130,658 research outputs found

    An Advanced, Three-Dimensional Plotting Library for Astronomy

    Get PDF
    We present a new, three-dimensional (3D) plotting library with advanced features, and support for standard and enhanced display devices. The library - S2PLOT - is written in C and can be used by C, C++ and FORTRAN programs on GNU/Linux and Apple/OSX systems. S2PLOT draws objects in a 3D (x,y,z) Cartesian space and the user interactively controls how this space is rendered at run time. With a PGPLOT inspired interface, S2PLOT provides astronomers with elegant techniques for displaying and exploring 3D data sets directly from their program code, and the potential to use stereoscopic and dome display devices. The S2PLOT architecture supports dynamic geometry and can be used to plot time-evolving data sets, such as might be produced by simulation codes. In this paper, we introduce S2PLOT to the astronomical community, describe its potential applications, and present some example uses of the library.Comment: 12 pages, 10 eps figures (higher resolution versions available from http://astronomy.swin.edu.au/s2plot/paperfigures). The S2PLOT library is available for download from http://astronomy.swin.edu.au/s2plo

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Catalogs of Hot White Dwarfs in the Milky Way from GALEX's Ultraviolet Sky Surveys. Constraining Stellar Evolution

    Get PDF
    We present comprehensive catalogs of hot star candidates in the Milky Way, selected from GALEX far-UV (FUV, 1344-1786 AA) and near-UV (NUV, 1771-2831 AA) imaging. The FUV and NUV photometry allows us to extract the hottest stellar objects, in particular hot white dwarfs (WD), which are elusive at other wavelengths because of their high temperatures and faint optical luminosities. We generated catalogs of UV sources from two GALEX's surveys: AIS (All-Sky Imaging Survey, depth ABmag~19.9/20.8 in FUV/NUV) and MIS (Medium-depth Imaging Survey, depth ~22.6/22.7mag). The two catalogs (from GALEX fifth data release) contain 65.3/12.6 million (AIS/MIS) unique UV sources with error(NUV)<0.5mag, over 21,435/1,579 square degrees. We also constructed subcatalogs of the UV sources with matched optical photometry from SDSS (7th data release): these contain 0.6/0.9million (AIS/MIS) sources with errors <0.3mag in both FUV and NUV, excluding sources with multiple optical counterparts, over an area of 7,325/1,103 square degrees. All catalogs are available online. We then selected 28,319(AIS)/9,028(MIS) matched sources with FUV-NUV<-0.13; this color cut corresponds to stellar Teff hotter than ~18,000 K. An additional color cut of NUV-r>0.1 isolates binaries with largely differing Teff's, and some intruding QSOs. Available spectroscopy for a subsample indicates that hot-star candidates with NUV-r<0.1 have negligible contamination by non-stellar objects. We discuss the distribution of sources in the catalogs, and the effects of error and color cuts on the samples. The density of hot-star candidates increases from high to low Galactic latitudes, but drops on the MW plane due to dust extinction. Our hot-star counts at all latitudes are better matched by Milky Way models computed with an initial-final mass relation that favours lower final masses. (ABRIDGED)Comment: To appear in MNRAS. Better printed in colou

    Multiple rooks of chess - a generic integral field unit deployment technique

    Full text link
    A new field re-configuration technique, Multiple Rooks of Chess (MRC), for multiple deployable Integral Field Spectrographs has been developed. The method involves mechanical geometry as well as an optimized deployment algorithm. The geometry is found to be simple for mechanical implementation. The algorithm initially assigns the IFUs to the target objects and then devises the movement sequence based on the current and the desired IFU positions. The reconfiguration time using the suitable actuators which runs at 20 cm/s is found to be a maximum of 25 seconds for the circular DOTIFS focal plane (180 mm diameter). The Geometry Algorithm Combination (GAC) has been tested on several million mock target configurations with object-to-IFU ({\tau} ) ratio varying from 0.25 to 16. The MRC method is found to-be efficient in target acquisition in terms of field revisit and deployment time without any collision or entanglement of the fiber bundles. The efficiency of the technique does not get affected by the increase in number density of target objects. The technique is compared with other available methods based on sky coverage, flexibility and overhead time. The proposed geometry and algorithm combination is found to have an advantage in all of the aspects.Comment: 18 Pages, 13 Figures, 1 Tabl

    Stanilov-Tsankov-Videv Theory

    Get PDF
    We survey some recent results concerning Stanilov-Tsankov-Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Halo based reconstruction of the cosmic mass density field

    Full text link
    We present the implementation of a halo based method for the reconstruction of the cosmic mass density field. The method employs the mass density distribution of dark matter haloes and its environments computed from cosmological N-body simulations and convolves it with a halo catalog to reconstruct the dark matter density field determined by the distribution of haloes. We applied the method to the group catalog of Yang etal (2007) built from the SDSS Data Release 4. As result we obtain reconstructions of the cosmic mass density field that are independent on any explicit assumption of bias. We describe in detail the implementation of the method, present a detailed characterization of the reconstructed density field (mean mass density distribution, correlation function and counts in cells) and the results of the classification of large scale environments (filaments, voids, peaks and sheets) in our reconstruction. Applications of the method include morphological studies of the galaxy population on large scales and the realization of constrained simulations.Comment: Accepted for publication in MNRA
    corecore