4,942 research outputs found

    New Algorithm For Detection of Spinal Cord Tumor using OpenCV

    Get PDF
    The spinal cord one of the most sensitive and significant parts of the human body lies protected inside the spine the backbone and contains bundles of nerves Any minor problem in the spinal cord can cause debilitation of internal and external functions of the human body One of the complications in the spinal cord is tumor - abnormal growth of tissue In this project we present a new algorithm based on OpenCV to detect spinal cord tumors from MRI sagittal image without human intervention The new algorithm can detect tumor-like substances adjacent to the spinal cord Tests carried out on spinal cord MRI images 33 cervical spinal images showed approximately 90 91 of accuracy rate in detecting tumor

    The evolutionary origins of volition

    Get PDF
    It appears to be a straightforward implication of distributed cognition principles that there is no integrated executive control system (e.g. Brooks 1991, Clark 1997). If distributed cognition is taken as a credible paradigm for cognitive science this in turn presents a challenge to volition because the concept of volition assumes integrated information processing and action control. For instance the process of forming a goal should integrate information about the available action options. If the goal is acted upon these processes should control motor behavior. If there were no executive system then it would seem that processes of action selection and performance couldn’t be functionally integrated in the right way. The apparently centralized decision and action control processes of volition would be an illusion arising from the competitive and cooperative interaction of many relatively simple cognitive systems. Here I will make a case that this conclusion is not well-founded. Prima facie it is not clear that distributed organization can achieve coherent functional activity when there are many complex interacting systems, there is high potential for interference between systems, and there is a need for focus. Resolving conflict and providing focus are key reasons why executive systems have been proposed (Baddeley 1986, Norman and Shallice 1986, Posner and Raichle 1994). This chapter develops an extended theoretical argument based on this idea, according to which selective pressures operating in the evolution of cognition favor high order control organization with a ‘highest-order’ control system that performs executive functions

    MIRO: A robot “Mammal” with a biomimetic brain-based control system

    Get PDF
    We describe the design of a novel commercial biomimetic brain-based robot, MIRO, developed as a prototype robot companion. The MIRO robot is animal-like in several aspects of its appearance, however, it is also biomimetic in a more significant way, in that its control architecture mimics some of the key principles underlying the design of the mammalian brain as revealed by neuroscience. Specifically, MIRO builds on decades of previous work in developing robots with brain-based control systems using a layered control architecture alongside centralized mechanisms for integration and action selection. MIRO’s control system operates across three core processors, P1-P3, that mimic aspects of spinal cord, brainstem, and forebrain functionality respectively. Whilst designed as a versatile prototype for next generation companion robots, MIRO also provides developers and researchers with a new platform for investigating the potential advantages of brain-based control

    Frazzled promotes growth cone attachment at the source of a Netrin gradient in the Drosophila visual system.

    Get PDF
    Axon guidance is proposed to act through a combination of long- and short-range attractive and repulsive cues. The ligand-receptor pair, Netrin (Net) and Frazzled (Fra) (DCC, Deleted in Colorectal Cancer, in vertebrates), is recognized as the prototypical effector of chemoattraction, with roles in both long- and short-range guidance. In the Drosophila visual system, R8 photoreceptor growth cones were shown to require Net-Fra to reach their target, the peak of a Net gradient. Using live imaging, we show, however, that R8 growth cones reach and recognize their target without Net, Fra, or Trim9, a conserved binding partner of Fra, but do not remain attached to it. Thus, despite the graded ligand distribution along the guidance path, Net-Fra is not used for chemoattraction. Based on findings in other systems, we propose that adhesion to substrate-bound Net underlies both long- and short-range Net-Fra-dependent guidance in vivo, thereby eroding the distinction between them

    Adaptive Neural Networks for Control of Movement Trajectories Invariant under Speed and Force Rescaling

    Full text link
    This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (90-0128, 90-0175

    Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

    Get PDF
    Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 ÎŒm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos; ArgentinaFil: Otsuki, Leo. Research Institute Of Molecular Pathology; AustriaFil: Albors, Aida Rodrigo. University Of Dundee; Reino UnidoFil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; AustriaFil: Chara, Osvaldo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgicos; Argentin

    Cortical Models for Movement Control

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-l-0409)

    Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

    Get PDF
    Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 ÎŒm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration
    • 

    corecore