1,353 research outputs found

    Swarm based Optimization Algorithms for Task Allocation in Multi Robot Systems: A Comprehensive Review

    Get PDF
    Multi-robot systems (MRS) have gained significant attention due to their potential applications in various domains such as search and rescue, surveillance, and exploration. An essential aspect of MRS is task allocation, which involves distributing tasks among robots efficiently to achieve collective objectives. Swarm-based optimization algorithms have emerged as effective approaches for task allocation in MRS, leveraging principles inspired by natural swarms to coordinate the actions of multiple robots. This paper provides a comprehensive review of swarm-based optimization algorithms for task allocation in MRS, highlighting their principles, advantages, challenges, and applications. The discussion encompasses key algorithmic approaches, including ant colony optimization, particle swarm optimization, and artificial bee colony optimization, along with recent advancements and future research directions in this field

    New Solution of Abstract Architecture for Control and Coordination Decentralized Systems

    Get PDF
    This paper contains a new approach that combines the advantages and disadvantages of suppressing hierarchical and heterarchical control architectures, creating a semi-heterarchical (holonic) control architecture. The degree of subordinate unit autonomy changes dynamically, depending on the presence of a system disruption, and its scope allows for a smooth transition from hierarchical to heterarchic control architecture in subordinate units. We have proposed a representation of the dynamic degree of autonomy and its possible application to subordinate units, which are, in our case, one-directional Automated Guided Vehicles (AGVs) and are guided by magnetic tape. In order to achieve such a semi-heterarchic management architecture with a dynamic degree of autonomy, approaches such as smart product, stymergic (indirect) communication, or basic principles of holon approach have been implemented

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Algoritmo bioinspirado a redes de robots para la asistencia en operaciones de busqueda y rescate

    Get PDF
    ilustraciones, diagramas, fotografíasThis thesis proposes a bio-inspired algorithm for robot networks assisting in the operations of search and rescue scenarios. We consider ants as social animals to study and abstract beha- viors that can be useful in the framework of search and rescue using robots. We consider three main topics to address when using robots to assist rescuers. First, the exploration and mapping of the disaster zones. For this, we consider the mecha- nisms and interactions of ants to explore their environment, look for food, avoid predators, and explore better places to establish a nest. Then, we deploy robots to explore the en- vironment and discourage robots from entering regions other robots have explored using pheromones as markers for the robots. We also abstract the randomness ants use to explore and implement a Q-learning algorithm that allows robots to explore unvisited regions. Second, the navigation and victim detection. Once the environment has been explored, we vi use Reynolds rules to allow the navigation of robots to create cohesion, attraction to target goals, and repulsion to obstacles and inter-agent collisions. Then, we use a neural network to determine whether what robots are detecting is a victim. Lastly, we use a consensus-like approach to classify victims or no victims based on distributed information. Lastly, ants have been famous for carrying loads that surpass their size and payload capacity by cooperating. We consider quadrotors to carry loads cooperatively that can be medical supplies or victims in search and rescue (Texto tomado de la fuente)Esta tesis propone un algoritmo bioinspirado para redes de robots que asisten en las operaciones de escenarios de busqueda y rescate. Consideramos a las hormigas como animales sociales para estudiar y abstraer comportamientos que pueden ser utiles en el marco de la busqueda y rescate mediante robots. Consideramos tres temas principales para abordar cuando se utilizan robots para ayudar a los rescatistas. Primero, la exploracion y mapeo de las zonas de desastre. Para esto, consideramos los mecanismos e interacciones de las hormigas para explorar su entorno, buscar comida, evitar depredadores y explorar mejores lugares para establecer un nido. Luego, desplegamos robots para explorar el entorno y disuadimos a los robots de ingresar a regiones que otros robots han explorado usando feromonas como marcadores para los robots. Tambien abstraemos la aleatoriedad que usan las hormigas para explorar e implementar un algoritmo Q-learning que permite a los robots explorar regiones no visitadas. En segundo lugar, la navegacion y deteccion de vıctimas. Una vez que se ha explorado el entorno, usamos las reglas de Reynolds para permitir que la navegacion de los robots cree cohesion, atraccion hacia los objetivos y repulsion hacia los obstaculos y las colisiones entre agentes. Luego, usamos una red neuronal para determinar si lo que detectan los robots es una vıctima. Por ultimo, utilizamos un enfoque de consenso para clasificar a las vıctimas o no vıctimas en funcion de la informacion distribuida. Por ultimo, las hormigas han sido famosas por llevar cargas que superan su tamano y capacidad de carga al cooperar. Consideramos quadrotors para transportar cargas de manera cooperativa que pueden ser suministros medicos o vıctimas en busqueda y rescate.MaestríaMagister en Ingenieria - Automatizacion IndustrialRobotic

    A swarm intelligence based approach to the mine detection problem

    Get PDF
    This research focuses on the application of swarm intelligence to the problem of mine detection. Swarm Intelligence concepts have captivated the interests of researchers mainly in collective robotics, optimization problems (traveling salesman problem (TSP), quadratic assignment problem, graph coloring etc.), and communication networks (routing) etc [1]. In the mine detection problem we are faced with sub problems such as searching for the mines over the minefield, defusing them effectively, and assuring that the field is clear of mines within the least possible time. In the problem, we assume that the mines can be diffused by the collective action of the robots for which a model based on ant colonies is given. In the first part of the project we study the ant colony system applied to the mine detection problem. The theoretical aspects such as the ant\u27s behavior (reaction of the ants to various circumstances that it faces), their motion over the minefield, and their process of defusing the mines are investigated. In the second section we highlight a certain formulation that the ants may be given for doing the task effectively. The ants do the task effectively when they are able to assure that the minefield is clear of the mines within the least possible time. A compilation of the results obtained by the various studies is tabulated. In the third and final section we talk about our emulations conducted on the Multi Agent Biorobotics Lab-built groundscout robots, which were used for the demonstration of our swarm intelligence-based algorithms at a practical basis. The various projects thus far conducted were a part of the Multi Agent Biorobotics Lab at Rochester Institute of Technology

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • …
    corecore