
c© 2018 Minas Charalambides

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/161953239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACTOR PROGRAMMING WITH STATIC GUARANTEES

BY

MINAS CHARALAMBIDES

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Gul A. Agha, Chair
Associate Professor Madhusudan Parthasarathy
Research Professor Elsa L. Gunter
Assistant Professor António Ravara

Abstract

This thesis discusses two methodologies for applying type discipline to concurrent pro-
gramming with actors: process types, and session types. A system based on each of the two
is developed, and used as the basis for a comprehensive overview of process- and session- type
merits and limitations. In particular, we analyze the trade-offs of the two approaches with
regard to the expressiveness of the resulting calculi, versus the nature of the static guarantees
offered. The first system discussed is based on the notion of a typestate, that is, a view of
an actor’s internal state that can be statically tracked. The typestates used here capture
what each actor handle may be used for, as well as what it must be used for. This is done by
associating two kinds of tokens with each actor handle: tokens of the first kind are consumed
when the actor receives a message, and thus dictate the types of messages that can be sent
through the handle; tokens of the second kind dictate messaging obligations, and the type
system ensures that related messages have been sent through the handle by the end of its
lifetime. The next system developed here adapts session types to suit actor programming.
Session types come from the world of process calculi, and are a means to statically check
the messaging taking place over communication channels against a pre-defined protocol.
Since actors do not use channels, one needs to consider pairs of actors as participants in
multiple, concurrently executed—and thus interleaving—protocols. The result is a system
with novel, parameterized type constructs to capture communication patterns that prior work
cannot handle, such as the sliding window protocol. Although this system can statically
verify the implementation of complicated messaging patterns, it requires deviations from
industry-standard programming models—a problem that is true for all session type systems
in the literature. This work argues that the typestate-based system, while not enforcing
protocol fidelity as the session-inspired one does, is nevertheless more suitable for model actor
calculi adopted by practical, already established frameworks such as Erlang and Akka.

ii

To my parents, Antonios and Chrystalla – the Greek Cypriot refugees who started their
adult lives armed only with education and no physical possessions, yet provided me with a

life of privilege.

Τῆς παιδείας αἱ μεν ῥίζαι πικραί εἰσιν, οἱ δὲ καρποὶ γλυκεῖς.

(Ἀριστοτέλης)

iii

Acknowledgments

This has been a long journey—one that I did not travel alone. I will take this opportunity
to thank all those who stood by me, and in their own ways, made this thesis possible.

First and foremost, special mention goes to my parents, Antonios and Chrystalla, for
their endless and unconditional support. My parents’ constant concern and purpose in life is
to make sure that neither myself, nor my sister ever have to experience the hardships that
they have lived through. Their unconditional support towards us is to the detriment of their
own physical and financial health, and for that, I am infinitely grateful. Nothing can replace
that kind of support system. Μάμμα, παπά, ευχαριστώ σας πολλά. Οι κόποι απέδωσαν.

Secondly, I would like to express my gratitude to all the wonderful people I met in the
United States, who welcomed me to their country with open arms, and made me feel at home.
They have undoubtedly provided me with a friendly environment in which to work, live, and
be happy—treating me as an equal, and being true friends.

Special thanks go to my wife, Vasundhara Vigh, for transforming herself from an
industrious scientist to a traditional housewife, just to make the last stretch of writing
this thesis easier for me. I am also very thankful to my sister Niki, for her endless love.
Moreover, thank you to all my friends back in Greece, for caring and being as close to me as
the day I got on the plane to come to the States.

I feel the need to thank some people from my undergraduate alma mater; namely Associate
Professor Vasilis Vassalos, Professor Ioannis Kontoyiannis, and Professor Andreas Veneris,
who believed in me, and—I must assume—wrote some great recommendation letters back in
2008. Special thanks go to my undergraduate thesis advisor Vasilis Vassalos, who first got me
involved with research, and played a most significant role in the beginning of my academic
journey.

Moreover, I would like to express my gratitude to my soon-to-be boss, Dr. Vincent
Reverdy, for his patience in waiting for the completion of this thesis. I am also truly thankful
to the people who contributed to the papers that gave rise to this material: Dr. Peter Dinges
and Dr. Karl Palmskog, who have been wonderful collaborators.

In addition, I would like to thank the members of my doctoral committee, who pushed me
hard enough so that this thesis is at least somehow useful to anyone interested in the topic.

Last, but not least, I would like to thank my academic advisor, Professor Gul Agha, for
bearing with me all these years. He has played a most significant role in honing my research
and writing skills, and has made sure I am ready to take the next step in academia.

iv

Table of Contents

1 Introduction . 1

2 Background . 8
2.1 Actors . 9
2.2 Session Types . 14
2.3 Typestates . 19
2.4 Typestates vs Session Types . 23

3 Related Work . 25

4 Typestates for Progress . 35
4.1 Motivating Examples . 36
4.2 Actor Calculus . 41
4.3 Type System . 45
4.4 Calculus Meta-Theory . 49
4.5 On Cyclic Communication Patterns . 55
4.6 Puntigam’s Tokens . 58

5 Session Types for Actors . 62
5.1 Motivation . 63
5.2 Global Types . 66
5.3 Local Types . 71
5.4 Actor Calculus . 79
5.5 Typing . 85
5.6 Extensions . 89
5.7 Discussion . 96

6 Conclusions and Open Problems . 101

Bibliography . 103

v

Chapter 1

Introduction

The field of computing has always strived to achieve high performance in terms of speed.
Given the physical constraints that limit the maximum circuit density per unit of silicone area,
we have now turned to parallel computer architectures [44], with remarkable results. The
achieved increase in performance has rendered large-scale numeric calculations practical [94,
140], accelerating research in fields such as cosmology [54] and biology [77]. It has enabled—in
terms of tractability—the training of artificial intelligence agents on very large data sets [85],
producing systems that can play Atari games [105] and beat human champions in Go [123].
Moreover, the power consumption of processing units tends to scale cubically with their clock
frequency, which makes multi-processing architectures fiscally preferable to fewer, power-
hungry processing units [82, 83]. It is thus no coincidence that companies such as Google and
Yahoo own large parallel computing infrastructures, and spend many man-hours developing
parallel algorithms for data processing [34, 42].

Writing correct parallel programs is more difficult than writing sequential code: in
addition to common problems such as dereferencing invalid pointers and memory leaks,
programmers have to deal with deadlocks, data races and synchronization issues, to name
a few. Adopting the actor model of computation [1] alleviates many of these problems:
first, actors are concurrent objects, and hence capture parallelism naturally; second, they
are fully encapsulated, i.e., they cannot access each other’s state directly—thus, data races
cannot occur; third, actors communicate with one another via asynchronous message passing,
closely resembling the asynchronous nature of the physical world [65]. Because of these traits,
and particularly due to their independent nature, actors encourage code modularity and
the separation of concerns. In fact, actor-based languages have been used to implement
industry-strength, widely used systems, such as the original back-ends of WhatsApp and
Facebook chat [92, 130], both written in Erlang [86].

Despite the model’s success, there are still concurrency-related problems that are left
to the programmer to address. For example, it is difficult to verify that a collection of
actors communicate according to some pre-defined specification. Deadlocks are also possible:
situations where each actor requires the receipt of a particular message from another actor to
make progress, in a cyclic manner. In general, synchronization issues are inherent to concurrent
programming, since one needs to reason about how asynchronous events may be ordered,

1

and whether some orderings can cause problems. Avoiding problematic event sequences, and
conversely, enforcing the desired ones, is at the heart of what makes concurrency difficult to
get right.

This thesis is concerned with countering some types of synchronization issues at compile-
time, i.e., statically. We focus on actors in order to capture programming models where
the concurrent entities communicate via message-passing—implemented, for example, by
MPI [100], Akka [93], and Erlang [86]. This is in contrast to shared-memory program-
ming, where concurrent entities can access shared variables—captured, for example, by
Java threads [110]. Given a program with fully encapsulated concurrent processes that
exchange messages, we are interested in the static enforcement of two different, yet related
types of properties: first, we want to ensure that communication follows a pre-defined pattern
exactly; second, we want to guarantee that certain necessary messages are eventually sent to
the processes that require them.

Consider the example of two actors communicating via a sliding window protocol [127].
This consists of actor a sending a sequence of messages to actor b, where each message needs
to be acknowledged. The protocol dictates that a can keep sending, but only while the number
of unacknowledged messages remains below an agreed upon threshold n. If this threshold is
reached, then a needs to pause and wait until the window of unacknowledged messages drops
below n, i.e., one more acknowledgment is received from b. Given an implementation, we
seek to answer the question of whether the code corresponds to this protocol. The question
is, in other words, whether it is possible that program execution produces a communication
trace which violates the given constraints—and we want to know this at compile-time.

While above we discussed strict protocol adherence, this thesis is also concerned with
guaranteeing a second type of property: the eventual delivery of required messages. Consider
a scenario where a server creates worker processes on-demand, lets them serve requests
received from client processes, and then needs to kill each worker process as they finish their
jobs. Assuming that the system terminates processes by delivering a kill message, we want
to guarantee that the server does indeed send such a message to each dynamically spawned
worker. As before, we are concerned with static enforcement: given an implementation,
ensure that it is impossible to produce an execution where an idle worker waits for a kill

message indefinitely.
In strongly-typed programming languages such as C++ and Java, the compiler is usually

tasked with guaranteeing plug-compatibility. Consider, for example, typed variable declara-
tions: the compiler ensures that a memory location corresponding to an integer variable never
contains a value intended for use as a floating-point number. Allowing so would not be safe,
because the bitstring representation of floating-point numbers differs from that of integers.

2

Plug-compatibility can be guaranteed via the use of a suitable type system. A type system
consists of rules that typecheck program statements, i.e., decide whether they can violate
a desired property at runtime. For example, to avoid the aforementioned issue of integer
vs floating-point bitstring representation, a simple type system would deem an assignment
statement to be safe if the left- and right- hand sides of said assignment have the same
type. The reason for such checks is that we need to ensure that operations on data work as
expected. For example, the hardware does not employ the same algorithm for multiplying
integer values, as for multiplying floating-point ones.

It is worth noting that, in reality, we don’t need to guarantee that both sides of an
assignment statement have the exact same type. Rather, we merely need to ensure that
the two sides are compatible—meaning that the operations applicable to the variable on
the left are also applicable to the data on the right. This is, in essence, the meaning of
plug-compatibility: it is safe to replace a piece of data with another that admits at least the
same operations. This is known as the Liskov substitutability principle [95, 96].

Plug-compatibility questions arise in the context of concurrent programming as well:
given two processes, determine if they can be used interchangeably in a concurrent program.
Closely related are issues of composition: given a system of concurrently executing processes,
determine whether it is safe to compose them with a given external process. In the sequential
world, the relevant questions concern data and admissible operations, which can be decided
by looking at the types of said data. However, the problem is more difficult when considering
processes, because processes evolve—and with them, so do their types. Consider the example
of a single-cell buffer, which can receive a set message, making it full, and an unset message,
making it empty. The buffer’s type thus evolves as program execution progresses. As it
turns out, it is still possible to use a type system to decide composition in this context. In
fact, in his seminal 1993 paper, Honda [67] proposed a type system to check communication
compatibility for pairs of concurrent processes: a type is assigned to each process, describing
the communication interactions that it is allowed to engage in. Typechecking then requires
that two processes that exchange messages have dual types, meaning that each process
expects precisely the message sequence that the other sends.

Plug-compatibility is an example of a safety property. Intuitively, a safety property can
be understood as the absence of a specific undesired situation: the fact that execution will
never enter a pre-defined set of bad states. As such, the previously described sliding window
example is one where we require a safety property too: that of the messaging pattern not
deviating from the protocol. As it turns out, this property can also be enforced with a
type system. In fact, Takeuchi et al. [126] do exactly that for concurrent processes that
communicate over channels: a type is assigned to each channel, describing the patterns of

3

messages it is allowed to carry. Assuming suitable restrictions on the class of protocols we
are interested in, looking at the relevant use sites suffices to decide whether each channel is
used in accordance to its type.

Figure 1.1: Two actors communicating via a sliding-
window protocol, with a window size of 3. Actor a
can only initiate the sending of an m message if the
total number of acks it has received is within 2 of the
number of ms it has sent.

Actor a Actor b

m

ack

m

ack

m

ack

m

m

m

ack

ack

ack m

m

m

While our work is based on the above ideas, our focus is on actors, where channels
do not exist: actors can address each other by name, and communicate via asynchronous
message-passing. This thesis looks at types as communication protocol specifications, and
presents a typing methodology that decides adherence to such specifications by looking at the
behavior of individual actors. The most important extension over other similar works is the
treatment of cases that combine asynchrony with parameterization over the allowed message
interleavings. In the example of the sliding window protocol, shown in Figure 1.1, the size of
the window determines the allowed interleavings of messages and acknowledgments: no more
than n messages can be unacknowledged at any given time, and up to a combined total of n
messages and acknowledgments can arrive to their destination in any order. In fact, prior
work cannot capture such complex interactions (see page 65) unless the value of n is known
at compile-time.

4

We have thus far discussed safety properties, i.e., the continuous absence of a “bad”
situation. Orthogonally, a liveness property holds if something “good” happens eventually.
The most commonly treated liveness property is that of progress : the requirement that each
process takes the next intended step, eventually. The term “next intended step” leaves room
for interpretation, and many flavors of progress have been explored in the literature—the most
common being deadlock-freedom. Works in this area differ with regard to their assumptions
on the allowed communication patterns. For example, Kobayashi et al. [81] propose a type
system that looks at the order of sending and receiving actions on communication channels,
and detects cyclic communication dependencies—but only if the channels are designated
for use in one of a few, restricted ways. Honda et al. [70] assume a programming model
with concurrent processes that can simultaneously participate in multiple communication
protocols (a.k.a. sessions), and propose a type system that guarantees the absence of cyclic
communication dependencies on each session.

This thesis looks at progress from a higher-level perspective: we are interested in allowing
the programmer to designate important messages, and letting the type system guarantee,
statically, that those messages will be sent to their destinations. For instance, in the previously
described scenario of a server spawning workers to process requests in parallel, we want to
guarantee that the server eventually does send a kill message to each of the spawned workers.
The main contribution of this thesis with regard to guaranteeing progress is that we allow
the programmer to define the meaning of progress in a simple, intuitive manner: a special
library call is used to add requirements to an actor, and the typing guarantees, statically,
that all requirements generated at runtime are eventually satisfied. It is worth noting that
this methodology can be easily incorporated in a mainstream actor framework, since type
systems can run on top of existing compilers. Moreover, since the requirement generation
call is only intended for use by the type checker, it can have an empty implementation, and
hence impose no run-time performance penalty.

Thesis Outline

We discuss background material in Chapter 2, where we begin with a formal definition of
the actor model of computation, used in the rest of this thesis. In this context, we touch
upon the notion of fairness, which will be useful in Chapter 4. We then proceed to discuss
the topic of session types, originally introduced to guarantee safety and liveness properties
in channel-based communication. This thesis discusses actor programming, which does not
use channels; nonetheless, our proposal for the enforcement of protocols such as the sliding
window falls in the category of session type methodologies, since we look at protocols from a

5

global, whole-system perspective. We then proceed to introduce typestates and how these
relate to process types. The latter are designed to guarantee properties of specific concurrent
processes, which is in contrast to guaranteeing properties of communication protocols as
a whole. Our treatment of cases such as a server being required to send kill messages to
spawned workers is based on process types, because we associate a kill requirement with each
worker, and there is no explicit mention of a specific protocol satisfying these requirements.

We proceed with an overview of related work in Chapter 3. The chapter discusses work
on session types, as it evolved over time to be able to statically verify increasingly complex
protocols. We discuss the introduction of type parameters to these methodologies, and
the gradual lifting of restrictions on programmability. In this spirit, the chapter discusses
approaches based on process types, and how the idea deviates from work on session types: it
seems more intuitive to program systems without the explicit mention of protocols—rather,
it is enough to specify the properties desired to hold always, i.e., safety, and those that the
programmer wants satisfied eventually, i.e., liveness, on a per-process basis.

Chapter 4 proposes process types for the static guaranteeing of eventual message delivery.
We motivate our approach with examples, such as the aforementioned case of a server
spawning and killing workers dynamically; then, we proceed to introduce the type system that
makes such examples work. We show that our methodology can be applied to a pure actor
calculus, with limitations only on the class of programs that can be statically verified. After
giving formal proofs for our claims, we discuss possible extensions. The chapter concludes by
incorporating an important approach on coordination constraints from the literature into our
system.

Chapter 5 details our methodology for guaranteeing the adherence of concurrent programs
to pre-defined protocols. We first motivate our approach with examples that prior work
cannot handle. Then, we present novel type constructs that capture complex cases such as
the sliding window protocol, and prove the correctness of our algorithms. After reviewing
possible extensions, the chapter concludes with an in-depth discussion of the deviations from
the actor model that our system requires. Transferring results from the session type literature
into an actor setting reveals limitations that are inherent in the original ideas underpinning
session types—they simply transfer over to actors in a different form.

While our typestate-based system imposes limitations only in the shape of programs that
can be statically verified, our session-based system deviates from the actor model on the level
of the calculus itself. We therefore conclude the thesis in Chapter 6 with a discussion on
the practical applicability of the typestate- and session- type approaches, both for our own
systems, and with regard to related work. We offer a critique on the way related work handles

6

issues underlying the practical applicability of session types, and conclude that an approach
similar to the one in Chapter 4 aligns better with widely used programming frameworks.

7

Chapter 2

Background

This chapter introduces basic terminology, and presents the core ideas built upon in the
rest of the thesis. We begin with an overview of the actor model of computation, and make
our assumptions on fairness precise. We then introduce the basic ideas underlying session
type systems, and discuss how they can be used to ensure that communication channels are
used correctly. We initially present session types for the π-calculus, and then proceed to
discuss the differences in application with regard to actors. At that point, we justify our
choice of the actor model as opposed to the asynchronous π-calculus. Finally, the chapter
introduces typestates, and concludes with a discussion over their connection with concepts
from the session type literature.

Notation

We abbreviate (possibly empty) sequences of the form x1 . . . xk with x, sequences of the
form u1 . . . uk with u, et cetera. We write {x 7→ α} for the function that maps x to α, and
f [x 7→ α] for the result of altering the function f such that it maps x to α. Assuming
dom(f1)∩ dom(f2) = ∅, we write f1 ∪ f2 for the mapping for which (f1 ∪ f2)(x) = fi(x) when
x ∈ dom(fi), i ∈ {1, 2}. We denote the capture-avoiding substitution of x for y in P with
P [x/y]. This is extended to sequences such that P [x/y] is the result of the capture-avoiding
simultaneous substitution of x for y in P , where x and y are sequences of the same length.

Our notation conventions include variants of −→ for reduction relations, and ≡ for
congruences. For k ≥ 0, we write −→k to denote k-step reductions, and −→∗ for the relation⋃∞
k=0 −→k. We write X−→ iff there exists X ′ such that X −→ X ′, and X 6−→ iff there is no

X ′ such that X −→ X ′. Additionally, we use for “complete” reductions, i.e., X X ′ iff
X −→∗ X ′ and X ′ 6−→. We reserve the symbol =⇒ for logical implications.

We use a double-edged arrow for communication actions, such that x m y denotes the
sending of message m from x to y. Note that m can be a value or a type, and the meaning
will be clear from context. We overload this notation so that constructs of the form x m y

can be in message buffers. If a buffer contains x m y, then m is waiting to be delivered to y.

8

2.1 Actors

This section provides an introduction to the actor model of concurrent computation [1, 3,
65]. While this section discusses “pure” actors, subsequent chapters will discuss variants with
restrictions. These will be made clear as needed.

Actors combine object-oriented programming with concurrency: rather than using syn-
chronous method calls, actors communicate by sending asynchronous messages to each other.
As in object-oriented programming, actors have state, i.e., internal variables. However, directly
accessing one-another’s state is not allowed; in other words, actors offer full encapsulation:
information is only communicated by sending each other messages.

Actors can be in one of two states during program execution: (a) busy, meaning that the
actor had previously received a message and is now executing the code associated with it;
and (b) idle, meaning that the actor is currently not processing a message, and is capable of
receiving the next message sent to it. Execution of actors proceeds concurrently, meaning that
at each step, the scheduler can either (i) choose a busy actor and execute the next instruction
available to it; or (ii) deliver a message directed to an idle actor, bringing that actor to the
busy state. Note that this description implies that message processing is non-preemptive:
once an actor starts processing a message, it does so to completion before accepting the next
one. Additionally, there is no restriction on the order of message delivery: messages can
arrive out of (sending) order, even when having the same sender and recipient.

Figure 2.1: Actors as independent, fully-
encapsulated, active, concurrent objects.

9

Figure 2.1 shows some co-existing actors in a hypothetical system, assuming a naive
implementation in a language with thread support. Each actor has an infinite-length mailbox,
where messages sent to the actor are placed. Each actor is further associated with an
independent control thread, which removes messages from the mailbox, and passes them to
one of the actor’s methods for processing, one at a time, in a non-preemptive manner; that
is, once an actor starts processing a message, it does so to completion before picking the next
one from the mailbox. Note that while Figure 2.1 helps conceptualize the semantics of the
model, this thesis does not employ the implementation implied by the figure.

The actor model has been formalized as an extension of the λ-calculus with primitives
for message sending, actor creation, and behavior assumption. In this context, an actor is
essentially a closure that is applied to the next available message. This model is detailed
in the work of Agha et al. [3], and is at the core of Erlang [86], arguably the most widely
adopted actor programming language.

2.1.1 Syntax

We deviate slightly from the actors-as-closures model, and allow behaviors to include
a set of message handlers. The intention here is the following: consider an actor α with
behavior b, where the definition of b includes a handler h with parameters x1 . . . xk and body
S. Then, the receipt of a message h(u1 . . . uk) by actor α will invoke the code S, replacing the
formal parameters x1 . . . xk with the values u1 . . . uk, and self with α. The reserved name
self refers to the actor in which it is evaluated. The calculus syntax is given in Figure 2.2:
programs P consist of a list of behavior definitions B and an initial statement S. An actor
behavior definition B includes a name b that identifies the behavior, variables x that store the
assuming actor’s state, and a list of message handler definitions H. In turn, a message handler
definition H includes a name h that identifies the handler, a list of message parameters x, and
a statement S to be executed upon invocation of the handler.

Statements generally consist of single operations followed by another statement. For
example, x!h(e).S sends a message for handler h of the actor x, with argument list e, and
then proceeds as S. The statement νx:b(e).S creates a new actor (whose name is bound to x

in S) with behavior b and initial state variables set to the values of the expressions e. The
statement update(e) updates the values of the actor state variables, and the if statement
has the usual meaning of a conditional. A ready statement belongs to the runtime syntax,
signifying the end of handler execution.

10

Figure 2.2: Actor calculus syntax.

P ::= B S

B ::= bdef b(x) = {H} b ∈ behavior names
H ::= hdef h(x) = S h ∈ handler names

S ::= x!h(e).S

| if e then S1 else S2 e ∈ expressions (values, function calls, etc.)
| νx:b(e).S actor creation
| update(e) state update
| ready [runtime syntax]

x ::= self | x, y, z, . . . | α, β, . . . x, y, z, . . . ∈ variables
α, β, . . . ∈ actor names [runtime syntax]

C ::= (∆,M,A) configuration [runtime syntax]
∆ ::= program information [runtime syntax]
M ::= {α1!h1(u1) . . . ακ!hκ(uκ)} multiset of pending messages [runtime syntax]
A ::= {〈S1〉b1(w1)

α1 . . . 〈Sκ〉bκ(wκ)ακ } actor map [runtime syntax]
u,w ∈ values

2.1.2 Operational Semantics

As is common in the formalization of process calculi [3, 104], program execution is described
by a labeled transition semantics [106]. The semantics consists of named rules which apply to
program configurations that appear during execution: when a rule’s preconditions are satisfied,
the rule transforms the current configuration into the next one—thus defining execution as a
sequence of rule applications from an initial program state. For an actor program P, we write
init(P) to denote this initial state, also referred to as the initial configuration.

We assume a reduction relation on expressions, such that the notation e ∆ u means
that expression e reduces to the value u, given static program information ∆. The latter
is assumed to contain information extracted from the program, such as the parameters of
message handlers. The transition relation for statements is defined in Figure 2.3, where we
write S l−→∆ S′ to say that a statement S reduces to S′ via l. The label l records the action
being taken; for example, α!h(e).S reduces to S, and l = α!h(u) records the sent message.
The values u are computed from the expressions e, i.e., e ∆ u.

The transition relation S
l−→∆ S′ is referenced in the program-level rules of Figure 2.4,

which transform runtime configurations. A runtime configuration C is a tuple (∆,M,A),
where ∆ records static program information, M is the multiset of pending (sent, but not

11

Figure 2.3: Labeled transition semantics for state-
ments. Expressions follow standard semantics, and ∆
is static program information.

e ∆ u l = α!h(u)

α!h(e).S
l−→∆ S

α fresh e ∆ u l = α:b(u)

νx:b(e).S
l−→∆ S[α/x]

e ∆ u l = update(u)

update(e)
l−→∆ ready

e ∆ true

if e then S1 else S2
if−→∆ S1

e ∆ false

if e then S1 else S2
if−→∆ S2

Figure 2.4: Labeled transition semantics for actor
configurations.

Sendα,β,h
S

β!h(u)−−−→∆ S′

∆, M, A ∪ {〈S〉b(w)
α } −→ ∆, M ∪ {β!h(u)}, A ∪ {〈S′〉b(w)

α }

Receiveα,β,h
S = body(∆, h) y = params(∆, h) x = params(∆, b)

∆, M ∪ {α!h(u)}, A ∪ {〈ready〉b(w)
α } −→ ∆, M, A ∪ {〈S[α/self][uw/yx]〉b(w)

α }

Updateα
S

update(u)−−−−−→∆ S′

∆, M, A ∪ {〈S〉b(w)
α } −→ ∆, M, A ∪ {〈S′〉b(u)

α }

Newα

S
β:b(u)−−−→∆ S′

∆, M, A ∪ {〈S〉bα(w)
α } −→ ∆, M, A ∪ {〈S′〉bα(w)

α , 〈ready〉b(u)
β }

Ifα
S

if−→∆ S′

∆, M, A ∪ {〈S〉b(w)
α } −→ ∆, M, A ∪ {〈S′〉b(w)

α }
Prog

∆ = info(B)

B S −→ ∆, ∅, {〈S〉in()
in }

12

received) messages, and A contains running actors. Elements of M have the form α!h(u),
where α is the destination actor, h is the handler to be invoked upon receipt, and u are
values constituting the message payload. A maps each actor name to a behavior, state, and
executing statement. We denote A as a set of elements of the form 〈S〉b(w)

α , where α is the
actor’s name, b corresponds to its behavior, the values w constitute its state, and S is the
statement the actor is currently executing.

We write C −→ C ′ to say that the runtime configuration C reduces to C ′ via an application
of some rule in Figure 2.4. Execution of a program P = B S then consists of a sequence
of transformations that starts from the program’s initial configuration. Such an initial
configuration is created via rule Prog in Figure 2.4, and it records information ∆ from the
program, has an empty message multiset, and includes a single initial actor executing S. This
actor has reserved name and behavior in, and no state variables. Note that the subscripts
in the rule labels are there to identify rule applications uniquely, which will be useful in
Section 2.1.3. The current discussion will ignore them for the time being.

Rule Send adds the sent message h(u) to the multiset of pending messages. Rule Update

writes new values u to the state variables of α. Rule New creates a new actor 〈ready〉b(u)
β

with unique name β, initialized with the given behavior b and values u for state variables.
Rule If has the usual effect of deciding a conditional.

Only idle actors can receive messages [2]. Since statements take the form ready when
completely reduced, Receive describes an idle actor α receiving a message to be processed
by handler h. The statement S to execute is extracted from the program information ∆, and
on it, the rule performs substitution of current values for handler and state variables. These
values are taken from the message contents u and actor state w. Handler and behavior (i.e.,
state) parameters are looked up via the auxiliary function params .

2.1.3 Executions and Fairness

In a labeled transition semantics such as that presented in the previous section, each
application of a rule is associated with a transition label t. For this purpose, the rule labels in
Figure 2.4 have subscripts that uniquely identify the specific transition; for example, Sendα,β,h
records the sender α, the receiver β, and the message h. We write C t−→ C ′ to say that
the transition rule t transforms the runtime configuration C to C ′. By extension, we write
C

t1−→ C1
t2−→ · · · tk−→ · · · to denote a possibly infinite sequence of configurations where each

adjacent pair follows the transition rules. Such a sequence is called an execution.
For a given runtime configuration, multiple rules can be enabled (i.e., their preconditions

satisfied). We write enabled(C) for the set of labels of those transition rules that are applicable

13

on the runtime configuration C. Assuming an execution from C has reached a configuration
Ci, it is possible that |enabled(Ci)| > 1. Thus, starting from C, one can draw a tree of possible
executions. Upon encountering a branching point, the system makes a non-deterministic
choice as to which rule to apply. Such non-determinism at each computation step does not
guarantee fairness [55], which we require in Section 4.5. We therefore do not consider all
sequences of rule applications admissible, and demand fair executions, defined in a way
reminiscent of the work of Agha et al. [3].

Definition 2.1 (Fair Execution). Let C be a runtime configuration, and assume some
execution s = C1

t1−→ C2
t2−→ · · · starting from C, i.e., C = C1. We say that s is fair when

for every Ci ∈ s it is true that for all t ∈ enabled(Ci), there exists some k with k ≥ i s.t.
either t = tk, or t /∈ enabled(Cj) for all j > k. We write F(C) to denote the set of fair
executions originating from C.

Intuitively, (weakly) fair executions are those where no transition label becomes con-
tinuously enabled without the associated rule ever being applied to trigger the transition.
In other words, under fairness, an enabled transition either occurs eventually, or becomes
permanently disabled after a finite number of steps. Observe that in our system, once a
transition is enabled, it remains enabled until taken.

2.2 Session Types

Session types have been proposed as a means to apply type discipline to the channel-based
communication of concurrent processes. This section offers an introduction to the basic
concepts from the literature; for a comprehensive review of the area, we refer the interested
reader to the work of Hüttel et al. [74].

Most works in this domain use a variant of Milner’s π-calculus [103], which is a process
algebra that allows the definition and concurrent composition of processes that send and
receive names. For example, we write c!a ; P for a process that sends the name a via the
channel c, and then proceeds as P . Conversely, receiving a value via c, then proceeding as P ′,
is written c?x ; P ′. The concurrent composition of these two is written (c!a ; P)‖(c?x ; P ′),
which reduces to P ‖(P ′[a/x]). In the latter, x is replaced by a in P ′, to capture the fact that
the name a was received via c.

We use νc.P for scope restriction, so that c is only visible in P . This way, for example,
νc.(c!a ; P)‖νc.(c?x ; P ′) does not perform any communications, because c on the left is
effectively not the same channel as c on the right. In fact, the above would reduce to
(c1!a ; P)‖(c2?x ; P ′) for some fresh names c1 and c2. Note that the result (c1!a ; P)‖(c2?x ; P ′)

14

cannot be reduced any further, i.e., cannot make progress. This is a prime example of the
class of errors that session type systems are designed to prevent.

Session type calculi associate each channel with a type, so that one can write (νc : t).P to
bind the name c to a fresh channel in P , with this new channel having type t. The typechecker
is then responsible for verifying that P uses the channel c as per its type, t. For example,
consider the program (νc : P1

Int P2).(P1‖P2) with P1 = c!1 and P2 = c?x. It is easy to see
that c is indeed used to send an integer value from P1 to P2, which is exactly what the type
P1

Int P2 prescribes.
In general, session type syntax follows that of processes: P1

m P2 ; T is a type that
describes the action of sending a message of type m from P1 to P2, then proceeding as T .
Some calculi allow process definitions to be recursive, as in, for example,

P1
def
= c1?x ; c2!x ; P1

P2
def
= c1!1 ; c2?x ; P2

where P1 receives a value from channel c1, sends it through c2, and repeats in the same
fashion. P2 performs the complementary actions of sending the value 1 on c1, receiving it
back on c2, and repeating indefinitely. In such calculi, session types can take a recursive form
as well. Given the concurrent composition of P1 with P2, i.e., P1‖P2, the type of c1 is given
by

T1
def
= (P2

Int P1) ; T1

that is, the action of P2 sending an integer value to P1 over and over again.

2.2.1 Projection

In the previous examples, the communication protocol was given from a global perspective,
meaning that the type mentions the actions of all participants. Such a session type is often
called a global type, since it describes the entire protocol. In order to localize typechecking,
i.e., typecheck the code of each process separately, we need to consider the actions that a
session type implies for each protocol participant. Given a session type t and a participant p,
we write t B p to denote the projection of t onto p, i.e., the local type associated with p. Such
a local type can then be checked against the participant’s code in a straightforward manner.

Consider the previous example of P1‖P2 and the global type associated with c1, that is,
T1

def
= (P2

Int P1) ; T1. Then the projection of T1 onto P1, i.e., T1 B P1 gives the local type L1

15

with L1
def
= P2?Int ; L1. This type describes the interactions over c1 from the perspective of P1

exactly: it repeatedly receives an integer value from P2.

2.2.2 Multi-party Session Types

So far we have treated protocols with two participants, where we simplify the presentation
by involving the names P1 and P2 in the session type syntax. However, processes in the
π-calculus are anonymous; what makes typechecking possible in this context is that, in
general, two-party communication can be dealt with by ignoring the participant’s name. For
example, the local type L1 above does not need to mention P2 explicitly, i.e., which process
placed the integer on the channel. Since L1 describes the communication restrictions that
the type of c1 places on P1, all that matters in this example is to verify that P1 engages in
the continuous receipt of an integer from the channel. This describes the interaction from
the point of view of P1 exactly; moreover, since only two processes are involved, the precise
identity of the sender is irrelevant. We can thus write L1

def
= ?Int ; L1, which contains all the

information necessary to typecheck the code of P1 with respect to its use of channel c1. In the
same manner, the projection of the same channel’s type onto P2 is defined as L2

def
= !Int ; L2.

Note that from these two definitions, one can easily reconstruct T1, i.e., the session type
associated with c1.

The situation is more complicated when more than two participants are involved, because
we can no longer ignore participant names. Since the π-calculus does not name processes, but
does name channels, additional syntax is employed in order to enable projection. A session
over channels c is initialized with

request s[1..n](c) in P1

which binds the names c in the remaining actions P1. Here, s is a name that uniquely
identifies the initialized session, and enables other processes to join. The number n denotes
the total number of participants, who can join with

accept s[k](c) in Pk

which binds the names c in Pk. Note the role of the natural number k, which is used to
uniquely identify the joining process. The session initiator is automatically assigned the
number 1, and so 1 < k ≤ n.

These syntactic extensions enable the static association of each process with a natural
number, which is made explicit at the points where request and accept are used. For example,

16

Figure 2.5: Three processes connected with channels
pairwise.

c1

c2

c3

consider three processes arranged in a circle, as in Figure 2.5. Each pair of processes is
connected with a distinct channel, and the program passes the number 0 around the circle
once. This program can be written as

request s[1..3](c1, c2, c3) in c1!0 ; c3?x ; end

‖ accept s[2](c1, c2, c3) in c1?x ; c2!x ; end

‖ accept s[3](c1, c2, c3) in c2?x ; c3!x ; end

where the first process sends 0 along c1 to be received by the second process, which in turn
sends it along c2 to be received by the third process, who sends it back to the first one via c3.
Assuming this is the intended behavior, one can describe it with the following association of
types to channels:

c1 : 1 Int 2

c2 : 2 Int 3

c3 : 3 Int 1

Now assume we are interested in verifying that the actions on c2 follow the above
specification; that would involve: (i) projecting the type 2 Int 3 onto each participant, and
(ii) verifying that the code of each participant conforms to the resulting local type. The first
step gives the empty projection for participant 1, since participant 1 does not appear in the
type. On the other hand, (2 Int 3) B 2 = !Int and (2 Int 3) B 3 = ?Int. From the code, we
can see that the process that begins with accept s[2] indeed sends an integer over c2, and
similarly, that the process that begins with accept s[3] indeed receives an integer over c2.
These match the projected types !Int and ?Int exactly, and it is easy to verify that this is the
case for the other two channels as well—implying that the program adheres to the specified
protocol.

17

2.2.3 Session Types for Actors

In Chapter 5, we are concerned with applying session-type discipline to actor programming.
Actors differ from the calculi discussed above: first, there are no channels to type; actors are
named entities, and one can write a!x to mean sending the message x to the actor whose
name is bound to a. Second, communication in actors is asynchronous, i.e., sent messages can
arrive to their destinations later, and the sending actor can continue with the next instruction
before the message arrives.

Since we are not typing channels, the purpose of a session type essentially becomes to
describe the entire communication protocol among a system of actors. We do away with
session initiation and acceptance, and so, all actors in a program are participants to the
globally specified protocol. For instance, in an actor setting, communication for the example
of page 17 cannot be captured by three separate channel types; rather, the example would
involve three actors a, b and c, and their communication pattern can be fully described by
the type a Int b ; b Int c ; c Int a.

In this setting, we deal with global and local types; the former describe the protocol that
the program must adhere to, and the latter describe the constraints that such a protocol
implies on the individual participants. The type a Int b ; b Int c ; c Int a, mentioned above, is
a global type. Its projection onto a, that is, (a Int b ; b Int c ; c Int a) B a, is the local type
b!Int ; c?Int. Similarly, the local types for actors b and c are given by

(a Int b ; b Int c ; c Int a) B b = a?Int ; c!Int

(a Int b ; b Int c ; c Int a) B c = b?Int ; a!Int

As before, the purpose here is to check the derived local types against the the program code
for a, b and c. For a discussion on the issues encountered when applying session type discipline
to actors, we refer the interested reader to the short paper by Masini and Francalanza [97].

Why not the asynchronous π-calculus?

The asynchronous π-calculus [20] uses the constructs introduced at the start of Section 2.2.
The main difference lies in the semantics of messaging: in the asynchronous case, a message
send is a non-blocking action, and does not require a matching receive to proceed. For
example, the process

(νc).(c!1 ; c!2 ; end)

can reduce to end with the values 1 and 2 “floating” in the channel, waiting (in this case,
forever) for a process to receive them. In contrast, in the synchronous case, the above code

18

would block indefinitely right after creating the channel, since no other process knows c, and
thus cannot issue a receive action on it.

One could indeed choose the asynchronous π-calculus to demonstrate the ideas in this
thesis. The actor model was chosen because the author feels it offers a more natural
programming style, where the decomposition of a system into concurrent entities allows
for the direct addressing of those entities, by name. This is in contrast to the π-calculus,
where processes communicate via channels. Since actors can be addressed directly, the role of
constructs such as request and accept is mute—circumventing the technicalities addressed on
page 16.

Furthermore, session types for the π-calculus essentially consist of a two-level specification:
the conceptual level of the protocol as a whole, and the type of each channel. For instance, in
the case of Figure 2.5 one needs to think both in terms of the protocol “each process passes
an integer to the next one”, and in terms of what that means for the individual channels—
resulting in three channel types, which are then projected to the participating processes. In
contrast, as discussed in Section 2.2.3, the actor case only requires the specification of one
global type: a Int b ; b Int c ; c Int a. This can then be projected to the participants directly.

2.3 Typestates

Typestates [124] were introduced by Strom and Yemini in 1986, with the goal of enabling
the static catching of errors relating to the dynamic evolution of a data object’s state. In
their words, whereas the type of a data object determines the set of operations ever permitted
on the object, typestate determines the subset of these operations which is permitted in a
particular context. For example, a variable can start as uninitialized, and reading from it can
give unpredictable results. After value assignment, the variable enters the initialized typestate,
and subsequent code can safely read from it. Thus, by tracking changes in a name’s typestate
in the program, we can infer the operations that it can be meaningfully involved in.

The idea is applicable to more than just simple data; in fact, it has been used to catch
pointer-related errors in C [45], and extended to object-oriented programming [46]. For
instance, consider an object that represents a file: the object can be written to when in
state open, but not when in state closed. The available state transitions for this object can
be described by the automaton in Figure 2.6. Initializing the file object sets its state to
closed, and from there, one can call open(), bringing it to state open. In that state, one can
repeatedly call write(data); or call close() once, which will bring the file back to state closed.
With certain limitations, it is possible to track such changes in object state statically. For

19

Figure 2.6: A finite state automaton for the typestate
transitions of a file object.

closedstart

open

open

write

close

example, the following program is erroneous in that it attempts to write to the file without
opening it:

F i l e f = new F i l e () ;
f . w r i t e (" t h i s t e x t ") ;

A typestate is a static abstraction over the dynamic state of a data object: it captures the
operations allowed on the object in a given context, without knowledge of the exact values
of the object’s internal variables. In the previous example, it is not necessary to know the
actual values and internal references that the File object has—to catch the above error, it
suffices to know which typestate the file object is in. The diagram in Figure 2.6 thus describes
the possible typestate transitions of the object, capturing the operations available in a given
static context.

However, deciding whether a program uses an object according to such a transition
diagram is not always possible to do statically, even for simple cases. At its core, the problem
lies in the use of aliases, as demonstrated by the program below:

F i l e f = new F i l e () ;
f . open ("/ u s r / l o c a l / data . t x t ") ;
F i l e g = f ;
f . c l o s e () ;
g . w r i t e (" t h i s t e x t ") ;

Clearly, this program contains a similar error as before: it attempts to write to the file after
closing it. This case is obvious because it is easy to infer that f and g refer to the same (closed)
file by looking at the assignment g = f. However, method calls can introduce complications:

F i l e f = new F i l e () ;
f . open ("/ u s r / l o c a l / data . t x t ") ;

20

F i l e g = someMethod (f) ;
g . w r i t e (" t h i s t e x t ") ;

In order to know the typestate of g at the point of the call to write, we would need
to know the typestate of the file returned by someMethod. It could be, for example, that
someMethod changes the typestate of f before returning a reference to it. Clearly, predicting
the exact effects of method calls is—in the general case—an undecidable problem. However,
the issue can be mitigated in practice by using a type-and-effect system such as those proposed
by DeLine and Fähndrich [45, 46]. In such systems, methods are annotated with the changes
they cause to their arguments’ typestates. Nevertheless, static alias tracking, and the related
problem of deciding the effects of procedure calls, are both deep topics that go well beyond
the scope of this thesis. Specifically for alias tracking, the interested reader is referred to, as
a starting point, the classic book on compiler principles by Aho and Ullman [5].

2.3.1 Typestates for Concurrent Programming

In the case of sequential programming, an object’s typestate can be used to determine
the operations we can apply to it in a given context. For concurrent programs, the problem
becomes one of enforcing synchronization constraints: ensure that processes send one-another
messages in an acceptable pattern. We can thus associate an evolving typestate with each
concurrent process, determining the acceptability of messages in each context. For instance,
consider the actor equivalent of the file example discussed above, where the methods are
message handlers: the file actor starts in the open state, and can receive write or close

messages, with the transitions shown in Figure 2.6 as before. Using ! to denote the action of
sending a message, code that uses such an actor can have the form

F i l e A c t o r f = new F i l e A c t o r () ;
f ! open ("/ u s r / l o c a l / data . t x t ") ;
f ! w r i t e (" t h i s t e x t ") ;
f ! c l o s e () ;

The intention of the code might be to open a file, write some data, and then close it;
however, it is possible for the messages to arrive in the order write, open, close, or open, close,
write, both resulting in a runtime error when the program attempts to write to a closed file.
To circumvent cases like this, many authors assume single-source FIFO1 communication, so
that the messages open, write and close in the example above arrive in the same order as
they were sent. With this assumption in mind, it is possible to apply the same typechecking
mechanism that makes the sequential case work, to the case of actors.

1First In First Out

21

Puntigam [120] furthers this idea by associating each actor in the program with a multiset
of tokens, and annotating message handlers with token requirements. This way, he can
demand that a message only be received if the actor owns the necessary tokens. In his system,
message handlers consume some tokens upon invocation, and produce a (potentially different)
bag of tokens when they finish executing. Applying the idea to the previous example, the file
actor behavior can be written as below, where the effect of each message on the owned token
set is given explicitly:

behavior F i l e A c t o r = {
handler w r i t e (S t r i n g data) [o−→o] { . . . }
handler open () [c−→o] { . . . }
handler c l o s e () [o−→c] { . . . }

}

Receipt of a write message consumes and produces an o token, i.e., it can only be called
when o is available, but leaves the actor’s token set unchanged. Receiving an open message
consumes a c token, and produces an o one; message close does the opposite: it consumes
an o and produces a c. In this example, handlers only consume/produce one token at a
time, which suffices to impose the desired message ordering in this simple case. However,
Puntigam’s original system allows the consumption and production of multisets of tokens
whose exact form is controlled by type parameters—a system that can capture more complex
synchronization patterns.

Process Types. The rules governing the transformation of a given object’s typestate can
be given in any form that can help the typechecker track the changes statically. Finite state
automata, such as the one shown in Figure 2.6, are usually good candidates because they offer
a well-understood mechanism that is easy to implement. In the case of concurrent processes,
the relevant transition descriptions are usually referred to as process types.

Consider the definitions that follow, corresponding to, respectively, a file and a client
process:

F (c)
def
= c?open ; c?write(m) ; c?close

P (c,m)
def
= c!open ; c!write〈m〉 ; c!close

The notation is that of Section 2.2, extended to allow arguments in process definitions. Above,
c is the channel that the processes will use to communicate, and m is the text to be written
to the file. We can thus write the following program, which is the composition of a file and a

22

client process communicating over a fresh channel c:

(νc).(F 〈c〉‖P 〈c, “hello”〉)

The program writes “hello” to the file. With regard to the channel c, the process type of the
file is ?open ; ?write ; ?close. Sending it an open message consumes the first part, and leaves us
with ?write ; ?close, at which point, only the write message is acceptable. Sending the file such
a write message further changes its type to ?close. In other words, the process type of the file
evolves as computation progresses—in exactly the same manner as captured by an evolving
typestate. Thus, a process type captures both the current typestate, and the rules governing
the ways said typestate can change. When the meaning is clear from the context, we will use
the terms “typestate” and “process type” interchangeably in the rest of this thesis.

2.4 Typestates vs Session Types

Typestates subsume session types in two different ways. First, a session type describes
message patterns over a communication channel; it can thus be viewed as a description
of the channel’s typestate evolution: as messaging progresses, the channel’s (type-) state
changes—and so do the messages allowed. For example, consider the following session type,
intended for the channel c on page 22:

t
def
= P open F ; (P write F)∗ ; P close F ; t

The starred term denotes repetition of zero or more times. The diagram in Figure 2.7 describes
the available transitions, such that the channel starts at typestate A, and the interaction
P open F brings it to typestate B, enabling the write message. From there, the interaction
P write F leaves the typestate unchanged, while the interaction P close F brings it back to
typestate A, allowing the open message again.

The same techniques that enable the static tracking of an actor’s typestate, as in Sec-
tion 2.3.1, can be used to track the typestate transitions of channels. This enables the static
typing, for example, of the program on page 22, augmented to associate the type t defined
above with the channel c:

(νc : t).(F 〈c〉‖P 〈c, “hello”〉)

The second way in which typestates subsume session types concerns the projection of
global types onto the individual protocol participants. The result of said projection gives a

23

Figure 2.7: A finite state automaton for the typestate
transitions of a file channel.

Astart B

P open F

P write F

P close F

local type for each process, which describes the pattern of actions that the process may take
with respect to a given channel. Hence, a local type is, by definition, a process type.

24

Chapter 3

Related Work

The idea of enforcing type discipline on communicating processes goes at least as far back
as the work of Honda [67], and Pierce and Sangiorgi [115, 116]. Both approaches address
the problem of guaranteeing—statically—that communicating processes have compatible
behavior with regard to messaging: if a process attempts to send some value, the action will
be matched with a compatible receive instruction, issued by a second process.

Honda presented his ideas in a calculus reminiscent of CSP [66], and defined the notion
of duality to capture process compatibility: two process types are dual, if processes that
implement them communicate such that each process sends precisely the message sequence
that the other expects. The basic actions a process P can take are to send and receive a value
v, respectively written !v and ?v. The actions of two processes P1 and P2 can be sequenced,
as in P1 ; P2. Choosing between P1 and P2 is denoted with P1⊕P2, while branching according
to the receipt of a label is written ?l1 ; P1 & ?l2 ; P2. In a typed universe, each value v is
assigned a type t, written v:t. Thus, processes can be typed; for example, the action of
sending a value of type t is written !t, and conversely, receiving a value of type t is written
?t. Types then follow the syntax rules for processes: the type of a process that sequences
the actions T1 and T2, in this order, is T1 ; T2. Choosing between two actions with types
T1 and T2 is written T1 ⊕ T2, and similarly, branching according to the receipt of a label is
written ?l1 ; T1 & ?l2 ; T2. For a simple value-type t, Honda defines type duality such that !t is
the dual of ?t, that is, dual(!t) =?t. Consequently, dual(T1 ; T2) = dual(T1) ; dual(T2), and
dual(T1 ⊕ T2) = dual(T1) & dual(T2). Honda thus assigns a type to each process, with the
intention that processes with dual types can be safely composed. In addition, he defines the
subset of typeable terms (in the proposed universe) for which deadlock-freedom is guaranteed.

Honda’s notion of duality was extended by Takeuchi et al. [126] to apply to channel-based
communication: for two processes P1 and P2 and a channel c, we can safely compose P1 with
P2 if the actions they take on c have types T1 and T2 with dual(T1) = T2. One limitation of
these early systems was that they did not allow for the disciplined sending of channels as
values. The idea that typed channels (and thus the associated sessions) can themselves be
sent along other typed channels, in turn to be used by the recipient in a type-safe manner,
is known as session delegation. In later work, Honda et al.1 [68], extended the system of

1later corrected by Yoshida and Vasconcelos [137]

25

Takeuchi et al. to capture session delegation and recursive communication patterns. Types
that describe such patterns have the form µX.T , the meaning of which is that we can
replace X in T by the whole expression: µX.T ≡ T [µX.T/X]. For example, the pattern of
repeatedly sending a value of type t can be written as µX.(!t ;X). In presence of recursion,
Honda et al. treat the composition of actions by extending the notion of duality, such that,
dual(µX.T) = µX.dual(T).

Independently from the above line of work, and around the same time as Honda’s
original 1993 paper, Pierce and Sangiorgi [115] proposed a system to apply type discipline
on communication in the π-calculus [103]. The main difference from Honda’s early work
is an extended notion of compatibility, in terms of a subtyping relation—allowing for the
disciplined communication of channels as values. In general, sending a value of type t1 along
some channel has to be met with a receipt action on the same channel; such a receipt action
should expect a value of type t2, with the constraint t1 4 t2 for some subtyping relation 4.
Informally, for values v1 : t1 and v2 : t2, the meaning of subtyping is that t1 4 t2 if and only
if v1 can be safely used in place of v2. This relation can be extended to processes, such that
for two processes P1 : T1 and P2 : T2, it is T1 4 T2 if and only if process P1 can safely replace
process P2 in all contexts—an idea made concrete by defining subtyping for processes in
terms of bisimilarity [102]. Finally, it is worth mentioning that Pierce and Sangiorgi’s early
system dealt with the safety of recursive communication patterns as well, expressible through
the bang operator [101].

Multi-Party Sessions. The early works described above treated communication in the
two-party case, in the sense that they answered the question of whether two processes P1 and
P2 can be safely composed into P1‖P2. For instance, in the notation of Takeuchi et al. [126],
two processes can initiate a session over a name s as such:

(request s(c) in c!0 ; end) ‖ (accept s(c) in c?x ; end)

The above contrived example initiates a session s involving a single channel c, which is
used for the first process to send the number zero to the second one. The reader might
observe that this is the notation of Section 2.2.2, with only one channel, and two participants.
The notation of Section 2.2.2, involving multiple channels and participants, was introduced
by Honda et al. [69, 70]. Their work allows the specification of protocols from a global
perspective, where a session type describes the interactions taking place over all channels
in the session; such a type is called a global type. A projection algorithm then mechanically
derives the behavior specification of each individual process, that is, their local type. Typing

26

the individual processes with regard to these local specifications ensures two fundamental
properties: (i) session fidelity, i.e., any reduction on processes is predicted by the associated
session type; and (ii) progress, i.e, interactions predicted by a session type are certain to take
place in the program. One limitation of the work of Honda et al. is that progress is ensured
on a per-session basis—the case of communication in one session blocking actions in another
was left untreated.

The assumption on the absence of inter-session hindrance was lifted by Bettini et al. [14],
who analyzed the flow of dependencies on the use of channels, taking session delegation
into account and ensuring the absence of cyclic dependencies. The system of Honda et al.
was further extended by Gay and Hole [57], who proposed a subtyping relation for session
types along the lines of Pierce and Sangiorgi [115, 116]. Deniélou and Yoshida introduced
multiparty session automata [50], a formalism that allows the capturing of interactions such
as the alternating bit protocol, that cannot be expressed in the original multiparty session
types of Honda et al. In their work, Deniélou and Yoshida show that in some cases, questions
that are not decidable for general-purpose communicating finite state machines are in fact
decidable for multiparty session automata.

It is worth mentioning that while the above discussion is concerned with the theoretical
foundations of multi-party sessions, those came after the topic was first investigated in
practice, with the introduction of the Web Services Choreography Description Language
(WSCDL) [135]. The idea behind WSCDL is to enable conformance verification for multiple,
concurrently executing web services and clients against protocols described in XML [134].
The latter is a general-purpose language for expressing arbitrary graph structures, and thus,
WSCDL expresses protocols in an accordingly compositional fashion: simple actions (e.g.,
sends and receives) are nodes; a collection of action nodes can be connected to a sequencing
node, forcing the relevant actions to be sequenced; a collection of nodes can also be connected
to a parallel node, denoting the concurrent composition of the related actions, et cetera.
The notion of an end-point projection of such specifications onto the individual participants
was first studied by Carbone et al. [27], who also investigated the associated correctness
requirements—that is, the conditions under which a set of local types behaves according to
the global type they were projected from.

Parameterized Session Types. Yoshida et al. [138] and Deniélou et al. [51] extended the
syntax of Honda et al. [70] to allow the use of parameters—both in process definitions, and
in the language of types. The example that follows uses an extended form of the syntax used
in Section 2.2.2, and consists of a process sending the value 5 to another process n times:

27

P (n) = λx:Int .
(
request s[1..1](c) in foreach(i < n).(c!x)

)
process definition

Q(n) = accept s[1](c) in foreach(i < n).(c!x) process definition

Πn.
(
P (n)(5) ‖Q(n)

)
program

The construct Πn binds the parameter n in the subsequent expression, which in this case
controls the number of times the message gets sent. The session type for s is thus

T = Πn . foreach(i < n) . (0 Int 1)

which is a dependent type, i.e., the type parameter n is a name bound in the program.
In the above example, the parameter controls the number of repetitions; in addition to

such patterns, the system of Yoshida et al. supports type-safe interactions among a fixed,
but not statically known, number of participants. The calculus underlying their approach
simplifies the treatment of parametric constructs with the use of Gödel’s R operator [8], and
allows communication patterns whose repetitive nature is expressible through operations on
the indices. One example would be the use of a single global type to capture a butterfly
network (used, for example, in performing fast Fourier transforms), the very structure of which
is highly dependent on the number of participants. Static verifiability—without instantiating
the type parameters—is maintained by projecting onto parameterized local types, which can
be checked against process implementations as long as the operations on the indices allow
syntactic comparisons. A simple example would be the following global type, describing a
ring of n+ 1 processes that pass some integer value around once:

Πn.
(
foreach(i < n).

(
i Int (i+ 1)

)
;
(
n Int 0

))

The work of Yoshida et al. [138] was later improved by Bejleri [12, 13], who allowed
indices to range over infinite sets of natural numbers, and introduced the concept of a
role. The idea was made precise by Deniélou and Yoshida [49], whose system facilitates
modular implementations of protocols such that each role is implemented and typechecked
separately—similar to classes in object-oriented programming. This new system did away
with explicit numeric parameters, and allowed programs to contain expressions that poll the
participants of a given role. Deniélou and Yoshida allow, for example, the global type of a
map-reduce [47] interaction among a server and multiple clients to be written as

µt.(∀x : client).
(
(server

map
x) ; (x reduce server) ; t

)
.

28

The above type states that the server sends a map message to all clients in the program,
each one of which then replies with a reduce message. Note that with the use of primitive
recursion (µt), the interaction continues forever. An important improvement of this system
over the previous ones is that it allows processes to join and leave roles dynamically, while
maintaining the benefits of typechecking their behavior. In the above example, processes
that join the client role must conform to the given global type. It is worth noting that the
lack of numeric parameters results in global types that are less precise, and the role polling
mechanism requires related information to be retained at runtime.

Asynchrony. Gay and Vasconcelos [58] and Gay and Vasconcelos [61] were the first to
consider asynchronous session types for a functional programming language. Their work
develops a type system that is based on linear logic, which, contrary to previous proposals,
allows the re-use of well understood typechecking mechanisms. Kouzapas et al. [84] propose
asynchronous session types for an event-based flavor of the π-calculus, and study the semantic
relation between their calculus and multi-threaded programs. The proposed extensions are
also found in the work of Hu et al. [73], who extend the Java programming language with
event-based primitives and asynchronous type-safe sessions.

A fundamentally different approach to concurrency is taken by Carbone and Montesi [24],
who propose that the program itself should be written from a global perspective. Static
typing ensures the absence of deadlocks, while concurrent composition is regained through a
suitable swap relation.

Castagna et al. [31] propose a specification language for global types that is closer to
regular expressions; they investigate the requirements for correctness after projection, and
guarantee certain liveness properties. Their work was the starting point of the author’s
original papers [35, 36], which give rise to the material in Chapter 5.

Subtyping for local types in asynchronous multi-party sessions has been studied by
Mostrous et al. [107], as an extension to the work of Honda et al. [70]. Their work also
presents an algorithm for the synthesis of a global type from a set of end-point (local) types,
with the property that the resulting global type is minimal with respect to the proposed
subtyping relation.

Object-Oriented Languages. Hu et al. [72] were the first to present a full implementation
of a Java flavor with support for session types. Dezani-Ciancaglini et al. propose MOOSE [53],
an extension to Java with session types that guarantee progress. The same authors extend [52]
MOOSE with bounded polymorphism [29] for communicable values, while support for
asynchronous channels was added by Coppo et al. [43]. Balzer and Pfenning [9] capture

29

object-oriented programming in an implementation of a π- derived process calculus. In their
work, each process is associated with a channel, which allows it to communicate with other
processes. Such a channel serves as a “reference” to the process, allowing the outside world
to treat it as an object. Each channel is associated with a linear session type, which allows
sending a channel to another process, albeit making it unavailable to the sender immediately
afterwards.

Better object encapsulation is offered by the system of Gay et al. [59], who mix type-
states [46, 132] and session types, by allowing typed channels to be stored as class fields.
A typestate is associated with each object reference, and the relevant transitions are given
on the class level. These dictate the allowed sequences of method calls on objects, and by
extension, the use of the channels stored as fields. Object aliases are controlled via a linear
type system, i.e., one that utilizes destructive reads [136].

Process Types. As the current state of the literature in choreographic types suggests, it
is difficult to capture dynamic process creation as a behavior in global types. Subsequently,
methodologies that rely solely on local types have been proposed, with the intention that
the typing will guarantee safety and liveness properties without caring about adherence to
a pre-defined protocol. Local types in this context are referred to as process types in the
literature.

Bonelli and Compagnoni [17] propose process types akin to the local types found in the
work of Honda et al. [68]2, and rely on type preservation theorems on (dual) type compositions
for correctness. Reminiscent of this approach is the work of Lange and Tuosto [89], who
discuss whether the local types of Honda et al. can be composed into a global type that
satisfies certain progress and safety properties, in a CCS-style process calculus. As discussed
in Section 2.3, process types can be viewed as communicating finite state automata, i.e.,
automata where input and output actions label the transitions. Correctness criteria for the
composition of such automata is discussed by Brand and Zafiropulo [21], and Lange et al. [90].

Programmer Intent. When composing processes, deadlock-freedom does not necessarily
guarantee progress in the intuitive sense. As a result, more general notions have been proposed,
such as lock-freedom. A lock-free process is one where all I/O operations in sub-processes
succeed (eventually, under fair scheduling), even if the process as a whole diverges. The
relation between lock-freedom and the ability of a process to reduce has been studied, for
example, by Carbone et al. [26].

2their work was developed around the same time, but independently from Honda et al.

30

Lock-freedom has been taken one step further, by allowing the programmer to make
the set of I/O operations that are required to succeed explicit. For example, Kobayashi’s
system [79] allows the use of a variety of channel types, with different progress guarantees
for each. In general, his type system associates a time tag with each channel, inferred from
its relative usage order. The type system then enforces an ordering relation on these tags,
breaking cycles. The use of a partial order to break cyclic dependencies is also found in
the work of Padovani [112]. Sumii and Kobayashi [125] take these ideas further, so that
channels are annotated with capabilities and obligations. The resulting type system ensures
that if a process has the capability of performing an I/O action on a channel, that action will
eventually succeed; similarly, it guarantees that if a process has the obligation to perform an
action on a channel, the action is eventually taken. This strategy for lock-freedom is improved
on in Kobayashi’s later work [80], where even more precise information is used: channels are
additionally associated with the minimum number of reduction steps needed until capabilities
are met, and also the maximum number of steps until obligations are fulfilled. The automatic
inference of similar type annotations has also been considered [81].

Puntigam’s work on token-tracking [120] for actors allows the programmer to annotate
each message handler with two multisets of tokens: one to be consumed when receiving the
message, and one to be produced when the handler completes. A message is only accepted if
the required tokens are available, a property ensured (statically) by the type system, so that
every sent message can—and will—be processed. In other words, static typing prevents the
sending of messages for which the recipient is not guaranteed to have the required tokens. In
this regard, Puntigam’s local types make synchronization constraints explicit, by means of
static evaluation of method guards [99]. The nomenclature is due to the fact that the latter
“guard” methods with boolean expressions, and such methods can only be invoked if the
associated conditions are satisfied. Related is the concept of enabled sets [99], first appearing
in the description of Rosette [4]. The change in the token set upon message receipt effectively
changes the set of messages that are currently acceptable, in other words, enabled.

An important contribution of Puntigam’s work is the handling of conditional statements
in the type system. For example, for the statement

if x1 = x2 then P1 else P2

P1 is typed in an environment where the types of x1 and x2 have been combined, i.e., their
token sets have been merged.

31

In later work, Puntigam and Peter [122] further improve this idea, such that the typing
handles dynamic type comparisons such as

if s1 4 s2 then(t) P1 else P2

which tests whether the type s1 is a subtype of s2. In typing the above, the type variable t
is replaced in P1 by the difference of s1 and s2, to account for consumed tokens. The type
system ensures that messages sent in P1 adhere to the tokens available in t, and respectively,
that messages sent in P2 adhere to the tokens available in s2.

In the same work, Puntigam and Peter add progress guarantees with the inclusion of
obligatory tokens that the type system requires be consumed. Puntigam’s token-tracking
ideas [119] are the starting point for the material in Chapter 4, where we address some of
his system’s shortcomings. For instance, given an actor reference with associated obligatory
tokens, Puntigam demands that one of the following happens by the end of the current scope:
(a) the actor reference is sent suitable messages to consume the obligatory tokens; (b) the actor
reference is sent to another actor; or (c) it is is passed as the formal argument to a become [3]
-style invocation. The first item ensures requirement satisfaction. However, the second
item allows actor names to be passed around in circles, while the third allows the current
actor to diverge—in both cases without guaranteeing the consumption of obligatory tokens.
In contrast, the system we develop in Chapter 4 does not allow such infinite requirement
delegation; we additionally provide a simpler formal treatment of the associated progress
guarantees.

Realizability of Sessions. The question of whether it is possible to implement a given
choreography (i.e., a global type) by a suitable set of participants has been addressed in the
work of Basu et al. [11]. Given a choreography in the form of an automaton where transitions
are labeled with message send actions, Basu et al. show that the question of whether the
choreography is implementable by a set of communicating peers is a decidable problem.
The authors define equivalence such that two systems are equivalent if they generate the
same sequences of message send actions, ignoring the order of receives. In contrast, the
realizability question for the more general case of message sequence graphs [64], is undecidable.
Decidability and complexity class results for the case of message sequence graphs have been
derived by Alur et al. [7].

Castagna et al. [30, 31] discuss structural criteria for global types that contain the more
common sequence, choice and concurrent composition constructs, to ensure that projection
maintains the specification’s trace semantics. Related is the approach of Lanese et al. [88],

32

who address the question of whether a choreography in WSCDL [135] has an equivalent
set of BPEL4Chor [48] processes. Modeling both in simple calculi that support messaging,
choice, and concurrent composition, Lanese et al. determine the criteria for the existence of a
bisimulation relation between the WSCDL specification and the set of BPEL4Chor processes,
for both synchronous and asynchronous communication.

Generalization of Session Type Systems. A general methodology for deciding the com-
pleteness of a subtyping relation is presented by Chen et al. [40, 41]. Denoting substitutability
with < and subtyping with ≺, a subtyping relation is complete when for all types t1, t2 with
t1 < t2, the relation t1 ≺ t2 is decidable statically. Their methodology is based on (i) defining
the relation “not a subtype of” syntactically; (ii) defining a characteristic process for each
session type; and (iii) showing that the relation t1 ⊀ t2 ⇔ t1 < t2 is not derivable for the
characteristic processes of t1 and t2.

Igarashi and Kobayashi [75] present a generic session type system for the π-calculus.
Equipped with a generic subtyping relation as well as a generic “OK” predicate, they discuss
how other session type systems can be seen as concretizations of their system. Igarashi and
Kobayashi’s proofs for standard properties such as subject reduction provide a framework
where one can create correct session type systems without the need to provide proofs anew.
In fact, Gay et al. [60] define an encoding from session types in the monadic π-calculus with
polarities [57] to the system of Igarashi and Kobayashi above.

Runtime Monitoring. Consider a global type that includes elements of the form P x:A Q,
signifying the sending of a message from process P to process Q. Here, x is a name bound to
the message payload, and A is a boolean assertion. Depending on the form of A, it might not
be possible to enforce A(x) statically; in that case, we can guarantee the assertion through
run-time checks, i.e., runtime monitoring. Note that it is much more efficient to apply such
checks locally, that is, on the level of each process, as opposed to checks that require data
from multiple sites—which would be impractical in large distributed systems.

The conditions under which such localized, end-point runtime checks suffice to enforce
globally specified assertions were first studied by Bocchi et al. [16]. In a similar spirit, Neykova
et al. [108] extended Scribble [71] with timing constraints, and studied the conditions that
enable purely local, end-point runtime monitoring of distributed systems with real-time
constraints.

Other Related Work. The relationship between linear logic and session types has been
investigated by Caires and Pfenning [23]. Their work interprets the connectives of linear

33

logic as standard actions from the session type domain, i.e., the communication of values
and channels, continuations, et cetera; standard properties such as subject reduction are a
consequence of the close correspondence between the operational semantics of the synchronous
π-calculus and the standard sequent calculus proof system for dual intuitionistic linear logic.

A rich and expressive session type system for a multi-threaded version of the typed
λ-calculus has been proposed by Gay et al. [62, 133], which treats the dynamic creation of
asynchronous channels seamlessly. Typechecking is made possible by annotating functions
with the changes they cause to channel types, as well as incorporating a form of alias tracking
into the type checker. Similar ideas have been applied to an object-oriented calculus in the
work of Gay et al. [59].

Very interesting from an application perspective is the work of Pucella and Tov [118],
who encode and enforce session types in Concurrent Haskell [78] using the language’s built-in
parametric typing capabilities. This is useful from a practical standpoint, because such a
technique does not require programmers to rely on non-standard tools in order to benefit from
session types. Similarly, Imai et al. [76] encode and enforce session types in pure OCaml [91].
De’Liguoro and Padovani [141] propose types for mailboxes as first-class values, a concept
which finds application in languages such as scala [129]. Their typing builds a call graph,
and prevents deadlocks by ensuring the absence of cyclic dependencies among messages, their
arguments, and their recipients. The basic ideas of that approach were originally explored by
Padovani [111], who treats local types as obligatory specifications, i.e., where all prescribed
interactions must take place.

Exception handling has been considered by Carbone et al. [25, 28], allowing the participants
of a protocol to escape the normal control flow and coordinate on another. Additional safety
properties with regard to the consistency and source of data can be guaranteed by augmenting
session types with correspondence assertions [18, 19]. Such systems can ensure, for instance,
that a “man in the middle” does not change the amount deposited in a bank in an unexpected
or malicious way. Nierstrasz [109] and Puntigam [121] model the behavior of active objects
as local types that resemble finite state automata, and discuss subtyping in terms of their
traces. Probert and Saleh [117] discuss the synthesis of protocols from stated properties and
partial specifications, such as some, but not all of the local types involved. For the related
problem of verifying properties of protocols expressed as finite state machines, we refer the
reader to the work of Yuang [139].

34

Chapter 4

Typestates for Progress

Liveness properties state that a system will eventually produce an event of interest [6,
87]. For example, a client may request exclusive use of a resource from a server, with
the expectation that there will eventually be a reply indicating whether access has been
granted or denied. Liveness properties are generally difficult to express and reason about;
this is primarily because they are formulated over, and thus require reasoning on, sequences
of runtime configurations. In addition, even elementary liveness properties may hinge on
assumptions about fairness, which disallow the indefinite postponement of basic operations
such as the dispatching of messages [1].

Usually, type systems provide a straightforward way to capture safety properties of
programs, i.e., properties which rule out executions that reach undesirable states. In contrast
to liveness, safety can be established by analyzing single runtime transition steps. However,
work in session types [126] has shown the feasibility of using a type system to establish certain
notions of progress. These works apply type discipline to the use of communication channels
in the π-calculus, and have viewed issues of progress under the prism of session fidelity:
communication protocols, and hence the types that describe them, are designed so that
adhering participants never get stuck. Session types usually constrain cyclic communication
dependencies on the level of the protocol itself, so that well-typed processes communicate in a
manner that always makes progress [14, 70]. However, as Sumii and Kobayashi [125] remark,
there is more to progress than breaking cyclic dependencies: programmer intent should be
taken into account.

We are interested in guaranteeing that an implementation adheres to the programmer’s
intent on the delivery of certain messages. For example, the programmer may demand that
whenever a client requests resource access from a server, it must eventually receive a reply.
This reply does not necessarily need to come from the server process itself, but it does need
to specify whether access to the resource has been granted or not. Certain bugs in the
implementation can violate this requirement, for example, due to cyclic dependencies, or an
omission of a message sending command by the programmer.

This chapter presents a possible solution to the problem in the context of actors [3],
which communicate via asynchronous message-passing. Our work is structured around a
simple actor calculus that allows the programmer to specify how messaging requirements may

35

be generated at runtime. We regard progress to be a persistent property on the (runtime)
program state such that a configuration C satisfies progress if every execution trace from C

ends in a state where all dynamically generated messaging requirements have been satisfied.
We propose a type system to guarantee this property for every runtime configuration resulting
from the program. We use the notion of a typestate [124] on both the language level, and
in the presented meta-theory, tagging actor names with the multiset of message types that
the corresponding actor needs to receive. We therefore regard progress as the question of
whether an actor eventually receives all the messages included in their typestate. The type
system enforces that, for every requirement that appears at runtime, suitable action is taken:
either it is fulfilled in the current scope, or it is delegated to another actor. By recursive
reasoning, the type system guarantees that such a postponed requirement will be satisfied
by the delegate actor. In essence, we show that in all executions of well-typed programs, all
requirements generated at runtime will eventually result in the corresponding messages being
received.

A preliminary version of this work appeared in 2017, at the Workshop on Actors and
Active Objects [37]. The most important shortcoming of that system is that the typing does
not terminate for programs with cyclic messaging patterns. In Section 4.5 we show that
it is possible to overcome this limitation, by using a memoization technique. Moreover, in
order to keep the presentation simple, the material here does not deal with elementary safety
properties, such as checking the numbers of handler arguments—those can be established by
a separate type system.

Chapter Outline

We first present, in Section 4.1, two example actor programs that demonstrate the
usefulness of message requirements with regard to establishing progress. We then define our
actor calculus formally in Section 4.2, with its abstract syntax and operational semantics.
The type system is defined in Section 4.3, where we give example typings and discuss the
system’s limitations. The main result is proven in Section 4.4, where we show that executions
of well-typed programs eventually satisfy stated requirements. In Section 4.5, we discuss
cyclic communication patterns and a possible solution to the issues analyzed on page 46.
Lastly, Section 4.6 incorporates Puntigam’s ideas on safety properties, as outlined on page 22.

4.1 Motivating Examples

We motivate our approach by discussing two simple programs, given in pseudo-code syntax
reminiscent of Scala [129] with the Akka toolkit [93] for actors. Later, in Section 4.2, we will

36

define a minimal calculus to make the underlying ideas precise. The first program, shown in
Figure 4.1, embodies a resource sharing scenario among multiple clients via a central server.
The second program, shown in Figure 4.2, implements a classic example from the session
types literature, where two buyers coordinate to purchase a book from a seller.

4.1.1 Resource Sharing Program

In the resource sharing program of Figure 4.1, there are three kinds of actors: servers,
clients, and resources. The clients attempt to acquire exclusive access to resources administered
by the server, by repeatedly messaging it until they succeed. The server is responsible for
responding to requests, by creating new resource actors and handing out their names, as
permitted by system limits. The problem we consider in this example is how to ensure
that (a) clients eventually receive some reply after a request, whether positive or negative;
(b) resources are properly allocated and de-allocated; and that (c) allocated resources are
eventually put to work.

Actors are defined by their behavior, i.e., how they respond to messages, and their
persistent state. For example, server actors have handlers for request and done messages,
and a count state variable that represents the number of available resources. The program
initially spawns a server actor and two client actors, on lines 40 to 42. The two clients are
each sent a start(s) message (lines 43 to 44), informing them of the name of the server s. The
clients then send request messages to the server (line 19), to ask for resource access. Upon
receiving a request message, the server checks if count is zero or less (line 3), and if so, it
sends a later message to the client. If count is positive, the server spawns a new resource
actor to which it sends a lock message (line 8) with the client and itself as the payload; then,
it decrements count. The resource reacts to the lock message by sending ok to the client
(line 33), who replies with a work message (line 22).

The requirements (a), (b), and (c) from above are explicitly embedded in the code via the
use of the construct add_req. On line 18, we express that the client actor currently executing
this line is required to eventually receive either ok or later. On line 7, add_req expresses the
requirement that the actor whose name is stored in rs (a resource actor) must eventually
receive a kill message, representing de-allocation. Finally, on line 32, we express that the
resource actor executing this line needs to eventually receive a work message.

As it turns out, the stated requirements will be satisfied in all executions of the resource
sharing program where message delivery and processing is not indefinitely postponed. With
regard to the delivery of either ok or later to the clients, consider what happens when the
server actor receives a request message. It is either count ≤ 0, in which case the server sends

37

Figure 4.1: Example – Resource Sharing.

1 Se r v e r (count : I n t) = {
2 r e q u e s t (c : C l i e n t) =
3 i f count ≤ 0 then
4 c ! l a t e r ()
5 e l se
6 l e t r s = new Resource () in
7 l e t rs_ = r s . add_req (k i l l) in
8 rs_ ! l o c k (c , s e l f) ;
9 update (count - 1)
10
11 done (r : Resource) =
12 r ! k i l l () ;
13 update (count + 1)
14 }
15
16 C l i e n t () = {
17 s t a r t (s : S e r v e r) =
18 l e t s e l f_ = s e l f . add_req (ok + l a t e r) in
19 s ! r e q u e s t (s e l f_)
20
21 ok (r : Resource , s : S e r v e r) =
22 r ! work (se l f , s)
23
24 l a t e r () = . . .
25
26 done (r : Resource , s : S e r v e r) =
27 s ! done (r)
28 }
29
30 Resource () = {
31 l o c k (c : C l i e n t , s : S e r v e r) =
32 l e t s e l f_ = s e l f . add_req (work) in
33 c ! ok (se l f_ , s)
34
35 work (c : C l i e n t , s : S e r v e r) =
36 . . .
37 c ! done (se l f , s) ;
38 }
39
40 l e t s = new Se r v e r (1) in
41 l e t c1 = new C l i e n t () in
42 l e t c2 = new C l i e n t () in
43 c1 ! s t a r t (s) ;
44 c2 ! s t a r t (s)

38

later to the client actor right away; or count > 0, and the client name is sent to the newly
spawned resource actor (line 8), which sends it an ok message on line 33.

Note that if we omit some message sending operation, requirements will be violated; for
example, leaving out the statement c ! done(self, s) from line 37 would violate the requirement
set on line 7, thus resulting in failure to de-allocate the resource. Consequently, satisfaction
of requirements captures a form of progress for actor programs, by ruling out that certain
actors wait forever for some specific message.

4.1.2 Two Buyer Protocol

The program in Figure 4.2 builds on the two buyer protocol—a classic example found,
e.g., in the work of Honda et al. [69]. The general idea is that two buyers need to coordinate
to buy a book from a seller. The first buyer sends a quote request to the seller, who replies
with a price. When the first buyer receives this quote, it tells the second buyer how much it
is willing to contribute; then the second buyer decides if the remaining amount is within their
budget, and let the seller know. In this example, the problem we consider is (a) whether
the first buyer eventually gets a quote from the seller, and (b) whether the seller eventually
receives a response to the quote.

There are three actor behaviors in the program: Seller, Buyer1, and Buyer2. Execution
begins with spawning one actor of each behavior, on lines 82 to 85. The protocol starts when
the first buyer actor receives a start message with the names of the two other participants.
The first buyer then sends a get_quote message to the seller actor with the title of a book
(line 64). Requirement (a) is embedded in the use of add_req on line 63. In response to a
get_quote message, the seller actor looks up the price of the title and sends it back in a quote

message (lines 49 to 51). Notice the assignment with add_req on line 50, which captures
requirement (b) by demanding either one of messages yes or no.

The first requirement is easily seen to be fulfilled by the seller actor on line 51, assuming
the price_of invocation on line 49 terminates. The second requirement is ultimately fulfilled by
the buyer-two actor, which will either reply yes, or no, in response to the ask message from the
buyer-one actor. Once again, omitting send operations will result in requirement violations;
for example, omitting s ! yes() from line 77 would have that branch of the conditional (line 76)
to proceed without a response to the seller. As in the first example, it makes sense to demand
that both branches of a conditional satisfy all stated requirements, perhaps via a different
messaging path—in this example, via a yes or no (lines 77 and 79, respectively).

As both presented examples hint at, making messaging requirements explicit allows us to
reason about the eventual delivery of certain messages—and to do so statically. Our approach

39

Figure 4.2: Example – Two Buyer Protocol.

45 S e l l e r () = {
46 get_quote (t i t l e : S t r i n g ,
47 b1 : Buyer1 ,
48 b2 : Buyer2) =
49 l e t p r i c e = p r i c e_o f (t i t l e) in
50 l e t s e l f_ = s e l f . add_req (ye s + no) in
51 b1 ! quote (p r i c e , b2 , s e l f_)
52
53 ye s () =
54 . . .
55
56 no () =
57 . . .
58 }
59
60 Buyer1 (con t r : I n t) = {
61 s t a r t (s : S e l l e r ,
62 b2 : Buyer2) =
63 l e t s e l f_ = s e l f . add_req (quote) in
64 s ! get_quote ("1984" , se l f_ , b2)
65
66 quote (p r i c e : I n t ,
67 b2 : Buyer2 ,
68 s : S e l l e r) =
69 b2 ! ask (p r i c e , cont r , s)
70 }
71
72 Buyer2 (con t r : I n t) = {
73 ask (p r i c e : I n t ,
74 b1_contr : I n t ,
75 s : S e l l e r) =
76 i f p r i c e - b1_contr ≤ con t r then
77 s ! y e s ()
78 e l se
79 s ! no ()
80 }
81
82 l e t s = new S e l l e r () in
83 l e t b1 = new Buyer1 (11) in
84 l e t b2 = new Buyer2 (5) in
85 b1 ! s t a r t (s , b2)

40

is to reduce difficult parts of this reasoning to the checking of program conformance to a type
system along the lines of process types [67, 119]. If a program passes the check, it is free of
the discussed progress issues.

4.2 Actor Calculus

In this section, we present a minimal actor calculus to formalize the above ideas. This
calculus is a small extension of the one presented in Section 2.1; its syntax provides an extra
construct, add(x, R) that captures requirement generation. As before, the language follows
standard actor semantics. However, its syntax does not adopt the λ-calculus extension of
Agha et al. [3]; instead, to capture the examples above, we allow behaviors to include message
handler definitions. As in Section 2.1.1, the intention here is the following: consider an actor
α with behavior b, where the definition of b includes a handler h with parameters x1 . . . xk

and body S. Then, the receipt of a message h(u1 . . . uk) by actor α will invoke the code S,
replacing the formal parameters x1 . . . xk with the values u1 . . . uk, and self with α. The
reserved name self refers to the actor in which it is evaluated.

In what follows, we abbreviate sequences of the form x1 . . . xk with x, sequences of the
form u1 . . . uk with u, et cetera. The calculus syntax is given in Figure 4.3: programs P consist
of a list of behavior definitions B and an initial statement S. An actor behavior definition
includes a name b that identifies the behavior, variables x that store the assuming actor’s
state, and a list of message handler definitions H. In turn, a message handler definition
includes a name h that identifies the handler, a list of message parameters x, and a statement
S to be executed upon invocation of the handler.

Statements generally consist of single operations followed by another statement. For
example, x!h(e).S sends a message for handler h of the actor x, with argument list e, and
then proceeds as S. The statement νx:b(e).S creates a new actor (whose name is bound to x

in S) with behavior b and initial state variables set to the values of the expressions e. The
statement update(e) updates the values of actor state variables, and the if statement has the
usual meaning of a conditional. A ready statement belongs to the runtime syntax, signifying
the end of handler execution.

The call add(x, R) adds the requirement R to the list of requirements already associated
with the actor x. Informally, to satisfy a disjunctive requirement (h1 + h2) of some actor x,
we have to send it a message labeled with either h1 or h2. Similarly, to satisfy a conjunctive
requirement h1 · h2, one has to send the actor two messages, h1 and h2.

41

Figure 4.3: Actor calculus syntax.

P ::= B S

B ::= bdef b(x) = {H} b ∈ behavior names
H ::= hdef h(x) = S h ∈ handler names

S ::= x!h(e).S

| add(x, R).S

| if e then S1 else S2 e ∈ expressions (values, function calls, etc.)
| νx:b(e).S actor creation
| update(e) state update
| ready [runtime syntax]

x ::= self | x, y, z, . . . | α, β, . . . x, y, z, . . . ∈ variables
α, β, . . . ∈ runtime actor names

R ::= (R1 + · · ·+ Rk) requirement disjunction
| (R1 · . . . · Rk) requirement conjunction [runtime syntax]
| (R1 ÷ R2) requirement satisfaction [runtime syntax]
| h simple message requirement
| ε empty requirement [runtime syntax]

C ::= (∆, R,M,A) configuration [runtime syntax]
∆ ::= program information [runtime syntax]
R ::= {α1 7→ R1 . . . ακ 7→ Rκ} requirement map [runtime syntax]
M ::= {α1!h1(u1) . . . ακ!hκ(uκ)} multiset of pending messages [runtime syntax]
A ::= {〈S1〉b1(w1)

α1 . . . 〈Sκ〉bκ(wκ)ακ } actor map [runtime syntax]
u,w ∈ values

Figure 4.4: Structural congruence on requirements.

ε+ R ≡ ε ε · R ≡ R

R1 + R2 ≡ R2 + R1 R1 · R2 ≡ R2 · R1
R1 · (R2 · R3) ≡ (R1 · R2) · R3 R1 + (R2 + R3) ≡ (R1 + R2) + R3

R÷ (R1 + R2) ≡ (R÷ R1) + (R÷ R2) R÷ (R1 · R2) ≡ (R÷ R1)÷ R2

(R1 + R2)÷ R ≡ (R1 ÷ R) + (R2 ÷ R)

42

Figure 4.5: Requirement reductions.

(R · h)÷ h −→ R

R1 −→ R′1
R1 · R2 −→ R′1 · R2

R1 −→ R′1
R1 + R2 −→ R′1 + R2

R1 · (R2 + R3) −→ R1 · R2 + R1 · R3

Figure 4.6: Labeled transition semantics for state-
ments. Expressions e follow standard semantics, and
∆ is static program information.

e ∆ u l = α!h(u)

α!h(e).S
l−→∆ S

add(α, R).S
add(α, R)−−−−→∆ S

α fresh e ∆ u l = α:b(u)

νx:b(e).S
l−→∆ S[α/x]

e ∆ u l = update(u)

update(e)
l−→∆ ready

e ∆ true

if e then S1 else S2
if−→∆ S1

e ∆ false

if e then S1 else S2
if−→∆ S2

4.2.1 Operational Semantics

To formalize the program semantics, we first define an algebra on the extended requirement
syntax (including the empty, conjunction, and satisfaction rules of Figure 4.3). The relation
≡ on requirements is the least congruence relation that includes the rules of Figure 4.4.
The empty requirement ε is the zero element for + (disjunction) and the unit element for ·
(conjunction). Reductions on requirements are defined in Figure 4.5, and hold up to structural
congruence. An empty requirement ε is always considered satisfied, while we say that the
messages h1, . . . , hk satisfy a non-empty requirement R iff (. . . (R÷h1)÷h2)÷· · ·)÷hk) −→∗ ε.

Furthermore, we assume a reduction relation on expressions, such that the notation
e ∆ u means that expression e reduces to the value u, given static program information
∆. The latter is assumed to contain information extracted from the program, such as the
parameters of message handlers. The transition relation for statements is defined in Figure 4.6,
where we write S

l−→∆ S′ to say that a statement S reduces to S′ via l. The label l records
the action being taken; for example, α!h(e).S reduces to S, and l = α!h(u) records the sent
message. The values u are computed from the expressions e, i.e., e ∆ u.

The transition relation S
l−→∆ S′ is referenced in the program-level rules of Figure 4.7,

which transform runtime configurations. A runtime configuration C is a tuple (∆, R,M,A),

43

Figure 4.7: Labeled transition semantics for actor
configurations.

Send
R(β)÷ h R′ R′ = R[β 7→ R′] S

β!h(u)−−−→∆ S′

∆, R, M, A ∪ {〈S〉b(w)
α } −→ ∆, R′, M ∪ {β!h(u)}, A ∪ {〈S′〉b(w)

α }

Receive
S = body(∆, h) y = params(∆, h) x = params(∆, b)

∆, R, M ∪ {α!h(u)}, A ∪ {〈ready〉b(w)
α } −→ ∆, R, M, A ∪ {〈S[α/self][uw/yx]〉b(w)

α }

Update
S

update(u)−−−−−→∆ S′

∆, R, M, A ∪ {〈S〉b(w)
α } −→ ∆, R, M, A ∪ {〈S′〉b(u)

α }

New
S

β:b(u)−−−→∆ S′

∆, R, M, A ∪ {〈S〉bα(w)
α } −→ ∆, R, M, A ∪ {〈S′〉bα(w)

α , 〈ready〉b(u)
β }

AddReq
R(β) · R R′ S

add(β, R)−−−−−→∆ S′ R′ = R[β 7→ R′]

∆, R, M, A ∪ {〈S〉b(w)
α } −→ ∆, R′, M, A ∪ {〈S′〉b(w)

α }

If
S

if−→∆ S′

∆, R, M, A ∪ {〈S〉b(w)
α } −→ ∆, R, M, A ∪ {〈S′〉b(w)

α }
Prog

∆ = info(B)

B S −→ ∆, ∅, ∅, {〈S〉in()
in }

where ∆ records static program information; R is a map from actor names to requirements;
M is the multiset of pending (sent, but not received) messages; and A maps each actor name
to a behavior, state, and executing statement. Elements of M have the form α!h(u), where
α is the destination actor, h is the handler to be invoked upon receipt, and u are values
constituting the message payload. We denote A as a set of elements of the form 〈S〉b(w)

α , where
α is the actor’s name, b corresponds to its behavior, the values w constitute its state, and S

is the statement the actor is currently executing.
We write C −→ C ′ to say that the runtime configuration C reduces to C ′ via an application

of some rule in Figure 4.7. By extension, C1 −→ C2 −→ · · · denotes a possibly infinite
sequence of configurations where each adjacent pair follows the transition rules of Figure 4.7.
Execution of a program P = B S then consists of a sequence of transformations that starts from
the program’s initial configuration. Such an initial configuration is created via rule Prog in
Figure 4.7, and it records information ∆ from the program, associates no requirements with
any actor, has an empty message set, and includes a single initial actor executing S. This
actor has reserved name and behavior in, and no state variables. When R = ∅, we define
R(x) = ε for all x; i.e., by convention, ∅ maps no requirements to any actor. We assume a

44

Figure 4.8: Requirement algebra extended to require-
ment mappings and runtime configurations.

(R1 ·R2)(x)
def
= R1(x) ·R2(x)

(R1 +R2)(x)
def
= R1(x) +R2(x)

(R1 ÷R2)(x)
def
= R1(x)÷R2(x)

R −→ R′

R ∪ {x 7→ R} −→ R ∪ {x 7→ R′}
R ≡ R′

R ∪ {x 7→ R} ≡ R ∪ {x 7→ R′}

R −→ R′

(∆, R,M,A) −→ (∆, R′,M,A)
R ≡ R′

(∆, R,M,A) ≡ (∆, R′,M,A)

straightforward extension of the requirement algebra to runtime configurations, as shown in
Figure 4.8. As always, reductions hold up to ≡.

Rule AddReq deals with calls of the form add(β, R) by appending R to R(β), i.e., the
requirements already associated with β. Note the use of ÷ in Send: the rule adds the sent
message to the multiset of pending messages, and reduces the requirements related to β, by
re-mapping β to R(β)÷ h. This corresponds to the fact that β will eventually receive h.

Only idle actors can receive messages [2]. Since statements take the form ready when
completely reduced, Receive describes an idle actor α receiving a message to be processed
by handler h. The statement S to execute is extracted from the program information ∆, and
on it, the rule performs substitution of current values for handler and state variables. These
values are taken from the message contents u and actor state w. Handler and behavior (i.e.,
state) parameters are looked up via the auxiliary function params . Rule Update writes new
values u to the state variables of α. Rule New creates a new actor 〈ready〉b(u)

β with unique
name β, initialized with the given behavior b and values u for state variables. Rule If has
the usual effect of deciding a conditional.

4.3 Type System

The typing rules are given in Figure 4.9. As before, ∆ records static program information
(such as the abstract syntax tree) which is used to retrieve, for example, the body of message
handlers. R maps names to pending requirements, and S is the program statement being
typed. Judgments have the form R `∆ S, read “under program information ∆ and requirement
map R, the statement S is well typed”.

Rule T-Prog types programs, writing ` P to state that the program P is well-typed. The
rule prescribes that P = B S is well-typed, when using the information ∆ extracted from

45

Figure 4.9: Static typing rules.

T-Prog
∆ = info(B) ∅ `∆ S

` B S

T-New
R ∪ {x′ 7→ ε} `∆ S[x′/x] x′ fresh

R `∆ νx:b(e).S
T-Add

R1 · R R′ R ∪ {x 7→ R′} `∆ S

R ∪ {x 7→ R1} `∆ add(x, R).S

T-If
R1 `∆ S1 R2 `∆ S2 R ≡ R1 +R2

R `∆ if e then S1 else S2
T-Update

∀x.(x ∈ dom(R) =⇒ R(x) −→∗ ε)
R `∆ update(e)

T-Send

y = actors(∆, e) z = actors(∆, params(∆, h))

Sh = body(∆, h) {x 7→ R1 , y 7→ R2} `∆ Sh[x/self][y/z]

R ∪ {x 7→ (Rx ÷ (h · R1)), y 7→ (Ry ÷ R2)} `∆ S

R ∪ {x 7→ Rx, y 7→ Ry} `∆ x!h(e).S

the behavior definitions B, the statement S is well-typed under the empty requirement map.
Rule T-New requires that the statement following the creation command be typed with
no requirements associated with the new actor. Rule T-Add demands that the statement
following the add(x, R) command is well-typed under an environment which includes the
new requirements R for x. Per rule T-If, typing conditionals requires that each of the two
branches satisfies the known requirements. Consistent with the fact that statements end in
a construct of the form update(e), rule T-Update is the base case of the recursive typing
algorithm: it demands that all requirements known in the current scope have been satisfied.

Typing the action of sending a message takes into account that the execution of the
related handler may satisfy some requirements known in the current context. Thus, rule
T-Send demands that the statement S following the send command must be type-able under
a “reduced” requirement map, from which we have removed the sent message h, and the
requirements satisfied by the body of h. These include some requirements R1 associated with
x, as well as some requirements R2 associated with (some of1) the arguments e.

To clarify the use of these rules, consider the example in Figure 4.10, and the respective
typing in Figure 4.11. The program’s main statement adds the requirement for a message
m to y, but then does not contain a y!m() statement; rather, it sends h(y) to x. When x
receives that message, the requirement for m will be satisfied in the body of the handler, i.e.,
the statement z!m().update(), with z bound to y. For this reason, when the typing reaches
x!h(y), it requires both the typing of the body of h, and the remaining commands—as in the
application of rule T-Send from Figure 4.11.

1The careful reader might observe that the rule does not care for self being part of the message payload.
This poses no additional technical difficulty, and is omitted to simplify the presentation.

46

Figure 4.10: Example of requirement delegation.

bdef b1() = {
hdef h(z) = z!m().update() [sends m to z and returns]

}
bdef b2() = {
hdef m() = update() [empty update, does nothing]

}

νx:b1() [creates x with behavior b1]
.νy:b2() [creates y with behavior b2]
.add(y,m) [associates requirement for m with y]
.x!h(y) [sends h to x, with y in the payload]
.update() [empty update, does nothing]

Limitations. Our system does not consider a requirement fulfilled, if the necessary mes-
saging happens via state variables. To clarify this limitation, consider the program on the
left-hand side of Figure 4.12. It includes two behavior definitions, b1 and b2, with one handler
each: h1 in b1, and h2 in b2. Execution starts with the creation of actor x with behavior b1,
and actor y with behavior b2. Actor y is created with b2(x), i.e., storing x in the behavior
(state) variable z. The program proceeds to associate the requirement h1 with x, then sends
h2() to y. When y receives h2, it will send h1() to x. However, the presented type system
will reject the program, because the typing rules for message sending do not consult with the
actor’s state. Doing so requires the static tracking of dynamically changing actor state, and
is the topic of future research.

The example on the right-hand side of Figure 4.12 shows two actors that exchange
messages forever. Actor x sends h2 to y, which replies with h1, and so on. Let’s see what
happens when we attempt to type the body of h1. First, the system encounters the call
add(self, h1), which adds a requirement for h1 to self, i.e., x. Because the remaining
statement is z!h2(self).update(), the typing will have to proceed via rule T-Send. In
accordance to the rule premises (page 46), we need to type the body of h2. In doing so,
we will eventually reach the statement add(self, h2), adding a requirement for h2 to self,
i.e., y. The remaining statement is z!h1(self).update(), and T-Send demands the typing of
the body of h1. Attempting to type h1 essentially restarts the process, entering an infinite
sequence of rule applications.

Note that on an intuitive level, this program has the discussed progress property: every
generated requirement is eventually satisfied—even though a new one takes its place imme-

47

Figure 4.11: Typing the example of Figure 4.10.

T
-S

en
d

T
-S

en
d

{x
′ 7→

ε,
y
′ 7→

ε}
` ∆

u
p
d
a
te

()

=⇒

bo
dy

(∆
,m

)
=

u
p
d
a
te

()

{x
′ 7→

ε,
y
′ 7→

ε}
` ∆

bo
dy

(∆
,m

)[
y
′ /
se
lf

]

{x
′ 7→

ε,
y
′ 7→

ε}
` ∆

u
p
d
a
te

()

=⇒

(m
÷
m

)
−→

ε

{x
′ 7→

ε,
y
′ 7→

(m
÷
m

)}
` ∆

u
p
d
a
te

()

{x
′ 7→

ε,
y
′ 7→

m
}
` ∆

y
′ !m

()
.u
p
d
a
te

()

=⇒

bo
dy

(∆
,h

)
=
z!
m

()
.u
p
d
a
te

()

{x
′ 7→

ε,
y
′ 7→

m
}
` ∆

bo
dy

(∆
,h

)[
y
′ /
z]

{x
′ 7→

ε,
y
′ 7→

ε}
` ∆

u
p
d
a
te

()

=⇒

(m
÷
m

)
−→

ε

{x
′ 7→

ε
÷
h
,
y
′ 7→

(m
÷
m

)}
` ∆

u
p
d
a
te

()

T
-N

ew

T
-N

ew

T
-A

d
d

{x
′ 7→

ε,
y
′ 7→

m
}
` ∆

x
′ !h

(y
′)
.u
p
d
a
te

()

{x
′ 7→

ε,
y
′ 7→

ε}
` ∆

a
d
d

(y
′ ,
m

)
.x

′ !h
(y

′)
.u
p
d
a
te

()

{x
′ 7→

ε}
` ∆

ν
y
:b

2
.a
d
d

(y
,
m

)
.x

′ !h
(y

)
.u
p
d
a
te

()

∅
` ∆

ν
x

:b
1
()
.ν
y
:b

2
()
.a
d
d

(y
,
m

)
.x

!h
(y

)
.u
p
d
a
te

()

48

Figure 4.12: Untypeable examples.

x : b2() y : b2(x)

P

h2()

h1()

bdef b1() = {
hdef h1() = update()

}

bdef b2(z) = {
hdef h2() =

z!h1()

.update(z)

}

νx:b1()

.νy:b2(x)

.add(x, h1)

.y!h2()

.update()

1 bdef b1() = {
2 hdef h1(z) =

3 add(self, h1)

4 . z!h2(self)

5 .update()

6 }
7
8 bdef b2() = {
9 hdef h2(z) =

10 add(self, h2)

11 . z!h1(self)

12 .update()

13 }
14
15 νx : b1()

16 . νy:b2()

17 . x!h1(y)

18 .update()

x : b1() y : b2()

P

h2(x)

h1(y)

h1(y)

diately after. This can be made obvious from the program’s reduction sequence, shown in
Figure 4.13 with minor simplifications. Observe that the configurations marked with (∗) are
identical, and that the part corresponding to the requirement mapping {x 7→ h1} is tracked
by the type system in a manner that mirrors execution, thus failing to terminate. A possible
solution to the problem is discussed in Section 4.5.

4.4 Calculus Meta-Theory

In order to establish our main result, we extend the typing relation to runtime configura-
tions:

Definition 4.1 (Runtime Typing). Let C be a runtime configuration. We say that C is
well-typed, written ` C, iff C satisfies the rules shown in Figure 4.14.

Note rule R-Transition, which is defined with the intention of forcing the runtime typing
to unfold program execution—facilitating the proofs of this section. For example, we can
show that typing holds up to equivalence and requirement reductions (Figure 4.8), captured
by the next lemma.

Lemma 4.1. The following rules hold true:

C1 ≡ C2 ` C1

` C2

R −→ R′ ` (∆, R,M,A)

` (∆, R′,M,A)

49

Figure 4.13: Simplified reduction sequence for the
right-hand side program of Figure 4.12.

∆, ∅, ∅,
{〈
νx:b1().νy:b2 .x!h1(y).update()

〉in()
in

}

−→∗ ∆, ∅, ∅,
{〈

ready
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
x!h1(y).update()

〉in()
in

}

−→∗ ∆, ∅, {x!h1(y)},
{〈

ready
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→ ∆, ∅, ∅,
{〈

add(self, h1).y!h2(self).update()
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→ ∆, {x 7→ h1}, ∅,
{〈
y!h2(self).update()

〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→∗ ∆, {x 7→ h1}, {y!h2(x)},
{〈

ready
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}
(∗)

−→ ∆, {x 7→ h1}, ∅,
{〈

ready
〉b1()
x
,
〈
add(self, h2).x!h1(self).update()

〉b2()
y
,
〈
ready

〉in()
in

}

−→ ∆, {x 7→ h1, y 7→ h2}, ∅,
{〈

ready
〉b1()
x
,
〈
x!h1(self).update()

〉b2()
y
,
〈
ready

〉in()
in

}

−→∗ ∆, {y 7→ h2}, {x!h1(y)},
{〈

ready
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→ ∆, {y 7→ h2}, ∅,
{〈

add(self, h1).y!h2(self).update()
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→ ∆, {x 7→ h1, y 7→ h2}, ∅,
{〈
y!h2(self).update()

〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}

−→∗ ∆, {x 7→ h1}, {y!h2(x)},
{〈

ready
〉b1()
x
,
〈
ready

〉b2()
y
,
〈
ready

〉in()
in

}
(∗)

··
·

Figure 4.14: Runtime typing rules.

R-Transition
C −→ ∀C ′.(C −→ C ′ =⇒ ` C ′)

` C R-Ready

∀x.(x ∈ dom(R) =⇒ R(x) −→∗ ε)
∀S, b, w, α.(〈S〉b(w)α ∈ A =⇒ S = ready)

` ∆, R, ∅, A

The proof is by induction on the structure of runtime typing derivations, and is omitted.
The main result of this chapter is that during executions of well-typed programs, all require-
ments generated dynamically are eventually satisfied; that is, runtime configurations satisfy
the progress property:

Definition 4.2 (Progress). Let C = (∆, R,M,A) be a runtime configuration. We say that C
satisfies the progress property, written P(C), iff for all executions C −→ C1 −→ · · · −→ Ck

that start from C, it is Ck = (∆, Rk,Mk, Ak) with Rk(x) −→∗ ε for all x ∈ dom(Rk).

We remind the reader that the initial configuration of a program P is denoted with init(P),
and that −→∗ is the transitive reflexive closure of the relation −→. We can now state the
main result:

Theorem 4.1. Let P be a program. Assuming statements S terminate, ` P and init(P) −→∗ C
imply P(C).

The theorem states that all configurations reachable from the initial configuration of a well-
typed program satisfy the progress property, notwithstanding the divergence of expressions
(denoted with e in Figure 4.3).

Proof outline. The main idea is to show that

50

(i) well-typed programs generate well-typed initial configurations, that is, ` P implies
` init(P);

(ii) the reduction relation of Figure 4.7 preserves typing, that is, ` C and C −→∗ C ′ imply
` C ′; and

(iii) well-typed configurations satisfy the progress property, that is, ` C implies P(C).

In other words, we show that the typing of configurations guarantees progress, and that
reduction preserves the progress property. We proceed to prove the above items in sequence.

Recalling that satisfying R1 · R2 requires the satisfaction of both R1 and R2, we state—
without proof—an auxiliary lemma, which can be shown by induction on the structure of
runtime typing derivations:

Lemma 4.2. If ` (∆, R1, M1, A1) and ` (∆, R2, M2, A2), then
` (∆, R1 ·R2, M1 ∪M2, A1 ∪ A2).

Moreover, the following is an immediate consequence of figures 4.4 and 4.5:

Lemma 4.3. (R1 ÷ R2) · R2 −→∗ R1

The lemma that follows captures our intuition that the static typing of programs (per
Figure 4.9) implies that the respective runtime configurations are well-typed (per Figure 4.14).

Lemma 4.4. Let S be a statement where self has been replaced by a runtime name α, and
let A consist solely of actors executing ready. Then, for any static program information ∆,
requirement map R, behavior instantiation b(u), and variables x with |x| = |u|, we have that
R[u/x] `∆ S[u/x] implies `

(
∆, R[u/x], ∅, A ∪ {〈S[u/x]〉b(u)

α }
)
.

Proof. We proceed by induction on the syntax of statements.

Base case.

From Figure 4.3, the base case is that of the update call. Let ∆, R, A, α, x and b(u) be
as per the statement of the lemma. Moreover, fix values w with |w| = |u|. We need to show
that

R[u/x] `∆ update(w)[u/x]︸ ︷︷ ︸
update(w)

implies

` (∆, R[u/x], ∅, A ∪ {〈update(w)[u/x]︸ ︷︷ ︸
update(w)

〉b(u)
α }).

Notice that the variables x do not appear in the values w, and so the substitution [u/x] leaves

51

update(w) unchanged. Assume R[u/x] `∆ update(w) per rule T-Update in Figure 4.9, i.e.,

∀y.(y ∈ dom(R[u/x]) =⇒ R[u/x](y) −→∗ ε) (4.1)

From 4.1 and rule R-Ready in Figure 4.14, we have that

` (∆, R[u/x], ∅, A ∪ {〈ready〉b(w)
α }) (4.2)

which, by R-Transition, implies

`
(
∆, R[u/x], ∅, A ∪ {〈update(w)〉b(u)

α }
)
.

Inductive step – message sending.

Let ∆, R, A, α, x and b(u) be as per the statement of the lemma. Moreover, fix a message
handler h, values w, an actor name β, a statement S, a behavior instantiation b′(u′), and
variables x′ with |x′| = |u′|. Assume that A = A1 ∪ A2 ∪ {〈ready〉b′(u′)β } for some A1 and
A2 consisting solely of ready actors, and that R = R′[u/x] for some R′. Also, assume that
S = S0[u/x] for some S0 where self has been replaced with α. Further assumptions on x′ and
u′ will become clear in the next few steps. We need to prove that

R `∆ β!h(w).S implies `
(
∆, R, ∅, A ∪ {〈β!h(w).S〉b(u)

α }
)
.

Assume R `∆ β!h(w).S was derived via an application of rule T-Send, and thus

R = R0︸︷︷︸
R01[u/x]

∪ {β 7→ Rβ, γ 7→ Rγ}︸ ︷︷ ︸
R02[u/x]

(4.3)

for some mapping R0, requirements Rβ and Rγ, and γ = actors(∆, w). From T-Send, it is

R0︸︷︷︸
R01[u/x]

∪ {β 7→ Rβ ÷ (h · R1), γ 7→ Rγ ÷ R2}︸ ︷︷ ︸
R03[u/x]

`∆ S (4.4)

and {β 7→ R1, γ 7→ R2} `∆ body(∆, h)[β/self][γ/z]︸ ︷︷ ︸
S′h = Sh[u

′/x′]

(4.5)

52

where R1, R2, γ and z are as in rule T-Send. From the inductive hypothesis, 4.4 implies

`
(
∆, R0 ∪ {β 7→ Rβ ÷ (h · R1), γ 7→ Rγ ÷ R2}, ∅, A1 ∪ {〈S〉b(u)

α }
)

(4.6)

since A1 consists solely of ready actors. Note that the mapping {β 7→ R1, γ 7→ R2} in 4.5
subsumes the substitution [u′/x′]. As a result, we can apply the inductive hypothesis on 4.5
to get

`
(
∆, {β 7→ R1, γ 7→ R2}, ∅, A2 ∪ {〈S′h〉b

′(u′)
β }

)
(4.7)

because A2 consists solely of ready actors. Combining 4.6 and 4.7 per Lemma 4.2, we get

`
(
∆, R0 ∪ {β 7→ (Rβ ÷ (h · R1)) · R1, γ 7→ (Rγ ÷ R2) · R2}

∅, A1 ∪ A2 ∪ {〈S〉b(u)
α , 〈S′h〉b(u

′)
β }

) (4.8)

We apply Lemma 4.3 and Lemma 4.1 to 4.8 to get

`
(
∆, R0 ∪ {β 7→ Rβ ÷ h, γ 7→ Rγ}, ∅, A1 ∪ A2 ∪ {〈S〉b(u)

α , 〈S′h〉b(u
′)

β }
)

(4.9)

We remind the reader that u′ contains (among others) names in w, and that S′h is the body
of handler h with the required substitutions. Thus, by rule R-Transition, 4.9 implies

`
(
∆, R0 ∪ {β 7→ Rβ ÷ h, γ 7→ Rγ},

{β!h(w)}, A1 ∪ A2 ∪ {〈S〉b(u)
α , 〈ready〉b′(u′)β }

)
.

Since A = A1 ∪ A2 ∪ {〈ready〉b′(u′)β }, the above can be written

`
(
∆, R0 ∪ {β 7→ Rβ ÷ h, γ 7→ Rγ}, {β!h(w)}, A ∪ {〈S〉b(u)

α }
)
.

Applying R-Transition again, the above implies

`
(
∆, R0 ∪ {β 7→ Rβ, γ 7→ Rγ}, ∅, A ∪ {〈β!h(w).S〉b(u)

α }
)
.

From 4.3, the above is the same as

`
(
∆, R, ∅, A ∪ {〈β!h(w).S〉b(u)

α }
)

which completes the proof for message sending. The rest of the cases are simpler, and are
thus omitted in the interest of space.

53

Corollary 4.1 (Static Typing Implies Runtime Typing.). ` P implies ` init(P) for all
programs P.

Proof. Let P = B S be a program, and assume self does not appear in S (self does not
make sense in the context of the initial actor). We apply Lemma 4.4 to ∅ `∆ S and
` (∆, ∅, ∅, {〈S〉in()

in }) with ∆ = info(B).

We now show that the reduction relation of Figure 4.7 preserves typing:

Lemma 4.5 (Type Preservation). Let C be a runtime configuration. Then ` C and C −→∗ C ′
imply ` C ′.

Proof. Assume ` C, which means that one of the rules in Figure 4.14 (page 50) applies. If
there exists C ′ s.t. C −→ C ′, then ` C ′ from the definition of typing rule R-Transition.
If C 6−→, i.e., C −→∗ C, the only possibility is that C is a quiescent state, i.e., there are
no messages to be delivered, and all actor statements have been reduced to ready. Per rule
R-Ready, C is well-typed.

Let C be a well-typed runtime configuration. Then a derivation of ` C according to the
rules of Figure 4.14 forms a tree with root ` C, such that every path on this tree is a sequence
of applications of R-Transition that ends in a single application of R-Ready. On each such
sequence, we focus on the configurations on the rule conclusions, say C,C1 . . . Ck. We write
Paths(` C) for the set of all such sequences of configurations. As it turns out, Paths(` C)

includes all possible executions from configuration C:

Lemma 4.6 (Typing Unfolds Execution). Let C1 be a well-typed configuration, i.e., ` C1

and C1 −→ · · · −→ Ck an execution from C1. Then (C1, . . . , Ck) ∈ Paths(` C).

Proof. Directly from Lemma 4.5.

Finally, item (iii) from the proof outline is captured in the statement below:

Lemma 4.7 (Runtime Typing Guarantees Progress). Let C be a configuration. Then ` C
implies P(C).

Proof. A derivation of ` C follows the rules of Figure 4.14, and hence, such a derivation
ends in an application of rule R-Ready. Thus, every sequence in Paths(` C) ends in some
configuration Ck for which ` Ck is given by rule R-Ready. From the definition of the rule,
Ck must be a quiescent state with no requirements. By Lemma 4.6 and the fact that ` C,
every execution from C ends in such a state.

We are now ready to prove the main result:

54

Proof (Theorem 4.1). Direct consequence of

` P implies ` init(P) (Corollary 4.1)
` C and C −→∗ C ′ implies ` C ′ (Lemma 4.5)
` C implies P(C) (Lemma 4.7).

Error programs. The progress property P(C) ensures that a configuration C reduces to
a state where all requirements have been satisfied. The property implicitly captures the
definition of error programs: those that can result in a configuration C for which P(C) does
not hold. More formally,

Definition 4.3 (Error Program). Let P be a program in the syntax of page 42. It is error(P)

when P (∆, R,M,A) and there exists α for which R(α) 6−→ ∗ε.

In other words, an error program is one that can reduce to a configuration with non-empty
requirements, and where no reduction rules (page 44) apply. Theorem 4.1 directly implies
that well-typed programs are not error:

Corollary 4.2. Let P be a program. Then ` P implies that P /∈ error .

Proof. Direct consequence of Theorem 4.1 and Definition 4.2.

4.5 On Cyclic Communication Patterns

The typing of Figure 4.9 permits some cases of indirect satisfaction of requirements, i.e.,
actors delegating obligations to one another—a typical behavior in actor systems. However,
the presented rules demand that such delegation be linear, in the sense that symbolic tracing
of the code should not revisit the same parts in a circular fashion, to avoid infinite loops. As
it turns out, this requirement is an artifact of the design of the typing algorithm, which was
chosen to make the presentation easier to follow. This section discusses alternative typing
rules that would allow many cases of cyclic communication patterns, in large part solving the
issue analyzed on pages 46–49.

The strategy we follow is to track the code starting from each add call site, and declare
success if that particular requirement is found to be satisfied at some point later. If this
symbolic execution reaches the same add site without finding an appropriate send command,
then the algorithm can safely declare failure.

To better understand the proposed extension, consider the program in Figure 4.15,
repeated from page 49. The diagram on the right describes the interaction pattern: an

55

Figure 4.15: Infinite, cyclic requirement generation
example.

1 bdef b1() = {
2 hdef h1(z) =
3 add(self, h1)
4 . z!h2(self)
5 .update()
6 }
7
8 bdef b2() = {
9 hdef h2(z) =
10 add(self, h2)
11 . z!h1(self)
12 .update()
13 }
14
15 νx : b1()
16 . νy:b2()
17 . x!h1(y)
18 .update()

x : b1() y : b2()

P

h2(x)

h1(y)

h1(y)

initial message h1 to actor x causes x and y to exchange messages h1 and h2 indefinitely.
The complication arises because both actors generate a requirement for themselves before
satisfying the requirement they already know for the other actor: on line 3, actor x adds a
requirement for h1 to itself; then, on line 4, it satisfies the requirement h2 for y, to whom it
relies for the satisfaction of its own (just added) requirement for h1.

In summary, the problem with typing this example with the rules in Figure 4.9 is that
they unfold program execution, including the generation of requirements—while demanding
that the code in a handler ends with an empty requirement set. Thus, for the example
of Figure 4.15, the system of Figure 4.9 (a) does not detect that requirements are indeed
satisfied before new ones are generated, and (b) does not terminate.

The first problem can be alleviated if we look at each add statement separately: by
unfolding execution from the add statement onward, we can declare success if we find
appropriate send commands before looping back to that add statement. If no such command
was reached and no more unfolding is possible, i.e., the call graph that begins at the particular
add statement is a chain, then we can safely assume failure. The second problem, i.e.,
termination, can be tackled by “remembering” the initial add call site and breaking the loop
if it is encountered again. We make these ideas more precise with the rules in Figure 4.16.

56

Figure 4.16: Augmented static typing for progress,
solving the cyclicity problem of page 46.

Augm-Send

Sh = body(∆, h) k, {x 7→ R2} `∆ Sh[x/self]

k, {x 7→ (R1 ÷ (h · R2))} `∆ S

k, {x 7→ R1} `∆ x!h(e).S

Augm-Delegate

z = params(∆, h) x 6= y

Sh = body(∆, h) k, {x 7→ R2} `∆ Sh[y/self][e1 x e2 / z]

k, {x 7→ (R1 ÷ R2)} `∆ S

k, {x 7→ R1} `∆ y!h(e1xe2).S

Augm-If
k, {x 7→ R1} `∆ S1 k, {x 7→ R2} `∆ S2 R1 ≡ R1 + R2

k, {x 7→ R} `∆ if e then S1 else S2

Augm-New
k, {x 7→ R} `∆ S[y′/y] y′ fresh

k, {x 7→ R} `∆ νy:b(e).S

Augm-Update R −→∗ ε
k, {x 7→ R} `∆ update(e)

Augm-Add
k1 6= k2 k1, {x 7→ R1 · R2} `∆ S

k1, {x 7→ R1} `∆ add(x, R2)k2 .S

Augm-Add-End R −→∗ ε
k, {x 7→ R} `∆ add(x, R)k.S

Augm-Add-Start
k, {x 7→ R} `∆ S

`∆ add(x, R)k.S

57

The rules assume that each add statement is associated with a unique token k, as in
add(x, R)k. Rule Augm-Add-Start bootstraps the process, with k carried along the relation
`, which unfolds execution. The algorithm only keeps track of one actor name x and its
requirements R, and declares success if it loops back to the same k with an empty R (rule
Augm-Add-End). Rule Augm-Send reduces the tracked requirements by the sent message
h, as well as the requirements R2 satisfied in the handler body Sh. Rule Augm-Delegate

reduces the requirements of x when it is passed as an argument to the message h. Notice
that Augm-Update demands that no requirements remain unsatisfied.

The difference from the system of Figure 4.9 lies in the fact that the rules presented here
are intended to apply on each add call site independently, via application of Augm-Add-Start.
Endless looping is prevented by keeping track of the unique token k, and stopping when it is
reached again (rule Augm-Add-End).

The Fairness Requirement. The typing strategy of the current section only guarantees
requirement satisfaction for fair executions [55]. As discussed in Section 2.1.3, fair executions
are those where enabled transitions are not infinitely postponed. Without this assumption,
the program of Figure 4.15 would not be guaranteed to satisfy all generated requirements;
for instance, h2(x) is not guaranteed to arrive at y, which is the only way h1 gets sent to x
after line 3.

The typing rules in Figure 4.16 follow the rationale that after encountering an add

operation, execution must reach a configuration where a suitable send transition is taken, i.e.,
rule Send on page 44. One way that Augm-Add in Figure 4.16 succeeds, is when the typing
goes through rule Augm-Send, which removes the added requirement. In other words, for a
statement add(x, R).S, rule Augm-Add succeeds if S contains a suitable send command. The
silent assumption here is that all necessary intermediate transitions are taken, that the send

command is reached, and the message is indeed sent. Note that such intermediate transitions
can be ones where x is sent over as the payload to another message, captured by the typing
rule Augm-Delegate. In those cases, the typing must go through Augm-Send eventually,
i.e., guarantee that a suitable send command is reached, even if in another actor’s code.

4.6 Puntigam’s Tokens

The system discussed so far has been based on the idea that the meaning of progress
should derive from programmer intent: we allow the programmer to specify the kinds of
messages that are necessary to each actor, and at which program states. This section discusses

58

Figure 4.17: The syntax of Figure 4.3 augmented to
support Puntigam’s ideas [120].

P ::= B S

B ::= bdef b(x) = {H} b ∈ behavior names
H ::= hdef hT(x) = S h ∈ handler names

T ::= t1(t2 t, t1, t2, . . . ∈ token names

S ::= x!h(e).S

| if e then S1 else S2 e ∈ expressions (values, function calls, etc.)
| νx:b(e).S actor creation
| x := take(y, t).S token extraction
| update(e) state update
| ready [runtime syntax]

x ::= self | x, y, z, . . . | α, β, . . . x, y, z, . . . ∈ variables
α, β, . . . ∈ runtime actor names

the converse, which is that the programmer should be able to specify the types of messages
that each actor is allowed to receive.

The basic idea, originally appearing in the work of Puntigam [120], associates handler
definitions to declarations of the form t1 (t2. This is a linear function that consumes
the tokens t1 and produces t2. By attaching this function to a handler h, we say that an
actor that receives a message h(e) will consume t1 and produce t2. The type system is then
responsible for enforcing that messages are only sent if the recipient has the necessary tokens,
in this case, t1. This is achieved by tracking the tokens known to be associated with each
actor on a per-scope basis.

We augment our calculus with the x := take(y, t) construct, which introduces a fresh
alias x to actor y, such that x is associated with tokens t, “taken” from y. The typing then
has to ensure that y indeed has t tokens available for taking (rule Tok-Take).

Figure 4.17 shows the new actor syntax that includes a function T associated with each
handler h. In order to keep the presentation simple, this syntax does not include the add

construct, or requirements in general. This way, the type system in Figure 4.18 can enforce the
safety property outlined above without being concerned with the guarantees of the previous
section. It is trivial to superimpose the two type systems to offer both guarantees.

Rule Tok-Init in Figure 4.18 extracts static information ∆ from the program BS. Per the
conventions used so far, such information is carried along the typing relation ` as a subscript,
i.e., `∆. Rule Tok-New introduces a new actor x′ with no tokens, and requires that the

59

statement following the actor creation command be typeable in the augmented environment.
Rule Tok-Take subtracts the tokens {t} from y, and requires that the statement S that
follows the take command is typeable in an environment where x′ is associated with the
taken tokens. Note the requirement {t} ⊆ T , meaning that the statement will only type if y
has enough tokens to take from.

The most complicated rule is that for sending a message, i.e., x!h(e).S. Rule Tok-Send

requires that the tokens associated with actors y passed as arguments to h are removed from
the environment that types the subsequent statement S. Moreover, the statement S must be
typeable in an environment where the tokens associated with x have been updated to reflect
the application of t1 (t2 on x’s token set.

It is worth noting that our approach to progress is complementary to the one taken in this
section: ours can be used to guarantee the receipt of certain messages—a liveness property—
while Puntigam’s can be used to withhold their sending—a safety property. Combining the
two systems would allow complicated coordination constraints to be statically enforced.

Cyclic Communication. The endless looping problem from Section 4.5 exists in Puntigam’s
token system as well: the send rule of Figure 4.18 requires the indiscriminate typing of handler
bodies, much like the send rule of Figure 4.9. A possible solution along the ideas of Section 4.5
apply in this case as well: by reaching an already seen mark k with the same token set, we
can declare success and stop the typing process. A more elaborate solution would be to
declare success if (a) k is seen twice, and (b) the token set encountered the second time round
is a superset of the one seen the first time. This would detect a messaging pattern where the
token set keeps increasing; thus, since the tokens were enough for the first iteration, they
would be enough in every subsequent one.

60

Figure 4.18: Typing rules implementing Puntigam’s
ideas [120].

Tok-Init
∆ = info(B) ∅ ` S

` BS

Tok-New
T ∪ {x′ 7→ ∅} `∆ S[x′/x] x′ fresh

T `∆ νx:b(e).S

Tok-Send

tok(∆, h) = t1 (t2 body(∆, h) = Sh
{t1} ⊆ T T ′ = T \ {t1} ∪ {t2} T ∪ {x 7→ T ′} `∆ S

actors(∆, e) = y actors(∆, params(∆, h)) = z

T ∪ {y 7→ T1} `∆ Sh[y/z][x/self]

T ∪ {x 7→ T, y 7→ T1} `∆ x!h(e).S

Tok-Take

T ′
y = Ty \ {t} {t} ⊆ Ty

T ∪ {x′ 7→ t, y 7→ T ′
y} `∆ S[x′/x] x′ fresh

T ∪ {y 7→ Ty} `∆ x := take(y, t).S

Tok-Update T `∆ update(e) Tok-If
T `∆ S1 T `∆ S2

T `∆ if e then S1 else S2

61

Chapter 5

Session Types for Actors

The previous chapter dealt with the question of whether a pre-specified set of messages is
eventually delivered to the actors that need them. We were not concerned with interactions
not involving this set of messages; as long as the ones we cared about were guaranteed to be
delivered to the correct recipients, we treated intermediate interactions as a “means to an
end”. In other words, all interactions that led to the delivery of required messages to certain
actors were acceptable.

In this chapter, we care about all interactions. Given a program and a protocol specification,
we want to guarantee that execution of the program only entails interactions prescribed in
the protocol. We also want to guarantee the converse: that all interactions predicted by the
protocol take place. Typing coordination constraints in actors is challenging with regard to
asynchronous communication, because it leads to delays that require the handling of arbitrary
shuffles. The difficulty arises when considering parameterized protocols; for example, assume
two actors that communicate through a sliding window protocol: the actors agree on the
length of the window (i.e., the number of messages that may be buffered) and then proceed
to exchange messages concurrently. While the calculus in the previous chapter can capture
the protocol—from an implementation standpoint—the typing does not guarantee that the
implementation adheres to the specification. In this chapter, we reduce the expressiveness of
the language, in return for an increase in the precision with which protocols can be statically
enforced.

This work is inspired by the literature on session types, such that a program is checked for
conformance against a given global type. While drawing ideas from classic papers [30, 51, 69,
126] on session types, our system is adapted to suit an actor-based calculus, and extended to
allow the checking of more complicated protocols. For example, prior work on session types
is not suitable for typing interactions such as the sliding window protocol, in part because
their respective type languages depend on formalisms such as the typed λ-calculus [10] or
System T [63], which do not explicitly capture the interleavings inherent in concurrency.

This chapter presents a session-type system that allows for parameterized concurrency:
the number of participants, the types of messages sent, and the number of such messages are
controlled by type parameters. Overall, this work makes the following contributions: (i) we
introduce a novel construct that captures the atomic reordering of interactions, useful for the

62

validation of protocols where, say, clients interact with server resources; (ii) the typing allows
the number of branches in choice constructs to be controlled by a type parameter—both
the number, and the types of different possible execution paths can be unknown at compile
time; and (iii) the system can statically verify the conformance of actors to protocols where
causality relations are directly dependent on parameter values. For instance, the sliding
window protocol dictates that acknowledgments come after data messages, while the number
of outstanding messages is capped to the size of the window. It is important to note that
type checking in our system can be performed without instantiation of the type parameters.

Preliminary versions of this work were published in 2012 and 2016 [35, 36]. This chapter
makes the ideas more precise, and offers a comprehensive review of the limitations inherent in
session types in general, and their mix with actor systems in particular. For reasons discussed
in Section 5.7, capturing actor creation in a session type system is unintuitive, and is the
primary reason we developed the typestate system of the previous chapter.

Chapter Outline

Section 5.1 motivates our approach with examples. The examples assume a language of
global types, the syntax and semantics of which are formalized in Section 5.2. We then discuss
end-point types, i.e., local types, in Section 5.3. Along with their syntax and semantics, in
the same section, we present an algorithm that mechanically derives such local types from a
global specification. In Section 5.4 we formalize the actor calculus in which the discussed
examples can be programmed, while an algorithm that deduces end-point types from actor
implementations is presented in Section 5.5. That section also contains the proofs of various
standard sanity checks, such as subject reduction. Possible extensions are discussed in
Section 5.6, while an in-depth discussion of the limitations of this work is given in Section 5.7.
The latter contains an analysis of the issues present in session type systems designed for the
π-calculus, and how those manifest in the context of actors.

5.1 Motivation

This section motivates our approach with examples that are not captured by other systems
in the literature: the sliding window protocol, a case of locking–unlocking, and some cases
of limited resource sharing. We first demonstrate how the behavior of such protocols can
be described in our system, and then proceed with the reasons other related works cannot
capture these behaviors in their type systems.

63

The Sliding Window Protocol. Assume that an actor a sends messages of type m to
an actor b, which acknowledges every received message with an ack message. The protocol
determines that at most n messages can be unacknowledged at any given time, so that when
the threshold is reached, a ceases sending until it receives at least one more ack message. In
this example, the window size n is a parameter, which means that we need to express the
fact that n sending–acknowledging events can be in transit at any given instant in time. The
global type of the protocol is as follows:

(
a m b ; b ack a

)∗‖
(
a m b ; b ack a

)∗‖ · · · ‖
(
a m b ; b ack a

)∗
︸ ︷︷ ︸

n times

where a m b denotes that a sends a message of type m to b. The operator ; is used
for sequencing interactions. Operator ‖ is used for the concurrent composition of its left
and right arguments, while the Kleene star has the usual semantics of an unbounded—yet
finite—number of repetitions.

The above type can be expressed using the notation of Castagna et al. [30, 31], albeit with
a fixed window size n. In our system on the other hand, we can parameterize the type in n

and statically verify that participants follow the protocol without knowing its runtime value.
Using ‖ni=1 to denote the concurrent composition of n processes, we obtain the following type:

n

‖
i=1

((
a m b ; b ack a

)∗) (5.1)

Locking / Unlocking. Consider a set of n client actors c1..n, each of which needs to acquire
exclusive access to a server s, by sending it a lock message. The server replies with ack, the
client uses the server’s services (not shown) atomically, and then sends an unlock message,
at which point the next client can do the same. Using ⊗ to denote an arbitrary, atomic
reordering of terms, the following type describes the locking–unlocking protocol for a fixed
number of participants:

(
(c1

lock s ; s ack c1 ; c1
unlock s)⊗ · · · ⊗ (cn

lock s ; s ack cn ; cn
unlock s)

)

This formula expresses that any ordering of the (ci
lock s ; s ack ci ; ci

unlock s) sequences is
acceptable. To support a dynamic network topology, the number of participants should be a
parameter. Following is the locking–unlocking example in our system, where conformance to

64

the protocol is statically verifiable without knowledge of the runtime value of n:

n⊗
i=1

(ci
lock s ; s ack ci ; ci

unlock s) (5.2)

Limited Resource Sharing. In this scenario, a server s grants two clients c1 and c2

exclusive access to a set of n resources. At any given point, a maximum of n resources can be
locked, but the relevant lock–ack–unlock messages from both clients can be interleaved in
any way. Following is the global type for this situation:

n

‖
i=1

((
c1

locki s ; s acki c1 ; c1
unlocki s⊕ c2

locki s ; s acki c2 ; c2
unlocki s

)∗)

The concurrent composition is parameterized in n, the number of resources. Each sequence of
lock–ack–unlock messages is also parameterized in i, which ranges from 1 to n and signifies the
resource it refers to. This is necessary to ensure realizability of the protocol (see Section 5.6.1),
because in the case of multiple outstanding requests, it allows the participants to disambiguate
the responses they receive. Each concurrent instance subsumed by the ‖ni=1 operator consists
of a loop (Kleene star) which entails a choice, indicated by ⊕. Either c1 gets access to a
resource, or c2, and this happens repeatedly.

These type operators can be combined to express more complicated resource sharing. For
instance, consider an extended version of the previous example, where not only the number n
of resources, but also the number k of clients is a parameter:

n

‖
i=1

((k⊕
j=1

(
cj

locki s ; s acki cj ; cj
unlocki s

))∗
)

(5.3)

The Above Examples in Related Work

The above examples can be programmed in the calculi of much of the related work on
session types. However, their type systems do not capture the intended interactions with
the accuracy described here. For example, the sliding window protocol can be programmed
with the initiation of n channels between two processes, where each message has to be
acknowledged on the channel it was received. However, verifying that such an implementation
conforms to the global type shown here involves an extra step that is not obvious. Our typing
makes the allowable interleavings explicit, whereas in systems deriving from Honda et al.’s
multiparty session types [70], these interleavings would have to be implicitly derived from
the semantics of the language—as opposed to the meaning of the types.

65

Figure 5.1: The syntax of global types.

G ::= a m b G-Interaction | (G∗) G-KleeneStar

| (G1 ; . . . ;Gκ) G-Seq |
n}
i=1
G G-Seq-N

| (G1 ⊕ . . .⊕Gκ) G-Choice |
n
⊕
i=1
G G-Choice-N

| (G1 ‖ . . . ‖ Gκ) G-Paral |
n

‖
i=1

G G-Paral-N

| (G1 ⊗ . . .⊗Gκ) G-Shuffle |
n
⊗
i=1
G G-Shuffle-N

| (G) G-Paren | τ G-Tau

a, b ::= a | b | . . . actor names

| ai | bi | . . . indexed actor names

m ::= m | . . . message type names

| mi | . . . indexed message type names

i, j ::= i | j | . . . index names

| 1 | 2 | . . . index values

n ::= n | . . . parameter names

| 1 | 2 | . . . parameter values

5.2 Global Types

As demonstrated in the previous section, a global type describes a protocol to which the
whole system must adhere. This section formalizes our language of global types, with the
syntax shown in Figure 5.1.

The basic building block of a global type is an interaction a m b, with the meaning that
actor a sends a message of type m to actor b. We use a, b, etc. to denote both unindexed
actor names, such as a and b, and their indexed versions, such as, for example, ai and
bi. In these expressions, the index i is a free name, to be bound by surrounding uses of
parameterized operators. Similarly, m stands for possibly indexed message types, such as
m and mi. Sequencing actions is achieved with the ; operator, as in, for example, G1 ;G2,
which means that the actions in G1 precede the actions in G2. A protocol that can take one
of two paths, G1 or G2, has the form G1 ⊕G2. Similarly, a protocol that is the concurrent
composition of the interactions in G1 and G2 is written G1‖G2, which consists of all possible
interleavings of the basic interactions in G1 and G2. The operator ⊗ is used to denote an
arbitrary execution order of its arguments, albeit that being atomic. For instance, (G1 ⊗G2)

66

is the same as
(
(G1 ;G2)⊕ (G2 ;G1)

)
, that is, either G1 followed by G2, or the reverse order,

i.e., G2 followed by G1.
We define structural congruence on global types to be the least equivalence relation ≡ that

includes the rules of Figure 5.2. In addition to some basic properties (e.g., commutativity,
distributivity, associativity), the figure contains the rules for expanding parameterized
constructs. For a known value u, parameterized constructs are expanded as per the rule

u
OP
i=1
G ≡ G[1/i] op . . . opG[u/i]

where OP ∈ {},⊕,⊗, ‖}, and op is the non-parametric version of OP. The non-parametric
versions of the operators are those on the left column of Figure 5.1, such that, for example,
}2

i=1

(
ai

m bi
)
≡ a1

m b1 ; a2
m b2. Shuffling expands to a choice among all possible

permutations of the Gs, according to the rule

(G1 ⊗ . . .⊗Gκ) ≡
(
(Gf1(1) ; . . . ;Gf1(κ))⊕ · · · ⊕ (Gfκ!(1) ; . . . ;Gfκ!(κ))

)

where f1 . . . fκ! are distinct bijective functions of type {1..κ} 7→ {1..κ}. Each of these functions
corresponds to a distinct permutation of the numbers in {1..κ}, and all of them together
generate all possible such permutations. Notice that all operators except ⊗ are associative;
moreover, all operators except for sequencing are commutative.

We make the meaning of global types precise in Figure 5.3, where the relation −→ is
defined to be the least relation that includes the rules of the figure. The notation G e−→ G′

means that G reduces to G′, generating event e. Events are single interactions of the form
a m b, or inactions τ . Events a m b are produced when a type of the same form is reduced
(rule GS-Event).

We write G −→ G′ when there exists an event e such that G e−→ G′, and −→∗ for
the transitive reflexive closure of −→. The following statement captures our intuition that
structural congruence is maintained along reduction sequences:

Theorem 5.1. Let G1, G′1 and G2 be global types. If G1 ≡ G2 and G1 −→∗ G′1, then there
exists G′2 with G2 −→∗ G′2 and G′1 ≡ G′2.

Proof. By induction on the congruence and transition relations.

67

Figure 5.2: Structural congruence on global types
is the least equivalence relation on global types that
includes the rules in this figure.

Commutativity
op ∈ {‖,⊕,⊗}

(G1 opG2) ≡ (G2 opG1)

Associativity
op ∈ {; , ‖,⊕}

(G1 op (G2 opG3)) ≡ ((G1 opG2) opG3)

Distributivity

(
G1 ; (G2 ⊕G3)

)
≡
(
(G1 ;G2)⊕ (G1 ;G3)

)
(
(G1 ⊕G2) ;G3

)
≡
(
(G1 ;G3)⊕ (G2 ;G3)

)
(
G1‖(G2 ⊕G3)

)
≡
(
(G1‖G2)⊕ (G1‖G3)

)

(
G1 ; (⊕n

i=1G2)
)
≡ ⊕n

i=1(G1 ;G2) i /∈ free-names(G1)(
(⊕n

i=1G1) ;G2

)
≡ ⊕n

i=1(G1 ;G2) i /∈ free-names(G2)(
G1‖(⊕n

i=1G2)
)
≡ ⊕n

i=1(G1‖G2) i /∈ free-names(G1)

KleeneStar G∗ ≡ (τ ⊕ (G ;G∗)) Inaction

[
τ ;G ≡ G ≡ G ; τ

τ ‖G ≡ G

Composition

G1 ≡ G′1 G2 ≡ G′2 op ∈ {; , ‖,⊕}
(G1 opG2) ≡ (G′1 opG

′
2)

G ≡ G′ OP ∈ {}, ‖,⊕,⊗}
n
OP
i=1
G ≡

n
OP
i=1
G′

G1 ≡ G2

(G1) ≡ (G2)

Expansion
u ∈ N OP ∈ {},⊕,⊗, ‖} op = non-parametric(OP)

u
OP
i=1
G ≡ G[1/i] op . . . opG[u/i]

Shuffle
f1 . . . fκ! : bijective {1..κ} 7→ {1..κ} f1 . . . fκ! distinct

(G1 ⊗ . . .⊗Gκ) ≡
(
(Gf1(1) ; . . . ;Gf1(κ))⊕ · · · ⊕ (Gfκ!(1) ; . . . ;Gfκ!(κ))

)

68

Figure 5.3: The semantics of global types. The
rules GS-KleeneStar, GS-Tau, GS-Expansion and
GS-Shuffle generate empty events.

GS-Event e = “a m b”

e
e−→ τ

GS-Paren G
e−→ G′

(G)
e−→ (G′)

GS-Choice
ψ ∈ {1 . . . κ}

(G1 ⊕ . . .⊕Gκ)
τ−→ (Gψ)

GS-KleeneStar

[
G∗

τ−→ τ

G∗
τ−→ (G ;G∗)

GS-Paral
Gψ

e−→ G′ψ ψ ∈ {1..κ}
(G1‖ . . . ‖Gψ‖ . . . ‖Gκ)

e−→ (G1‖ . . . ‖G′ψ‖ . . . ‖Gκ)

GS-Seq
G1

e−→ G′1

(G1 ;G2 ; . . . ;Gκ)
e−→ (G′1 ;G2 ; . . . ;Gκ)

GS-Tau
ψ ∈ {1..κ} Gψ = τ op ∈ {; , ‖}

(G1 op . . . opGψ op . . . opGκ)
τ−→ (G1 op . . . opGψ−1 opGψ+1 op . . . opGκ)

GS-Expansion
u ∈ N OP ∈ {},⊕,⊗, ‖} op = non-parametric(OP)

u
OP
i=1
G

τ−→ G[1/i] op . . . opG[u/i]

GS-Shuffle
f1 . . . fκ! : bijective {1..κ} 7→ {1..κ} f1 . . . fκ! distinct

(G1 ⊗ . . .⊗Gκ)
τ−→
(
(Gf1(1) ; . . . ;Gf1(κ))⊕ · · · ⊕ (Gfκ!(1) ; . . . ;Gfκ!(κ))

)

69

Sequence – Associativity:

(G1 ; (G2 ;G3)) ≡ ((G1 ;G2) ;G3) Associativity

G1 −→ G′1

=⇒

(G1 ; (G2 ;G3)) −→ (G′1 ; (G2 ;G3)) (G1 ;G2) −→ (G′1 ;G2) GS-Seq

≡ =⇒
((G1 ;G2) ;G3) −→ ((G′1 ;G2) ;G3) GS-Seq

Concurrent composition – Associativity (1/3):

(G1‖(G2‖G3)) ≡ ((G1‖G2)‖G3) Associativity

G1 −→ G′1
=⇒

(G1‖(G2‖G3)) −→ (G′1‖(G2‖G3)) (G1‖G2) −→ (G′1‖G2) GS-Paral

≡ =⇒

((G1‖G2)‖G3) −→ ((G′1‖G2)‖G3) GS-Paral

Concurrent composition – Associativity (2/3):

(G1‖(G2‖G3)) ≡ ((G1‖G2)‖G3) Associativity

G2 −→ G′2

=⇒

(G2‖G3) −→ (G′2‖G3) (G1‖G2) −→ (G1‖G′2) GS-Paral

=⇒ =⇒

(G1‖(G2‖G3)) −→ (G1‖(G′2‖G3)) ≡ ((G1‖G2)‖G3) −→ ((G1‖G′2)‖G3) GS-Paral

70

Concurrent composition – Associativity (3/3):

(G1‖(G2‖G3)) ≡ ((G1‖G2)‖G3) Associativity

G3 −→ G′3

=⇒

(G2‖G3) −→ (G2‖G′3) ((G1‖G2)‖G3) −→ ((G1‖G2)‖G′3) GS-Paral

=⇒ ≡

(G1‖(G2‖G3)) −→ (G1‖(G2‖G′3)) GS-Paral

The case of the choice (operator ⊕) follows in the same manner as concurrent composition.
The case for the Kleene Star is trivial, from G∗ ≡ (τ ⊕ (G ;G∗)) and the reduction rules
G∗ −→ τ and G∗ −→ (G ;G∗). The congruence rules for operator expansion (including
shuffling ⊗) are mirrored in the semantics. The rules for the distributive property can
be dealt with in the same way as associativity, as above. Operator composition follows
inductively from the rest of the cases.

5.3 Local Types

A local type specifies the abstract behavior of a single protocol participant, and the
respective syntax is shown in Figure 5.4. As before, a, b and m are possibly indexed, i.e., a
can stand for some actor name a, or an indexed name ai. Message sending is written a!m,
meaning the action of sending a message of type m to actor a. Similarly, message receiving is
written a?m, to mean the action of receiving a message of type m from actor a. The rest of
the constructs on the top half of the figure are defined as in the case of global types. The
bottom part shows the syntax of runtime configurations, which are tuples of the form (M,Λ).
These are described in the next section.

5.3.1 Local Type Semantics

Structural congruence on local types is defined to be the least equivalence relation ≡ that
includes the rules of Figure 5.5. As before, parameterized constructs with known values for
the parameters are expanded to their non-parameterized versions; for example, for a fixed
value u, we have

⊕u
i=1L ≡ L[1/i]⊕ . . .⊕ L[u/i].

71

Figure 5.4: The syntax of local types.

L ::= a!m L-Send | a?m L-Recv

| (L1 ; . . . ; Lκ) L-Seq |
n}
i=1
L L-Seq-N

| (L1 ⊕ . . .⊕ Lκ) L-Choice |
n
⊕
i=1
L L-Choice-N

| (L1‖ . . . ‖Lκ) L-Paral |
n

‖
i=1

L L-Paral-N

| (L1 ⊗ . . .⊗ Lκ) L-Shuffle |
n
⊗
i=1
L L-Shuffle-N

| (L∗) L-KleeneStar | (L) L-Paren

| τ L-Tau

a, b ::= a | b | . . . actor names
| ai | bi | . . . indexed actor names

m ::= m | . . . message type names
| mi | . . . indexed message type names

i, j ::= i | j | . . . index names

| 1 | 2 | . . . index values

n ::= n | . . . parameter names

| 1 | 2 | . . . parameter values

C ::= (M,Λ) runtime configuration

Λ ::= {〈L1〉a1 , . . . , 〈Lκ〉aκ} multiset of running local types

M ::= {a1 m1 b1, . . . , aκ
mκ bκ} multiset of pending messages

Shuffling is as in the case of global types, and represents all possible sequences of the types
involved. The rules to the right of the Runtime bracket extend the relation to runtime
configurations. Runtime configurations have the form (M,Λ), where M is the multiset of
pending (sent but not received) messages, and Λ is the multiset of concurrently executing
local types. These take the form 〈L〉a, where L is a local type, and a the actor it corresponds
to.

Lemma 5.1 (Congruence is compositional on set union). Let L1 and L2 be local types, a
be an actor name, M a message multiset, and Λ a multiset of running local types, all as in
Figure 5.4.
Then, L1 ≡ L2 iff Λ ∪ {〈L1〉a} ≡ Λ ∪ {〈L2〉a}.
Equivalently, L1 ≡ L2 iff (M, Λ ∪ {〈L1〉a}) ≡ (M, Λ ∪ {〈L2〉a}).

Proof. Directly from the Runtime rules in Figure 5.5.

The reduction relation on local types is defined to be the least relation −→ that includes
the rules in Figure 5.6. As in the case of global types, reductions produce events of the form τ

and a m b. As always, reductions hold up to structural congruence. Rule LS-Send adds the
sent message to M , i.e., the multiset of undelivered messages. Note that this rule produces

72

Figure 5.5: Structural congruence on local types
is the least equivalence relation on local types that
includes the rules in this figure.

Commutativity
op ∈ {‖,⊕,⊗}

(L1 opL2) ≡ (L2 opL1)

Associativity
op ∈ {; , ‖,⊕}

(L1 op (L2 opL3)) ≡ ((L1 opL2) opL3)

Distributivity

(
L1 ; (L2 ⊕ L3)

)
≡
(
(L1 ; L2)⊕ (L1 ; L3)

)
(
(L1 ⊕ L2) ; L3

)
≡
(
(L1 ; L3)⊕ (L2 ; L3)

)
(
L1‖(L2 ⊕ L3)

)
≡
(
(L1‖L2)⊕ (L1‖L3)

)

(
L1 ; (⊕n

i=1L2)
)
≡ ⊕n

i=1(L1 ; L2) i /∈ free-names(L1)(
(⊕n

i=1L1) ; L2

)
≡ ⊕n

i=1(L1 ; L2) i /∈ free-names(L2)(
L1‖(⊕n

i=1L2)
)
≡ ⊕n

i=1(L1‖L2) i /∈ free-names(L1)

KleeneStar L∗ ≡ (τ ⊕ (L ; L∗)) Inaction

[
τ ; L ≡ L ≡ L ; τ

τ ‖L ≡ L

Composition

L1 ≡ L′1 L2 ≡ L′2 op ∈ {; , ‖,⊕}
(L1 opL2) ≡ (L′1 opL

′
2)

L ≡ L′ OP ∈ {}, ‖,⊕,⊗}
n
OP
i=1
L ≡

n
OP
i=1
L′

L1 ≡ L2

(L1) ≡ (L2)

Expansion
u ∈ N OP ∈ {},⊕,⊗, ‖} op = non-parametric(OP)

u
OP
i=1
L ≡ L[1/i] op . . . opL[u/i]

Shuffle
f1 . . . fκ! : bijective {1..κ} 7→ {1..κ} f1 . . . fκ! distinct

(L1 ⊗ . . .⊗ Lκ) ≡
(
(Lf1(1) ; . . . ; Lf1(κ))⊕ · · · ⊕ (Lfκ!(1) ; . . . ; Lfκ!(κ))

)

Runtime

L1 ≡ L2

〈L1〉a ≡ 〈L2〉a
〈L1〉a ≡ 〈L2〉a{
〈L1〉a

}
≡
{
〈L2〉a

}

Λ1 ≡ Λ2

Λ ∪ Λ1 ≡ Λ ∪ Λ2

Λ1 ≡ Λ2

(M,Λ1) ≡ (M,Λ2)

73

Figure 5.6: The semantics of local types.

LS-Send M, Λ ∪ {〈b!m〉a} τ−→M ∪ {a m b}, Λ ∪ {〈τ〉a}

LS-Seq
M, Λ ∪ {〈L1〉a} e−→M ′, Λ ∪ {〈L′1〉a}

M, Λ ∪ {〈(L1 ; L2 ; . . . ; Lκ)〉a} e−→M ′, Λ ∪ {〈(L′1 ; L2 ; . . . ; Lκ)〉a}

LS-Tau
ψ ∈ {1..κ} Lψ = τ op ∈ {; , ‖}

M, Λ ∪ {〈(L1 op . . . opLψ op . . . opLκ)〉a} τ−→M, Λ ∪ {〈(L1 op . . . opLψ−1 opLψ+1 op . . . opLκ)〉a}

LS-Paral
ψ ∈ {1..κ} M, Λ ∪ {〈Lψ〉a} e−→M ′, Λ ∪ {〈L′ψ〉a}

M, Λ ∪ {〈(L1‖ . . . ‖Lψ‖ . . . ‖Lk)〉a} e−→M ′, Λ ∪ {〈(L1‖ . . . ‖L′ψ‖ . . . ‖Lk)〉a}

LS-Ext-Choice
ψ ∈ {1..κ} first(L1) = a1!m1 . . . first(Lκ) = aκ!mκ

M, Λ ∪ {〈(L1 ⊕ . . .⊕ Lκ)〉b} τ−→M, Λ ∪ {〈(Lψ)〉b}

LS-Int-Choice
ψ ∈ {1..κ} “aψ

mψ bψ” ∈M first(L1) = a1?m1 . . . first(Lκ) = aκ?mκ

M, Λ ∪ {〈(L1 ⊕ . . .⊕ Lκ)〉b} τ−→M, Λ ∪ {〈(Lψ)〉b}

LS-Recv e = “a m b”

M ∪ {a m b}, Λ ∪ {〈a?m〉b} τ−→M, Λ ∪ {〈τ〉b}

LS-Paren
M, Λ ∪ {〈L〉a} e−→M ′, Λ ∪ {〈L′〉a}

M, Λ ∪ {〈(L)〉a} e−→M ′, Λ ∪ {〈(L′)〉a}

LS-KleeneStar

[
M, Λ ∪ {〈L∗〉a} τ−→M, Λ ∪ {〈(L ; L∗)〉a}
M, Λ ∪ {〈L∗〉a} τ−→M, Λ ∪ {〈τ〉a}

LS-Expansion
u ∈ N OP ∈ {},⊕,⊗, ‖} op = non-parametric(OP)

M, Λ ∪ {〈
u
OP
i=1
L〉a} τ−→M, Λ ∪ {〈(L[1/i] op . . . opL[u/i])〉a}

74

an event τ ; the actual message event a m b is produced by rule LS-Recv, i.e, at the point of
message delivery. Rule LS-Recv removes the message from M and consumes the a?m action
at the receiving actor. Rule LS-Ext-Choice represents choice on the sending end, i.e., the
sender chooses which of the given actions to take. For this reason, the rule demands that
all provided actions start with a message send. In contrast, LS-Int-Choice demands that
all provided actions start with a receive action—capturing the selection of a type Lψ based
on the messages available in M . Rule LS-Expansion replaces parameterized operators with
their non-parameterized counterparts, mirroring the respective congruence rule in Figure 5.5.
The rest of the reduction rules are standard.

Lemma 5.2 (Reduction is compositional on set union). Let L and L′ be local types, M and
M ′ be multisets of pending messages, a be some actor name, and Λ be a multiset of running
local types. Then,
(M, {〈L〉a}) −→ (M ′, {〈L′〉a}) iff (M, Λ ∪ {〈L〉a}) −→ (M ′, Λ ∪ {〈L′〉a}). As a direct
consequence,
(M, {〈L〉a}) −→∗ (M ′, {〈L′〉a}) iff (M, Λ ∪ {〈L〉a}) −→∗ (M ′, Λ ∪ {〈L′〉a}).

Proof. By induction on the size of Λ, and using the definition of the reduction relation in
Figure 5.6.

Lemma 5.3 (Congruence follows semantics—single element). Let L1, L′1 and L2 be local
types, M , M ′ be multisets of pending messages, and a be an actor name. If L1 ≡ L2 and
(M, {〈L1〉a}) −→∗ (M ′, {〈L′1〉a}), then there exists L′2 such that (M, {〈L2〉a}) −→∗ (M ′, {〈L′2〉a})
with L′1 ≡ L′2.

Proof. By induction on the structural congruence and reduction relations. Omitting the
message sets M and M ′ for brevity, the proof is similar to that of Theorem 5.1 on page 67.
As an example, we show the case for the associativity of sequencing.

75

Sequence – Associativity:

(L1 ; (L2 ; L3)) ≡ ((L1 ; L2) ; L3) Associativity

L1 −→ L′
1

=⇒

(L1 ; (L2 ; L3)) −→ (L′
1 ; (L2 ; L3)) (L1 ; L2) −→ (L′

1 ; L2) LS-Seq

≡ =⇒
((L1 ; L2) ; L3) −→ ((L′

1 ; L2) ; L3) LS-Seq

Theorem 5.2 (Congruence follows semantics). Let Λ1, Λ′1, and Λ2 be multisets of run-
ning local types, and let M and M ′ be multisets of pending messages. If Λ1 ≡ Λ2 and
(M,Λ1) −→∗ (M ′,Λ′1), then there exists Λ′2 such that (M,Λ2) −→∗ (M ′,Λ′2) and Λ′1 ≡ Λ′2.

Proof. By induction on the size of the multiset of running local types Λ1.

Base case: |Λ1| = 0.

Since Λ1 is empty, it is (by definition) Λ1 ≡ ∅. Additionally, it can only “reduce” in zero
steps, i.e., (M,Λ1) −→0 (M, ∅). Thus the result holds for Λ2 = ∅ and M ′ = M .

Inductive step: |Λ1| > 0.

Fix some Λ with |Λ| ≥ 0, an actor a, message sets M and M ′, and local types L1,
L′1 and L2. Let Λ1 = Λ ∪ {〈L1〉a}, Λ′1 = Λ ∪ {〈L′1〉a} and Λ2 = Λ ∪ {〈L2〉a}, such that
(M,Λ1) −→∗ (M ′,Λ′1) and Λ1 ≡ Λ2. Equivalently, we have

(M,Λ ∪ {〈L1〉a}) −→∗ (M ′,Λ ∪ {〈L′1〉a}) (5.4)

Λ ∪ {〈L1〉a} ≡ Λ ∪ {〈L2〉a} (5.5)

The above relations mirror the predicates of this theorem.
We need to find Λ′2 such that (M,Λ2) −→∗ (M ′,Λ′2) and Λ′1 ≡ Λ′2. From 5.4 and

Lemma 5.2, we know that

(M, {〈L1〉a}) −→∗ (M ′, {〈L′1〉a}) (5.6)

76

Similarly, from 5.5 and Lemma 5.1, we have that

L1 ≡ L2 (5.7)

Applying Lemma 5.3 to 5.6 and 5.7 we know that there exists L′2 such that

(M, {〈L2〉a}) −→∗ (M ′, {〈L′2〉a})
with L′1 ≡ L′2

Applying Lemmas 5.1 and 5.2 to the above, we get

(M,Λ ∪ {〈L2〉a}) −→∗ (M ′,Λ ∪ {〈L′2〉a})
with Λ ∪ {〈L′1〉a} ≡ Λ ∪ {〈L′2〉a}

which completes the proof.

5.3.2 Projection

Besides the characterization of actor behavior defined in the previous section, local types
also specify the behavior restrictions that a global type implies for each participant. The
projection of a global type G onto an actor a, written G B a, is given in Figure 5.7. The
B function generates constructs in the syntax of Figure 5.4, augmented by the symbol ⊥
which stands for the empty projection. In what follows, we assume a post-processing step
that removes ⊥ from the result of projection.

As an example projection, consider the application of the rules of Figure 5.7 onto the
global type for the sliding window protocol, deriving the local types of the participants a and
b:
(

n

‖
i=1

(
(a m b ; b ack a)∗

))
B a

=
n

‖
i=1

((
(a m b ; b ack a)∗

)
B a
)

P-Param

=
n

‖
i=1

(
(a m b ; b ack a) B a)∗

)
P-KleeneStar

=
n

‖
i=1

((
(a m b B a) ; (b ack a B a)

)∗)
P-Operator

=
n

‖
i=1

(
(b!m ; b?ack)∗

)
P-Interaction

77

Figure 5.7: The projection function. It is
op ∈ {; ,⊕,⊗, ‖} and OP ∈ {},⊕,⊗, ‖}.

(a m b)B p =

b!m if p = a 6= b

a?m if p = b 6= a

a!m ; a?m if p = a = b

⊥ otherwise

P-Interaction

(G1 op . . . opGκ)B p = (G1B p) op . . . op (GκB p) P-Operator

G∗B p = (GB p)∗ P-KleeneStar

(n
OP
i=1
G
)
B p =

n
OP
i=1

(GB p) if p = a (no index)

(GB p) otherwise
P-Param

(
n

‖
i=1

(
(a m b ; b ack a)∗

))
B b

=
n

‖
i=1

((
(a m b ; b ack a)∗

)
B b
)

P-Param

=
n

‖
i=1

(
(a m b ; b ack a) B b)∗

)
P-KleeneStar

=
n

‖
i=1

((
(a m b B b) ; (b ack a B b)

)∗)
P-Operator

=
n

‖
i=1

(
(a?m ; a!ack)∗

)
P-Interaction

In order for the projection rule P-Param of Figure 5.7 to work correctly, we disallow
global types where the same name appears with more than one index, when those indices are
each bound by a different operator application. An example of an unsupported case would
be the following:

n1

‖
i=1

n2

‖
j=1

ai
m aj

The problem is that the two indices i and j come from two different applications of the
concurrent composition operator, yet they are both attached to the name a. Hence, the
result of the projection onto a participant ak depends on where the value of k lies in the
sub-intervals defined by 1, n1 and n2. Since our projection function does not take external
restrictions into account, we omit the treatment of such cases in this thesis.

78

5.4 Actor Calculus

The types defined in the previous sections specify the permissible sequences of messages
that participants may exchange. However, types by themselves provide no implementation of
the protocol. This section presents a programming language designed for protocols expressible
in the type syntax given on pages 66 and 72. We define this language such that there is
an one-to-one correspondence between its constructs and the syntax of local types. Note
that, in order to capture the strict protocol adherence implied by the use of global types,
the calculus defined here differs from that of Section 2.1. First, it disallows the dynamic
introduction of actor names, notwithstanding the values of indices. That is, the index i in ai

can take different values at runtime; as a result, code can introduce actors a1, a2, et cetera,
depending on the value of i. Second, actor behaviors do not include message handlers; rather,
the language supports explicit receive statements—similar in fashion to basic Erlang [86]
(without OTP), and the actor calculus of Agha et al. [3].

The calculus syntax is given in Figure 5.8. A program P includes parameter definitions p,
message structure definitions s, and actor definitions A. Program parameters correspond to
type parameters, as they appear in global and local types (pages 66 and 72, respectively).
Message structure definitions are user-defined types similar to structs in the C family of
programming languages [128], Pascal records [113], et cetera, and we omit their formal
syntax. Actor definitions include the commands L that each actor will execute at runtime.
The syntax for both actor and message structure definitions includes an optional parameter
in brackets after their name. In the case of actors, the parameter controls the number of
actors spawned. In the case of message structures, the parameter controls the number of
message types declared. This allows the implementation of protocols where actor names and
message types are both parameterized, such as the global type ‖ni=1(ai

mi bi). Internal choice
is implemented via the select {L1 . . . Lκ} statement. Assuming a select statement is executed
in an actor b, the Lψ taken starts with a command recv(a, x) where a, b and the sort m of x
match some message a u:m b pending to be delivered. The value u (of type m) in the message
will be stored in x, accessible in subsequent statements. External choice, on the other hand,
is implemented via a case statement which selects the branch to be taken according to the
value of the supplied expression e.

To give a taste of the language, Figure 5.9 provides an implementation of the sliding
window example of page 64. The size of the window is captured by the program’s only
parameter, n, declared on line 1. The sorts m and ack, declared on lines 3 and 4, represent
the message and acknowledgment sorts, respectively. The sender then spawns n parallel
processes, each proceeding to send a message m_ of sort m, and expecting an acknowledgment

79

Figure 5.8: Calculus syntax.

P ::= p s A

p ::= param n n ::= parameter names

s ::= struct m {. . .} m ::= message sort names
| struct m[n] {. . .}

A ::= actor a {L} a ::= actor names
| actor a[n] {L}

L ::= V ; L | send(a, x) | recv(a, x) a ::= a | ai
| x := e x ::= variables
| L1 ; . . . ; Lκ e, e1, . . . ::= expressions
| for i = 1..n {L} i ::= indices
| case e of {e1 : L1 . . . eκ : Lκ} u ::= values
| operator {L1 . . . Lκ} m ::= m | mi

| operator i = 1..n {L}
| while e do {L}
| ready [runtime syntax]

V ::= var x : T variable declaration
T ::= Int | Boolean | m | . . .

operator ::= select | spawn | shuffle

C ::= (M, A) configuration [runtime syntax]
M ::= {a1 u1:m1 b1, . . . , aκ

uκ:mκ bκ} multiset of messages [runtime syntax]
A ::= {〈L1〉V1a1 , . . . , 〈Lκ〉Vκaκ} multiset of actors [runtime syntax]
V ::= {x1 7→ u1:m1, . . . , xκ 7→ uκ:mκ} local store [runtime syntax]

80

Figure 5.9: The sliding window example (page 63)
in the language of Figure 5.8.

1 param n
2
3 struct m { . . . }
4 struct ack { . . . }
5
6 // the s ende r
7 actor a {
8 spawn i = 1 . . n {
9
10 var m_ : m;
11 var a_ : ack ;
12 var NotDone : Boolean ;
13 NotDone := t r u e ;
14
15 while NotDone do {
16 m_ := . . .
17 send (b , m_) ;
18 recv (b , ack_) ;
19 NotDone := . . .
20 }
21 }
22 }

// the r e c e i v e r
actor b {

spawn i = 1 . . n {

var m_ : m;
var ack_ : ack ;
var NotDone : Boolean ;

while NotDone do {
recv (a , m_) ;
send (a , ack_) ;
NotDone := . . .

}
}

}

in variable a_ of sort ack. Correspondingly, the receiver spawns n parallel processes, each
expecting a message and replying with an acknowledgment.

We will later discuss the inference of local types from such programs. As a prequel to that
presentation, we note that applying the type inference rules of Figure 5.12 onto the example
code, we get the local types ‖ni=1

(
(b!m ; b?ack)∗

)
and ‖ni=1

(
(a?m ; a!ack)∗

)
, which respectively

correspond to actors a and b. These are exactly the results of the projections from the global
type ‖ni=1

(
(a m b ; b ack a)∗

)
, performed on page 77.

5.4.1 Actor Calculus Semantics

Structural congruence on programs is defined as the least equivalence relation ≡ that
includes the rules of Figure 5.10. These rules are very similar to the definition of structural
congruence on local types, given on page 73. Mirroring Lemma 5.1, which applies to local
types, the following statement captures the fact that structural congruence is compositional
on set union:

81

Figure 5.10: Structural congruence on programs in
the syntax of page 80.

Commutativity
op ∈ {shuffle, select, spawn}

op{L1 L2} ≡ op{L2 L1}

Associativity
op ∈ {select, spawn}

op{L1 op{L2 L3}} ≡ op{op{L1 L2} L3}

Distributivity

L1 ; case e of {e2 : L2 e3 : L3} ≡ case e of {e2 : L1 ; L2 e3 : L1 ; L3}
L1 ; select{L2 L3} ≡ select{L1 ; L2 L1 ; L3}

case e of {e1 : L1 e2 : L2} ; L3 ≡ case e of {e1 : L1 ; L3 e2 : L2 ; L3}
select {L1 L2} ; L3 ≡ select {L1 ; L3 L2 ; L3}

spawn{L1 case e of {e2 : L2 e3 : L3}} ≡ case e of {e2 : spawn{L1 L2} e3 : spawn{L1 L3}}
spawn{L1 select {L2 L3}} ≡ select {spawn {L1 L2} spawn {L1 L3}}

select i = 1..n {L1} ; L2 ≡ select i = 1..n {L1 ; L2} i /∈ free-names(L2)

L1 ; select i = 1..n {L1} ≡ select i = 1..n {L1 ; L2} i /∈ free-names(L1)

spawn {L1 select i = 1..n {L2}} ≡ select i = 1..n {spawn {L1 L2}} i /∈ free-names(L1)

Composition

L1 ≡ L′1 L2 ≡ L′2 op ∈ {shuffle, select, spawn}
op{L1 L2} ≡ op{L′1 L′2}

L1 ≡ L′1 L2 ≡ L′2
case e of{e1 : L1 e2 : L2} ≡ case e of{e1 : L′1 e2 : L

′
2}

L ≡ L′ op ∈ {select, shuffle, spawn, for}
op i = 1..n {L} ≡ op i = 1..n {L′}

Expansion

u ∈ N op ∈ {shuffle, select, spawn}
op i = 1..u {L} ≡ op {L[1/i] . . . L[u/i]}

u ∈ N
for i = 1..u {L} ≡ L[1/i] ; . . . ; L[u/i]

Shuffle
f1 . . . fκ! : bijective {1..κ} 7→ {1..κ} f1 . . . fκ! distinct

shuffle{L1 . . . Lκ} ≡ select{Lf1(1) ; . . . ; Lf1(κ) · · · Lfκ!(1) ; . . . ; Lfκ!(κ)}

Runtime

L1 ≡ L2

〈L1〉Va ≡ 〈L2〉Va
〈L1〉Va ≡ 〈L2〉Va{
〈L1〉Va

}
≡
{
〈L2〉Va

}

A1 ≡ A2

A ∪ A1 ≡ A ∪ A2

A1 ≡ A2

(M, A1) ≡ (M, A2)

82

Figure 5.11: The transition relation on programs in
the syntax of page 80.

Lang-Send
V (x) = u : m

M, A ∪ {〈send(b, x)〉Va }
τ−→ M ∪ {a u:m b}, A ∪ {〈ready〉Va }

Lang-Seq
M, A ∪ {〈L1〉Va }

e−→ M′, A ∪ {〈L′1〉V
′

a }
M, A ∪ {〈L1 ; L2 ; . . . ; Lκ〉Va }

e−→ M′, A ∪ {〈L′1 ; L2 ; . . . ; Lκ〉V ′
a }

Lang-Ready M, A ∪ {〈ready ; L1 ; . . . ; Lκ〉Va }
τ−→ M, A ∪ {〈L1 ; . . . ; Lκ〉Va }

Lang-Spawn
M, A ∪ {〈Lψ〉Va }

e−→ M′, A ∪ {〈L′ψ〉V
′

a }
M, A ∪ {〈spawn{L1 . . . Lψ . . . Lκ}〉Va }

e−→ M′, A ∪ {〈spawn{L1 . . . L′ψ . . . Lκ}〉V
′

a }

Lang-Spawn-Ready M, A ∪ {〈spawn {ready . . . ready}〉Va }
τ−→ M, A ∪ {〈ready〉Va }

Lang-Ext-Choice
eval(V, e) = eval(V, eψ)

M, A ∪ {〈case e of {e1 : L1 . . . eψ : Lψ . . . eκ : Lκ}〉Va }
τ−→ M, A ∪ {〈Lψ〉Va }

Lang-Int-Choice

“aψ
u:m b” ∈ M

first(Lψ) = recv(aψ, xψ) typeof(V, xψ) = m

M, A ∪ {〈select{L1 . . . Lψ . . . Lκ}〉Vb }
τ−→ M, A ∪ {〈Lψ〉Vb }

Lang-Recv
typeof(V, x) = m V ′ = V [x 7→ u : m] e = “a m b”

M ∪ {a u:m b}, A ∪ {〈recv(a, x)〉Vb }
e−→ M, A ∪ {〈ready〉V ′

b }

Lang-Assignment
typeof(V, x) = typeof(V, e) = m eval(V, e) = u V ′ = V [x 7→ u : m]

M, A ∪ {〈x := e〉Va }
τ−→ M, A ∪ {〈ready〉V ′

a }

Lang-VarDecl
V ′ = V [x 7→ :T]

M, A ∪ {〈var x : T〉Va }
τ−→ M, A ∪ {〈ready〉V ′

a }

Lang-While

eval(V, e) = true

M, A ∪ {〈while e {L}〉Va }
τ−→ M, A ∪ {〈L ; while e {L}〉Va }

eval(V, e) = false

M, A ∪ {〈while e {L}〉Va }
τ−→ M, A ∪ {〈ready〉Va }

Lang-Expansion

V (n) = u : param

M, A ∪ {〈for i = 1..n {L}〉Va }
τ−→ M, A ∪ {〈L[1/i] ; . . . ; L[u/i]〉Va }

V (n) = u : param op ∈ {shuffle, spawn, select}
M, A ∪ {〈op i = 1..n {L}〉Va }

τ−→ M, A ∪ {〈op {L[1/i] . . . L[u/i]}〉Va }

Lang-Shuffle
f1 . . . fκ! : bijective {1..κ} 7→ {1..κ} f1 . . . fκ! distinct

M, A ∪ {〈shuffle{L1 . . . Lκ}〉Va }
τ−→ M, A ∪ {〈select{Lf1(1) ; . . . ; Lf1(κ) · · · Lfκ!(1) ; . . . ; Lfκ!(κ)}〉Va

83

Lemma 5.4 (Congruence is compositional on set union). Let L1 and L2 be program statements,
a be an actor name, M a message multiset, V a local store and A a multiset of running actors,
all as in Figure 5.8.
Then, L1 ≡ L2 iff A ∪ {〈L1〉Va } ≡ A ∪ {〈L2〉Va }.
Equivalently, L1 ≡ L2 iff (M, A ∪ {〈L1〉Va }) ≡ (M, A ∪ {〈L2〉Va }).

Proof. Directly from the Runtime rules in Figure 5.10.

The transition relation −→ on programs is the least such relation that includes the rules in
Figure 5.11. The rules transform runtime configurations of the form (M, A) where M contains
pending messages, and A is the multiset of concurrently executing actors. Elements of M have
the form a u:m b, where a is the sender, u is the sent value, m is the message sort, and b is
the receiving actor. Elements of A have the form 〈L〉Va , where a is the executing actor, L is
the code it executes, and V is the associated value store. The latter maps variable names to
their values and types. For example, V (x) = u : m means that the variable x has value u and
sort m (in this case, per our conventions, x is a message).

The initial configuration of a program P is a pair consisting of the empty message set,
and a multiset of concurrently running actors A. The latter is generated according to
definitions of the form “actor a[n]{L}” in the program. When execution starts, parameters
n are replaced by their runtime values, and so such a definition generates running actors
〈L〉Va1 . . . 〈L〉Van . In the initial configuration, all actors are associated with a copy of the same
store V , which maps parameter names to their values. During execution, individual actor
stores are updated independently; for example, when dealing with a variable assignment
x := e, rule Lang-Assignment evaluates the expression e and updates V so that it maps x
to eval(V, e). Since each actor has its own store, such an assignment is local to the actor
where the assignment statement appears. Variable declarations var x : T update the store to
“remember” that the type of x is T, i.e., V ′(x) = : T, in rule Lang-VarDecl.

The reduction rules for this language are similar to the reduction rules for local types,
given on page 74. They share the same compositional structure; for example, rule Lang-Seq

reduces sequentially composed statements L1 ; . . . ; Lκ to L′1 ; . . . ; Lκ, provided that L1 reduces
to L′1. The rule for case statements evaluates the expression e and branches off to the
code segment Lψ that is guarded by the same value. Correspondingly, select statements
choose the code segment Lψ that starts with a message receipt command which matches a
message available in the set M. Lang-Spawn reduces statements of the form spawn{L1 . . . Lκ},
implementing concurrent semantics for the contained statements L1 . . . Lκ.

Upon reducing a runtime configuration C, the rules in Figure 5.11 produce events, i.e.,
C

e−→ C′. Events can have the form a m b, produced by rule Lang-Recv to signify the

84

receipt of a message. In all other cases, the generated event is τ , as in the behavior of local
types, i.e., events a m b are generated at the point of message receipt. The statements that
follow mirror the respective results for local types:

Lemma 5.5 (Reduction is compositional on set union). Let L and L′ be program statements,
M and M′ be multisets of pending messages, V and V ′ be local stores, a be some actor name,
and A be a multiset of running actors. Then,
(M, {〈L〉Va }) −→ (M′, {〈L′〉V ′

a }) iff (M, A ∪ {〈L〉Va }) −→ (M′, A ∪ {〈L′〉V ′
a }).

As a direct consequence,
(M, {〈L〉Va }) −→∗ (M′, {〈L′〉V ′

a }) iff (M, A ∪ {〈L〉Va }) −→∗ (M′, A ∪ {〈L′〉V ′
a }).

Proof. By induction on the size of A, and using the definition of the reduction relation in
Figure 5.11.

Lemma 5.6 (Congruence follows semantics—single element). Let L1, L′1 and L2 be running
actors, M and M′ be multisets of pending messages, V and V ′ be local stores, and a be an
actor name. If L1 ≡ L2 and (M, {〈L1〉Va }) −→∗ (M′, {〈L′1〉V

′
a }), then there exists L′2 such that

(M, {〈L2〉Va }) −→∗ (M′, {〈L′2〉V
′

a }) with L′1 ≡ L′2.

Proof. By induction on the structural congruence and reduction relations, and using the fact
that structural congruence and the reduction relation are both compositional on set union
(lemmas 5.4 and 5.5). As done for Lemma 5.3 on page 75.

Our intuition that structural congruence preserves the semantics of the calculus is captured
in the following theorem:

Theorem 5.3. LetA1, A′1, A2, M, and M′ be as in Figure 5.8. IfA1 ≡ A2 and (M, A1) −→∗ (M′, A′1)

then there exists A′2 such that (M, A2) −→∗ (M′, A′2) and A′1 ≡ A′2.

Proof. As for Theorem 5.2 on page 76, using lemmas 5.4 and 5.5.

5.5 Typing

This section presents an algorithm for assigning local types to programs written in the
syntax of Figure 5.8, and provides standard sanity checks. For reasons of presentation clarity,
we distinguish between value- and local- types, the latter abstracting actor behaviors. We
use the term sort for the types of messages, variables and expressions, while the term type is
used exclusively to refer to local types.

The type inference relation is defined in Figure 5.12. Given a program P, the rules derive
a map {a : La}a∈P, which associates actors in the program with their local types. We use

85

Figure 5.12: Rules for assigning local types to pro-
grams. The variables a, b, m etc. are as in Figure 5.1.
Program information is carried along in ∆, accessed
by the auxiliary functions sort(·, ·), which returns the
sort of variables, and behavior(·, ·), which returns the
code corresponding to the given actor’s behavior.

Inf-Send
a ∈ dom(∆) sort(∆, x) = m

∆ ` send(a, x) : a!m
Inf-Recv

a ∈ dom(∆) sort(∆, x) = m

∆ ` recv(a, x) : a?m

Inf-Seq
∆ ` L1 : L1 . . . ∆ ` Lκ : Lκ

∆ ` L1 ; . . . ; L2 : (L1 ; . . . ; Lκ)
Inf-For

∆ ` L : L sort(∆, n) = param

∆ ` for i = 1..n {L} :
n}
i=1
L

Inf-Spawn
∆ ` L1 : L1 . . . ∆ ` Lκ : Lκ

∆ ` spawn {L1 . . . Lκ} : (L1‖ . . . ‖Lκ)
Inf-Spawn-N

∆ ` L : L sort(∆, n) = param

∆ ` spawn i = 1..n {L} :
n

‖
i=1

L

Inf-Shuffle
∆ ` L1 : L1 . . . ∆ ` Lκ : Lκ

∆ ` shuffle {L1 . . . Lκ} : (L1 ⊗ . . .⊗ Lκ)
Inf-Shuffle-N

∆ ` L : L sort(∆, n) = param

∆ ` shuffle i = 1..n {L} :
n⊗
i=1
L

Inf-Select
∆ ` L1 : L1 . . . ∆ ` Lκ : Lκ

∆ ` select {L1 . . . Lκ} : (L1 ⊕ . . .⊕ Lκ)
Inf-Select-N

∆ ` L : L sort(∆, n) = param

∆ ` select i = 1..n {L} :
n⊕
i=1
L

Inf-Case
∆ ` L1 : L1 . . . ∆ ` Lκ : Lκ

∆ ` case e of {e1 : L1 . . . eκ : Lκ} : (L1 ⊕ . . .⊕ Lκ)

Inf-While
∆ ` L : L sort(∆, e) = Boolean

∆ ` while e do {L} : (L∗)

Inf-Ready ∆ ` ready : τ Inf-Var ∆ ` V : τ

Inf-Program
∆ = info(P) ∀a.(behavior(∆, a) = La =⇒ ∆ ` La : La)

` P : {a : La | behavior(∆, a) = La}

86

∆ for static program information, i.e., ∆ = info(P) as initiated in rule Inf-Program. This
information is carried up the deduction chain, and consulted by functions sort and behavior .
These extract, respectively, the sorts of expressions and the code corresponding to an actor
behavior. We omit the formal definition of these functions for the sake of brevity.

The rules produce judgments of the form ∆ ` L : L, meaning that with program
information ∆, the code block L is assigned the type L. For example, rule Inf-Seq composes
the types L1 . . . Lκ corresponding to actions L1 . . . Lκ to derive the type of L1 ; . . . ; Lκ to be
L1 ; . . . ; Lκ. Similarly, rule Inf-Shuffle-N associates the type ⊗n

i=1L with the code segment
shuffle i = 1..n{L} given that ∆ ` L : L and that n is a parameter, i.e., sort(∆, n) = param.

Syntax-Directedness. The rules of Figure 5.12 form an algorithm, because they are
syntax-directed: there is exactly one rule for each of the syntax rules (given in Figure 5.8);
and the premises of each rule apply inductively to the structure of the current program
segment. As a result, with regard to the inference mechanism, (i) exactly one rule applies at
each step, and (ii) the procedure terminates.

The types of runtime configurations. It is possible to extend the above mechanism to
runtime configurations. Let C = (M, A) be a runtime configuration where A = {〈Lψ〉Vψaψ}ψ=1..κ.
Using the rules of Figure 5.12, we can assign a local type Lψ to each Lψ such that ∆ ` Lψ : Lψ.
These local types form a set Λ = {〈Lψ〉aψ | ∆ ` Lψ : Lψ}ψ=1..κ. We therefore extend typing to
runtime configurations, such that a configuration (M, A) is assigned the type (s(M),Λ) where
s(M) is the same as M but with only sorting information retained. Formally,

s(M) =

∅ if M = ∅
s(M′) ∪ {a m b} if M = M′ ∪ {a u:m b}

To clarify, s(M) follows the syntax of M on page 72. The type inference rules for runtime
configurations are shown in Figure 5.13. In judgments ∆ ` (M, A) : (M,Λ), the syntax of
(M, A) is that of program configurations C given on page 80, while the syntax of (M,Λ) is that
of local type configurations C on page 72.

5.5.1 Meta-theory

We argue that ∆ ` C : C implies that the local type configuration C reduces in a manner
that mirrors the messaging semantics of the program configuration C. Formally, the close
relationship between the reduction rules for local types and programs (Figures 5.6 and 5.11
respectively) directly suggests the following standard type preservation results:

87

Figure 5.13: Assigning types to runtime configura-
tions.

∆ ` {a u:m b} : {a m b}

∆ ` M1 : M1 ∆ ` M2 : M2

∆ ` M1 ∪ M2 : M1 ∪M2

∆ ` L : L

∆ ` {〈L〉Va } : {〈L〉a}
∆ ` A1 : Λ1 ∆ ` A2 : Λ2

∆ ` A1 ∪ A2 : Λ1 ∪ Λ2

∆ ` M : M ∆ ` A : Λ
∆ ` (M, A) : (M,Λ)

Lemma 5.7 (Single-Element Subject Reduction). Let M and M′ be message multisets, and
M = s(M). Let V and V ′ be value stores, L and L′ be program statements, L be a local type,
a be an actor name, and ∆ be program information.
If ∆ ` (M, {〈L〉Va } : (M, {〈L〉a}) and (M, {〈L〉Va }) −→∗ (M′, {〈L′〉V ′

a }), then there exist M ′ and
L′ such that (M, {〈L〉a}) −→∗ (M ′, {〈L′〉a}) and ∆ ` (M′, {〈L′〉V ′

a }) : (M ′, {〈L′〉a}).

Proof. By induction on the structure of configurations, and the relations −→ and `.

Sequencing

Assume the following configurations and associated reduction:

(M, {〈L1 ; L2 ; . . . ; Lκ〉Va }) −→ (M′, {〈L′1 ; L2 ; . . . ; Lκ〉V
′

a }) (5.8)

Assume M = s(M) and the local types L1, L2, . . . , Lκ, such that

(M, {〈L1 ; L2 ; . . . ; Lκ〉Va }) : (M, {〈L1 ; L2 ; . . . ; Lκ〉a}) (5.9)

The above relations are as in the premises of this lemma. From 5.8 and the transition rule
Lang-Seq (page 83), we have

(M, {〈L1〉Va }) −→ (M′, {〈L′1〉V
′

a }) (5.10)

From 5.9 and the typing rule for sequencing (Inf-Seq on page 86), we get

∆ ` (M, {〈L1〉Va }) : (M, {〈L1〉a}) (5.11)

88

Applying the inductive hypothesis onto 5.10 and 5.11, we have that there exist M ′ and L′1
such that

(
M, {〈L1〉a}

)
−→∗

(
M ′, {〈L′1〉a}

)
(5.12)

∆ `
(
M′, {〈L′1〉V

′
a }
)

:
(
M ′, {〈L′1〉a}

)
(5.13)

From 5.12 and sequence reduction for local types (rule LS-Seq on page 74), we get

(
M, {〈L1 ; L2 ; . . . ; Lκ〉a}

)
−→∗

(
M ′, {〈L′1 ; L2 ; . . . ; Lκ〉a}

)
(5.14)

From 5.13 and rule Inf-Seq (page 86), we get

∆ `
(
M′, {〈L′1 ; L2 ; . . . ; Lκ〉V

′
a }
)

:
(
M ′, {〈L′1 ; L2 ; . . . ; Lκ〉a}

)
(5.15)

The result consists of statements 5.14 and 5.15.
We omit the rest of the cases (concurrent composition, choice, etc.) because they pose

no additional technical difficulties, and can be shown in the same manner as the case of
sequencing.

Theorem 5.4 (Subject Reduction). Let C and C′ be program runtime configurations, C be
a configuration of local types, and ∆ be program information as above. If ∆ ` C : C and
C −→∗ C′, then there exists C ′ such that C −→∗ C ′ and ∆ ` C′ : C ′.

Proof. Directly from Lemma 5.7 and the compositional nature of the rules in Figure 5.13.

The converse is also true; that is, program configuration reductions predicted by the
semantics of the respective types are guaranteed to take place:

Theorem 5.5 (Session Fidelity). Let C be a program configuration, and let C be its assigned
type, i.e., ∆ ` C : C for some ∆. Then, C −→∗ C ′ implies that there exists C′ such that
C −→∗ C′ with ∆ ` C′ : C ′.

Proof. By induction on the structure of types, and the relations −→ and `, mirroring the
proof of subject reduction.

5.6 Extensions

In this section, we consider a few possible extensions to the system. First, we deal with
the problem of whether a given global type is realizable. That is, given a global type G, the
question of whether there exists a program in the syntax of Figure 5.8 that produces the

89

same set of traces as those prescribed by G. We then proceed with a short discussion on
index sets, and the problem outlined on page 78. Finally, we touch upon certain notions from
the literature that a future version of the system can incorporate.

5.6.1 On the Realizability of Global Types

In this section, we are concerned with static, structural checks to decide whether a global
type is realizable; that is, the question of whether a protocol given in the language of Figure 5.1
is implementable by a program in the syntax of Figure 5.8.

To bootstrap the discussion, we need to define the acceptable message sequences that a
type implies for a protocol implementation. We remind the reader that a runtime configuration
of local types C has the form (M,Λ), where M is the set of pending messages, and Λ is a set
of processes which reduce local types concurrently. Per the reduction relation of Figure 5.6,
such configurations reduce producing events of the form a m b when a message is received,
and τ in all other cases. In this section, we are only interested in events of the first kind,
and the possible sequences of such events that a set of local types can produce are called the
traces of the set:

Definition 5.1 (Local Type Traces). Let Λ be as defined in Figure 5.4. The set of traces
producible by Λ, written tr(Λ), is the set of possible non-τ event sequences producible from
the initial configuration (∅, Λ) by application of the rules in Figure 5.6 until termination. We
say that Λ terminates when it has been reduced to a set of processes of the form 〈τ〉a

The respective definition for programs follows. We remind the reader that for a given
program P, the initial configuration contains one actor of the form 〈L〉Va for each actor
definition in the program, where a is the actor’s name, L is its behavior, and V is its value
store. Program runtime configurations C have the form (M, A) where M is the multiset of
pending messages, and A contains the running actors. We write C

e−→ C′ to say that C

reduces to C′ producing event e. Events are of the form a m b upon message receipt (rule
Lang-Recv), and τ in all other cases. As before, we are only interested in events of the first
kind.

Definition 5.2 (Program Traces). The set of traces producible by a program P, written
tr(P), is the set of possible non-τ event sequences producible from the initial configuration
init(P), by application of the rules in Figure 5.11.

It is important to observe that events of interest, i.e., of the form a m b and a m:u b, are
produced at the point of message receipt (see rules LS-Recv and Lang-Recv on pages 74
and 83, respectively).

90

Figure 5.14: The auxiliary functions first and last,
used to develop structural realizability criteria for
global types.

first(G) =

{a m b} if G ≡ a m b

first(G1) if G ≡ (G1 ;G2)

first(G1) if G ≡
n
OP
i=1

(G1) OP ∈ {},⊕,⊗, ‖}
first(G1) if G ≡ (G∗

1)
κ⋃

ψ=1

first(Gψ) if G ≡ (G1 op . . . opGκ) op ∈ {⊕,⊗, ‖}

last(G) =

{a m b} if G ≡ a m b

last(G2) if G ≡ (G1 ;G2)

last(G1) if G ≡
n
OP
i=1

(G1) OP ∈ {},⊕,⊗, ‖}
last(G1) if G ≡ (G∗

1)
κ⋃

ψ=1

last(Gψ) if G ≡ (G1 op . . . opGκ) op ∈ {⊕,⊗, ‖}

first(L) =

{a!m} if L ≡ a!m

{a?m} if L ≡ a?m

first(L1) if L ≡ L1 ; L2

first(L1) if L ≡
n
OP
i=1

(L1) OP ∈ {},⊕,⊗, ‖}
first(L1) if L ≡ (L∗

1)
κ⋃

ψ=1

first(Lψ) if L ≡ (L1 op . . . opLκ) op ∈ {⊕,⊗, ‖}

last(L) =

{a!m} if L ≡ a!m

{a?m} if L ≡ a?m

last(L2) if L ≡ L1 ; L2

last(L1) if L ≡
n
OP
i=1

(L1) OP ∈ {},⊕,⊗, ‖}
last(L1) if L ≡ (L∗

1)
κ⋃

ψ=1

last(Lψ) if L ≡ (L1 op . . . opLκ) op ∈ {⊕,⊗, ‖}

91

In order to guarantee that projection maintains the semantics of global types, we impose
restrictions on their structure. To facilitate the discussion, Figure 5.14 defines the auxiliary
functions first and last, which return the first and last element of a type, respectively. The
functions first and last are extended to traces (i.e., event sequences) in the obvious way.
Because the well-formedness of global types depends at times on the form of the respective
projections, we first discuss well-formedness criteria for local types. These have the purpose of
ensuring that choice constructs implement either internal, or external choice—guaranteeing the
correct functioning of rules LS-Int-Choice and LS-Ext-Choice (page 74). We subsequently
discuss examples of global types for which the projected local types do not produce the same
traces, and propose well-formedness criteria to avoid the problems.

Well-Formed Local Types

The syntax given on page 72 allows choice branches to begin with both sending and
receiving actions. In order to ensure choice semantics are implementable, we demand that
local types be well-formed, which in the case of L ≡ L1 ⊕ L2 is equivalent to one of the
following two statements being true:

int(L)
def
= first(L1) = {a1?m1} ∧ first(L2) = {a2?m2} ∧ (a1 6= a2 ∨ m1 6= m2)

ext(L)
def
= first(L1) = {a1!m1} ∧ first(L2) = {a2!m2} ∧ (a1 6= a2 ∨ m1 6= m2)

In other words, L1 ⊕ L2 is well-formed iff either (a) both L1 and L2 start with a distinct
receive action; or (b) they both start with a distinct send action. The two statements capture
the concepts of internal and external choice, respectively. The relation wf(·) on local types
captures well-formedness,1 and is defined inductively in Figure 5.15. It holds up to structural
congruence. Notice that the last four rules in the figure re-state the int and ext relations
above.

Well-Formed Global Types

This section discusses how to maintain the intended meaning of global types after
projection, identifying three key cases where things can go wrong.

Preserving the semantics of sequencing. The type a x b ; c y d can be projected
onto the participants a, b, c and d to give the local types b!x, a?x, d!y and c?y respectively.
However, composing these types does not maintain the semantics of the ; operator, i.e., c is

1Using the rules in Figure 5.12 as the basis of a type system, one can envision incorporating the checks
mentioned to ensure the correct functioning of rules Lang-Int-Choice and Lang-Ext-Choice (page 83)
for programs. We leave this as future work.

92

Figure 5.15: The relation wf of well-formed local
types.

τ ∈ wf a!m ∈ wf a?m ∈ wf

wf(L1) wf(L2)
(
int(L1 ⊕ L2) ∨ ext(L1 ⊕ L2)

)

wf(L1 ⊕ L2)

wf(L1) . . . wf(Lκ) op ∈ {; , ‖}
wf(L1 op . . . opLκ)

OP = parameterized(op) op ∈ {; ,⊕,⊗, ‖} wf(L[1/i] op L[2/i])

wf
(n
OP
i=1
L
)

first(L1) = {a1?m1} first(L2) = {a2?m2} a1 6= a2

int(L1 ⊕ L2)

first(L1) = {a1?m1} first(L2) = {a2?m2} m1 6= m2

int(L1 ⊕ L2)

first(L1) = {a1!m1} first(L2) = {a2!m2} a1 6= a2

ext(L1 ⊕ L2)

first(L1) = {a1!m1} first(L2) = {a2!m2} m1 6= m2

ext(L1 ⊕ L2)

Figure 5.16: Well-Formedness sub-relations.

sp(G1 ;G2)
def
= (X, Y) ∈

(
last(G1), first(G2)

)
=⇒ ∃ a, b, c,m1,m2.

(
X = “a m1 b” ∧ Y = “b m2 c”

)

cp(G1 ⊕G2)
def
= ∀p.wf

(
(G1 ⊕G2) B p

)
∧ ∃p ∀p′ 6=p.

(
int(G B p′) ∧ ext(G B p)

)

pp
(
(G11 ⊕G12)‖G2

) def
=

(
first(G11 B p) = {a1?m1} ∧ first(G12 B p) = {a2?m2}

=⇒ “p!m1” /∈ (G2 B a1) ∧ “p!m2” /∈ (G2 B a2)
)

∨
(

first(G11 B p) = {a1?m1} ∧ G12 B p = ⊥
=⇒ “p!m1” /∈ (G2 B a1)

)

93

required to send y to d after b has received x, but c has no way of knowing when this has
happened. Contrast this with the type a x b ; b y c, whose projection into b!x, a?x ; c!y

and b?y (respectively for a, b and c) does indeed sequence the events of receiving x and
sending y. The criterion thus can be stated as: G1 ;G2 maintains the semantics of sequencing
if every action ending G1 can be sequenced with every action starting G2. More formally, we
require that sp(G1 ;G2), defined in Figure 5.16.

Preserving the semantics of choice. We require that the choice of branch in G1 ⊕G2

is guided by a single actor. This means that projecting onto the participants should give well-
formed local types, and that of these types, exactly one satisfies the relation ext (Figure 5.15),
and the rest all satisfy the relation int. Observe that the requirement boils down to all actors
implementing internal choice, except for one who acts as the guiding oracle, implementing
external choice. For a global type G ≡ G1 ⊕G2, the requirement is captured by the relation
cp(G), defined in Figure 5.16.

Preserving the semantics of choice in presence of concurrency. For the concurrent
composition G1‖G2 to work as expected, messaging in G2 should not affect choices in G1.
That is, messages that guide the selection of branches in G1 should not overlap with messages
sent in G2. This is captured by the relation pp, formally defined in Figure 5.16.

Putting it All Together

The well-formedness conditions outlined above are formally captured by the relation wf

on global types, defined in Figure 5.17. The relations sp, cp, pp and wf hold up to structural
congruence.

The purpose of the well-formedness conditions is to ensure that the semantics of global
types is maintained after projection. A well-formed global type G produces the same traces
as the multiset of local types resulting from the projections of G onto the participating actors.
The Conjecture that follows captures this property; it can be proven by induction on the
structure of well-formed global types, using subject reduction (Theorem 5.4) and session
fidelity (Theorem 5.5).

Conjecture 5.1. It is tr(G) = tr({G B p | p ∈ actors(G)}) for all well-typed global types G.

It is easy to see that the language semantics mirrors that of local types. However, local
type branches, as captured by operator ⊕, are non-deterministic at the points of external
choice and Kleene Star (rules LS-Ext-Choice and LS-KleeneStar on page 74). This is
not the case for programs, as case statements and while loops execute according to the
values of the supplied expressions (rules Lang-Ext-Choice and Lang-While on page 83).

94

Figure 5.17: The relation wf of well-formed global
types.

a m b ∈ wf τ ∈ wf

wf(G1) wf(G2) sp(G1 ;G2)

wf(G1 ;G2)

wf(G1) wf(G2) cp(G1 ⊕G2)

wf(G1 ⊕G2)

wf(G11) wf(G12) wf(G2) pp((G11 ⊕G12) ‖ G2)

wf((G11 ⊕G12) ‖ G2)

OP = parametric(op) op ∈ {; ,⊕,⊗} wf(G[1/i] op G[2/i])

wf
(n
OP
i=1
G
)

Thus, assuming that a program P implements a set of local types Λ, i.e., rule Inf-Program

(page 86) gives ` P : Λ, we have tr(P) ⊆ tr(Λ). This implies that the correctness criteria for
global types are directly applicable to programs that implement them.

5.6.2 Towards More Expressive Types

In its present form, this system does not allow the arbitrary use of parameters. First of
all, only indices that range over continuous integers are supported. Secondly, some all-to-all
types of communication are not supported, due to the issues discussed in Section 5.3.2. These
limitations can be overcome by allowing index sets, and making restrictions on them explicit.
This would, for example, enable types with constraints, such as

‖
i∈I
‖
j∈J
ai

m aj I ∩ J = ∅.

One can then reason about how these restrictions affect projection, which will produce
different outputs, depending on the provided side-conditions; such as, “project onto aψ where
ψ ∈ I”.

Future work considerations include support for exception handling (in the sense of Carbone
et al. [28]), which seems possible with the addition of a special construct to capture the
exception handling code. It may also be possible to transfer the more precise realizability
results [11] for choreographies [114] to our parameterized specifications, a topic we touch
upon in Section 5.6.1. Finally, other possible extensions concern the runtime monitoring
application domain [39]. In particular, adding support for global assertions [15] can form

95

the basis of a powerful theory for deriving local restrictions for each participant, which an
asynchronous observer [38] can then enforce.

5.7 Discussion

The purpose of this section is to offer insights on the limitations of the actor typing
presented here, and how those relate to the shortcomings of other systems in the literature.
For example, the session types in this chapter do not cover issues of actor creation—however,
much of the already existing work on session types [14, 25, 126] deals with process creation
naturally, in the context of extensions for the π-calculus. We argue that systems following
the paradigm of Honda et al. [70] disassociate process creation from session creation, which
makes the former possible to capture in the resulting calculi. As argued later in Section 5.7.2,
this same disassociation does not seem possible, or at least natural, in actor systems.

Much like actor creation, it is difficult to support session delegation in session types for
an actor system. Even though session delegation is supported by much of the related work in
this domain, that seems to come primarily from the fact that those systems are extensions of
the π-calculus. Actor systems are unique in that sessions, as captured by global types, are
not associated with channels. In the π-calculus, channels are syntactic entities over which
values—including channel names—are communicated. Hence, global types for the π-calculus
can naturally capture the sending of a protocol, i.e., one associated with a channel, over
another channel. Consider a group of π-calculus processes in a session over some channel c.
If one more process needs to partake in the session, it merely needs to become aware of c.
The respective behavior in actor development would be to send a message with the names of
the participants over to the new actor, which is not a useful programming pattern.

We begin the section with an analysis of the concept of session delegation, which develops
the ideas necessary to argue the above positions. In short, the discussed shortcomings with
regard to session delegation and actor creation are not unique to this system; rather, they
reflect fundamental limitations of the original proposals on session types for π-derived calculi.
The interested reader might find the work of Masini and Francalanza [98] to complement the
discussion in this section.

5.7.1 Session Delegation

In the context of session type systems for the π-calculus, session delegation refers to
the communication of channels as values. The term is used to capture the fact that the
communication protocol associated with the channel is itself delegated from the sending

96

Figure 5.18: The global types of Honda et al. [70].

Global G ::= p p′ : k〈U〉 values
| p p′ : k{lj : Gj}j∈J branching
| G,G′ parallel
| µt.G recursive
| t variable
| end end

Value U ::= S | T@p
Sort S ::= bool | nat | . . . | 〈G〉

process to the receiving one. Much of the related work in this area derives from Honda et al.’s
original papers on multiparty asynchronous session types [69, 70], and they all allow global
types to include constructs of the form p1 p2 : k〈s〉. The latter captures the event of a
process p1 sending a protocol (a.k.a. session type) s to another process p2 via channel k. The
full grammar for Honda et al.’s global types is given in Figure 5.18, where we use for
communication; not to be confused with −→, which is used for reductions throughout this
thesis.

In their grammar, the sending of a value U from p to p′ via the channel k is captured by
the construct p p′ : k〈U〉. The sending of labels lj from p to p′, each selecting a different
interaction Gj, is denoted with p p′ : k{lj : Gj}j∈J . Recursion is achieved by operator µ,
binding t to the same type in the construct µt.G. As usual, it is µt.G ≡ G[µt.G/t]. Values U
include vectors of sorts S, and local types T@p. In Honda et al.’s work, the latter construct
means a local type T taken by process p. T@p is allowed as the type of a communicable
value in global types so as to capture the sending of process names. Notice that the grammar
of sorts S includes global types: sending 〈G〉 over a channel k corresponds to the sending of
another channel, k′, which has been assigned the (global) type G.

Honda et al.’s syntax for global types is shared by many well-established theories; prime
examples include the initial work of Deniélou et al. [51] on parameterized session types, and
the role extensions by Deniélou and Yoshida [49]. Most importantly, this syntax is shared
unchanged in its crucial parts by all works deriving from these theories.

In the aforementioned calculi, one can write p!k1〈k2〉 to mean the sending of channel
k2 over channel k1 to process p. This way, the protocol associated with k2 is “delegated”
to the recipient p. In this manner, the aforementioned works treat sessions (or at least
their restrictions onto individual channels) as first-class citizens. However, actors do not
communicate via the use of channels. To simulate this concept in an extension of the work

97

presented in this chapter, one would have to communicate the names of the participants in
a sub-interaction. Doing so would establish that the related sub-protocol now takes place
with the message recipient as a new end point. That is not a common pattern in actor
programming.

To capture the concept of session delegation in a seamless manner, similar to that of
session types for the π-calculus, we need to equip our global types with sub-protocols. Since
these would involve a subset of the actors in the system, it is not clear how one would delegate
the session to some recipient without sending (and even knowing) all of the actor names
involved. A possible solution would be to consider some actors as “representatives” of the
involved groups, say one per group, and treat the communication of these names as delegating
the represented session.

It is worth noting that the benefits of such extensions are not clear at this point. One would
have to determine whether common actor programming patterns call for such treatment—as
well as evaluate whether programmers would be willing to deal with the complexities of the
methodology.

5.7.2 Actor Creation

Most session-based extensions to the π-calculus support dynamic process creation, with
the notable exception of the work of Deniélou et al. [51], and all works deriving from it. In
those works, the construct to create n actors has the form (R P0 λi.P)n and creates processes
P0, P [1/i], P [2/i], . . . , P [n − 1/i]. The syntax for P does not allow process creation in the
sense of the standard π-calculus or actors; for instance, the construct !P (which replicates
process P) is missing. Observe that the way the parameter n binds the number of created
processes is similar to our bracket notation in Figure 5.8: the construct actor a[n] {L} creates
n actors executing L. In this regard, the system of Chapter 5 is similar to the work of Deniélou
et al.: dynamic process creation is not supported outside the scope of the parameterization
described here.

While the extensive use of parameters in the type system complicates matters, it is not
the only obstacle in the way of incorporating dynamic actor creation in the system of this
chapter. As analyzed in Section 5.7.1, sessions are not first-class entities in our system; rather,
our types describe communication protocols that are not tied to initiation and termination
instructions on a specific channel.

In contrast, calculi deriving from the work of Takeuchi et al. [126] support statements of
the form request a(c) in S1 and accept a(c) in S1. The concurrent composition of such code
implements two processes that enter a session which uses channel c for communication; this

98

name is bound in both S1 and S2, which implement the interactions prescribed by the global
type of a. The name a identifies the session, and is assumed to be one of a list of unique,
shared names used for this purpose. However, these names are statically known; that is, the
related calculi do not contain recursive constructs that would allow the dynamic introduction
of session identifiers.

Session identifiers such as a above are each statically assigned a global type. Furthermore,
the global type syntax of Figure 5.18 does not support the dynamic creation of global types in
the syntax. To clarify, the creation of a session (global) type is not a describable behavior in
the global types of Honda et al. [69], which is an extension of the original system of Takeuchi
et al. [126] from which much of the related work derives. This observation is important,
because actor creation can be seen as the creation of a session—the protocol in which the
new actors participate. As such, we make the argument that in terms of dynamic actor
creation, the theory of this chapter suffers from the same drawback as session type systems
based on the π-calculus: even though many of those works support dynamic process creation,
the equivalent notion in an actor-based system is not dynamic actor creation; rather, it is
dynamic session creation.

It can be argued that the work of Honda et al. (and all derivatives) captures dynamic
session creation via the creation of channels. However, (a) their global types do not express
this as an action, and (b) channels do not have a behavior per se; i.e., a channel does not itself
have the capability to create other channels, whereas actors do. The first point hints at the
difficulty of expressing actor creation in our global types. The second point, however, seems
inadequate at first: one can argue that a channel can be used to send a message that causes
a recipient to introduce another process dynamically. Nevertheless, this new process cannot
join any already running session—at least in the works cited in this thesis. Even systems
that use parameterized session types2 fix the number of participants to some parameter n,
the value of which cannot change at runtime.

The problem seems to lie in the way processes are addressed within sessions, i.e., the
use of the request/accept constructs discussed in Section 2.2.2. With these constructs in
play, processes are typechecked according to the behavior corresponding to the index they
pick upon joining a session. This index acts as a name that is used to address processes in
communication, and it cannot change dynamically. Hence, systems deriving from the work
of Takeuchi et al. [126] disallow processes from dynamically joining and leaving sessions;
they also disallow dynamic changes in a participant’s index within a session. Alas, allowing
participants to dynamically switch the roles they are typechecked against seems to require
runtime support.

2all based on the work of Yoshida et al. [138]

99

To understand the nature of the problem, it is useful to look at the work of Deniélou
and Yoshida [49]. Although being presented as an extension of the π-calculus, their system
assigns both a unique identity, and a role to each process, giving their calculus an actor flavor.
An example from the original paper [49] is that of a map-reduce program [47], where the two
roles (local types) can be described as such:

Lclient = µt.?〈server,Map〉 ; !〈server,Reduce〉 ; t
Lserver = µt.∀x : client.{!〈x,Map〉 ; ?〈x,Reduce〉} ; t

In the above, client processes receive Map messages from the server, to which they reply
with a Reduce. Server processes do the converse, but with all client processes x—hence the
universal quantifier. Both roles repeat their behavior indefinitely, expressed through the use
of the µt construct. Processes (i.e., implementations of roles such as the above) follow a
syntax that mirrors that of roles.

The work of Deniélou and Yoshida allows dynamic process creation by supporting both
a recursive construct µX.P and concurrent composition P |P in their calculus syntax. Fur-
thermore, it allows processes to join and leave roles dynamically. However, to implement the
polling mechanism introduced with the ∀ operator, the runtime keeps track of the role of each
process—a trade-off we chose not to take in this chapter. Furthermore, their mechanism does
not allow the expression of patterns as complex as our work, or the work of Deniélou et al.
on parameterized session types [51] discussed before. For example, the butterfly network
topology, used for fast Fourier transforms, is expressible through certain operations on process
indices; simple assignment of roles to processes as in the map-reduce example above is not
enough.

Concluding, it seems that supporting dynamic process creation in session types becomes
harder as one increases the accuracy with which protocols are expressed in the type language.
Newly created actors/processes are to participate in protocols that session types aspire to
capture, and making this connection requires an extra step that is not obvious. The work
of Deniélou and Yoshida [49] on roles solves the problem (at a cost to expressiveness and
runtime overhead) via a type system that knows how every dynamically introduced process
behaves with regard to every other dynamically introduced process a priori. This seems
difficult to achieve in works such as the one in this chapter, or that of Deniélou et al. [51],
due to the heavy use of dependent local and global types.

100

Chapter 6

Conclusions and Open Problems

Statically guaranteeing interesting properties in concurrent programs is a difficult problem
that admits solutions inspired from many different viewpoints. This thesis has presented
work deriving from two such angles: tracking typestates, and session types.

The two approaches differ in significant ways, not the least of which being the expressiveness
of the resulting calculi. It is evident that an approach based on typestates can be applied to
an actor calculus that is very close to the original proposals of Hewitt [65] and Agha et al. [3].
This is because each name in the program can be associated with a typestate, on a per-scope
basis—similar to the way types are associated with basic data elements in languages such as
C. On the other hand, an approach based on session types offers more precise control over
the communication protocol, but seems to require unconventional language constructs. Such
deviations from model calculi have been proposed for both the π-calculus, and actors—in
exchange for an increase in the precision with which protocols are typechecked.

Particularly for the case of actors, a session type applies to an implied entity, i.e., the
communication itself. This is in contrast to π- derived calculi, where session types are
associated with communication channels. Consequently, the system of Chapter 5 assumes
that each program has a fixed set of actors, in order to enable typechecking against a protocol
where the names of the participants are mentioned explicitly. In fact, the actor names
mentioned in the global type have to match those in the respective implementation. This
clearly breaks basic code design principles, such as the separation of a component’s interface
from its implementation.

It seems possible to overcome this limitation by attaching session (global) types to specific
names in the program, which would act as session identifiers. This could allow, for example,
referring to global types as constructs of the form G(a, n) parameterized in actor names
a and arithmetic parameters n. Invoking such a construct with arguments α and n would
instantiate the session with actors α and numeric arguments n. The latter would be as in
Chapter 5, the work of Deniélou et al. [51], et cetera. Such extensions can allow the system to
capture the dynamic creation of actors, whose exact role in the protocol may be determined
by their position in the argument list passed to G.

This approach would closely resemble the session advertising and joining constructs of
Honda et al. [70]. These are meant to solve the related problem of matching participants to

101

their types in a session-typed extension of the π-calculus, as discussed in Section 2.2.2. Much
of the related work in session types for the π-calculus uses constructs which advertise a session
on a name, say s, which participants can join by declaring their role in the session—usually
by specifying their index explicitly. This is necessary in order to enable the typechecking of
participants against local types projected from the (global) type of s. Communication in s
takes place over a set of channels c that are also advertised, and that conceptually belong to
the same session.

However, the resulting calculi allow sending operations to specify the recipient, along with
the channel. For instance, c!〈1, e〉 will send the value of the expression e to the participant
with index 1, over channel c. Our position is that this is a major deviation from the way the
π-calculus was intended to express communication. The original Milner et al. papers [103,
104] discuss the π-calculus and its merits with examples where each channel “connects”
exactly two processes. This is in line with our intuition for how channels connect distributed
communicating processes, and their implementation in practice. A good example would be
the ever-present Transmission Control Protocol (TCP) [32, 33].

On the other hand, the typestate-based approach of Chapter 4 is less invasive. Types are
naturally attached to process names, without additional constructs to aid in the matching of
a protocol to its participants. Programmers tend to be very reluctant to the adoption of new
ideas, especially those that pose overhead on already established practices. This makes our
typestate approach especially attractive for implementation in a language such as Erlang, or
an actor framework such as Akka—both widely used.

This is not to suggest that typestates are panacea for the world of statically enforced
properties in concurrent programming; or that the properties captured by the typestates
in this thesis are the most useful ones. It is a topic of future research to come up with a
set of properties that combine to offer both accurate, and succinct control over a program’s
communication structure. The problem is both interesting and not trivial, since one has to
consider the trade-offs regarding programmability, the nature of the desired properties, the
extend to which these can be decided statically, and at what performance penalty.

Thank you for taking interest in my research.

102

Bibliography

[1] Gul A. Agha. 1990. ACTORS – a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press. isbn: 978-0-262-01092-4.

[2] Gul Agha and Prasanna Thati. 2004. An algebraic theory of actors and its application
to a simple object-based language. In From Object-Orientation to Formal Methods,
Essays in Memory of Ole-Johan Dahl (Lecture Notes in Computer Science). Olaf
Owe, Stein Krogdahl, and Tom Lyche, (Eds.) Volume 2635. Springer, 26–57. isbn:
3-540-21366-X. doi: 10.1007/978-3-540-39993-3_4.

[3] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997. A foun-
dation for actor computation. J. Funct. Program., 7, 1, 1–72. doi: 10 . 1017 /
S095679689700261X.

[4] Gul Agha, Christopher R. Houck, and Rajendra Panwar. 1991. Distributed execution
of actor programs. In Languages and Compilers for Parallel Computing, Fourth In-
ternational Workshop, Santa Clara, California, USA, August 7-9, 1991, Proceedings
(Lecture Notes in Computer Science). Utpal Banerjee, David Gelernter, Alexandru
Nicolau, and David A. Padua, (Eds.) Volume 589. Springer, 1–17. isbn: 3-540-55422-X.
doi: 10.1007/BFb0038654.

[5] Alfred V. Aho and Jeffrey D. Ullman. 1977. Principles of Compiler Design. Addison
Wesley. isbn: 978-0201100730.

[6] Bowen Alpern and Fred B. Schneider. 1985. Defining liveness. Inf. Process. Lett., 21,
4, 181–185. doi: 10.1016/0020-0190(85)90056-0.

[7] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2005. Realizability and
verification of MSC graphs. Theor. Comput. Sci., 331, 1, 97–114. doi: 10.1016/j.
tcs.2004.09.034.

[8] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. 2010. Gödel’s system
tau revisited. Theor. Comput. Sci., 411, 11-13, 1484–1500. doi: 10.1016/j.tcs.
2009.11.014.

[9] Stephanie Balzer and Frank Pfenning. 2015. Objects as session-typed processes. In
Proceedings of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE! 2015, Pittsburgh, PA, USA, October 26,
2015. Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and Carlos Varela, (Eds.)
ACM, 13–24. isbn: 978-1-4503-3901-8. doi: 10.1145/2824815.2824817.

103

https://doi.org/10.1007/978-3-540-39993-3_4
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1007/BFb0038654
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1016/j.tcs.2009.11.014
https://doi.org/10.1016/j.tcs.2009.11.014
https://doi.org/10.1145/2824815.2824817

[10] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press. isbn: 978-0-521-76614-2.

[11] Samik Basu, Tevfik Bultan, and Meriem Ouederni. 2012. Deciding choreography
realizability. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012. John Field and Michael Hicks, (Eds.) ACM, 191–202. isbn:
978-1-4503-1083-3. doi: 10.1145/2103656.2103680.

[12] Andi Bejleri. 2012. Parameterised session types communication patterns: through the
looking glass of session types. Ph.D. Dissertation. Imperial College London, UK.

[13] Andi Bejleri. 2010. Practical parameterised session types. In Formal Methods and
Software Engineering - 12th International Conference on Formal Engineering Methods,
ICFEM 2010, Shanghai, China, November 17-19, 2010. Proceedings (Lecture Notes in
Computer Science). Jin Song Dong and Huibiao Zhu, (Eds.) Volume 6447. Springer,
270–286. isbn: 978-3-642-16900-7. doi: 10.1007/978-3-642-16901-4_19.

[14] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. 2008. Global progress in dynamically interleaved
multiparty sessions. In CONCUR 2008 - Concurrency Theory, 19th International
Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings (Lec-
ture Notes in Computer Science). Franck van Breugel and Marsha Chechik, (Eds.)
Volume 5201. Springer, 418–433. isbn: 978-3-540-85360-2. doi: 10.1007/978-3-
540-85361-9_33.

[15] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A theory
of design-by-contract for distributed multiparty interactions. In CONCUR 2010 -
Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France,
August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science).
Paul Gastin and François Laroussinie, (Eds.) Volume 6269. Springer, 162–176. isbn:
978-3-642-15374-7. doi: 10.1007/978-3-642-15375-4_12.

[16] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko
Yoshida. 2017. Monitoring networks through multiparty session types. Theor. Comput.
Sci., 669, 33–58. doi: 10.1016/j.tcs.2017.02.009.

[17] Eduardo Bonelli and Adriana B. Compagnoni. 2007. Multipoint session types for a
distributed calculus. In Trustworthy Global Computing, Third Symposium, TGC 2007,
Sophia-Antipolis, France, November 5-6, 2007, Revised Selected Papers (Lecture Notes

104

https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1007/978-3-642-16901-4_19
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1016/j.tcs.2017.02.009

in Computer Science). Gilles Barthe and Cédric Fournet, (Eds.) Volume 4912. Springer,
240–256. isbn: 978-3-540-78662-7. doi: 10.1007/978-3-540-78663-4_17.

[18] Eduardo Bonelli, Adriana B. Compagnoni, and Elsa L. Gunter. 2005. Correspondence
assertions for process synchronization in concurrent communications. Journal of
Functional Programming, 15, 2, 219–247. doi: 10.1017/S095679680400543X.

[19] Eduardo Bonelli, Adriana B. Compagnoni, and Elsa L. Gunter. 2005. Typechecking
safe process synchronization. Electr. Notes Theor. Comput. Sci., 138, 1, 3–22. doi:
10.1016/j.entcs.2005.05.002.

[20] Gérard Boudol. 1992. Asynchrony and the Pi-calculus. Research Report. https:
//hal.inria.fr/inria-00076939

[21] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines. J.
ACM, 30, 2, 323–342. doi: 10.1145/322374.322380.

[22] Roberto Bruni and Jürgen Dingel, (Eds.) Formal Techniques for Distributed Systems -
Joint 13th IFIP WG 6.1 International Conference, FMOODS 2011, and 31st IFIP
WG 6.1 International Conference, FORTE 2011, Reykjavik, Iceland, June 6-9, 2011.
Proceedings, volume 6722 of Lecture Notes in Computer Science, (2011). Springer.
isbn: 978-3-642-21460-8. doi: 10.1007/978-3-642-21461-5.

[23] Luís Caires and Frank Pfenning. 2010. Session types as intuitionistic linear propositions.
In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR
2010, Paris, France, August 31-September 3, 2010. Proceedings (Lecture Notes in Com-
puter Science). Paul Gastin and François Laroussinie, (Eds.) Volume 6269. Springer,
222–236. isbn: 978-3-642-15374-7. doi: 10.1007/978-3-642-15375-4_16.

[24] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013. Roberto Giacobazzi and Radhia Cousot, (Eds.) ACM, 263–274. isbn:
978-1-4503-1832-7. doi: 10.1145/2429069.2429101.

[25] Marco Carbone, Nobuko Yoshida, and Kohei Honda. 2009. Asynchronous session
types: exceptions and multiparty interactions. In Formal Methods for Web Services, 9th
International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2009, Bertinoro, Italy, June 1-6, 2009, Advanced Lectures
(Lecture Notes in Computer Science). Marco Bernardo, Luca Padovani, and Gianluigi
Zavattaro, (Eds.) Volume 5569. Springer, 187–212. isbn: 978-3-642-01917-3. doi:
10.1007/978-3-642-01918-0_5.

105

https://doi.org/10.1007/978-3-540-78663-4_17
https://doi.org/10.1017/S095679680400543X
https://doi.org/10.1016/j.entcs.2005.05.002
https://hal.inria.fr/inria-00076939
https://hal.inria.fr/inria-00076939
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-21461-5
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-642-01918-0_5

[26] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. 2014. Progress as compositional
lock-freedom. In Coordination Models and Languages - 16th IFIP WG 6.1 International
Conference, COORDINATION 2014, Held as Part of the 9th International Federated
Conferences on Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany,
June 3-5, 2014, Proceedings (Lecture Notes in Computer Science). eva Kühn and
Rosario Pugliese, (Eds.) Volume 8459. Springer, 49–64. isbn: 978-3-662-43375-1. doi:
10.1007/978-3-662-43376-8_4.

[27] Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2007. Structured communication-
centred programming for web services. In Programming Languages and Systems, 16th
European Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March
24 - April 1, 2007, Proceedings (Lecture Notes in Computer Science). Rocco De Nicola,
(Ed.) Volume 4421. Springer, 2–17. isbn: 978-3-540-71314-2. doi: 10.1007/978-3-
540-71316-6_2.

[28] Marco Carbone, Kohei Honda, and Nobuko Yoshida. 2008. Structured interactional
exceptions in session types. In CONCUR 2008 - Concurrency Theory, 19th Interna-
tional Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings
(Lecture Notes in Computer Science). Franck van Breugel and Marsha Chechik, (Eds.)
Volume 5201. Springer, 402–417. isbn: 978-3-540-85360-2. doi: 10.1007/978-3-
540-85361-9_32.

[29] Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and
polymorphism. ACM Comput. Surv., 17, 4, 471–522. doi: 10.1145/6041.6042.

[30] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2012. On
global types and multi-party session. Logical Methods in Computer Science, 8, 1. doi:
10.2168/LMCS-8(1:24)2012.

[31] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. 2011. On
global types and multi-party sessions. In Formal Techniques for Distributed Systems -
Joint 13th IFIP WG 6.1 International Conference, FMOODS 2011, and 31st IFIP
WG 6.1 International Conference, FORTE 2011, Reykjavik, Iceland, June 6-9, 2011.
Proceedings (Lecture Notes in Computer Science). Roberto Bruni and Jürgen Dingel,
(Eds.) Volume 6722. Springer, 1–28. isbn: 978-3-642-21460-8. doi: 10.1007/978-
3-642-21461-5_1.

[32] V. Cerf and R. Kahn. 1974. A protocol for packet network intercommunication. IEEE
Transactions on Communications, 22, 5, 637–648. issn: 0090-6778. doi: 10.1109/
TCOM.1974.1092259.

106

https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1145/6041.6042
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1109/TCOM.1974.1092259

[33] Vinton G. Cerf and Robert E. Kahn. 2005. A protocol for packet network intercommu-
nication. Computer Communication Review, 35, 2, 71–82. doi: 10.1145/1064413.
1064423.

[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.,
26, 2, 4:1–4:26. doi: 10.1145/1365815.1365816.

[35] Minas Charalambides, Peter Dinges, and Gul Agha. 2012. Parameterized concurrent
multi-party session types. In Proceedings 11th International Workshop on Foundations
of Coordination Languages and Self Adaptation, FOCLASA 2012, Newcastle, U.K.,
September 8, 2012. (EPTCS). Natallia Kokash and António Ravara, (Eds.) Volume 91,
16–30. doi: 10.4204/EPTCS.91.2.

[36] Minas Charalambides, Peter Dinges, and Gul A. Agha. 2016. Parameterized, concur-
rent session types for asynchronous multi-actor interactions. Science of Computer
Programming, 115-116, 100–126. doi: 10.1016/j.scico.2015.10.006.

[37] Minas Charalambides, Karl Palmskog, and Gul Agha. 2017. Types for progress in
actor programs. In Proceedings of the Workshop on Actors and Active Objects, IFM
Satellite Event, Torino, Italy, September 18, 2017 number 2.

[38] Tzu-Chun Chen and Kohei Honda. 2012. Specifying stateful asynchronous properties
for distributed programs. In CONCUR 2012 - Concurrency Theory - 23rd Interna-
tional Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012.
Proceedings (Lecture Notes in Computer Science). Maciej Koutny and Irek Ulidowski,
(Eds.) Volume 7454. Springer, 209–224. isbn: 978-3-642-32939-5. doi: 10.1007/978-
3-642-32940-1_16.

[39] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko
Yoshida. 2011. Asynchronous distributed monitoring for multiparty session enforcement.
In Trustworthy Global Computing - 6th International Symposium, TGC 2011, Aachen,
Germany, June 9-10, 2011. Revised Selected Papers (Lecture Notes in Computer
Science). Roberto Bruni and Vladimiro Sassone, (Eds.) Volume 7173. Springer, 25–45.
isbn: 978-3-642-30064-6. doi: 10.1007/978-3-642-30065-3_2.

[40] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2014. On the
preciseness of subtyping in session types. In Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury,

107

https://doi.org/10.1145/1064413.1064423
https://doi.org/10.1145/1064413.1064423
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.4204/EPTCS.91.2
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1007/978-3-642-32940-1_16
https://doi.org/10.1007/978-3-642-32940-1_16
https://doi.org/10.1007/978-3-642-30065-3_2

United Kingdom, September 8-10, 2014. Olaf Chitil, Andy King, and Olivier Danvy,
(Eds.) ACM, 135–146. isbn: 978-1-4503-2947-7. doi: 10.1145/2643135.2643138.

[41] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida.
2016. On the preciseness of subtyping in session types. CoRR, abs/1610.00328. arXiv:
1610.00328.

[42] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. 2008.
PNUTS: yahoo!’s hosted data serving platform. PVLDB, 1, 2, 1277–1288.

[43] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. 2007. Asyn-
chronous session types and progress for object oriented languages. In Formal Methods
for Open Object-Based Distributed Systems, 9th IFIP WG 6.1 International Conference,
FMOODS 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings (Lecture Notes in Com-
puter Science). Marcello M. Bonsangue and Einar Broch Johnsen, (Eds.) Volume 4468.
Springer, 1–31. isbn: 978-3-540-72919-8. doi: 10.1007/978-3-540-72952-5_1.

[44] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. 1999. Parallel computer
architecture – a hardware/software approach. Morgan Kaufmann. isbn: 978-1-55860-
343-1.

[45] Robert DeLine and Manuel Fähndrich. 2001. Enforcing high-level protocols in low-level
software. In Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Snowbird, Utah, USA, June 20-22,
2001. Michael Burke and Mary Lou Soffa, (Eds.) ACM, 59–69. isbn: 1-58113-414-2.
doi: 10.1145/378795.378811.

[46] Robert DeLine and Manuel Fähndrich. 2004. Typestates for objects. In ECOOP 2004
- Object-Oriented Programming, 18th European Conference, Oslo, Norway, June 14-
18, 2004, Proceedings (Lecture Notes in Computer Science). Martin Odersky, (Ed.)
Volume 3086. Springer, 465–490. isbn: 3-540-22159-X. doi: 10.1007/978-3-540-
24851-4_21.

[47] Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51, 1, (January 2008), 107–113. issn: 0001-0782. doi:
10.1145/1327452.1327492.

[48] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. 2007. Bpel4chor:
extending BPEL for modeling choreographies. In 2007 IEEE International Conference
on Web Services (ICWS) 2007), July 9-13, 2007, Salt Lake City, Utah, USA. IEEE
Computer Society, 296–303. isbn: 0-7695-2924-0. doi: 10.1109/ICWS.2007.59.

108

https://doi.org/10.1145/2643135.2643138
http://arxiv.org/abs/1610.00328
https://doi.org/10.1007/978-3-540-72952-5_1
https://doi.org/10.1145/378795.378811
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/ICWS.2007.59

[49] Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. Thomas
Ball and Mooly Sagiv, (Eds.) ACM, 435–446. isbn: 978-1-4503-0490-0. doi: 10.1145/
1926385.1926435.

[50] Pierre-Malo Deniélou and Nobuko Yoshida. 2012.Multiparty session types meet commu-
nicating automata. In Programming Languages and Systems - 21st European Symposium
on Programming, ESOP 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings (Lecture Notes in Computer Science). Helmut Seidl, (Ed.) Vol-
ume 7211. Springer, 194–213. isbn: 978-3-642-28868-5. doi: 10.1007/978-3-642-
28869-2_10.

[51] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012. Pa-
rameterised multiparty session types. Logical Methods in Computer Science, 8, 4. doi:
10.2168/LMCS-8(4:6)2012.

[52] Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko
Yoshida. 2006. Bounded session types for object oriented languages. In Formal Methods
for Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam,
The Netherlands, November 7-10, 2006, Revised Lectures (Lecture Notes in Computer
Science). Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P.
de Roever, (Eds.) Volume 4709. Springer, 207–245. isbn: 978-3-540-74791-8. doi:
10.1007/978-3-540-74792-5_10.

[53] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia
Drossopoulou. 2006. Session types for object-oriented languages. In ECOOP 2006
- Object-Oriented Programming, 20th European Conference, Nantes, France, July
3-7, 2006, Proceedings (Lecture Notes in Computer Science). Dave Thomas, (Ed.)
Volume 4067. Springer, 328–352. isbn: 3-540-35726-2. doi: 10.1007/11785477_20.

[54] Fourth Gravitational Wave Found, Blue Waters Supercomputer. https://tinyurl.
com/ncsa-fourth-grav-wave

[55] Nissim Francez. 1986. Fairness. Texts and Monographs in Computer Science. Springer.
isbn: 978-3-540-96235-9. doi: 10.1007/978-1-4612-4886-6.

[56] Paul Gastin and François Laroussinie, (Eds.) CONCUR 2010 - Concurrency Theory,
21th International Conference, CONCUR 2010, Paris, France, August 31-September 3,

109

https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1007/11785477_20
https://tinyurl.com/ncsa-fourth-grav-wave
https://tinyurl.com/ncsa-fourth-grav-wave
https://doi.org/10.1007/978-1-4612-4886-6

2010. Proceedings, volume 6269 of Lecture Notes in Computer Science, (2010). Springer.
isbn: 978-3-642-15374-7. doi: 10.1007/978-3-642-15375-4.

[57] Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus.
Acta Inf., 42, 2-3, 191–225. doi: 10.1007/s00236-005-0177-z.

[58] Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for
asynchronous session types. J. Funct. Program., 20, 1, 19–50. doi: 10 . 1017 /
S0956796809990268.

[59] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and
Alexandre Z. Caldeira. 2010. Modular session types for distributed object-oriented
programming. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010. Manuel V. Hermenegildo and Jens Palsberg, (Eds.) ACM, 299–312. isbn: 978-1-
60558-479-9. doi: 10.1145/1706299.1706335.

[60] Simon J. Gay, Nils Gesbert, and António Ravara. 2014. Session types as generic
process types. In Proceedings Combined 21st International Workshop on Expressiveness
in Concurrency and 11th Workshop on Structural Operational Semantics, EXPRESS
2014, and 11th Workshop on Structural Operational Semantics, SOS 2014, Rome,
Italy, 1st September 2014. (EPTCS). Johannes Borgström and Silvia Crafa, (Eds.)
Volume 160, 94–110. doi: 10.4204/EPTCS.160.9.

[61] Simon Gay and Vasco Vasconcelos. 2007. Asynchronous Functional Session Types.
Technical report. http://www.dcs.gla.ac.uk/~simon/publications/TR-
2007-251.pdf

[62] Simon Gay, Vasco Vasconcelos, and António Ravara. 2003. Session Types for Inter-
Process Communication. Technical report. http://www.dcs.gla.ac.uk/
~simon/publications/TR-2003-133.pdf

[63] Kurt Gödel. 1958. Über eine bisher noch nicht benützte erweiterung des finiten stand-
punktes. Dialectica, 280–287.

[64] Luciano Lavagno, Grant Martin, and Bran Selic, (Eds.) 2003. Message sequence charts.
UML for Real: Design of Embedded Real-Time Systems. Springer US, Boston, MA,
77–105. isbn: 978-0-306-48738-5. doi: 10.1007/0-306-48738-1_4.

[65] Carl Hewitt. 1977. Viewing control structures as patterns of passing messages. Artif.
Intell., 8, 3, 323–364. doi: 10.1016/0004-3702(77)90033-9.

[66] C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice-Hall. isbn:
0-13-153271-5.

110

https://doi.org/10.1007/978-3-642-15375-4
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/1706299.1706335
https://doi.org/10.4204/EPTCS.160.9
http://www.dcs.gla.ac.uk/~simon/publications/TR-2007-251.pdf
http://www.dcs.gla.ac.uk/~simon/publications/TR-2007-251.pdf
http://www.dcs.gla.ac.uk/~simon/publications/TR-2003-133.pdf
http://www.dcs.gla.ac.uk/~simon/publications/TR-2003-133.pdf
https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.1016/0004-3702(77)90033-9

[67] Kohei Honda. 1993. Types for dyadic interaction. In CONCUR ’93, 4th International
Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Pro-
ceedings (Lecture Notes in Computer Science). Eike Best, (Ed.) Volume 715. Springer,
509–523. isbn: 3-540-57208-2. doi: 10.1007/3-540-57208-2_35.

[68] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language
primitives and type discipline for structured communication-based programming. In
Programming Languages and Systems - ESOP’98, 7th European Symposium on Pro-
gramming, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings
(Lecture Notes in Computer Science). Chris Hankin, (Ed.) Volume 1381. Springer,
122–138. isbn: 3-540-64302-8. doi: 10.1007/BFb0053567.

[69] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty asynchronous
session types. J. ACM, 63, 1, 9:1–9:67. doi: 10.1145/2827695.

[70] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous
session types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008. George C. Necula and Philip Wadler, (Eds.) ACM, 273–284. isbn:
978-1-59593-689-9. doi: 10.1145/1328438.1328472.

[71] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
2011. Scribbling interactions with a formal foundation. In Distributed Computing and
Internet Technology - 7th International Conference, ICDCIT 2011, Bhubaneshwar,
India, February 9-12, 2011. Proceedings (Lecture Notes in Computer Science). Raja
Natarajan and Adegboyega K. Ojo, (Eds.) Volume 6536. Springer, 55–75. isbn: 978-3-
642-19055-1. doi: 10.1007/978-3-642-19056-8_4.

[72] Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-based distributed
programming in java. In ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings (Lecture Notes in Computer
Science). Jan Vitek, (Ed.) Volume 5142. Springer, 516–541. isbn: 978-3-540-70591-8.
doi: 10.1007/978-3-540-70592-5_22.

[73] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
2010. Type-safe eventful sessions in java. In ECOOP 2010 - Object-Oriented Program-
ming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings
(Lecture Notes in Computer Science). Theo D’Hondt, (Ed.) Volume 6183. Springer,
329–353. isbn: 978-3-642-14106-5. doi: 10.1007/978-3-642-14107-2_16.

111

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2827695
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-642-14107-2_16

[74] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-
Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto,
Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of session types and
behavioural contracts. ACM Comput. Surv., 49, 1, 3:1–3:36. doi: 10.1145/2873052.

[75] Atsushi Igarashi and Naoki Kobayashi. 2004. A generic type system for the pi-calculus.
Theor. Comput. Sci., 311, 1-3, 121–163. doi: 10.1016/S0304-3975(03)00325-6.

[76] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2017. Session-ocaml: A session-based
library with polarities and lenses. In Coordination Models and Languages - 19th
IFIP WG 6.1 International Conference, COORDINATION 2017, Held as Part of
the 12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings (Lecture Notes
in Computer Science). Jean-Marie Jacquet and Mieke Massink, (Eds.) Volume 10319.
Springer, 99–118. isbn: 978-3-319-59745-4. doi: 10.1007/978-3-319-59746-
1_6.

[77] Guha Jayachandran, V. Vishal, and Vijay S. Pande. 2006. Using massively parallel
simulation and markovian models to study protein folding: examining the dynamics of
the villin headpiece. The Journal of Chemical Physics. doi: 10.1063/1.2186317.

[78] Simon L. Peyton Jones, Andrew D. Gordon, and Sigbjorn Finne. 1996. Concur-
rent haskell. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Sym-
posium, St. Petersburg Beach, Florida, USA, January 21-24, 1996. Hans-Juergen
Boehm and Guy L. Steele Jr., (Eds.) ACM Press, 295–308. isbn: 0-89791-769-3. doi:
10.1145/237721.237794.

[79] Naoki Kobayashi. 1998. A partially deadlock-free typed process calculus. ACM Trans.
Program. Lang. Syst., 20, 2, 436–482. doi: 10.1145/276393.278524.

[80] Naoki Kobayashi. 2002. A type system for lock-free processes. Information and Com-
putation, 177, 2, 122–159. issn: 0890-5401. doi: 10.1006/inco.2002.3171.

[81] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. 2000. An implicitly-typed deadlock-
free process calculus. In CONCUR 2000 - Concurrency Theory, 11th International
Conference, University Park, PA, USA, August 22-25, 2000, Proceedings (Lecture
Notes in Computer Science). Catuscia Palamidessi, (Ed.) Volume 1877. Springer,
489–503. isbn: 3-540-67897-2. doi: 10.1007/3-540-44618-4_35.

112

https://doi.org/10.1145/2873052
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1007/978-3-319-59746-1_6
https://doi.org/10.1007/978-3-319-59746-1_6
https://doi.org/10.1063/1.2186317
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/276393.278524
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/3-540-44618-4_35

[82] Vijay Anand Korthikanti. 2012. Towards energy-performance trade-off analysis of
parallel applications. Ph.D. Dissertation. University of Illinois at Urbana-Champaign,
(February 2012).

[83] Vijay Anand Korthikanti, Gul Agha, and Mark R. Greenstreet. 2011. On the energy
complexity of parallel algorithms. In International Conference on Parallel Processing,
ICPP 2011, Taipei, Taiwan, September 13-16, 2011. Guang R. Gao and Yu-Chee
Tseng, (Eds.) IEEE Computer Society, 562–570. isbn: 978-1-4577-1336-1. doi: 10.
1109/ICPP.2011.84.

[84] Dimitrios Kouzapas, Nobuko Yoshida, and Kohei Honda. 2011. On asynchronous
session semantics. In Formal Techniques for Distributed Systems - Joint 13th IFIP
WG 6.1 International Conference, FMOODS 2011, and 31st IFIP WG 6.1 International
Conference, FORTE 2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings (Lecture
Notes in Computer Science). Roberto Bruni and Jürgen Dingel, (Eds.) Volume 6722.
Springer, 228–243. isbn: 978-3-642-21460-8. doi: 10.1007/978-3-642-21461-
5_15.

[85] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60, 6, 84–90. doi: 10.1145/
3065386.

[86] Ericsson Computer Science Laboratory. Erlang. https://www.erlang.org

[87] Leslie Lamport. 1977. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3, 2, 125–143. doi: 10.1109/TSE.1977.229904.

[88] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridg-
ing the gap between interaction- and process-oriented choreographies. In Sixth IEEE
International Conference on Software Engineering and Formal Methods, SEFM 2008,
Cape Town, South Africa, 10-14 November 2008. Antonio Cerone and Stefan Gruner,
(Eds.) IEEE Computer Society, 323–332. isbn: 978-0-7695-3437-4. doi: 10.1109/
SEFM.2008.11.

[89] Julien Lange and Emilio Tuosto. 2012. Synthesising choreographies from local session
types (extended version). CoRR, abs/1204.2566.

[90] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From communicating ma-
chines to graphical choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015. Sriram K. Rajamani and David Walker, (Eds.) ACM,
221–232. isbn: 978-1-4503-3300-9. doi: 10.1145/2676726.2676964.

113

https://doi.org/10.1109/ICPP.2011.84
https://doi.org/10.1109/ICPP.2011.84
https://doi.org/10.1007/978-3-642-21461-5_15
https://doi.org/10.1007/978-3-642-21461-5_15
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://www.erlang.org
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1145/2676726.2676964

[91] Xavier Leroy, Jérôme Vouillon, Damien Doligez, Didier Rémy, Ascánder Suárez, et al.
OCaml. https://ocaml.org/

[92] Eugene Letuchy. Facebook Chat. https://tinyurl.com/facebook-actors

[93] Lightbend. Akka. http://akka.io

[94] Linear Algebra Package. http://www.netlib.org/lapack/

[95] Barbara Liskov. 1987. Keynote address - data abstraction and hierarchy. In Adden-
dum to the Proceedings on Object-oriented Programming Systems, Languages and
Applications (Addendum) (OOPSLA ’87). ACM, Orlando, Florida, USA, 17–34. isbn:
0-89791-266-7. doi: 10.1145/62138.62141.

[96] Barbara Liskov. 1988. Keynote address - data abstraction and hierarchy. SIGPLAN
Not., 23, 5, 17–34. issn: 0362-1340. doi: 10.1145/62139.62141.

[97] Joseph Masini and Adrian Francalanza. 2013. Typing actors using behavioural types.
In Proceedings of the Second International Workshop on Behavioral Types (BEAT).

[98] Joseph Masini and Adrian Francalanza. 2015. Typing Actors using Behavioural Types.
Technical report. https://tinyurl.com/masini2015typing

[99] Satoshi Matsuoka and Akinori Yonezawa. 1993. Research directions in concurrent
object-oriented programming. In Gul Agha, Peter Wegner, and Akinori Yonezawa,
(Eds.) MIT Press, Cambridge, MA, USA. Chapter Analysis of Inheritance Anomaly in
Object-oriented Concurrent Programming Languages, 107–150. isbn: 0-262-01139-5.

[100] Message Passing Interface. http://mpi-forum.org/

[101] Robin Milner. 1999. Communicating and mobile systems – the Pi-calculus. Cambridge
University Press. isbn: 978-0-521-65869-0.

[102] Robin Milner and Davide Sangiorgi. 1992. Barbed bisimulation. In Automata, Languages
and Programming, 19th International Colloquium, ICALP92, Vienna, Austria, July
13-17, 1992, Proceedings (Lecture Notes in Computer Science). Werner Kuich, (Ed.)
Volume 623. Springer, 685–695. isbn: 3-540-55719-9. doi: 10.1007/3-540-55719-
9_114.

[103] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes,
I. Inf. Comput., 100, 1, 1–40. doi: 10.1016/0890-5401(92)90008-4.

[104] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes,
II. Inf. Comput., 100, 1, 41–77. doi: 10.1016/0890-5401(92)90009-5.

114

https://ocaml.org/
https://tinyurl.com/facebook-actors
http://akka.io
http://www.netlib.org/lapack/
https://doi.org/10.1145/62138.62141
https://doi.org/10.1145/62139.62141
https://tinyurl.com/masini2015typing
http://mpi-forum.org/
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5

[105] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature, 518, 7540, 529–533.
doi: 10.1038/nature14236.

[106] Peter D. Mosses. 2006. Formal semantics of programming languages: - an overview -.
Electr. Notes Theor. Comput. Sci., 148, 1, 41–73. doi: 10.1016/j.entcs.2005.
12.012.

[107] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global principal typing
in partially commutative asynchronous sessions. In Programming Languages and
Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science).
Giuseppe Castagna, (Ed.) Volume 5502. Springer, 316–332. isbn: 978-3-642-00589-3.
doi: 10.1007/978-3-642-00590-9_23.

[108] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed runtime monitor-
ing for multiparty conversations. Formal Aspects of Computing, 1–34. issn: 1433-299X.
doi: 10.1007/s00165-017-0420-8.

[109] Oscar Nierstrasz. 1993. Regular types for active objects. In Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), Eighth
Annual Conference, Washington, DC, USA, September 26 - October 1, 1993, Proceed-
ings. Timlynn Babitsky and Jim Salmons, (Eds.) ACM, 1–15. isbn: 0-89791-587-9.
doi: 10.1145/165854.167976.

[110] Oracle. Java Threads Tutorial. http://tinyurl.com/java-thread-tutorial

[111] Luca Padovani. 2017. Deadlock-Free Typestate-Oriented Programming. Technical report.
https://hal.archives-ouvertes.fr/hal-01628801

[112] Luca Padovani. 2013. From lock freedom to progress using session types. In Pro-
ceedings 6th Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, PLACES 2013, Rome, Italy, 23rd March 2013.
(EPTCS). Nobuko Yoshida and Wim Vanderbauwhede, (Eds.) Volume 137, 3–19. doi:
10.4204/EPTCS.137.2.

[113] Pascal records. http://wiki.freepascal.org/Record

115

https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/165854.167976
http://tinyurl.com/java-thread-tutorial
https://hal.archives-ouvertes.fr/hal-01628801
https://doi.org/10.4204/EPTCS.137.2
http://wiki.freepascal.org/Record

[114] Chris Peltz. 2003. Web services orchestration and choreography. IEEE Computer, 36,
10, 46–52. doi: 10.1109/MC.2003.1236471.

[115] Benjamin C. Pierce and Davide Sangiorgi. 1993. Typing and subtyping for mobile
processes. In Proceedings of the Eighth Annual Symposium on Logic in Computer
Science (LICS) ’93), Montreal, Canada, June 19-23, 1993. IEEE Computer Society,
376–385. isbn: 0-8186-3140-6. doi: 10.1109/LICS.1993.287570.

[116] Benjamin C. Pierce and Davide Sangiorgi. 1996. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6, 5, 409–453.

[117] Robert L. Probert and Kassem Saleh. 1991. Synthesis of communication protocols:
survey and assessment. IEEE Trans. Computers, 40, 4, 468–476. doi: 10.1109/12.
88466.

[118] Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with (almost) no
class. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell
2008, Victoria, BC, Canada, 25 September 2008. Andy Gill, (Ed.) ACM, 25–36. isbn:
978-1-60558-064-7. doi: 10.1145/1411286.1411290.

[119] Franz Puntigam. 2000. Concurrent Object-Oriented Programming with Process Types.
Habilitationsschrift. Der Andere Verlag, Osnabrück, Germany.

[120] Franz Puntigam. 1997. Coordination requirements expressed in types for active objects.
In ECOOP’97 - Object-Oriented Programming, 11th European Conference, Jyväskylä,
Finland, June 9-13, 1997, Proceedings (Lecture Notes in Computer Science). Mehmet
Aksit and Satoshi Matsuoka, (Eds.) Volume 1241. Springer, 367–388. isbn: 3-540-
63089-9. doi: 10.1007/BFb0053387.

[121] Franz Puntigam. 1996. Types for active objects based on trace semantics. In Proceedings
FMOODS ’96. Chapman & Hall, 4–19. doi: 10.1.1.48.9370.

[122] Franz Puntigam and Christof Peter. 2001. Types for active objects with static deadlock
prevention. Fundam. Inform., 48, 4, 315–341.

[123] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van
den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. 2016. Mastering the game of go with deep neural networks and
tree search. Nature, 529, 7587, 484–489. doi: 10.1038/nature16961.

116

https://doi.org/10.1109/MC.2003.1236471
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.1109/12.88466
https://doi.org/10.1109/12.88466
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1007/BFb0053387
https://doi.org/10.1.1.48.9370
https://doi.org/10.1038/nature16961

[124] Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Software Eng., 12, 1, 157–171. doi:
10.1109/TSE.1986.6312929.

[125] Eijiro Sumii and Naoki Kobayashi. 1998. A generalized deadlock-free process calculus.
Electr. Notes Theor. Comput. Sci., 16, 3, 225–247. doi: 10.1016/S1571-0661(04)
00144-6.

[126] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An interaction-based language
and its typing system. In PARLE ’94: Parallel Architectures and Languages Europe,
6th International PARLE Conference, Athens, Greece, July 4-8, 1994, Proceedings
(Lecture Notes in Computer Science). Constantine Halatsis, Dimitris G. Maritsas,
George Philokyprou, and Sergios Theodoridis, (Eds.) Volume 817. Springer, 398–413.
isbn: 3-540-58184-7. doi: 10.1007/3-540-58184-7_118.

[127] Gerard Tel. 2000. Introduction to Distributed Algorithms. (2nd ed.). Cambridge Uni-
versity Press. doi: 10.1017/CBO9781139168724.

[128] The C++ standard reference, struct declarations. http://en.cppreference.
com/w/c/language/struct

[129] The Scala Programming Language. https://www.scala-lang.org/

[130] The WhatsApp Architecture Facebook Bought for $19 Billion. https://tinyurl.
com/whatsapp-actors

[131] Franck van Breugel and Marsha Chechik, (Eds.) CONCUR 2008 - Concurrency Theory,
19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings, volume 5201 of Lecture Notes in Computer Science, (2008). Springer.
isbn: 978-3-540-85360-2.

[132] Vasco T Vasconcelos, Simon J Gay, António Ravara, Nils Gesbert, and Alexandre Z
Caldeira. 2009. Dynamic interfaces. In FOOL 2009 - International Workshop on
Foundations of Object-Oriented Languages, Savannah, Georgia, January 24, 2009,
Proceedings. (January 2009).

[133] Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. 2006. Type checking
a multithreaded functional language with session types. Theor. Comput. Sci., 368, 1-2,
64–87. doi: 10.1016/j.tcs.2006.06.028.

[134] W3C. Extensible Markup Language. https://www.w3.org/XML/

[135] W3C. The Web Services Choreography Description Language. http://www.w3.
org/TR/ws-cdl-10/

117

https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1016/S1571-0661(04)00144-6
https://doi.org/10.1016/S1571-0661(04)00144-6
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1017/CBO9781139168724
http://en.cppreference.com/w/c/language/struct
http://en.cppreference.com/w/c/language/struct
https://www.scala-lang.org/
https://tinyurl.com/whatsapp-actors
https://tinyurl.com/whatsapp-actors
https://doi.org/10.1016/j.tcs.2006.06.028
https://www.w3.org/XML/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

[136] Philip Wadler. 1990. Linear types can change the world! In IFIP TC. Volume 2,
347–359. doi: 10.1.1.31.5002.

[137] Nobuko Yoshida and Vasco Thudichum Vasconcelos. 2007. Language primitives and
type discipline for structured communication-based programming revisited: two systems
for higher-order session communication. Electr. Notes Theor. Comput. Sci., 171, 4,
73–93. doi: 10.1016/j.entcs.2007.02.056.

[138] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. 2010. Parame-
terised multiparty session types. In Foundations of Software Science and Computational
Structures, 13th International Conference, FOSSACS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer Science). C.-
H. Luke Ong, (Ed.) Volume 6014. Springer, 128–145. isbn: 978-3-642-12031-2. doi:
10.1007/978-3-642-12032-9_10.

[139] M. C. Yuang. 1988. Survey of protocol verification techniques based on finite state
machine models. In [1988] Proceedings. Computer Networking Symposium, 164–172.
doi: 10.1109/CNS.1988.4993.

[140] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. 2010. Par-
allelized stochastic gradient descent. In Advances in Neural Information Processing
Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010.
Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia,
Canada. John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S.
Zemel, and Aron Culotta, (Eds.) Curran Associates, Inc., 2595–2603.

[141] Ugo de’Liguoro and Luca Padovani. 2018. Mailbox types for unordered interactions.
CoRR, abs/1801.04167. arXiv: 1801.04167.

118

https://doi.org/10.1.1.31.5002
https://doi.org/10.1016/j.entcs.2007.02.056
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1109/CNS.1988.4993
http://arxiv.org/abs/1801.04167

	Introduction
	Background
	Actors
	Session Types
	Typestates
	Typestates vs Session Types

	Related Work
	Typestates for Progress
	Motivating Examples
	Actor Calculus
	Type System
	Calculus Meta-Theory
	On Cyclic Communication Patterns
	Puntigam's Tokens

	Session Types for Actors
	Motivation
	Global Types
	Local Types
	Actor Calculus
	Typing
	Extensions
	Discussion

	Conclusions and Open Problems
	Bibliography

