range between 0.1 to 0.25 kWh/kg, which is ten times lower than the energy density of
kerosene in combination with the specific power of combustion engine [16]. Nevertheless,
by extrapolating along major historic technology improvement trends, the airline industry
forecasts storage solutions to easily increase to 0.8 kWh/kg within the coming decades [17].

A second major factor frequently under-explored in current aviation research is the
actual specific power of an electric motor [31]. Table 3 highlights the specific power
progression of Siemens motors over since 2015 [32], which clearly demonstrates the recent
rapid technological progression of electric motors.
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Table 2. Major characteristics of business aviation turboprops operating in the EU in 2020, based
on [29], with data added for seats and maximum takeoff weight from each aircraft description.

Aircraft Brand Manufacturer Country Seats
Maximum

Takeoff
Weight, kg

Number of
Movements

(Arrivals and
Departures)

Fleet
Average
Distance,

km

Average
Speed,
km/h

King Air 200 Hawker Beechcraft US 13 5700 86,379 185 337 374
Pilatus PC-12 Pilatus Switzerland 9 4100 67,461 215 515 381

Piaggio P180 Avanti Piaggio Aerospace Italy 9 5488 20,510 93 560 480
Piper Malibu

Meridian Piper Aircraft US 6 2310 15,457 159 474 365

Socata TBM 700 Daher-Socata France 6 2984 15,421 56 442 384
King Air 90 Hawker Beechcraft US 5 4378 10,837 108 384 329

King Air 350 Hawker Beechcraft US 8 6800 10,035 66 525 346
Socata TBM 850 Daher-Socata France 6 3354 5773 43 578 423
Socata TBM 900

series Daher-Socata France 4 3354 5574 36 594 440

Cessna 208 Caravan Cessna US 9 3629 4556 124 420 260

Table 3. Characteristics of Siemens electric motors developed for aviation, based on [32].

Motor Development
Timeline

Continuous
Power, kW

Rotational
Speed, rpm

Mass,
kg

Specific Power,
kW/kg

SP45D 2015 45 2500 28 1.6
SP55D 2016 55 3000 27 2.0
SP70D 2018 70 2600 26 2.7

SP200D 2017 204 1300 49 4.2

SP2000D Under
development 2000 6500 261 7.7

Since the power of the motor is a function of its torque and rotational speed, high-
speed solutions can substantially increase specific power as illustrated in the last motor
in Table 3. Unfortunately, such high-speed motors subsequently require the addition of a
gearbox that is connected to the propeller (all the other motors from Table 3 operate via
direct drive) [32]. Consequently, any additional gearbox mass must be accounted for when
comparing the specific power of different electric motors. For example, when accounting
for (say) a standard 50 kg aircraft gearbox, the overall specific power of the powertrain of
the Siemens SP2000D would be reduced to 6.4 kWh/kg.

4. Model
4.1. Computational Logic

The computational model aims to estimate the flying range of an all-electric aircraft
based upon improvements to its powertrain arising from the specific energy of batteries
(kWh/kg) and the specific power of the electric motors (kW/kg). For simplicity, the overall
mass of the aircraft is fixed, so that any improvement in the powertrain directly translates
into additional “space” for more batteries that are subsequently used to replenish the
aircraft’s total mass back up to its fixed amount. In reality, of course, any improvement in
the powertrain could invoke numerous alternative aircraft design possibilities. However,
for the purposes of systematically tracing the effect of technological improvements on the
aircraft flying range, we assume the design and the mass of the aircraft to be fixed. To
compute the flying range, we employ the aircraft electrification flight equations derived
in [16].

The mass, m, of an all-electric aircraft consists of (i) the mass of the empty aircraft, me,
(ii) the mass of the passengers and the crew, together with their luggage, mp, and (iii) the
mass of the batteries, mb.

m = me + mp + mb (1)
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In aviation modelling, the mass of passengers is normally approximated as the number
of seats multiplied by 100 kg. The ratio me/m is observed to be independent of the aircraft
model and is equal to 0.62 for turboprops.

The energy consumption of an aircraft is defined as:

E =
mgs

(L/D)max µpµe
(2)

where g is gravitational acceleration equal to 9.81 m/s2; s is flying range; (L/D)max is
the maximal lift-to-drag ratio, currently 20 is achievable; µp and µe are efficiencies of the
propeller and the powertrain, respectively, typically both equal to 0.8. With given numerical
assumptions,

E/ms = ws = 0.22 kWh/ km t (3)

where ws is energy consumption and t stands for tonnes.
The mass of batteries can be defined as:

mb
m

=
gs

(L/D)max µpµeρE
(4)

where ρE is the specific energy of batteries.
The flying range can be defined from (4) and (1) as:

s =
ρE

1.6ws

(
0.61 − mp

me

)
(5)

The required power, P, is calculated based upon cruise speed vc and rate of climb vr.o.c
requirements as:

P =
mg

µpµe

(
vc

(L/D)max
− vr.o.c

)
(6)

Combining this computational logic and the assumptions derived from existing tur-
boprops (Table 2), we arrive at the following numerical estimations for the model aircraft,
Table 4.

Table 4. Basic numeric parameters of the aircraft considered.

Parameter Value Comments

Number of seats 8 Average of existing turboprops, Table 2
Payload, kg 800 Computed, fixed

Mass of an empty aircraft, kg 1904 Computed, fixed
Mass of batteries, kg 365 Computed

Total mass, kg 3069 Computed (1), fixed
Specific energy of batteries, kWh/kg 0.25 To be varied during the simulation

Flying range, km 135 Computed (4), output variable
Cruise speed, km/h 380 Average of speeds, Table 2
Rate of climb, m/s 8 Average climb rate for a turboprop [16]

Power required, kW 719 Computed (5), fixed
Specific power of electric motor, kW/kg varied The last two variables will be varied during the simulation to estimate their

effects. Their numeric assumptions are described in the next section.Specific energy of batteries, kWh/kg varied

The computational logic is validated by the calculation of the flying range for the spec-
ified assumptions for current levels of specific energy of batteries 0.25 kWh/kg. Batteries at
current technological development (LiFePo4, specific power of 2 kW/kg, specific energy of
0.12 kWh/kg) would constitute 7.5–15% of the total mass of a hybrid electric aircraft [16].
In our calculations batteries in this base case constitute 12% of the mass of the aircraft and
the flying range is 135 km, the number of the same magnitude comparing to estimated
ranges for different aircraft sizes in [16].

In the constructed model, the two input variables, (i) specific energy of batteries and
(ii) specific power of electric motor, will be varied in order to determine their effects on
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the output variable, flying range. If only the specific energy of batteries is changed, the
aircraft is assumed to be able to fly longer from the same mass of batteries on the board. If
the specific power of the motor is changed, the same required power for a given aircraft
can be achieved with a lighter motor. Any freed mass is assumed to be refilled by more
batteries of the same specific energy to maintain a constant total mass of the airplane. More
batteries onboard enable longer flight ranges. Thus, with such a model design, we are
able to directly ascertain the effect of powertrain technological improvements on the flying
range of an aircraft in a continuous numeric space.

4.2. Simulation

In this section, a Monte Carlo simulation model is set up and the SimDec method is
employed on it to analyze the sensitivity of the output to the selected input factors, as well
as for assessing the impact from any underlying interactions [24]. The SimDec approach
falls under the general auspices of variance-based sensitivity analyses techniques [33]
commonly used in engineering evaluation [34]. However, instead of relying solely on
calculated numerical indices, SimDec provides powerful visualization analytics that can
uncover previously hidden interactions in a much more intuitive format for most decision-
makers [24].

Firstly, the key input factors, specific energy of batteries and specific power of electric
motor, are modeled as random values generated from a uniform distribution. The model is
recalculated 10,000 times and the resulting values of the output, flying range, as well as the
corresponding input factor values are recorded. Secondly, the key input factors are broken
down into meaningful ranges based on their ongoing technological progress. The specific
energy of the batteries is segmented into three states, the existing level [0.1, 0.25] kWh/kg,
the near-term possible level (0.25, 0.5] kWh/kg, and the “on the horizon” level (0.5, 0.8]
kWh/kg. The existing level simply reflects the real specific energy of existing batteries [16].
Some prototypes of lithium-sulfur batteries already achieved 0.4 kWh/kg specific energy,
and more are expected in the near future [35]. Therefore, we chose 0.5 kWh/kg as the
upper threshold for the near-term possible level. Finally, 0.8 kWh/kg specific energy is
deemed achievable by the mid-century by some experts [17], and, thus, chosen as an upper
limit for the on the horizon level.

The ranges of the specific power of the electric motor are comprised of the existing
level [1.5, 4.0] kW/kg, an under-development level (4.0, 8.0] kW/kg, and a futuristic level
(8.0, 20.0] kW/kg. The upper boundaries of the existing and under-development levels
reflect the development of Siemens electric motors and correspond to the data presented in
Table 3. The upper limit for the futuristic level reflects existing targets in state-of-the-art
R&D projects [36].

Taken together, all the states generate nine scenarios, found in Table 5. It is important
to note that the correctness of the numerical thresholds between states is not critical, since
we are not interested in the precise boundaries of the resulting scenarios (which will be
different for different aircrafts, anyway), but in the behavior of causalities between input
and output factors, for which the precise position of the thresholds is not relevant.

Having recorded the simulation output data and the attributions of the input variables
to their identified scenario partitions, each individual output value can be mapped onto
its scenario index. Furthermore, a color-coding of this mapping is then applied onto the
overall frequency histogram of the simulation (namely, the probability distribution of the
flying range). Consequently, the resulting distribution of flying ranges, combined with the
descriptive statistics of each scenario, enable a direct visualization of the individual effects
of the input factors together with their interactions on the flying range output.
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Table 5. Three states of the key input variables each form nine scenarios for decomposition.

Scenarios for Simulation Decomposition

Specific Power of Electric Motor, kW/kg

Existing Under Development Futuristic
[1.5, 4.0] (4.0, 8.0] (8.0, 20.0]

Specific
energy of
batteries,
kWh/kg

Existing [0.1, 0.25] sc1 sc2 sc3
Near-term
possible (0.25, 0.5] sc4 sc5 sc6

On the horizon (0.5, 0.8] sc7 sc8 sc9

The computation logic described in Section 4.1 is transformed into a model. The actual
Monte Carlo simulation and SimDec analysis are performed using already existing macros
previously implemented as an Excel tool introduced in [24] (where it can be downloaded
for free).

5. Results and Discussion

From the Monte Carlo simulation, the decomposed distribution of the possible flying
range based upon the specific energy of batteries and the specific power of an electric
motor is illustrated in Figure 1. In addition, the figure also provides numeric details from
each scenario.
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teries. The gradations of the colors within each group are indicative of the distinct levels
of motor specific power. The numerical descriptives in the legend can be directly derived
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from the probability distribution figure. For example, the minimum value for sc1, 53, is the
leftmost edge of the whole distribution.

The first takeaway that one can be derived from the decomposition is that the specific
energy of batteries is, indeed, a critical factor. Namely, any improvement in the specific
energy produces a substantial gain in the number of extra kilometers flown. With only
minor overlap, the three groups (of colors) appear distinctively partitioned on the graph,
thereby suggesting a strong influence from the underlying factor.

Secondly, the effect of the increasing motor specific power is also substantial, but
nonlinear. With the existing levels of battery specific energy, improving the motor provides
only incremental benefits. However, with a higher specific energy of batteries, the effect of
improving the motor becomes more and more pronounced. For example, one can readily
observe the difference between the right edge of sc1 and sc2 (178 − 164 = 13) and sc7 and
sc8 (571 − 531 = 40)—a veritable two-fold increased improvement in flight range. This
occurs because the weight saved from using a motor with higher specific power provides
more of a benefit if batteries also have higher specific energy. The consequences of this
observation lead to an important implication. Although with the existing levels of battery
specific energy, investing in electric-motor R&D might not look particularly beneficial, it
will lead to significant, tangible, positive differences when conducted in simultaneous
conjunction with the development of battery technology.

However, the impact from improving the electric motor, alone, is also nonlinear.
Specifically, within the same level of battery specific energy (e.g., the on the horizon), the
difference between the right edges of existing and under development motor specific power,
sc7 and sc8 (571 − 531 = 40) is higher than the difference between under development
and futuristic, sc8 and sc9 (594 − 571 = 24). Indeed, increasing the electric motor specific
power from 5 to 10 kW/kg generates a 100% yield in specific power, and thus, the output
flight range, while from 15 to 20 kW/kg, there is only a 33% increase. Although this linear
function of relative specific power yield might be obvious for engineers, financial decision-
makers involved in investment planning may consider absolute values (km, €, etc.)—thus,
the relation becomes nonlinear. Irrespective of the starting point, a five kW/kg increase
in specific power may well imply similar levels of R&D investment costs. However, the
benefit—and thus the pay-off of such an investment—will differ dramatically, depending
on the specific power of the motor that has already been achieved. Consequently, the value
of every “next step” in electric motor development should be weighed against its cost.

The three main conclusions from the SimDec decomposition can be summarized as:

1. Increasing the specific energy of batteries extends the flight range.
2. Increasing motor specific power has an incremental effect for the current level of

battery specific energy, but this impact will increase significantly with better batteries.
3. The marginal benefit from electric-motor improvement, alone, decreases.

Although our analysis focuses on the flying range, the derived distances directly
translate into economic and environmental benefits. Any extended flying ranges directly
correspond to an increased number of possible routes or pairs of towns that can be con-
nected. In Europe, fewer than a hundred airports connect towns within a distance of 50 km
between each other. However, if the inter-town distance is expanded to 500 km, nearly
a thousand airports could be connected. Apart from the increased flying distance, the
improved powertrain technology enables electrifying larger planes that can transport more
passengers or larger loads per flight. Furthermore, fully electrified aircraft fleets would
entirely eliminate the emissions from fuel combustion. The corresponding environmen-
tal impact would, therefore, be dependent upon which electricity is used to charge the
batteries or, more specifically, from the specific combination of each respective country’s
actual power mix. Even so, there are still other life cycle emissions aspects that are associ-
ated with specific aircraft design and operations. More detailed life-cycle estimates of the
environmental impacts of such air-traffic electrification are presented in [17].
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6. Conclusions

Decision-making in multifaceted environmental arenas requires complex computa-
tional modelling and, thus, clever analytics and visualization solutions that are able to
capture multiple dimensions, simultaneously. Monte Carlo simulation modelling has
frequently been employed to integrate the uncertain inputs and to construct probability
distributions of the resulting outputs. Visual analytics and data visualization can be used
to support the processing, analyzing, and communicating of the influence of multi-variable
uncertainties on the decision-making process. SimDec enables one to observe the output
distribution of the variables of interest and simultaneously trace which components of the
output distribution are attributable to specific combinations of the input variables.

In this study, SimDec was used to decompose a Monte Carlo model of the flying range
of all-electric aircraft based upon improvements to batteries and electric motors. While
the analysis focused upon the flying range for electrified aircraft, the distance findings
extend directly into corresponding environmental and economic benefits. The decomposed
results show that: (i) increased battery specific energy leads to increased flight distance;
(ii) increased motor specific power has a significant effect when the batteries’ specific energy
is high; and, (iii) there is a decrease in the marginal benefits from motor improvement,
alone. While the first observation cannot be considered surprising because there is a linear
relationship between flight range and battery specific energy (Equation (5)), the latter
two findings would not be inherently obvious to decision-makers without specialized
aeronautical engineering backgrounds, and the SimDec analysis provides a perfect means
to effectively demonstrate and communicate them.

The aviation electrification problem has illustrated how SimDec enables the simulta-
neous projection from combinations of multi-variable input uncertainties directly onto an
output distribution. It demonstrated how SimDec stratified two sources of electrification
uncertainty into distinct, coloured partitions that enabled a visualization of previously
unidentified cause-and-effect influences of input variable combinations onto the flight
distance output in the R&D investment analysis of aviation electrification. Since SimDec
computations can be run concurrently with any Monte Carlo model with only negligible
additional overhead, SimDec could easily be extended into the analysis of any environmen-
tal application that uses simulation—not just aircraft electrification. This generalizability,
in conjunction with its straightforward visualizations of complex stochastic uncertainties,
makes the practical contributions of SimDec very powerful in environmental decision-
making. The efficacy for extending SimDec into more diverse environmental and sustain-
ability applications beyond aviation electrification will be considered in future research.
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Abstract: In this study, a fuzzy-interval dynamic programming (FIDP) model is proposed for regional
water management under uncertainty by combining fuzzy-interval linear programming (FILP) and
dynamic programming (DP). This model can not only tackle uncertainties presented as intervals, but
also consider the dynamic characteristics in the allocation process for water resources. Meanwhile, the
overall satisfaction from users is considered in the objective function to solve the conflict caused by
uneven distribution of resources. The FIDP model is then applied to the case study in terms of water
resources allocation under uncertainty and dynamics for the City of Handan in Hebei Province, China.
The obtained solutions can provide detailed allocation schemes and water shortage rates at different
stages. The calculated comprehensive benefits of economy, water users’ satisfaction and pollutant
discharge (i.e., COD) are [2264.72, 2989.33] × 108 yuan, [87.50, 96.50] % and [1.23, 1.65] × 108 kg
respectively with a plausibility degree (i.e., λ±opt) ranging within [0.985, 0.993]. Moreover, the benefit
from FIDP model under consideration of dynamic features is more specific and accurate than that of
FILP model, whilst the water shortage rate from FIDP is [5.10, 9.10] % lower than that of FILP model.

Keywords: optimal allocation; interval; fuzzy; dynamic programming; water resources

1. Introduction

Due to population growth, economic development and consumption upgrade, global
water consumption has increased by six times, and it has been continuing to grow steadily
at an annual rate of about 1% during the past 100 years [1]. All of these would lead to the
water shortage problem that is already pessimistically even severer, and seriously hinders
the sustainable development of social economy. Managing water resources is an effective
way to deal with the above challenges. However, in the process of management, experts
and governors have encountered a lot of problems [2–6], such as dynamic variability and
uncertainty, which are thorny and inevitable. Besides, in areas with water shortage, when
the available water cannot meet the needs, unreasonable water allocation will lead to
conflicts among users [7]. Therefore, it is definitely necessary to put forward a comprehen-
sive model to deal with dynamic variabilities and uncertainties in water resources system
as well as the contradiction between different users, so as to improve the management
efficiency and the users’ satisfaction.

The water resources system is of great complexities involving many uncertain factors,
such as water use efficiency, water demand, pollutant discharge, water supply capacity and
so on, and these uncertain factors could affect the structure for the optimal allocation model
of water resources and resulting solutions [8–11]. Previously, scholars in related fields have
got fruitful achievements in dealing with uncertainties in water resources management.
For the optimization under uncertainties, mathematical methods that are commonly used
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include stochastic programming [12], fuzzy programming [13], interval programming [14],
and various coupling programming methods [15]. Among them, fuzzy programming can
deal with the conflicts among multi-objective functions well, making it a new flexible plan-
ning problem [16], while the interval programming can reflect the uncertain coefficients in
the form of intervals, and convert the uncertain planning problems into deterministic plan-
ning problems [17]. Both of them are helpful to solve uncertain planning problems. Based
on these models, a large number of integrated models have been developed to optimize
the allocation of water resources, such as uncertain two-stage stochastic water resources
optimal allocation model [18], improved interval linear optimal allocation model [19],
chance constrained water resources optimal allocation model [20], multi-objective interval
linear water resources optimal allocation model [21], and so on [22–24]. Li et al. [25] pro-
posed a multi-objective water resources optimal allocation model under uncertainties by
integrating constrained programming, semi-infinite programming, integer programming
and interval linear programming. Suo et al. [26] presented an approach for interval multi-
objective planning by coupling fuzzy programming and improved two-step method, and
then proved the objectivity and stability of this method by comparing it with the weighted
sum method. Li et al. [27] formulated a new two-stage random interval parameter fuzzy
planning strategy model by considering various uncertainties in planning and management
of water resources and water environment systems, which was then applied to reveal the
relationship between local economic goals and environmental goals. The above-mentioned
models can well deal with the uncertainty in data acquisition in the system. However, they
are insufficient to handle the dynamic features in the allocation process of water resources.

In the process of water resources optimization, it is essential to give a full consideration
to dynamic characteristics, and thus provide the best scheme for water distribution at
different stages of the planning period [28]. Dynamic programming cannot only solve the
optimization problem of multi-stage decision process in water resources allocation [29], but
also obtain the optimal strategy of the whole process and the optimal sub-strategy of each
stage [30–34]. Peng [35] established a multi-objective dynamic water resources allocation
model to achieve a dynamic balance for the optimal water resources allocation by using a
modified simplex method with the addition of a time variable. Feng [36] set up a multi-
objective dynamic water resources optimization configuration model and introduced the
satisfaction function to realize the dynamic balance of optimal allocation of water resources
on the time scale. Ramírez et al. [37] used stochastic dynamic programming to provide
release decisions for each stage, and combined genetic algorithm and reservoir operation
simulation program to obtain the annual release curve. These models proposed above
are able to solve the multi-stage decision-making problem and get satisfactory allocation
results. However, they took less consideration for uncertainties in water resources system.

Therefore, in order to comprehensively consider uncertainties and dynamic variability
in the water resources system, a fuzzy-interval dynamic (FIDP) optimal allocation model
is proposed in this study by integrating fuzzy-interval linear programming (FILP) and
dynamic programming (DP) into a general framework. In addition, in order to realize the
fairness of water resources allocation, the satisfaction function is added as one objective
function to reduce the contradictions among users. The main innovative points of this
study can be summarized as: (i) By introducing FILP into the FIDP model, the uncertainty
coefficients and constraints, such as water use efficiency and water demand in water
resources system, can be reflected in the form of interval numbers, which would make
the results more accurate and reasonable. (ii) By introducing DP into FIDP model, not
only the annual optimization scheme, but also the detailed water distribution scheme of
each stage in planning year can be obtained. (iii) For FIDP model, the principle of fairness
for water users is added to the objective function, which can reduce the contradictions
between government and water users, as well as among different water users. This model
is then applied to Handan City, Hebei Province, China, where water volume is small and
uneven, to pursue the maximization for social benefits, overall satisfaction of water users,
and environmental benefits. Finally, the FIDP model is compared with the traditional FILP
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model, to prove the dynamic superiority of the proposed model with stage changes. It
is expected that this model would be helpful to optimize the allocation of regional water
resources under uncertainties and dynamics to reduce water shortage and conflict, and
promote sustainable development of local society and economy.

This paper is composed of the following parts. Section 2 expounds the generation
process of the general FIDP method. Section 3 puts forward a specific FIDP model suitable
for Handan city. Section 4 presents the result analysis, which briefly expounds the water
consumption characteristics of users at different stages of the planning year, and then
compares the proposed FIDP model with FILP model. Section 5 is the summary of this
study.

2. Methodology
2.1. Fuzzy-Interval Linear Programming (FILP)

On account of parameter uncertainties and objective inconsistency in multi-objective
programming [38–40], the FILP model can well handle the uncertainty parameters denoted
by interval numbers, and also coordinate the conflicts among different objective functions
by introducing membership function λ, which makes the resulting solutions more scientific
and reliable. The model is summarized as follows [26]:

Maxλ± (1a)

Subject to:
C±g X± ≥ f−g + λ±( f+g − f−g ) g = 1, 2, . . . , m (1b)

C±h X± ≤ f+h − λ±( f+h − f−h ) h = m + 1, . . . , n (1c)

A±i X± ≤ B±i i = 1, 2, . . . , k (1d)

X± ≥ 0 (1e)

0 ≤ λ± ≤ 1 (1f)

It is worth noting that:

C±g X± = Max f±g g = 1, 2, . . . , m (2a)

C±h X± = Min f±h h = m + 1, · · · , n (2b)

where C±g ∈
{

R±1
}1×t, C±h ∈

{
R±2
}1×t, A±i ∈

{
R±3
}1×t, X± ∈

{
R±4
}t×1, and R±e means

a set of interval numbers (e ∈ [1, 2, 3, 4]), g and h are core markers for maximizing and
minimizing the objective functions individually, and i is the index of the constraints. f−,
f+ are the lower and upper bounds of f±, and λ± is the membership function in fuzzy
decision-making. The larger the λ± is, the more credible the calculation result would be;
on the contrary, the smaller λ± would lead to less credible results.

2.2. Dynamic Programming (DP)

The basic idea of dynamic programming is that it not only separates the current stage
from the future stages, but also considers the current benefit and the future benefit together.
Therefore, the optimal decision selection of each stage is from the overall consideration,
which is generally different from the optimal choice of this stage [41]. Concretely, for a
multi-stage decision-making problem, dynamic programming can divide it into several
stages according to time or other characteristics, and each stage has several states and
decision strategies [42]. The system transfers from one stage to the next according to a
certain rule, and the purpose is to obtain the optimal strategy combining each stage [43].
The following Equation (3) is the state transition formula of dynamic programming, and it
is also the most important part of dynamic programming.

Sj = T(Sj−1, xj−1) j = 1, 2, . . . , l (3)
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where Sj stands for the state variable at stage j, with l stages in total. xj−1 represents the
decision variable at stage j− 1, and T(Sj−1, xj−1) is the state transition function [44].

2.3. Fuzzy-Interval Dynamic Programming (FIDP)

It is noted that multiple uncertainties and dynamic variability exist in the water
resources system, which seriously affect effective planning and management of water
resources. Although FILP and DP can efficiently address interval uncertainty, coordinate
conflicts among different objective functions and characterize systems’ dynamics individu-
ally, they are unable to deal with those problems at the same time. Therefore, this paper
aims to propose a FIDP model by incorporating FILP and DP into one framework to com-
prehensively reflect both uncertainties and dynamic features in the water resources system.
In addition, the function of the users’ satisfaction is considered to solve the contradiction
caused by uneven distribution of resources. The developed model is shown as follows.

Maxλ± (4a)

Subject to:
C±g X± ≥ f−g + λ±( f+g − f−g ) g = 1, 2, . . . , m (4b)

X±

G±
α ≥ f−p + λ±( f+p − f−p ) p = m + 1, m + 2, . . . , r (4c)

C±h X± ≤ f+h − λ±( f+h − f−h ) h = r + 1, r + 2, . . . , n (4d)

A±i X± ≤ B±i i = 1, 2, . . . , k (4e)

S±j = T(S±j−1, x±j−1) j = 1, 2, . . . , l (4f)

A±j X± ≤ S±j j = 0, 1, . . . , l (4g)

0 ≤ X± ≤ G± (4h)

S±0 = 0 (4i)

0 ≤ λ± ≤ 1 (4j)

where the symbol G± means the user’s ideal demand for resources, and α is the weight
coefficient of different users. And Equation (4c) can reflect the fairness for different users,
Equation (4f) realizes the dynamic transition, and the state constraint after phase transition
is achieved by Equation (4g).

The steps of solving the FIDP model can be summarized as: (i) Establish FIDP model.
(ii) Divide the model into two submodels through an improved two-step method [45]. In or-
der to maximize λ±, the upper bound submodel should be formulated firstly. (iii) Solve the
upper bound submodel and obtain x+opt and λ+

opt. (iv) Formulate the lower bound submodel
for the FIDP model. (v) Solve the lower bound and obtain x−opt and λ−opt. (vi) According to
the results of the above two models, the objective function values are calculated by formu-
late (2). (vii) Combining these two submodels, the optimal solution can be expressed as
f±g opt = [ f−g opt, f+g opt] (g = 1, 2, . . . , m), f±p opt = [ f−p opt, f+p opt] (p = m + 1, m + 2, . . . , r),
f±h opt = [ f−h opt, f+h opt] (h = r + 1, r + 2, . . . , n), λ±opt = [λ−opt, λ+

opt], X±opt = [X−opt, X+
opt].

In general, the presented model can be applicable for the following problems: (i) For
those problems with uncertain factors, this method can reflect them in model establishment,
solution process and results in the form of interval numbers. (ii) For multi-stage decision-
making problems, this model can provide specific schemes for every stage and global
optimal solutions for the whole process. (iii) For multi-objective and multi-user problems,
this model can coordinate the conflicts among different objective functions by maximizing
satisfaction of the objective functions, and reduce the contradictions among users by
considering the principle of fairness.
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3. Case Study
3.1. Overview of Handan City

The city of Handan is located in the southernmost part of Hebei Province, China, at
the eastern foot of Taihang Mountain, bordering Shandong in the east, Henan in the south,
Shanxi Province in the west and Xingtai City in the north. Its jurisdiction covers 6 districts,
1 county-level city and 11 counties. Its geographical location ranges 36◦04′~37◦01′ N and,
113◦28′~115◦28′ E with warm temperate semi-humid and semi-arid continental monsoon
climate. The location of the area is shown in Figure 1.

 

 
Figure 1. Location of Handan city. 

3.2. Application of FIDP Model. 
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At present, water resource managers in Handan are facing with many water resource
problems, such as water resource shortage, uneven distribution of precipitation, and serious
water pollution. For example, according to the Water Resources Bulletin [46], the per capita
water consumption of the city in 2019 is 2.02 × 102 m3 with a population of 9.55 million.
However, the water supply in 2019 is only 1927.84 × 106 m3, and the water shortage
is 1.26 × 106 m3. In addition, 61.30%~76.50% of the annual precipitation falls between
June and September, which is extremely inconsistent with the needs from various water
users. Actually, each user’s water demand, especially the agricultural water demand,
is different with the season changes. The growing period of crops in Handan mainly
ranges from March to August, with the largest water demand occurring at the second
stage which would account for about 50% of the annual water consumption. It is noted
that the development of agricultural cultivation is paid the most attention in Handan
City, and its water consumption accounts for about 55% of the total water consumption.
So how to provide periodic water allocation for each user is a challenge for managers.
Moreover, due to the uncertainties existing in water supply and the temporal variations of
the planning horizon, the water resources system also has a number of uncertain factors,
such as the water inflows at different stages, water efficiency, water demand, and pollutant
discharge, which should be fully considered. Therefore, how to allocate water resources
reasonably to ensure the sustainable development of this region is an urgent problem for
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managers to solve under condition of discordant water supply and demand, as well as
various uncertain factors.

3.2. Application of FIDP Model

In order to primely solve the problems mentioned above, FIDP is applied to optimize
the allocation of water resources in Handan city. In detail, the established FIDP model
would not only considers multiple objectives, such as the maximum economic benefit, the
maximum overall satisfaction of water users, and the maximum environmental benefit,
but also take the satisfaction of each water users into account. Meanwhile, the constraints
would refer to the water supply capacity, the minimum guaranteed water demand, the
ideal water demand, the water delivery capacity, and the COD emission limit. In addition,
the uncertain factors involved in this model (e.g., water use benefit coefficient, ideal water
demand, minimum guaranteed water demand, weight coefficient, COD discharge coeffi-
cient, maximum COD discharge, available water supply, water inflow at different stages,
and water delivery capacity) can be expressed as interval parameters. Moreover, the dy-
namic factors in the process of water resources optimization, such as the water users’ ideal
water demand, guaranteed water demand, available water supply and water allocation
changing with the stage, would be reflected by dynamic programming. The frame diagram
of constructed FIDP model can be seen in Figure 2. In order to facilitate managers to make
decisions, each stage is divided equally by the planning year, in which, January-March is
the first stage, April-June is the second stage, the third stage is from July to September, and
the fourth stage is from October to December. Its formulation would be expressed in the
following form:

 

± ± ± ±
− − −

= =

= + −
16 4

( 1) ( 1) ( 1)
1 1

ti t i ti t ijk t ijk
j k

S S C a x   
(5g) 

where ±
tiC  is the inflow of water source i in stage t (m3). 

Water transporting capacity constraint: 
The total amount of water used in each region would be limited by the water trans-

porting capacity in the region. 
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where ±
t i jQ denotes the maximum capacity of water source i transporting to the region j 

in stage t (m3). 
The COD emission constraint: 
Due to serious damages of human activities to the ecological environment in recent 

years, more and more managers begin to pay attention to the impact of ecological envi-
ronment with the development of economy. Accordingly, each region has formulated the 
discharge capacity of pollutant COD to control environmental pollution. Therefore, the 
optimal allocation of water resources should meet this requirement. 
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where ±
jF  is the rated of COD emission in region j (kg). 

Nonnegative constrains: 
± ≥ 0tijkx   (5g) 
± =0 0iS   (5k) 

λ ±≥ ≥1 0   (5l) 

 

Figure 2. Framework of the fuzzy-interval dynamic programming (FIDP) model.
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3.2.1. Objective Functions

The goal of this model is to maximize its membership function:

Maxλ± (5a)

3.2.2. Constraints

Economic benefit constraint (maximize the economic benefit):

4

∑
t=1

4

∑
i=1

16

∑
j=1

4

∑
k=1

e±tjkatijkx±tijk ≥ f−1 + λ±( f+1 − f−1 ) (5b)

where t denotes stage of the planning year (t = 1, 2, 3, 4), i is water source (i = 1, 2, 3, 4,
representing surface water, underground water, diverted water and recycled water), j means
region (j = 1, 2, 3, . . . , 16, representing Urban, Wuan, Jize, Qiu, Quzhou, Guantao, She,
Guangping, Chengan, Wei, Ci, Linzhang, Daming, Fengfeng, Yongnian and Feixiang), k stands
for water user (k = 1, 2, 3, 4, representing agricultural, industrial, domestic and ecological), e±tijk
is net efficiency coefficient of water used by user k in region j in the t stage of planning year
(yuan/m3), atijk denotes water relationship provided by water source i to user k in region j
in stage t of planning year (water distribution is 1, unmatched water is 0), x±tijk means water

allocation from water source i to user k in region j in the stage t of planning year (m3).
Social benefit constraint (maximize the overall satisfaction of water users):
Considering the principle of fairness and justice, the weight coefficient α is introduced

to balance the water satisfaction among water users and reduce the contradictions between
water users and water supply departments.

4

∑
t=1

16

∑
j=1

4

∑
k=1

4
∑

i=1
atijkx±tijk

G±tjk
α±

tjk
≥ f−2 + λ±( f+2 − f−2 ) (5c)

where G±tjk is the ideal water demand of user k in region j in stage t (m3); α±tjk means the
weight coefficient of user k in the region j of the t stage.

Environmental constraint (minimize the chemical oxygen demand (COD) discharge of
major pollutants in the region):

While achieving the economic development, the pollution in the water utilization pro-
cess should be comprehensively considered. The objective function should be established
to measure the COD of the main pollutants in the region, so as to realize the balanced
development of environment and economy.

4

∑
t=1

4

∑
i=1

16

∑
j=1

4

∑
k=1

d±tjkx±tijk ≤ f+3 − λ±( f+3 − f−3 ) (5d)

where d±tjk denotes the unit oxygen consumption generated by user k per unit water con-

sumption in region j in stage t (kg/m3).
Water supply constraint:
In the tth stage, the sum of water supply from water source i to all water users is less

than the maximum water supply of water source i.

16

∑
j=1

4

∑
k=1

x±tijk ≤ S±ti (5e)

where S±ti stands for the maximum available water supply of water source i in stage t (m3).
Water demand constraint:
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The amount of water supplied to water users should be greater than or equal to the
minimum guaranteed water demand of the user and less than or equal to the ideal water
storage capacity of the user.

D±tjk ≤
4

∑
i=1

atijkx±tijk ≤ G±tjk (5f)

where D±tjk means the minimum water demand of user k in region j in stage t (m3).
State transition equation:
The maximum available water supply from different water sources in each stage is

taken as the state variable, and the dynamic configuration of the model is realized through
the water balance equation.

S±ti = S±
(t−1)i + C±ti −

16

∑
j=1

4

∑
k=1

a(t−1)ijkx±
(t−1)ijk (5g)

where C±ti is the inflow of water source i in stage t (m3).
Water transporting capacity constraint:
The total amount of water used in each region would be limited by the water trans-

porting capacity in the region.
4

∑
k=1

x±tijk ≤ Q±tij (5h)

where Q±tij denotes the maximum capacity of water source i transporting to the region j in

stage t (m3).
The COD emission constraint:
Due to serious damages of human activities to the ecological environment in recent

years, more and more managers begin to pay attention to the impact of ecological envi-
ronment with the development of economy. Accordingly, each region has formulated the
discharge capacity of pollutant COD to control environmental pollution. Therefore, the
optimal allocation of water resources should meet this requirement.

4

∑
t=1

4

∑
i=1

4

∑
k=1

d±tjkx±tijk ≤ F±j (5i)

where F±j is the rated of COD emission in region j (kg).
Nonnegative constrains:

x±tijk ≥ 0 (5j)

S±0i = 0 (5k)

1 ≥ λ± ≥ 0 (5l)

3.3. Data Collection and Analysis

This article takes Handan City as the research region and selects 2030 as the planning
year. Due to the administrative adjustment of the city in recent years, this paper merged
the Fuxing district, the Congtai district and the Hanshan district into the urban district
to facilitate data compilation and calculation. The data needed in this model are related
to economy, society, environment and water resources. All of these data are collected
from related literature, field surveys, local statistical yearbooks and website information.
Specifically, the water distribution relationship between water sources and users is obtained
from the water resources bulletin [46]. The weight coefficient α is calculated based on the
proportion of the added value of different users in each region in the recent two years’
yearbooks [47]. The planned annual water transport capacity is obtained by combining
the water conveyance capacity over the years and the pipeline network construction in

248



Sustainability 2022, 14, 1096

recent years (https://www.h2o-china.com/news/295843.html, accessed on 14 June 2021).
The unit oxygen consumption d and regional COD emissions are derived from related pa-
pers [48,49]. The benefit coefficient of agricultural water and industrial water is determined
by the method of net output value allocation [48], and the benefit coefficient of domestic
and ecological water use is obtained from relevant literatures [50,51]. According to the
priority principle of domestic and ecological water use, the benefit coefficient was adjusted
appropriately in this pater to rationalize the results, which are shown in Table 1.

Table 1. Net benefit coefficient of water use (yuan/m3).

Districts Agricultural Industrial Domestic Ecological

Urban [14.10, 17.70] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Wuan [69.70, 85.60] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Jize [13.50, 17.00] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Qiu [20.90, 26.00] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Quzhou [6.80, 8.80] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Guantao [4.70, 6.20] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

She [24.70, 30.70] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Guangping [29.10, 36.10] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Chengan [6.80, 8.80] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Wei [21.70, 27.00] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Ci [1.50, 2.30] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Linzhang [4.40, 5.80] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Daming [10.30, 13.00] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Fengfeng [8.50, 10.80] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Yongnian [30.30, 37.40] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

Feixiang [8.40, 10.70] [247.28, 265.63] [336.50, 412.50] [342.50, 420.50]

The available water supply of surface water, groundwater and diverted water in the
planning year were predicted by the trend analysis method. The amount of recycled water
was obtained according to the predicted regeneration rate of water consumption in the
planning year. By comparing the predicted results with the water situations in recent years,
it can be seen that there is similar water inflow situation in 2019. Thus, the water inflow
situation of each stage in the planning year can be obtained based on the analysis of water
supply proportion in 2019. 110% and 90% of the inflow were taken as the upper and lower
bounds individually, and the results are shown in Figure 3.

It is necessary to calculate the planned annual water demand for optimal allocation
of water resources. In this paper, the quota method was employed to forecast the water
demand for agricultural, domestic and ecological use, whilst the equidimensional com-
plementary residuals-residual modified GM (1, 1) model [52] was adopted to forecast the
industrial water demand. Then, the water consumption situation in 2019 was analyzed to
derive the water demand of every user at different stages of the planning year. Among
them, the proportion of water demand at different stages of agriculture in the planning
year is 15.80%, 49.80%, 23.40% and 11.00% respectively. The proportion of industrial water
demand is 23.50%, 24.00%, 26.60% and 25.90%. The proportion of domestic water demand
is 23.00%, 29.00%, 23.00% and 24.00%. The proportion of ecological water demand is
23.40%, 28.20%, 25.00% and 23.40%. In the planning year, 110% and 90% of the predicted
water demand of different users in each region are taken as the upper and lower bounds of
their water demand, respectively. The predicted results are shown in Table 2.
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Table 2. Water demand (104 m3).

Districts Agricultural Industrial Domestic Ecological

Urban [20,648.43, 25,236.97] [13,030.43, 15,926.09] [11,141.42, 13,617.29] [3959.13, 4838.93]

Wuan [2859.84, 3495.36] [17,817.97, 21,777.51] [2641.36, 3228.32] [143.24, 175.07]

Jize [5495.04, 6716.16] [815.64, 996.90] [910.23, 1112.51] [0.00, 0.00]

Qiu [1834.11, 2241.69] [11.93, 14.58] [1027.04, 1255.27] [214.86, 262.60]

Quzhou [2713.14, 3316.06] [851.19, 1040.35] [1945.83, 2378.23] [19.10, 23.34]

Guantao [5127.48, 6266.92] [10.67, 13.05] [853.80, 1043.54] [190.99, 233.43]

She [11,532.15, 14,094.85] [2262.35, 2765.09] [2552.62, 3119.86] [582.51, 711.95]

Guangping [2309.04, 2822.16] [0.00, 0.00] [764.05, 933.83] [895.73, 1094.78]

Chengan [6932.34, 8472.86] [29.06, 35.52] [968.93, 1184.25] [236.83, 289.45]

Wei [17,979.03, 21,974.37] [654.69, 800.17] [1832.58, 2239.82] [477.47, 583.57]

Ci [1717.47, 2099.13] [574.94, 702.70] [1674.10, 2046.12] [582.51, 711.95]

Linzhang [6200.46, 7578.34] [208.99, 255.43] [1712.83, 2093.45] [248.28, 303.46]

Daming [13,722.21, 16,771.59] [1379.86, 1686.50] [2352.65, 2875.46] [2669.02, 3262.14]

Fengfeng [1714.23, 2095.17] [6448.68, 7881.72] [1772.83, 2166.79] [0.00, 0.00]

Yongnian [13,051.17, 15,951.43] [883.64, 1080.00] [3772.67, 4611.04] [173.80, 212.42]

Feixiang [2107.44, 2575.76] [282.57, 345.37] [1166.81, 1426.11] [1145.92, 1400.56]

4. Results and Discussion
4.1. Results Analysis

In this study, the FIDP model suitable for Handan’s water management was estab-
lished to obtain the objective function values and water resources allocation schemes, which
can be seen in Table 3. The λ+, λ− represent the maximum subordinate degree and the
minimum subordinate degree respectively. In detail, by solving the model, the value of
λ+

opt is 0.993, the corresponding economic benefit is 2989.33 × 108 yuan, the satisfaction of
users is 96.50%, and the social benefit is 1.23 × 108 kg. On the contrary, the value of λ−opt
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is 0.985, whilst the corresponding economic benefits, satisfaction and social benefits are
2264.72 × 108 yuan, 87.50% and 1.65 × 108 kg, respectively.

Table 3. Solutions of objective functions (FIDP).

λ+ = 0.993 λ− = 0.985

Economic Benefit
(108 yuan) Satisfaction COD Emission

(108 kg)
Economic Benefits

(108 yuan) Satisfaction COD Emission
(108 kg)

2989.33 96.50% 1.23 2264.72 87.50% 1.65

Table 4 shows the total amount of water allocated to different users in different regions
of Handan City in the planning year, while Table 5 shows the total amount of water
allocated from different water sources to different regions. It can be seen that the total
amount of allocated water in Handan City in 2030 will be [175,412.60, 219,210.86] × 104 m3,
and the total water shortage will reach [34,051.91, 36,800.32] × 104 m3 according to the
water demand forecasting results. As the minimum water demand in the planning year
will reach [167,571.50, 204,809.62] × 104 m3, which is less than the allocated water, the
water allocation in the planning year can meet its minimum guaranteed water demand on
the whole.

Table 4. Water allocations of different users in each region in the planning year (104 m3).

Districts Agricultural Industrial Domestic Ecological

Urban [16,518.74, 20,189.58] [10,424.35, 12,740.87] [9218.52, 10,784.89] [3959.13, 4373.08]
Wuan [2287.87, 3147.22] [14,254.37, 17,422.01] [2614.94, 3196.04] [143.24, 175.07]

Jize [4396.03, 6047.23] [652.51, 996.90] [901.13, 1101.38] [0.00, 0.00]
Qiu [1467.29, 2171.44] [9.54, 14.58] [1016.76, 1242.71] [214.86, 262.60]

Quzhou [2170.51, 2985.78] [680.95, 1040.35] [1926.37, 2354.45] [19.10, 23.34]
Guantao [4101.98, 5349.44] [9.48, 13.05] [845.26, 1033.10] [190.99, 233.43]

She [9225.72, 11,275.88] [1809.88, 2765.09] [2527.09, 3088.67] [582.51, 711.95]
Guangping [1847.23, 2822.16] [0.00, 0.00] [756.41, 924.50] [895.73, 1094.78]

Chengan [5545.87, 6964.69] [23.25, 35.52] [959.24, 1172.41] [236.83, 289.45]
Wei [14,383.22, 17,579.50] [523.75, 800.17] [1814.25, 2217.42] [477.47, 583.57]
Ci [1373.98, 2099.13] [459.95, 702.70] [1657.36, 2025.66] [582.51, 711.95]

Linzhang [4960.37, 6229.40] [167.19, 255.43] [1695.70, 2072.52] [248.28, 303.46]
Daming [10,977.77, 13,417.27] [1103.89, 1686.50] [2329.12, 2846.70] [2669.02, 3262.14]

Fengfeng [1371.38, 2095.17] [5158.94, 6305.38] [1755.10, 2145.12] [0.00, 0.00]
Yongnian [10,440.94, 12,761.14] [706.91, 1080.00] [3734.94, 4297.48] [173.80, 212.42]
Feixiang [1685.95, 2319.21] [226.06, 345.37] [1155.15, 1411.84] [1145.92, 1400.56]

In 2030, the agricultural water consumption in Handan City will account for [52.90, 53.60] %
of the total water distribution with the detailed allocation being [92,754.97, 117,454.65] × 104 m3.
Since the agricultural water demand is affected by the season and climate, the water demand
also changes at different stages of the planning year. In detail, the second stage is the main
growth period of crops, and the agricultural water demand in this stage also increases
correspondingly, accounting for [48.80, 49.80] % of the annual water demand. On the con-
trary, the amount of water distribution in the fourth stage accounts for the least proportion,
which is only [11.10, 11.50] % of the total agricultural water distribution. The difference
between these two stages is [35,988.55, 43,789.37] × 104 m3. The calculation results show
that the satisfaction of the agricultural is [80.00, 82.90] % in 2030, and it reaches 80% in each
stage, meeting its minimum water demand. Supported by the soil characteristics of each
region, the leading agricultural industries in Urban, Weixian, Daming, and Yongnian have
been developing rapidly, and the agricultural water consumption in these four regions
would account for [54.40, 56.40] % of the total agricultural water consumption in the city.
The agricultural water distribution in the planning year is shown in Figure 4.
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Table 5. Water allocations of different water sources in each region in the planning year (104 m3).

Districts Surface Water Groundwater Diverted Water Recycled Water

Urban [7535.90, 21,990.98] [6028.35, 26,097.44] [0.00, 26,556.50] [0.00, 0.00]
Wuan [9076.72, 15,847.51] [3943.55, 7350.32] [0.00, 6246.64] [33.52, 742.51]

Jize [0.00, 3912.47] [652.56, 996.90] [1384.64, 6047.23] [0.00, 1101.38]
Qiu [14.58, 730.71] [364.03, 852.45] [1021.3, 2434.04] [103.99, 878.69]

Quzhou [306.46, 1086.30] [1341.67, 2403.00] [1068.88, 3009.12] [238.76, 1746.66]
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She [3913.91, 12,987.32] [1950.42, 4550.79] [0.00, 7365.07] [303.47, 915.80]
Guangping [0.00, 1352.17] [0.00, 1320.49] [534.83, 3916.94] [291.86, 924.50]

Chengan [27.17, 2761.84] [351.78, 3361.19] [525.30, 7254.14] [116.86, 828.97]
Wei [1968.76, 8824.34] [399.29, 3747.87] [1623.22, 18,163.07] [649.55, 3003.27]
Ci [894.02, 2402.74] [537.57, 1705.73] [1474.05, 2599.13] [0.00, 0.00]

Linzhang [1157.12, 3693.06] [1170.83, 1810.47] [1408.51, 6532.85] [0.00, 159.50]
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Yongnian [4577.21, 6491.13] [800.28, 5482] [1263.73, 12,973.57] [0.00, 1819.72]
Feixiang [0.00, 753.86] [675.35, 2026.42] [875.11, 3719.78] [328.00, 1311.54] 
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By solving the model, the industrial water distribution of Handan City in 2030 will be
[36,210.94, 46,203.93]× 104 m3, accounting for [20.60, 21.10] % of the total water distribution.
The satisfaction of industrial water consumption is [80.00, 83.50] % in the whole year, and
such satisfaction is higher than 80.00% in each stage, meeting its minimum water demand.
According to the solution results as shown in Figure 5, the third stage has the largest indus-
trial water distribution, which is [9631.84, 12,290.27] × 104 m3, whereas the water distribu-
tion in the first stage is least with the allocation amount of [8509.83, 10,859.91] × 104 m3,
and the difference between the two stages is [1122.11, 1432.34] × 104 m3. Among them,
Urban, Wu’an and Fengfeng are the major industrial water users, making a contribution of
[78.90, 82.40] % for the whole city’s industrial water consumption.

In 2030, the domestic water distribution in Handan City will be [34,907.31, 41,915.24]× 104 m3,
accounting for [19.10, 19.90] % of the total water distribution. The satisfaction of do-
mestic water use in the whole year is [93.40, 95.10] %, and it is higher than 92.00% in
each stage indicating a high degree for guaranteed domestic water. With the change of
temperature, the domestic water consumption at different stages also changes slightly
to some extent. Specifically, the proportion of domestic water in the four stages of the
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planning year is [23.01, 23.44] %, [28.80, 29.00] %, [23.40, 24.10] % and [24.00, 24.40] % re-
spectively. Obviously, the second stage consumes the most domestic water, whereas the
first stage consumes the least proportion. During the planning year, the population in
Urban and Yongnian will reach 3.40 × 106, and the water allocated to these two areas will
be [12,953.41, 15,082.32] × 104 m3 correspondingly, accounting for [36.00, 37.10] % of the
domestic water distribution to the whole city. The annual domestic water distribution in
the planning year is shown in Figure 6.
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To a certain extent, the development degree of ecological environment reflects the 
sustainability level of the region. In 2030, the ecological water distribution in Handan will 
be [11,539.41, 13,638.02] × 104 m3, with a contribution of [6.20, 6.60] % for the total water 
distribution. The satisfaction of ecological water use is [96.70, 100.00] % in the whole year 
with the satisfaction degree over 93.00% in each stage, which reflects the priority in eco-
logical development. It can be seen from Figure 7 that the distribution of ecological water 
reaches the annual maximum amount of [3254.21, 3704.50] × 104 m3 in the second stage, 
which is [404.34, 554.02] × 104 m3 more than the least water distribution in the first stage. 
The ecological water consumption in the third and fourth stage is [2884.81, 3333.10] × 104 
m3 and [2700.24, 3300.23] × 104 m3 respectively, accounting for [24.40, 25.00] % and [23.40, 
24.20] % of the ecological water consumption in the whole year. Among them, the ecolog-
ical water consumption in the urban area and Daming county is relatively huge, contribu-
tion [32.10, 34.30] % and [23.10, 23.90] % to the total ecological water consumption respec-
tively. This indicates that these two regions pay close attention to ecological environment 
construction.  
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To a certain extent, the development degree of ecological environment reflects the
sustainability level of the region. In 2030, the ecological water distribution in Handan
will be [11,539.41, 13,638.02] × 104 m3, with a contribution of [6.20, 6.60] % for the total
water distribution. The satisfaction of ecological water use is [96.70, 100.00] % in the
whole year with the satisfaction degree over 93.00% in each stage, which reflects the
priority in ecological development. It can be seen from Figure 7 that the distribution of
ecological water reaches the annual maximum amount of [3254.21, 3704.50] × 104 m3 in
the second stage, which is [404.34, 554.02] × 104 m3 more than the least water distribution
in the first stage. The ecological water consumption in the third and fourth stage is
[2884.81, 3333.10] × 104 m3 and [2700.24, 3300.23] × 104 m3 respectively, accounting for
[24.40, 25.00] % and [23.40, 24.20] % of the ecological water consumption in the whole year.
Among them, the ecological water consumption in the urban area and Daming county is
relatively huge, contribution [32.10, 34.30] % and [23.10, 23.90] % to the total ecological
water consumption respectively. This indicates that these two regions pay close attention
to ecological environment construction.
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The difference between FILP model and FIDP model is that it deletes dynamic program-
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only conform to the case study, but also achieve global optimization under the local opti-
mal conditions of each stage. However, the FILP model only aims at optimality over the 
whole planning year without considering the dynamic variability of regional water re-
sources system, which would imply that the water use efficiency, water consumption, wa-
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lutions and stronger applicability than FILP. The detailed analysis is as follows. 
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Based on the analysis above, it can be known that FIDP model can provide global
optimal solutions for the planned annual water distribution scheme, as well as specific
water distribution schemes at different stages of the year under dynamics and uncer-
tainties. In the planning year, the second stage has the largest water distribution of
[68,246.70, 84,190.91] × 104 m3, while the fourth stage has the smallest water distribution
of [30,648.40, 39,012.42] × 104 m3. The water distribution difference between the two stages
is [37,598.12, 45,178.58] × 104 m3, and the difference accounts for [20.60, 21.40] % of the
annual water distribution.

4.2. Model Comparison

In order to verify the effectiveness of the proposed FIDP model, the application of
FILP model to the case study is provided for comparison, which is shown in Appendix A.
The difference between FILP model and FIDP model is that it deletes dynamic program-
ming and parameter t, but their objective functions, constraints, decision variables and
solution methods remain the same. Because the FIDP model takes into account the dy-
namic factors in different stages of water resources system, the solution results cannot only
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conform to the case study, but also achieve global optimization under the local optimal
conditions of each stage. However, the FILP model only aims at optimality over the whole
planning year without considering the dynamic variability of regional water resources sys-
tem, which would imply that the water use efficiency, water consumption, water demand,
water supply and other factors in the FILP model cannot be adjusted correspondingly with
the seasonal changes. Therefore, the FIDP model has better optimal solutions and stronger
applicability than FILP. The detailed analysis is as follows.

Based on the FILP model, the membership function λ±= [0.952, 0.992],
f±1 = [2171.42, 3124.16] × 108 yuan, f±2 = [75.00, 84.00] %, f±3 = [1.17, 1.85] × 108 kg, and
the comparison result of two models is shown in Figure 8. It can be seen that, compared
with the FILP model, the ranges of the solution results of the FIDP model are reduced in
different degrees, making the results more specific and accurate. In detail, the λ± of the
FIDP model is not only reduced in scope, but also presents increases in its overall value,
with its upper bound and lower bounds increased by 0.10% and 3.30% respectively. For
f±1 and f±3 , not only the ranges of their value are reduced by 23.90% and 38.20%, but also
their lower bounds are increased by 93.30 × 108 yuan and 0.06 × 108 kg respectively, which
are more accurate. The value of f±2 in FIDP model is improved by 12.50%, which will
alleviate the conflicts between local government and users, and among different users more
effectively. Consequently, it can be concluded that FIDP model proposed in this paper
performs better and is more suitable for the optimization of water resources allocation in
this area.
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The water distribution scheme of FILP model is shown in Table 6, and the water 
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water distribution of the FILP model is [167,643.11, 205,259.94] × 104 m3, which is reduced 
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of [5.10, 9.10] % compared with [10.60, 14.90] % from the FIDP model. Compared with 
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10,784.89] 

[3167.30, 3871.15] 

Wuan [2287.87, 2796.29] [14,254.37, 
17,422.01] 

[2091.95, 2556.83] [143.23, 175.07] 

Jize [4396.03, 5372.93] [652.51, 797.52] [720.90, 881.11] [0.00, 0.00] 
Qiu [1467.29, 1793.35] [11.92, 14.58] [813.41, 994.17] [171.89, 262.60] 

Quzhou [2170.51, 2652.85] [680.95, 832.28] [1541.09, 1883.56] [19.10, 23.34] 
Guantao [4101.98, 5013.54] [10.67, 13.05] [676.21, 826.48] [152.79, 233.43] 

She [9225.72, 11,275.88] [1809.88, 2212.07] [2021.67, 2470.93] [466.01, 569.56] 
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The water distribution scheme of FILP model is shown in Table 6, and the water
shortage rate of the two models is compared in Figure 9. As presented in Table 6, the total
water distribution of the FILP model is [167,643.11, 205,259.94] × 104 m3, which is reduced
by [7769.43, 13,951.80] × 104 m3 compared with the FIDP model. As the water distribution
decreases, the corresponding water shortage rate will be [19.70, 20.00] %, with an increase
of [5.10, 9.10] % compared with [10.60, 14.90] % from the FIDP model. Compared with
FILP, the water shortage rate from FIDP has declined in all regions, especially in Qiu,
Quzhou, Guangping, Ci and Feixiang, with a decrease of [7.90, 16.70] %, [7.00, 15.00] %,
[8.30, 20.00] %, [9.90, 20.00] %, and [9.80, 14.30] % respectively. Therefore, the model has
good applicability to water resources allocation in water-scarce areas.
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Table 6. Water allocation of different users in different regions in the planning year (104 m3).

Agricultural Industrial Domestic Ecological

Urban [16,518.74, 20,189.58] [10,424.35, 12,740.87] [8824.00, 10,784.89] [3167.30, 3871.15]

Wuan [2287.87, 2796.29] [14,254.37, 17,422.01] [2091.95, 2556.83] [143.23, 175.07]

Jize [4396.03, 5372.93] [652.51, 797.52] [720.90, 881.11] [0.00, 0.00]

Qiu [1467.29, 1793.35] [11.92, 14.58] [813.41, 994.17] [171.89, 262.60]

Quzhou [2170.51, 2652.85] [680.95, 832.28] [1541.09, 1883.56] [19.10, 23.34]

Guantao [4101.98, 5013.54] [10.67, 13.05] [676.21, 826.48] [152.79, 233.43]

She [9225.72, 11,275.88] [1809.88, 2212.07] [2021.67, 2470.93] [466.01, 569.56]

Guangping [1847.23, 2257.73] [0.00, 0.00] [605.12, 739.60] [716.58, 875.82]

Chengan [5545.87, 6778.29] [29.06, 35.52] [767.39, 937.93] [189.46, 289.45]

Wei [14,383.22, 17,579.50] [523.75, 640.14] [1451.40, 1773.94] [381.97, 484.41]

Ci [1373.98, 1679.30] [459.95, 562.16] [1325.89, 1620.53] [466.01, 569.56]

Linzhang [4960.37, 6062.67] [167.19, 255.43] [1356.56, 1658.02] [198.63, 303.46]

Daming [10,977.77, 13,417.27] [1103.89, 1349.20] [1863.29, 2277.36] [2135.22, 2609.71]

Fengfeng [1371.38, 1676.14] [5158.94, 6305.38] [1404.08, 1716.10] [0.00, 0.00]

Yongnian [10,440.94, 12,761.14] [706.91, 864] [2987.95, 3651.94] [167.60, 212.42]

Feixiang [1685.95, 2060.61] [226.06, 345.37] [924.12, 1129.48] [916.73, 1120.45]
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In summary, the FIDP model has the following advantages over the FILP model: (i) 
The obtained target value intervals are more specific and accurate. (ii) This model can 
improve the overall satisfaction of the water users and alleviate the water contradiction 
among them. (iii) The water shortage rate of FIDP model is lower than that of FILP, which 
effectively alleviates the contradiction between water supply and demand. (iv) Last but 
not least, FIDP model can get the allocation schemes of each stage in the planning year, 
and provide theoretical basis for water distribution decision-making in more detail way. 
Therefore, the model has a good performance in dealing with the dynamic changes of 
water resources system, and has advantages in optimizing the target value and reducing 
the water shortage rate. 
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In summary, the FIDP model has the following advantages over the FILP model:
(i) The obtained target value intervals are more specific and accurate. (ii) This model can
improve the overall satisfaction of the water users and alleviate the water contradiction
among them. (iii) The water shortage rate of FIDP model is lower than that of FILP, which
effectively alleviates the contradiction between water supply and demand. (iv) Last but
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not least, FIDP model can get the allocation schemes of each stage in the planning year,
and provide theoretical basis for water distribution decision-making in more detail way.
Therefore, the model has a good performance in dealing with the dynamic changes of
water resources system, and has advantages in optimizing the target value and reducing
the water shortage rate.

5. Conclusions

This study combines fuzzy-interval linear programming and dynamic programming to
establish a fuzzy-interval dynamic programming (FIDP) method. The system uncertainty
is expressed in the form of interval numbers in the model establishment and results
presentation. In order to solve the conflicts among users caused by uneven distribution of
resources, the FIDP model incorporates the overall satisfaction of users into the objective
function in order to reflect fairness in the solution results. As for the dynamic variability,
the FIDP model introduces dynamic programming to obtain the specific allocation schemes
at different stages of the planning year. Therefore, the model is able to handle the problem
of uneven resources allocation under uncertainty and dynamics.

In this paper, the water resources allocation under uncertainty and dynamics in
Handan City is studied to verify the feasibility of the model. The solutions cannot only
get the optimized target value in this area, but also get the specific water allocations and
water shortages for each water user at different stages in the form of intervals, so that
the government and users can adjust their strategies to deal with the crisis in time. In
addition to the economic and environmental goals, the obtained solution also provides the
satisfaction of water users by introducing a weight coefficient, which effectively alleviates
the contradictions among users. Through model comparison, the FIDP is proved to be
superior to FILP model in this area. Consequently, the developed FIDP model would be
more rational and applicable for regional water allocation under uncertainty and dynamics,
which is of great help to the sustainable development of the region.
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Appendix A

When applied to the case study, the FILP model can be formulated as follows:
Objective functions
Maximize its membership function:

Maxλ± (A1)
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Constraints
Maximize the economic benefit:

4

∑
i=1

16

∑
j=1

4

∑
k=1

e±jk aijkx±ijk ≥ f−1 + λ±( f+1 − f−1 ) (A2)

Maximize the overall satisfaction of water users:

16

∑
j=1

4

∑
k=1

4
∑

i=1
aijkx±ijk

G±jk
α±

jk
≥ f−2 + λ±( f+2 − f−2 ) (A3)

Minimize the chemical oxygen demand (COD) discharge of major pollutants in
the region:

4

∑
i=1

16

∑
j=1

4

∑
k=1

d±jk x±ijk ≤ f+3 − λ±( f+3 − f−3 ) (A4)

Water supply constraint:
16

∑
j=1

4

∑
k=1

x±ijk ≤ S±i (A5)

Water demand constraint:

D±jk ≤
4

∑
i=1

aijkx±ijk ≤ G±jk (A6)

Water transporting capacity constraint:

4

∑
k=1

x±ijk ≤ Q±ij (A7)

The COD emission constraint:

4

∑
i=1

4

∑
k=1

d±jk x±ijk ≤ F±j (A8)

Nonnegative constrains:
x±ijk ≥ 0 (A9)

1 ≥ λ± ≥ 0 (A10)
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