25 research outputs found

    Asynchronous Distributed Execution of Fixpoint-Based Computational Fields

    Get PDF
    Coordination is essential for dynamic distributed systems whose components exhibit interactive and autonomous behaviors. Spatially distributed, locally interacting, propagating computational fields are particularly appealing for allowing components to join and leave with little or no overhead. Computational fields are a key ingredient of aggregate programming, a promising software engineering methodology particularly relevant for the Internet of Things. In our approach, space topology is represented by a fixed graph-shaped field, namely a network with attributes on both nodes and arcs, where arcs represent interaction capabilities between nodes. We propose a SMuC calculus where mu-calculus- like modal formulas represent how the values stored in neighbor nodes should be combined to update the present node. Fixpoint operations can be understood globally as recursive definitions, or locally as asynchronous converging propagation processes. We present a distributed implementation of our calculus. The translation is first done mapping SMuC programs into normal form, purely iterative programs and then into distributed programs. Some key results are presented that show convergence of fixpoint computations under fair asynchrony and under reinitialization of nodes. The first result allows nodes to proceed at different speeds, while the second one provides robustness against certain kinds of failure. We illustrate our approach with a case study based on a disaster recovery scenario, implemented in a prototype simulator that we use to evaluate the performance of a recovery strategy

    A Fixpoint-Based Calculus for Graph-Shaped Computational Fields

    Get PDF
    Coordination is essential for dynamic distributed systems exhibiting autonomous behaviors. Spatially distributed, locally interacting, propagating computational fields are particularly appealing for allowing components to join and leave with little or no overhead. In our approach, the space topology is represented by a graph-shaped field, namely a network with attributes on both nodes and arcs, where arcs represent interaction capabilities between nodes. We propose a calculus where computation is strictly synchronous and corresponds to sequential computations of fixpoints in the graph-shaped field. Under some conditions, those fixpoints can be computed by synchronised iterations, where in each iteration the attributes of a node is updated based on the attributes of the neighbours in the previous iteration. Basic constructs are reminiscent of the semiring μ-calculus, a semiring-valued generalisation of the modal μ-calculus, which provides a flexible mechanism to specify the neighbourhood range (according to path formulae) and the way attributes should be combined (through semiring operators). Additional control-flow constructs allow one to conveniently structure the fixpoint computations. We illustrate our approach with a case study based on a disaster recovery scenario, implemented in a prototype simulator that we use to evaluate the performance of a disaster recovery strategy

    LINC: A Compact Yet Powerful Coordination Environment

    Get PDF
    International audienceThis paper presents LINC, a coordination programming environment. It is an evolution of earlier middlewares (the Coordination Language Facility (CLF) and Stitch). The aim is to provide a more flexible and expressive language correcting several of their limitations and an improved run-time environment. LINC provides a compact yet powerful coordination language and an optimised run-time which executes rules. This paper describes the intrinsic properties brought by the LINC environment and how it helps the coordination aspects in a distributed system. This paper also emphasises on the reflexivity of LINC and its usage at system level. Finally, it illustrates through several case studies, how LINC can manage a wide range of application domains

    A General Approach to Derive Uncontrolled Reversible Semantics

    Get PDF
    Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order ?-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature

    A general approach to derive uncontrolled reversible semantics

    Get PDF
    Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature

    Affine Sessions

    Full text link
    Session types describe the structure of communications implemented by channels. In particular, they prescribe the sequence of communications, whether they are input or output actions, and the type of value exchanged. Crucial to any language with session types is the notion of linearity, which is essential to ensure that channels exhibit the behaviour prescribed by their type without interference in the presence of concurrency. In this work we relax the condition of linearity to that of affinity, by which channels exhibit at most the behaviour prescribed by their types. This more liberal setting allows us to incorporate an elegant error handling mechanism which simplifies and improves related works on exceptions. Moreover, our treatment does not affect the progress properties of the language: sessions never get stuck

    Actor programming with static guarantees

    Get PDF
    This thesis discusses two methodologies for applying type discipline to concurrent programming with actors: process types, and session types. A system based on each of the two is developed, and used as the basis for a comprehensive overview of process- and session- type merits and limitations. In particular, we analyze the trade-offs of the two approaches with regard to the expressiveness of the resulting calculi, versus the nature of the static guarantees offered. The first system discussed is based on the notion of a \emph{typestate}, that is, a view of an actor's internal state that can be statically tracked. The typestates used here capture what each actor handle \emph{may} be used for, as well as what it \emph{must} be used for. This is done by associating two kinds of tokens with each actor handle: tokens of the first kind are consumed when the actor receives a message, and thus dictate the types of messages that can be sent through the handle; tokens of the second kind dictate messaging obligations, and the type system ensures that related messages have been sent through the handle by the end of its lifetime. The next system developed here adapts session types to suit actor programming. Session types come from the world of process calculi, and are a means to statically check the messaging taking place over communication channels against a pre-defined protocol. Since actors do not use channels, one needs to consider pairs of actors as participants in multiple, concurrently executed---and thus interleaving---protocols. The result is a system with novel, parameterized type constructs to capture communication patterns that prior work cannot handle, such as the sliding window protocol. Although this system can statically verify the implementation of complicated messaging patterns, it requires deviations from industry-standard programming models---a problem that is true for all session type systems in the literature. This work argues that the typestate-based system, while not enforcing protocol fidelity as the session-inspired one does, is nevertheless more suitable for model actor calculi adopted by practical, already established frameworks such as Erlang and Akka
    corecore