1,369 research outputs found

    A Context-aware Trust Framework for Resilient Distributed Cooperative Spectrum Sensing in Dynamic Settings

    Get PDF
    Cognitive radios enable dynamic spectrum access where secondary users (SUs) are allowed to operate on the licensed spectrum bands on an opportunistic noninterference basis. Cooperation among the SUs for spectrum sensing is essential for environments with deep shadows. In this paper, we study the adverse effect of insistent spectrum sensing data falsification (ISSDF) attack on iterative distributed cooperative spectrum sensing. We show that the existing trust management schemes are not adequate in mitigating ISSDF attacks in dynamic settings where the primary user (PU) of the band frequently transitions between active and inactive states. We propose a novel context-aware distributed trust framework for cooperative spectrum sensing in mobile cognitive radio ad hoc networks (CRAHN) that effectively alleviates different types of ISSDF attacks (Always-Yes, Always-No, and fabricating) in dynamic scenarios. In the proposed framework, the SU nodes evaluate the trustworthiness of one another based on the two possible contexts in which they make observations from each other: PU absent context and PU present context. We evaluate the proposed context-aware scheme and compare it against the existing context-oblivious trust schemes using theoretical analysis and extensive simulations of realistic scenarios of mobile CRAHNs operating in TV white space. We show that in the presence of a large set of attackers (as high as 60% of the network), the proposed context-aware trust scheme successfully mitigates the attacks and satisfy the false alarm and missed-detection rates of 10210^{-2} and lower. Moreover, we show that the proposed scheme is scalable in terms of attack severity, SU network density, and the distance of the SU network to the PU transmitter

    Reputation based selfishness prevention techniques for mobile ad-hoc networks

    Get PDF
    Mobile ad-hoc networks require nodes to cooperate in the relaying of data from source to destination. However, due to their limited resources, selfish nodes may be unwilling to forward packets, which can deteriorate the multi-hop connectivity. Different reputation-based protocols have been proposed to cope with selfishness in mobile ad-hoc networks. These protocols utilize the watchdog detection mechanism to observe the correct relaying of packets, and to compile information about potential selfish nodes. This information is used to prevent the participation of selfish nodes in the establishment of multi-hop routes. Despite its wide use, watchdog tends to overestimate the selfish behavior of nodes due to the effects of radio transmission errors or packet collisions that can be mistaken for intentional packet drops. As a result, the availability of valid multi-hop routes is reduced, and the overall performance deteriorates. This paper proposes and evaluates three detection techniques that improve the ability of selfishness prevention protocols to detect selfish nodes and to increase the number of valid routes.Ingeniería, Industria y Construcció

    Cognitive Radio Networks: Realistic or Not?

    Full text link
    A large volume of research has been conducted in the cognitive radio (CR) area the last decade. However, the deployment of a commercial CR network is yet to emerge. A large portion of the existing literature does not build on real world scenarios, hence, neglecting various important interactions of the research with commercial telecommunication networks. For instance, a lot of attention has been paid to spectrum sensing as the front line functionality that needs to be completed in an efficient and accurate manner to enable an opportunistic CR network architecture. This is necessary to detect the existence of spectrum holes without which no other procedure can be fulfilled. However, simply sensing (cooperatively or not) the energy received from a primary transmitter cannot enable correct dynamic spectrum access. For example, the low strength of a primary transmitter's signal does not assure that there will be no interference to a nearby primary receiver. In addition, the presence of a primary transmitter's signal does not mean that CR network users cannot access the spectrum since there might not be any primary receiver in the vicinity. Despite the existing elegant and clever solutions to the DSA problem no robust, implementable scheme has emerged. In this paper, we challenge the basic premises of the proposed schemes. We further argue that addressing the technical challenges we face in deploying robust CR networks can only be achieved if we radically change the way we design their basic functionalities. In support of our argument, we present a set of real-world scenarios, inspired by realistic settings in commercial telecommunications networks, focusing on spectrum sensing as a basic and critical functionality in the deployment of CRs. We use these scenarios to show why existing DSA paradigms are not amenable to realistic deployment in complex wireless environments.Comment: Work in progres

    A Survey on Cooperative Communication in Wireless Networks

    Full text link

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore