
Ant Colony Optimization
Techniques and Applications

Edited by Helio J.C. Barbosa

Edited by Helio J.C. Barbosa

Photo by Mirexon / iStock

Ant Colony Optimization (ACO) is the best example of how studies aimed at
understanding and modeling the behavior of ants and other social insects can provide

inspiration for the development of computational algorithms for the solution of
difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992)
and initially applied to the travelling salesman problem, the ACO field has experienced

a tremendous growth, standing today as an important nature-inspired stochastic
metaheuristic for hard optimization problems.

This book presents state-of-the-art ACO methods and is divided into two parts: (I)
Techniques, which includes parallel implementations, and (II) Applications, where
recent contributions of ACO to diverse fields, such as traffic congestion and control,

structural optimization, manufacturing, and genomics are presented.

ISBN 978-953-51-1001-9

A
nt C

olony O
ptim

ization - Techniques and A
pplications

ANT COLONY
OPTIMIZATION -

TECHNIQUES AND
APPLICATIONS

Edited by Helio J.C. Barbosa

ANT COLONY
OPTIMIZATION -

TECHNIQUES AND
APPLICATIONS

Edited by Helio J.C. Barbosa

Ant Colony Optimization - Techniques and Applications
http://dx.doi.org/10.5772/3423
Edited by Helio J.C. Barbosa

Contributors

Ozgur Baskan, Cenk Ozan, Soner Haldenbilen, Satoshi Kurihara, Mieczyslaw Drabowski, Edward Wantuch, Jaqueline
Silva Angelo, Douglas Adriano Augusto, Helio J.C. Barbosa, Romdhane Rekaya, Anikó Csébfalvi, Kazuyuki Murase,
Pierre Delisle

© The Editor(s) and the Author(s) 2013
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2013 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Ant Colony Optimization - Techniques and Applications
Edited by Helio J.C. Barbosa

p. cm.

ISBN 978-953-51-1001-9

eBook (PDF) ISBN 978-953-51-5717-5

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

114M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

Meet the editor

Helio J.C. Barbosa (www.lncc.br/~hcbm) is a Senior
Technologist at the Laboratório Nacional de Com-
putação Científica, Brazil.
He received a Civil Engineering degree (1974) from
the Federal University of Juiz de Fora, where he is an
Associate Professor in the Computer Science Depart-
ment, and M.Sc. (1978) and D.Sc. (1986) degrees in Civil

Engineering from the Federal University of Rio de Janeiro, Brazil.
During 1988-1990 he was a visiting scholar at the Division of Applied
Mechanics, Stanford University, USA. He is currently mainly interested in
the design and application of nature-inspired metaheuristics in engineer-
ing and biology.

Contents

Preface VII

Section 1 Techniques 1

Chapter 1 Ant Colony Optimization Toward Feature Selection 3
Monirul Kabir, Md Shahjahan and Kazuyuki Murase

Chapter 2 Parallel Ant Colony Optimization: Algorithmic Models and
Hardware Implementations 45
Pierre Delisle

Chapter 3 Strategies for Parallel Ant Colony Optimization on Graphics
Processing Units 63
Jaqueline S. Angelo, Douglas A. Augusto and Helio J. C. Barbosa

Section 2 Applications 85

Chapter 4 An Ant Colony Optimization Algorithm for Area
Traffic Control 87
Soner Haldenbilen, Ozgur Baskan and Cenk Ozan

Chapter 5 ANGEL: A Simplified Hybrid Metaheuristic for Structural
Optimization 107
Anikó Csébfalvi

Chapter 6 Scheduling in Manufacturing Systems – Ant Colony
Approach 129
Mieczysław Drabowski and Edward Wantuch

Chapter 7 Traffic-Congestion Forecasting Algorithm Based on Pheromone
Communication Model 163
Satoshi Kurihara

Contents

Preface XI

Section 1 Techniques 1

Chapter 1 Ant Colony Optimization Toward Feature Selection 3
Monirul Kabir, Md Shahjahan and Kazuyuki Murase

Chapter 2 Parallel Ant Colony Optimization: Algorithmic Models and
Hardware Implementations 45
Pierre Delisle

Chapter 3 Strategies for Parallel Ant Colony Optimization on Graphics
Processing Units 63
Jaqueline S. Angelo, Douglas A. Augusto and Helio J. C. Barbosa

Section 2 Applications 85

Chapter 4 An Ant Colony Optimization Algorithm for Area
Traffic Control 87
Soner Haldenbilen, Ozgur Baskan and Cenk Ozan

Chapter 5 ANGEL: A Simplified Hybrid Metaheuristic for Structural
Optimization 107
Anikó Csébfalvi

Chapter 6 Scheduling in Manufacturing Systems – Ant Colony
Approach 129
Mieczysław Drabowski and Edward Wantuch

Chapter 7 Traffic-Congestion Forecasting Algorithm Based on Pheromone
Communication Model 163
Satoshi Kurihara

Chapter 8 Ant Colony Algorithm with Applications in the Field of
Genomics 177
R. Rekaya, K. Robbins, M. Spangler, S. Smith, E. H. Hay and K.
Bertrand

X Contents

Preface

Scientists have long been interested in understanding the behavior of ants and other social
insects that, in spite of the relative simplicity of each individual, are able to collectively accom‐
plish complex tasks required by the survival of the colony. For instance, biologists have shown
that behavior at the colony level, such as foraging, can be explained via the concept of stigmer‐
gy, a form of indirect communication mediated by modifications of the environment.

Ant Colony Optimization (ACO) is thus one of the best examples of how studies aimed at
modeling such complex natural systems can provide inspiration for the development of
computational algorithms for the solution of hard mathematical problems. The first ACO
system, inspired by the observation of pheromone trails, was introduced by Marco Dorigo
in his Ph.D. thesis (1992) and initially applied to the travelling salesman problem. Since
then, the field has experienced a continuous growth, with the development of many ACO
variants, the organization of specialized conferences and scientific journals, and the emer‐
gence of several successful applications. Today ACO stands as an important nature-inspired
stochastic metaheuristic for many difficult optimization problems.

This book is divided into two parts: (I) Techniques, and (II) Applications, and presents state-
of-the-art ACO methods and recent contributions to diverse fields, such as traffic congestion
and control, structural optimization, manufacturing, and genomics.

I would like to thank all contributing authors for their effort in preparing their chapters, and
to acknowledge the assistance provided by the InTech Publishing Process Managers Mr.
Marijan Polic, Mr. Vedran Greblo, and Mr. Dejan Grgur during the entire editing process of
this book.

Dr. Helio J.C. Barbosa,
Federal University of Juiz de Fora,

Computer Science Department,
LNCC - National Laboratory for Scientific Computation

Petrópolis, Brazil

Chapter 8 Ant Colony Algorithm with Applications in the Field of
Genomics 177
R. Rekaya, K. Robbins, M. Spangler, S. Smith, E. H. Hay and K.
Bertrand

ContentsVI

Preface

Scientists have long been interested in understanding the behavior of ants and other social
insects that, in spite of the relative simplicity of each individual, are able to collectively accom‐
plish complex tasks required by the survival of the colony. For instance, biologists have shown
that behavior at the colony level, such as foraging, can be explained via the concept of stigmer‐
gy, a form of indirect communication mediated by modifications of the environment.

Ant Colony Optimization (ACO) is thus one of the best examples of how studies aimed at
modeling such complex natural systems can provide inspiration for the development of
computational algorithms for the solution of hard mathematical problems. The first ACO
system, inspired by the observation of pheromone trails, was introduced by Marco Dorigo
in his Ph.D. thesis (1992) and initially applied to the travelling salesman problem. Since
then, the field has experienced a continuous growth, with the development of many ACO
variants, the organization of specialized conferences and scientific journals, and the emer‐
gence of several successful applications. Today ACO stands as an important nature-inspired
stochastic metaheuristic for many difficult optimization problems.

This book is divided into two parts: (I) Techniques, and (II) Applications, and presents state-
of-the-art ACO methods and recent contributions to diverse fields, such as traffic congestion
and control, structural optimization, manufacturing, and genomics.

I would like to thank all contributing authors for their effort in preparing their chapters, and
to acknowledge the assistance provided by the InTech Publishing Process Managers Mr.
Marijan Polic, Mr. Vedran Greblo, and Mr. Dejan Grgur during the entire editing process of
this book.

Dr. Helio J.C. Barbosa,
Federal University of Juiz de Fora,

Computer Science Department,
LNCC - National Laboratory for Scientific Computation

Petrópolis, Brazil

Section 1

Techniques

Section 1

Techniques

Chapter 1

Ant Colony Optimization Toward Feature Selection

Monirul Kabir, Md Shahjahan and Kazuyuki Murase

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51707

1. Introduction

Over the past decades, there is an explosion of data composed by huge information, because
of rapid growing up of computer and database technologies. Ordinarily, this information is
hidden in the cast collection of raw data. Because of that, we are now drowning in informa‐
tion, but starving for knowledge [1]. As a solution, data mining successfully extracts knowl‐
edge from the series of data-mountains by means of data preprocessing [1]. In case of data
preprocessing, feature selection (FS) is ordinarily used as a useful technique in order to reduce
the dimension of the dataset. It significantly reduces the spurious information, that is to say,
irrelevant, redundant, and noisy features, from the original feature set and eventually retain‐
ing a subset of most salient features. As a result, a number of good outcomes can be expect‐
ed from the applications, such as, speeding up data mining algorithms, improving mining
performances (including predictive accuracy) and comprehensibility of result [2].

In the available literature, different types of data mining are addressed, such as, regression,
classification, and clustering [1]. The task of interest in this study is classification. In fact,
classification problem is the task of assigning a data-point to a predefined class or group
according to its predictive characteristics. In practice, data mining for classification techni‐
ques are significant in a wide range of domains, such as, financial engineering, medical diagnosis,
and marketing.

In details, FS is, however, a search process or technique in data mining that selects a sub‐
set of salient features for building robust learning models, such as, neural networks and
decision trees. Some irrelevant and/or redundant features generally exist in the learning
data that not only make learning harder, but also degrade generalization performance of
learned models. More precisely, good FS techniques can detect and ignore noisy and mis‐
leading features. As a result, the dataset quality might even increase after selection. There
are two feature qualities that need to be considered in FS methods: relevancy and redun‐
dancy. A feature is said to be relevant if it is predictive of the decision feature(s); other‐

© 2013 Kabir et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Kabir et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 1

Ant Colony Optimization Toward Feature Selection

Monirul Kabir, Md Shahjahan and Kazuyuki Murase

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51707

1. Introduction

Over the past decades, there is an explosion of data composed by huge information, because
of rapid growing up of computer and database technologies. Ordinarily, this information is
hidden in the cast collection of raw data. Because of that, we are now drowning in informa‐
tion, but starving for knowledge [1]. As a solution, data mining successfully extracts knowl‐
edge from the series of data-mountains by means of data preprocessing [1]. In case of data
preprocessing, feature selection (FS) is ordinarily used as a useful technique in order to reduce
the dimension of the dataset. It significantly reduces the spurious information, that is to say,
irrelevant, redundant, and noisy features, from the original feature set and eventually retain‐
ing a subset of most salient features. As a result, a number of good outcomes can be expect‐
ed from the applications, such as, speeding up data mining algorithms, improving mining
performances (including predictive accuracy) and comprehensibility of result [2].

In the available literature, different types of data mining are addressed, such as, regression,
classification, and clustering [1]. The task of interest in this study is classification. In fact,
classification problem is the task of assigning a data-point to a predefined class or group
according to its predictive characteristics. In practice, data mining for classification techni‐
ques are significant in a wide range of domains, such as, financial engineering, medical diagnosis,
and marketing.

In details, FS is, however, a search process or technique in data mining that selects a sub‐
set of salient features for building robust learning models, such as, neural networks and
decision trees. Some irrelevant and/or redundant features generally exist in the learning
data that not only make learning harder, but also degrade generalization performance of
learned models. More precisely, good FS techniques can detect and ignore noisy and mis‐
leading features. As a result, the dataset quality might even increase after selection. There
are two feature qualities that need to be considered in FS methods: relevancy and redun‐
dancy. A feature is said to be relevant if it is predictive of the decision feature(s); other‐

© 2013 Kabir et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Kabir et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

wise, it is irrelevant. A feature is considered to be redundant if it is highly correlated with
other features. An informative feature is the one that is highly correlated with the deci‐
sion concept(s), but is highly uncorrelated with other features.

For a given classification task, the problem of FS can be described as follows: given the original
set, N, of n features, find a subset F consisting of f relevant features, where F ⊂ N and f <n.
The aim of selecting F is to maximize the classification accuracy in building learning mod‐
els. The selection of relevant features is important in the sense that the generalization perform‐
ance of learning models is greatly dependent on the selected features [3-6]. Moreover, FS assists
for visualizing and understanding the data, reducing storage requirements, reducing train‐
ing times and so on [7].

It is found that, two features to be useless individually and yet highly predictive if taken to‐
gether. In FS terminology, they may be both redundant and irrelevant on their own, but
their combination provides important information. For instance, in the Exclusive-OR prob‐
lem, the classes are not linearly separable. The two features on their own provide no infor‐
mation concerning this separability, because they are uncorrelated with each other.
However, considering together, the two features are highly informative and can provide
good predictive accuracy. Therefore, the search of FS is particularly for high-quality feature
subsets and not only for ranking of features.

2. Applications of Feature Selection

Feature selection has a wide-range of applications in various fields since the 1970s. The rea‐
son is that, many systems deal with datasets of large dimensionality. However, the areas, in
which the task of FS can mainly be applied, are categorized into the following ways (see
Figure 1.).

Figure 1. Applicable areas of feature selection.

Ant Colony Optimization - Techniques and Applications4

Figure 2. Picture taken by a camera from a fish processing industry, adapted from [8].

In the pattern recognition paradigm, the FS tasks are mostly concerned with the classifica‐
tion problems. Basically, pattern recognition is the study of how machines can monitor the
environment, learn to differentiate patterns of interest, and make decision correctly about the
categories of patterns. A pattern, ordinarily, contains some features based on classifying a
target or object. As an example, a classification problem, that is to say, sorting incoming fish
on a conveyor belt in a fish industry according to species. Assume that, there are only two
kinds of fish available, such as, salmon and sea bass, exhibited in Figure 2. A machine gives
the decision in classifying the fishes automatically based on training of some features, for
example, length, width, weight, number and shape of fins, tail shape, and so on. But, prob‐
lem is that, if there are some irrelevant, redundant, and noisy features are available, classifi‐
cation performance then might be degraded. In such cases, FS has a significant performance
to recognize the useless features from the patterns, delete the features, and finally bring the
improved classification performance significantly in the context of pattern recognition.

FS technique has successfully been implemented in mobile robot vision to generate efficient
navigation trajectories with an extremely simple neural control system [9]. In this case,
evolved mobile robots select the salient visual features and actively maintain them on the
same retinal position, while the useless image features are discarded. According to the anal‐

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

5

wise, it is irrelevant. A feature is considered to be redundant if it is highly correlated with
other features. An informative feature is the one that is highly correlated with the deci‐
sion concept(s), but is highly uncorrelated with other features.

For a given classification task, the problem of FS can be described as follows: given the original
set, N, of n features, find a subset F consisting of f relevant features, where F ⊂ N and f <n.
The aim of selecting F is to maximize the classification accuracy in building learning mod‐
els. The selection of relevant features is important in the sense that the generalization perform‐
ance of learning models is greatly dependent on the selected features [3-6]. Moreover, FS assists
for visualizing and understanding the data, reducing storage requirements, reducing train‐
ing times and so on [7].

It is found that, two features to be useless individually and yet highly predictive if taken to‐
gether. In FS terminology, they may be both redundant and irrelevant on their own, but
their combination provides important information. For instance, in the Exclusive-OR prob‐
lem, the classes are not linearly separable. The two features on their own provide no infor‐
mation concerning this separability, because they are uncorrelated with each other.
However, considering together, the two features are highly informative and can provide
good predictive accuracy. Therefore, the search of FS is particularly for high-quality feature
subsets and not only for ranking of features.

2. Applications of Feature Selection

Feature selection has a wide-range of applications in various fields since the 1970s. The rea‐
son is that, many systems deal with datasets of large dimensionality. However, the areas, in
which the task of FS can mainly be applied, are categorized into the following ways (see
Figure 1.).

Figure 1. Applicable areas of feature selection.

Ant Colony Optimization - Techniques and Applications4

Figure 2. Picture taken by a camera from a fish processing industry, adapted from [8].

In the pattern recognition paradigm, the FS tasks are mostly concerned with the classifica‐
tion problems. Basically, pattern recognition is the study of how machines can monitor the
environment, learn to differentiate patterns of interest, and make decision correctly about the
categories of patterns. A pattern, ordinarily, contains some features based on classifying a
target or object. As an example, a classification problem, that is to say, sorting incoming fish
on a conveyor belt in a fish industry according to species. Assume that, there are only two
kinds of fish available, such as, salmon and sea bass, exhibited in Figure 2. A machine gives
the decision in classifying the fishes automatically based on training of some features, for
example, length, width, weight, number and shape of fins, tail shape, and so on. But, prob‐
lem is that, if there are some irrelevant, redundant, and noisy features are available, classifi‐
cation performance then might be degraded. In such cases, FS has a significant performance
to recognize the useless features from the patterns, delete the features, and finally bring the
improved classification performance significantly in the context of pattern recognition.

FS technique has successfully been implemented in mobile robot vision to generate efficient
navigation trajectories with an extremely simple neural control system [9]. In this case,
evolved mobile robots select the salient visual features and actively maintain them on the
same retinal position, while the useless image features are discarded. According to the anal‐

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

5

ysis of evolved solutions, it can be found that, robots develop simple and very efficient edge
detection to detect obstacles and to move away among them. Furthermore, FS has a signifi‐
cant role in image recognition systems [10]. In these systems, patterns are designed by im‐
age data specially describing the image pixel data. There could be hundreds of different
features for an image. These features may include: color (in various channels), texture (di‐
mensionality, line likeness, contrast, roughness, coarseness), edge, shape, spatial relations, tem‐
poral information, statistical measures (moments- mean, variance, standard deviation,
skewness, kurtosis). The FS expert can identify a subset of relevant features from the whole
feature set.

In analysis of human genome, gene expression microarray data have increased many folds
in recent years. These data provide the opportunity to analyze the expression levels of thou‐
sand or tens of thousands of genes in a single experiment. A particular classification task
distinguishes between healthy and cancer patients based on their gene expression profile.
On the other hand, a typical gene expression data suffer from three problems:

a. limited number of available examples,

b. very high dimensional nature of data,

c. noisy characteristics of the data.

Therefore, suitable FS methods (e.g., [11, 12]) are used upon these datasets to find out a min‐
imal set of gene that has sufficient classifying power to classify subgroups along with some
initial filtering.

Text classification is, nowadays, a vital task because of the availability of the proliferated
texts in the digital form. We need to access these texts in the flexible ways. A major prob‐
lem in regard to the text classification is the high dimensionality of the feature space. It is
found that, text feature space has several tens of thousands of features, among which most
of them are irrelevant and spurious for the text classification tasks. This high number of
features resulting the reduction of classification accuracy and of learning speed of the clas‐
sifiers. Because of those features, a number of classifiers are being unable to utilize in their
learning tasks. For this, FS is such a technique that is very much efficient for the text classi‐
fication task in order to reduce the feature dimensionality and to improve the perform‐
ance of the classifiers [13].

Knowledge discovery (KD) is an efficient process of identifying valid, novel, potentially use‐
ful, and ultimately understandable patterns from the large collections of data [14]. Indeed,
the popularity of KD is caused due to our daily basis demands by federal agencies, banks,
insurance companies, retail stores, and so on. One of the important KD steps is the data min‐
ing step. In the context of data mining, feature selection cleans up the dataset by reducing
the set of least significant features. This step ultimately helps to extract some rules from the
dataset, such as, if---then rule. This rule signifies the proper understanding about the data
and increases the human capability to predict what is happening inside the data.

It is now clear that, FS task has an important role in various places, where one can easily
produce better performances from the systems by distinguishing the salient features. Among

Ant Colony Optimization - Techniques and Applications6

the various applications, in this chapter, we are interested to discuss elaborately in a particu‐
lar topic of “pattern recognition”, in which how FS task can play an important role especial‐
ly for the classification problem. The reason is that, in the recent years, solving classification
problem using FS is a key source for the data mining and knowledge mining paradigm.

3. Feature Selection for Classification

In the recent years, the available real-world problems of the classification tasks draw a high
demand for FS, since the datasets of those problems are mixed by a number of irrelevant
and redundant features. In practice, FS tasks work on basis of the classification datasets that
are publicly available. The most popular benchmark dataset collection is the University of
California, Irvine (UCI) machine learning repository [15]. The collection of UCI is mostly
row data that must be preprocessed to use in NNs. Preprocessed datasets in it include Pro‐
ben1 [16]. The characteristics of the datasets particularly those were used in the experiments
of this chapter, and their partitions are summarized in Table 1. The details of the table show
a considerable diversity in the number of examples, features, and classes among the data‐
sets. All datasets were partitioned into three sets: a training set, a validation set, and a test‐
ing set, according to the suggestion mentioned in [16]. For all datasets, the first P 1 examples
were used for the training set, the following P 2 examples for the validation set, and the final
P 3 examples for the testing set. The above mentioned datasets were used widely in many
previous studies and they represent some of the most challenging datasets in the NN and
machine learning [12, 17].

Datasets Features Classes Examples Partition sets

Training Validation Testing

Cancer 9 2 699 349 175 175

Glass 9 6 214 108 53 53

Vehicle 18 4 846 424 211 211

Thyroid 21 3 7200 3600 1800 1800

Ionosphere 34 2 351 175 88 88

Credit Card 51 2 690 346 172 172

Sonar 60 2 208 104 52 52

Gene 120 3 3175 1587 794 794

Colon cancer 2000 2 62 30 16 16

Table 1. Characteristics and partitions of different classification datasets.

The description of the datasets reported in Table 1 is available in [15], except colon cancer,
which can be found in [18]. There are also some other gene expression datasets like colon
cancer (e.g., lymphoma and leukemia), that are described in [19] and [20].

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

7

ysis of evolved solutions, it can be found that, robots develop simple and very efficient edge
detection to detect obstacles and to move away among them. Furthermore, FS has a signifi‐
cant role in image recognition systems [10]. In these systems, patterns are designed by im‐
age data specially describing the image pixel data. There could be hundreds of different
features for an image. These features may include: color (in various channels), texture (di‐
mensionality, line likeness, contrast, roughness, coarseness), edge, shape, spatial relations, tem‐
poral information, statistical measures (moments- mean, variance, standard deviation,
skewness, kurtosis). The FS expert can identify a subset of relevant features from the whole
feature set.

In analysis of human genome, gene expression microarray data have increased many folds
in recent years. These data provide the opportunity to analyze the expression levels of thou‐
sand or tens of thousands of genes in a single experiment. A particular classification task
distinguishes between healthy and cancer patients based on their gene expression profile.
On the other hand, a typical gene expression data suffer from three problems:

a. limited number of available examples,

b. very high dimensional nature of data,

c. noisy characteristics of the data.

Therefore, suitable FS methods (e.g., [11, 12]) are used upon these datasets to find out a min‐
imal set of gene that has sufficient classifying power to classify subgroups along with some
initial filtering.

Text classification is, nowadays, a vital task because of the availability of the proliferated
texts in the digital form. We need to access these texts in the flexible ways. A major prob‐
lem in regard to the text classification is the high dimensionality of the feature space. It is
found that, text feature space has several tens of thousands of features, among which most
of them are irrelevant and spurious for the text classification tasks. This high number of
features resulting the reduction of classification accuracy and of learning speed of the clas‐
sifiers. Because of those features, a number of classifiers are being unable to utilize in their
learning tasks. For this, FS is such a technique that is very much efficient for the text classi‐
fication task in order to reduce the feature dimensionality and to improve the perform‐
ance of the classifiers [13].

Knowledge discovery (KD) is an efficient process of identifying valid, novel, potentially use‐
ful, and ultimately understandable patterns from the large collections of data [14]. Indeed,
the popularity of KD is caused due to our daily basis demands by federal agencies, banks,
insurance companies, retail stores, and so on. One of the important KD steps is the data min‐
ing step. In the context of data mining, feature selection cleans up the dataset by reducing
the set of least significant features. This step ultimately helps to extract some rules from the
dataset, such as, if---then rule. This rule signifies the proper understanding about the data
and increases the human capability to predict what is happening inside the data.

It is now clear that, FS task has an important role in various places, where one can easily
produce better performances from the systems by distinguishing the salient features. Among

Ant Colony Optimization - Techniques and Applications6

the various applications, in this chapter, we are interested to discuss elaborately in a particu‐
lar topic of “pattern recognition”, in which how FS task can play an important role especial‐
ly for the classification problem. The reason is that, in the recent years, solving classification
problem using FS is a key source for the data mining and knowledge mining paradigm.

3. Feature Selection for Classification

In the recent years, the available real-world problems of the classification tasks draw a high
demand for FS, since the datasets of those problems are mixed by a number of irrelevant
and redundant features. In practice, FS tasks work on basis of the classification datasets that
are publicly available. The most popular benchmark dataset collection is the University of
California, Irvine (UCI) machine learning repository [15]. The collection of UCI is mostly
row data that must be preprocessed to use in NNs. Preprocessed datasets in it include Pro‐
ben1 [16]. The characteristics of the datasets particularly those were used in the experiments
of this chapter, and their partitions are summarized in Table 1. The details of the table show
a considerable diversity in the number of examples, features, and classes among the data‐
sets. All datasets were partitioned into three sets: a training set, a validation set, and a test‐
ing set, according to the suggestion mentioned in [16]. For all datasets, the first P 1 examples
were used for the training set, the following P 2 examples for the validation set, and the final
P 3 examples for the testing set. The above mentioned datasets were used widely in many
previous studies and they represent some of the most challenging datasets in the NN and
machine learning [12, 17].

Datasets Features Classes Examples Partition sets

Training Validation Testing

Cancer 9 2 699 349 175 175

Glass 9 6 214 108 53 53

Vehicle 18 4 846 424 211 211

Thyroid 21 3 7200 3600 1800 1800

Ionosphere 34 2 351 175 88 88

Credit Card 51 2 690 346 172 172

Sonar 60 2 208 104 52 52

Gene 120 3 3175 1587 794 794

Colon cancer 2000 2 62 30 16 16

Table 1. Characteristics and partitions of different classification datasets.

The description of the datasets reported in Table 1 is available in [15], except colon cancer,
which can be found in [18]. There are also some other gene expression datasets like colon
cancer (e.g., lymphoma and leukemia), that are described in [19] and [20].

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

7

4. Existing Works for Feature Selection

A number of proposed approaches for solving FS problem that can broadly be categorized
into the following three classifications [2]:

a. wrapper,

b. filter, and

c. hybrid.

d. Other than these classifications, there is also another one, called as, meta-heuristic.

In the wrapper approach, a predetermined learning model is assumed, wherein features are
selected that justify the learning performance of the particular learning model [21], whereas
in the filter approach, statistical analysis of the feature set is required, without utilizing any
learning model [22]. The hybrid approach attempts to utilize the complementary strengths
of the wrapper and filter approaches [23]. The meta-heuristics (or, global search approaches)
attempt to search a salient feature subset in a full feature space in order to find a high-quali‐
ty solution using mutual cooperation of individual agents, such as, genetic algorithm, ant
colony optimization, and so on [64]. Now, the schematic diagrams of how the filter, wrap‐
per, and hybrid approaches find relevant (salient) features are given in Figures 3(a,b,c).
These figures are summarized according to the investigations of different FS related works.

Subsets can be generated and the search process carried out in a number of ways. One method,
called sequential forward search (SFS[24,25]), is to start the search process with an empty set
and successfully add features; another option called sequential backward search (SBS[4,26]),
is to start with a full set and successfully remove features. In addition, a third alternative, called
bidirectional selection [27], is to start on both ends and add and remove features simultane‐
ously. A fourth method [28, 29], is to have a search process start with a randomly selected
subset using a sequential or bidirectional strategy. Yet another search strategy, called com‐
plete search [2], may give a best solution to an FS task due to the thoroughness of its search,
but is not feasible when dealing with a large number of features. Alternatively, the sequen‐
tial strategy is simple to implement and fast, but is affected by the nesting effect [3], wherein
once a feature is added (or, deleted) it cannot be deleted (or, added) later. In order to over‐
come such disadvantages of the sequential search strategy, another search strategy, called the
floating search strategy [3], has been implemented.

Search strategy considerations for any FS algorithm are a vital part in finding salient fea‐
tures of a given dataset [2]. Numerous algorithms have been proposed to address the prob‐
lem of searching. Most algorithms use either a sequential search (for example, [4,5,24,26,30])
or a global search (e.g., [11,23,31-35]). On the basis of guiding the search strategies and evalu‐
ating the subsets, in contrast, the existing FS algorithms can be grouped into the following
three approaches: wrapper (e.g., [4,6,30,36-38]), filter (e.g., [40,41]), and hybrid (e.g., [23,42]).
It is well-known that wrapper approaches always return features with a higher saliency than
filter approaches, as the former utilize the association of features collectively during the learning
process, but are computationally more expensive [2]).

Ant Colony Optimization - Techniques and Applications8

In solutions for FS, filter approaches are faster to implement, since they estimate the perform‐
ance of features without any actual model assumed between outputs and inputs of the da‐
ta. A feature can be selected or deleted on the basis of some predefined criteria, such as, mutual
information [39], principal component analysis [43], independent component analysis [44],
class separability measure [45], or variable ranking [46]. Filter approaches have the advant‐
age of computational efficiency, but the saliency of the selected features is insufficient, be‐
cause they do not take into account the biases of classification models.

In order to implement the wrapper approaches, a number of algorithms ([4,24,26,30,47])
have been proposed that use sequential search strategies in finding a subset of salient fea‐
tures. In [24], features are added to a neural network (NN) according to SFS during training.
The addition process is terminated when the performance of the trained classifier is degrad‐
ed. Recently, Kabir et al. [47] proposed approach has drawn much attention in SFS-based
feature selections. In this approach, correlated (distinct) features from two groups, namely,
similar and dissimilar, are added to the NN training model sequentially. At the end of the
training process, when the NN classifier has captured all the necessary information of a giv‐
en dataset, a subset of salient features is generated with reduced redundancy of information.
In a number of other studies (e.g., [4,26,30]), SBS is incorporated in FS using a NN, where
the least salient features have been deleted in stepwise fashion during training. In this con‐
text, different algorithms employ different heuristic techniques for measuring saliency of
features. In [24], saliency of features is measured using a NN training scheme, in which only
one feature is used in the input layer at a time. Two different weight analysis-based heuristic
techniques are employed in [4] and [26] for computing the saliency of features. Furthermore,
in [30], a full feature set NN training scheme is used, where each feature is temporarily de‐
leted with a cross-check of NN performance.

The value of a loss function, consisting of cross entropy with a penalty function, is consid‐
ered directly for measuring the saliency of a feature in [5] and [6]. In [5], the penalty func‐
tion encourages small weights to converge to zero, or prevents weights from converging to
large values. After the penalty function has finished running, those features that have small‐
er weights are sequentially deleted during training as being irrelevant. On the other hand, in
[6], the penalty function forces a network to keep the derivatives of the values of its neurons’
transfer functions low. The aim of such a restriction is to reduce output sensitivity to input
changes. In the FS process, feature removal operations are performed sequentially, especial‐
ly for those features that do not degrade accuracy of the NN upon removal. A class-depend‐
ent FS algorithm in [38], selects a desirable feature subset for each class. It first divides a C
class classification problem into C two-class classification problems. Then, the features are
integrated to train a support vector machine (SVM) using a SFS strategy in order to find the
feature subset of each binary classification problem. Pal and Chintalapudi [36] has proposed
a SBS-based FS technique that multiplies an attenuation function by each feature before al‐
lowing the features to be entered into the NN training. This FS technique is the root for pro‐
posing another FS algorithm in [48]. Rakotomamonjy [37] has proposed new FS criteria that
are derived from SVMs and that are based on the sensitivity of generalization error bounds
with respect to features.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

9

4. Existing Works for Feature Selection

A number of proposed approaches for solving FS problem that can broadly be categorized
into the following three classifications [2]:

a. wrapper,

b. filter, and

c. hybrid.

d. Other than these classifications, there is also another one, called as, meta-heuristic.

In the wrapper approach, a predetermined learning model is assumed, wherein features are
selected that justify the learning performance of the particular learning model [21], whereas
in the filter approach, statistical analysis of the feature set is required, without utilizing any
learning model [22]. The hybrid approach attempts to utilize the complementary strengths
of the wrapper and filter approaches [23]. The meta-heuristics (or, global search approaches)
attempt to search a salient feature subset in a full feature space in order to find a high-quali‐
ty solution using mutual cooperation of individual agents, such as, genetic algorithm, ant
colony optimization, and so on [64]. Now, the schematic diagrams of how the filter, wrap‐
per, and hybrid approaches find relevant (salient) features are given in Figures 3(a,b,c).
These figures are summarized according to the investigations of different FS related works.

Subsets can be generated and the search process carried out in a number of ways. One method,
called sequential forward search (SFS[24,25]), is to start the search process with an empty set
and successfully add features; another option called sequential backward search (SBS[4,26]),
is to start with a full set and successfully remove features. In addition, a third alternative, called
bidirectional selection [27], is to start on both ends and add and remove features simultane‐
ously. A fourth method [28, 29], is to have a search process start with a randomly selected
subset using a sequential or bidirectional strategy. Yet another search strategy, called com‐
plete search [2], may give a best solution to an FS task due to the thoroughness of its search,
but is not feasible when dealing with a large number of features. Alternatively, the sequen‐
tial strategy is simple to implement and fast, but is affected by the nesting effect [3], wherein
once a feature is added (or, deleted) it cannot be deleted (or, added) later. In order to over‐
come such disadvantages of the sequential search strategy, another search strategy, called the
floating search strategy [3], has been implemented.

Search strategy considerations for any FS algorithm are a vital part in finding salient fea‐
tures of a given dataset [2]. Numerous algorithms have been proposed to address the prob‐
lem of searching. Most algorithms use either a sequential search (for example, [4,5,24,26,30])
or a global search (e.g., [11,23,31-35]). On the basis of guiding the search strategies and evalu‐
ating the subsets, in contrast, the existing FS algorithms can be grouped into the following
three approaches: wrapper (e.g., [4,6,30,36-38]), filter (e.g., [40,41]), and hybrid (e.g., [23,42]).
It is well-known that wrapper approaches always return features with a higher saliency than
filter approaches, as the former utilize the association of features collectively during the learning
process, but are computationally more expensive [2]).

Ant Colony Optimization - Techniques and Applications8

In solutions for FS, filter approaches are faster to implement, since they estimate the perform‐
ance of features without any actual model assumed between outputs and inputs of the da‐
ta. A feature can be selected or deleted on the basis of some predefined criteria, such as, mutual
information [39], principal component analysis [43], independent component analysis [44],
class separability measure [45], or variable ranking [46]. Filter approaches have the advant‐
age of computational efficiency, but the saliency of the selected features is insufficient, be‐
cause they do not take into account the biases of classification models.

In order to implement the wrapper approaches, a number of algorithms ([4,24,26,30,47])
have been proposed that use sequential search strategies in finding a subset of salient fea‐
tures. In [24], features are added to a neural network (NN) according to SFS during training.
The addition process is terminated when the performance of the trained classifier is degrad‐
ed. Recently, Kabir et al. [47] proposed approach has drawn much attention in SFS-based
feature selections. In this approach, correlated (distinct) features from two groups, namely,
similar and dissimilar, are added to the NN training model sequentially. At the end of the
training process, when the NN classifier has captured all the necessary information of a giv‐
en dataset, a subset of salient features is generated with reduced redundancy of information.
In a number of other studies (e.g., [4,26,30]), SBS is incorporated in FS using a NN, where
the least salient features have been deleted in stepwise fashion during training. In this con‐
text, different algorithms employ different heuristic techniques for measuring saliency of
features. In [24], saliency of features is measured using a NN training scheme, in which only
one feature is used in the input layer at a time. Two different weight analysis-based heuristic
techniques are employed in [4] and [26] for computing the saliency of features. Furthermore,
in [30], a full feature set NN training scheme is used, where each feature is temporarily de‐
leted with a cross-check of NN performance.

The value of a loss function, consisting of cross entropy with a penalty function, is consid‐
ered directly for measuring the saliency of a feature in [5] and [6]. In [5], the penalty func‐
tion encourages small weights to converge to zero, or prevents weights from converging to
large values. After the penalty function has finished running, those features that have small‐
er weights are sequentially deleted during training as being irrelevant. On the other hand, in
[6], the penalty function forces a network to keep the derivatives of the values of its neurons’
transfer functions low. The aim of such a restriction is to reduce output sensitivity to input
changes. In the FS process, feature removal operations are performed sequentially, especial‐
ly for those features that do not degrade accuracy of the NN upon removal. A class-depend‐
ent FS algorithm in [38], selects a desirable feature subset for each class. It first divides a C
class classification problem into C two-class classification problems. Then, the features are
integrated to train a support vector machine (SVM) using a SFS strategy in order to find the
feature subset of each binary classification problem. Pal and Chintalapudi [36] has proposed
a SBS-based FS technique that multiplies an attenuation function by each feature before al‐
lowing the features to be entered into the NN training. This FS technique is the root for pro‐
posing another FS algorithm in [48]. Rakotomamonjy [37] has proposed new FS criteria that
are derived from SVMs and that are based on the sensitivity of generalization error bounds
with respect to features.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

9

Unlike sequential search-based FS approaches, global search approaches (or, meta-heuris‐

tics) start a search in a full feature space instead of a partial feature space in order to find a

high-quality solution. The strategy of these algorithms is based on the mutual cooperation of

individual agents. A standard genetic algorithm (GA) has been used for FS [35], where fixed

length strings in a population set represent a feature subset. The population set evolves over

time to converge to an optimal solution via crossover and mutation operations. A number of

other algorithms exist (e.g., [22,23]), in which GAs are used for solving FS. A hybrid ap‐

proach [23] for FS has been proposed that incorporates the filter and wrapper approaches in

a cooperative manner. A filter approach involving mutual information computation is used

here as a local search to rank features. A wrapper approach involving GAs is used here as

global search to find a subset of salient features from the ranked features. In [22], two basic

operations, namely, deletion and addition are incorporated that seek the least significant

and most significant features for making a stronger local search during FS.

ACO is predominantly a useful tool, considered as a modern algorithm that has been used in

several studies (e.g., [11,31,42,49-52]) for selecting salient features. During the operation of this

algorithm, a number of artificial ants traverse the feature space to construct feature subsets

iteratively. During subset construction (SC), the existing approaches ([11,42,49-52]) define the

size of the constructed subsets by a fixed number for each iteration, whereas the SFS strat‐

egy has been followed in [31,49], and [51]. In order to measure the heuristic values of fea‐

tures during FS, some of the algorithms ([11,31,50,52]) use filter tools. Evaluating the constructed

subsets is, on the other hand, a vital part in the study of ACO-based FS, since most algo‐

rithms design the pheromone update rules on the basis of outcomes of subset evaluations. In

this regard, a scheme of training classifiers (i.e., wrapper tools) has been used in almost all of

the above ACO-based FS algorithms, except for the two cases, where rough set theory and the

latent variable model (i.e., filter tools) are considered, which are in [11] and [31], respectively.

A recently proposed FS [34] approach is based on rough sets and a particle swarm optimiza‐

tion (PSO) algorithm. A PSO algorithm is used for finding a subset of salient features over a

large and complex feature space. The main heuristic strategy of PSO in FS is that particles fly

up to a certain velocity through the feature space. PSO finds an optimal solution through the

interaction of individuals in the population. Thus, PSO finds the best solution in the FS as

the particles fly within the subset space. This approach is more efficient than a GA in the

sense that it does not require crossover and mutation operators; simple mathematical opera‐

tors are required only.

Ant Colony Optimization - Techniques and Applications10

Figure 3. a)Schematic diagram of filter approach. Each approach incorporates the specific search strategies. (b)Sche‐
matic diagram of wrapper approach. Each approach incorporates the specific search strategies and classifiers. Here,
NN, KNN, SVM, and MLHD refer to the neural network, K-nearest neighbour, support vector machine, and maximum
likelihood classifier, respectively. (c)Schematic diagram of hybrid approach. Each approach incorporates the specific
search strategies and classifiers. Here, LDA, ROC, SU, MI, CI, and LVM, refer to the linear discriminant analysis classifier,

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

11

Unlike sequential search-based FS approaches, global search approaches (or, meta-heuris‐

tics) start a search in a full feature space instead of a partial feature space in order to find a

high-quality solution. The strategy of these algorithms is based on the mutual cooperation of

individual agents. A standard genetic algorithm (GA) has been used for FS [35], where fixed

length strings in a population set represent a feature subset. The population set evolves over

time to converge to an optimal solution via crossover and mutation operations. A number of

other algorithms exist (e.g., [22,23]), in which GAs are used for solving FS. A hybrid ap‐

proach [23] for FS has been proposed that incorporates the filter and wrapper approaches in

a cooperative manner. A filter approach involving mutual information computation is used

here as a local search to rank features. A wrapper approach involving GAs is used here as

global search to find a subset of salient features from the ranked features. In [22], two basic

operations, namely, deletion and addition are incorporated that seek the least significant

and most significant features for making a stronger local search during FS.

ACO is predominantly a useful tool, considered as a modern algorithm that has been used in

several studies (e.g., [11,31,42,49-52]) for selecting salient features. During the operation of this

algorithm, a number of artificial ants traverse the feature space to construct feature subsets

iteratively. During subset construction (SC), the existing approaches ([11,42,49-52]) define the

size of the constructed subsets by a fixed number for each iteration, whereas the SFS strat‐

egy has been followed in [31,49], and [51]. In order to measure the heuristic values of fea‐

tures during FS, some of the algorithms ([11,31,50,52]) use filter tools. Evaluating the constructed

subsets is, on the other hand, a vital part in the study of ACO-based FS, since most algo‐

rithms design the pheromone update rules on the basis of outcomes of subset evaluations. In

this regard, a scheme of training classifiers (i.e., wrapper tools) has been used in almost all of

the above ACO-based FS algorithms, except for the two cases, where rough set theory and the

latent variable model (i.e., filter tools) are considered, which are in [11] and [31], respectively.

A recently proposed FS [34] approach is based on rough sets and a particle swarm optimiza‐

tion (PSO) algorithm. A PSO algorithm is used for finding a subset of salient features over a

large and complex feature space. The main heuristic strategy of PSO in FS is that particles fly

up to a certain velocity through the feature space. PSO finds an optimal solution through the

interaction of individuals in the population. Thus, PSO finds the best solution in the FS as

the particles fly within the subset space. This approach is more efficient than a GA in the

sense that it does not require crossover and mutation operators; simple mathematical opera‐

tors are required only.

Ant Colony Optimization - Techniques and Applications10

Figure 3. a)Schematic diagram of filter approach. Each approach incorporates the specific search strategies. (b)Sche‐
matic diagram of wrapper approach. Each approach incorporates the specific search strategies and classifiers. Here,
NN, KNN, SVM, and MLHD refer to the neural network, K-nearest neighbour, support vector machine, and maximum
likelihood classifier, respectively. (c)Schematic diagram of hybrid approach. Each approach incorporates the specific
search strategies and classifiers. Here, LDA, ROC, SU, MI, CI, and LVM, refer to the linear discriminant analysis classifier,

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

11

receiver operating characteristic method, symmetrical uncertainty, mutual information, correlation information, and
latent variable model, respectively.

5. Common Problems

Most of the afore-mentioned search strategies, however, attempt to find solutions in FS that
range between sub-optimal and near optimal regions, since they use local search throughout
the entire process, instead of global search. On the other hand, these search algorithms uti‐
lize a partial search over the feature space, and suffer from computational complexity. Con‐
sequently, near-optimal to optimal solutions are quite difficult to achieve using these
algorithms. As a result, many research studies now focus on global search algorithms (or,
metaheuristics) [31]). The significance of global search algorithms is that they can find a sol‐
ution in the full search space on the basis of activities of multi-agent systems that use a glob‐
al search ability utilizing local search appropriately, thus significantly increasing the ability
of finding very high-quality solutions within a reasonable period of time[53]. To achieve
global search, researchers have attempted simulated annealing [54], genetic algorithm [35],
ant colony optimization ([49,50]), and particle swarm optimization [34] algorithms in solv‐
ing FS tasks.

On the other hand, most of the global search approaches discussed above do not use a
bounded scheme to decide the size of the constructed subsets. Accordingly, in these algo‐
rithms, the selected subsets might be larger in size and include a number of least significant
features. Furthermore, most of the ACO-based FS algorithms do not consider the random
and probabilistic behavior of ants during SCs. Thus, the solutions found in these algorithms
might be incomplete in nature. On the other hand, the above sequential search-based FS ap‐
proaches suffer from the nesting effect as they try to find subsets of salient features using a
sequential search strategy. It is said that such an effect affects the generalization perform‐
ance of the learning model [3].

6. A New Hybrid ACO-based Feature Selection Algorithm-ACOFS

It is found that, hybridization of several components gives rise to better overall performance
in FS problem. The reason is that hybrid techniques are capable of finding a good solution,
even when a single technique is often trapped with an incomplete solution [64]. Further‐
more, incorporation of any global search strategy in a hybrid system (called as hybrid meta-
heuristic approach) can likely provide high-quality solution in FS problem.

In this chapter, a new hybrid meta-heuristic approach for feature selection (ACOFS) has
been presented that utilizes ant colony optimization. The main focus of this algorithm is to
generate subsets of salient features of reduced size. ACOFS utilizes a hybrid search techni‐
que that combines the wrapper and filter approaches. In this regard, ACOFS modifies the
standard pheromone update and heuristic information measurement rules based on the

Ant Colony Optimization - Techniques and Applications12

above two approaches. The reason for the novelty and distinctness of ACOFS versus previ‐
ous algorithms (e.g., [11,31,42,49-52]) lie in the following two aspects.

Figure 4. Major steps of ACOFS, adapted from [64].

First, ACOFS emphasizes not only the selection of a number of salient features, but also the
attainment of a reduced number of them. ACOFS selects salient features of a reduced num‐
ber using a subset size determination scheme. Such a scheme works upon a bounded region
and provides sizes of constructed subsets that are smaller in number. Thus, following this
scheme, an ant attempts to traverse the node (or, feature) space to construct a path (or, sub‐
set). This approach is quite different from those of the existing schemes ([31,49,51]), where
the ants are guided by using the SFS strategy in selecting features during the feature subset

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

13

receiver operating characteristic method, symmetrical uncertainty, mutual information, correlation information, and
latent variable model, respectively.

5. Common Problems

Most of the afore-mentioned search strategies, however, attempt to find solutions in FS that
range between sub-optimal and near optimal regions, since they use local search throughout
the entire process, instead of global search. On the other hand, these search algorithms uti‐
lize a partial search over the feature space, and suffer from computational complexity. Con‐
sequently, near-optimal to optimal solutions are quite difficult to achieve using these
algorithms. As a result, many research studies now focus on global search algorithms (or,
metaheuristics) [31]). The significance of global search algorithms is that they can find a sol‐
ution in the full search space on the basis of activities of multi-agent systems that use a glob‐
al search ability utilizing local search appropriately, thus significantly increasing the ability
of finding very high-quality solutions within a reasonable period of time[53]. To achieve
global search, researchers have attempted simulated annealing [54], genetic algorithm [35],
ant colony optimization ([49,50]), and particle swarm optimization [34] algorithms in solv‐
ing FS tasks.

On the other hand, most of the global search approaches discussed above do not use a
bounded scheme to decide the size of the constructed subsets. Accordingly, in these algo‐
rithms, the selected subsets might be larger in size and include a number of least significant
features. Furthermore, most of the ACO-based FS algorithms do not consider the random
and probabilistic behavior of ants during SCs. Thus, the solutions found in these algorithms
might be incomplete in nature. On the other hand, the above sequential search-based FS ap‐
proaches suffer from the nesting effect as they try to find subsets of salient features using a
sequential search strategy. It is said that such an effect affects the generalization perform‐
ance of the learning model [3].

6. A New Hybrid ACO-based Feature Selection Algorithm-ACOFS

It is found that, hybridization of several components gives rise to better overall performance
in FS problem. The reason is that hybrid techniques are capable of finding a good solution,
even when a single technique is often trapped with an incomplete solution [64]. Further‐
more, incorporation of any global search strategy in a hybrid system (called as hybrid meta-
heuristic approach) can likely provide high-quality solution in FS problem.

In this chapter, a new hybrid meta-heuristic approach for feature selection (ACOFS) has
been presented that utilizes ant colony optimization. The main focus of this algorithm is to
generate subsets of salient features of reduced size. ACOFS utilizes a hybrid search techni‐
que that combines the wrapper and filter approaches. In this regard, ACOFS modifies the
standard pheromone update and heuristic information measurement rules based on the

Ant Colony Optimization - Techniques and Applications12

above two approaches. The reason for the novelty and distinctness of ACOFS versus previ‐
ous algorithms (e.g., [11,31,42,49-52]) lie in the following two aspects.

Figure 4. Major steps of ACOFS, adapted from [64].

First, ACOFS emphasizes not only the selection of a number of salient features, but also the
attainment of a reduced number of them. ACOFS selects salient features of a reduced num‐
ber using a subset size determination scheme. Such a scheme works upon a bounded region
and provides sizes of constructed subsets that are smaller in number. Thus, following this
scheme, an ant attempts to traverse the node (or, feature) space to construct a path (or, sub‐
set). This approach is quite different from those of the existing schemes ([31,49,51]), where
the ants are guided by using the SFS strategy in selecting features during the feature subset

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

13

construction. However, a problem is that, SFS requires an appropriate stopping criterion to
stop the SC. Otherwise, a number of irrelevant features may be included in the constructed
subsets, and the solutions may not be effective. To solve this problem, some algorithms
([11,42,50,52]) define the size of a constructed subset by a fixed number for each iteration for
all ants, which is incremented at a fixed rate for following iterations. This technique could be
inefficient if the fixed number becomes too large or too small. Therefore, deciding the subset
size within a reduced area may be a good step for constructing the subset while the ants tra‐
verse through the feature space.

Second, ACOFS utilizes a hybrid search technique for selecting salient features that com‐
bines the advantages of the wrapper and filter approaches. An alternative name for such a
search technique is “ACO search”. This technique is designed with two sets of new rules for
pheromone update and heuristic information measurement. The idea of these rules is based
mainly on the random and probabilistic behaviors of ants while selecting features during SC.
The aim is to provide the correct information to the features and to maintain an effective balance
between exploitation and exploration of ants during SC. Thus, ACOFS achieves a strong search
capability that helps to select a smaller number of the most salient features among a feature
set. In contrast, the existing approaches ([11,31,42,49-52]) try to design rules without distin‐
guishing between the random and probabilistic behaviors of ants during the construction of
a subset. Consequently, ants may be deprived of the opportunity of utilizing enough previ‐
ous experience or investigating more salient features during SC in their solutions.

The main structure of ACOFS is shown in Figure 4, in which the detailed description can be
found in [64]. However, at the first stage, while each of the k ants attempt to construct sub‐
set, it decides the subset size r first according to the subset size determination scheme. This
scheme guides the ants to construct subsets in a reduced form. Then, it follows the conven‐
tional probabilistic transition rule [31] for selecting features as follows,

[] []
[] []

() ()

() ()()

0

k

i i

k
u ui

u j

k

t t
t tP t

if i j

a b

a b

t h

t h
Î

ì
ïï= í
ï
ïî

Î

å
(1)

where j k is the set of feasible features that can be added to the partial solution, τi and ηi are
the pheromone and heuristic values associated with feature i (i 1, 2,…..,n), and α and β are
two parameters that determine the relative importance of the pheromone value and heuris‐
tic information. Note that, since the initial value of and for all individual features are equal,
Eq. (1) shows random behaviour in SC initially. The approach used by the ants in construct‐
ing individual subsets during SC can be seen in Figure 5.

Ant Colony Optimization - Techniques and Applications14

Figure 5. Representation of subset constructions by individual ants in ACO algorithm for FS. Here, n1, n2,..., n5 repre‐
sent the individual features. As an example, one ant placed in n1 constructed one subset { n1, n2, n3}.

ACOFS imposes a restriction upon the subset size determination in determining the subset
size, which is not an inherent constraint. Because, other than such restriction, likewise the
conventional approaches, the above determination scheme works on an extended boundary
after a certain range that results in ineffective solutions for FS. In order to solve another
problem, that is to say, incomplete solutions to ACO-based FS algorithms; our ACOFS incor‐
porates a hybrid search strategy (i.e., a combination of the wrapper and filter approaches) by
designing different rules to strengthen the global search ability of the ants. Incorporation of
these two approaches results in an ACOFS that achieves high-quality solutions for FS from a
given dataset. For better understanding, details about each aspect of ACOFS are now given
in the following sections.

6.1. Determination of Subset Size

In an ACO algorithm, the activities of ants have significance for solving different combinato‐
rial optimization problems. Therefore, in solving the FS problem, guiding ants in the correct
directions is very advantageous in this sense. In contrast to other existing ACO- based FS
algorithms, ACOFS uses a straightforward mechanism to determine the subset size r. It em‐
ploys a simpler probabilistic formula with a constraint and a random function. The aim of
using such a probabilistic formula is to provide information to the random function in such
a way that the minimum subset size has a higher probability of being selected. This is im‐
portant in the sense that ACOFS can be guided toward a particular direction by the choice of
which reduced-size subset of salient features is likely to be generated. The subset size deter‐
mination scheme used can be described in two ways as follows.

First, ACOFS uses a probabilistic formula modified from [32] to decide the size of a subset r
(≤n) as follows:

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

15

construction. However, a problem is that, SFS requires an appropriate stopping criterion to
stop the SC. Otherwise, a number of irrelevant features may be included in the constructed
subsets, and the solutions may not be effective. To solve this problem, some algorithms
([11,42,50,52]) define the size of a constructed subset by a fixed number for each iteration for
all ants, which is incremented at a fixed rate for following iterations. This technique could be
inefficient if the fixed number becomes too large or too small. Therefore, deciding the subset
size within a reduced area may be a good step for constructing the subset while the ants tra‐
verse through the feature space.

Second, ACOFS utilizes a hybrid search technique for selecting salient features that com‐
bines the advantages of the wrapper and filter approaches. An alternative name for such a
search technique is “ACO search”. This technique is designed with two sets of new rules for
pheromone update and heuristic information measurement. The idea of these rules is based
mainly on the random and probabilistic behaviors of ants while selecting features during SC.
The aim is to provide the correct information to the features and to maintain an effective balance
between exploitation and exploration of ants during SC. Thus, ACOFS achieves a strong search
capability that helps to select a smaller number of the most salient features among a feature
set. In contrast, the existing approaches ([11,31,42,49-52]) try to design rules without distin‐
guishing between the random and probabilistic behaviors of ants during the construction of
a subset. Consequently, ants may be deprived of the opportunity of utilizing enough previ‐
ous experience or investigating more salient features during SC in their solutions.

The main structure of ACOFS is shown in Figure 4, in which the detailed description can be
found in [64]. However, at the first stage, while each of the k ants attempt to construct sub‐
set, it decides the subset size r first according to the subset size determination scheme. This
scheme guides the ants to construct subsets in a reduced form. Then, it follows the conven‐
tional probabilistic transition rule [31] for selecting features as follows,

[] []
[] []

() ()

() ()()

0

k

i i

k
u ui

u j

k

t t
t tP t

if i j

a b

a b

t h

t h
Î

ì
ïï= í
ï
ïî

Î

å
(1)

where j k is the set of feasible features that can be added to the partial solution, τi and ηi are
the pheromone and heuristic values associated with feature i (i 1, 2,…..,n), and α and β are
two parameters that determine the relative importance of the pheromone value and heuris‐
tic information. Note that, since the initial value of and for all individual features are equal,
Eq. (1) shows random behaviour in SC initially. The approach used by the ants in construct‐
ing individual subsets during SC can be seen in Figure 5.

Ant Colony Optimization - Techniques and Applications14

Figure 5. Representation of subset constructions by individual ants in ACO algorithm for FS. Here, n1, n2,..., n5 repre‐
sent the individual features. As an example, one ant placed in n1 constructed one subset { n1, n2, n3}.

ACOFS imposes a restriction upon the subset size determination in determining the subset
size, which is not an inherent constraint. Because, other than such restriction, likewise the
conventional approaches, the above determination scheme works on an extended boundary
after a certain range that results in ineffective solutions for FS. In order to solve another
problem, that is to say, incomplete solutions to ACO-based FS algorithms; our ACOFS incor‐
porates a hybrid search strategy (i.e., a combination of the wrapper and filter approaches) by
designing different rules to strengthen the global search ability of the ants. Incorporation of
these two approaches results in an ACOFS that achieves high-quality solutions for FS from a
given dataset. For better understanding, details about each aspect of ACOFS are now given
in the following sections.

6.1. Determination of Subset Size

In an ACO algorithm, the activities of ants have significance for solving different combinato‐
rial optimization problems. Therefore, in solving the FS problem, guiding ants in the correct
directions is very advantageous in this sense. In contrast to other existing ACO- based FS
algorithms, ACOFS uses a straightforward mechanism to determine the subset size r. It em‐
ploys a simpler probabilistic formula with a constraint and a random function. The aim of
using such a probabilistic formula is to provide information to the random function in such
a way that the minimum subset size has a higher probability of being selected. This is im‐
portant in the sense that ACOFS can be guided toward a particular direction by the choice of
which reduced-size subset of salient features is likely to be generated. The subset size deter‐
mination scheme used can be described in two ways as follows.

First, ACOFS uses a probabilistic formula modified from [32] to decide the size of a subset r
(≤n) as follows:

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

15

1
()

r l

i

n rP
n i

=

-
=

-å (2)

Here, Pr is maximized linearly as r is minimized, and the value of r is restricted by a con‐
straint, namely, 2 ≤ r ≤ δ. Therefore, r 2, 3,……,δ, where δ = μ xn and l = n - r. Here, μ is a
user-specified parameter that controls δ. Its value depends on the n for a given dataset. If is
closed to n, then the search space of finding the salient features becomes larger, which cer‐
tainly causes a high computational cost, and raises the risk that ineffective feature subsets
might be generated. Since the aim of ACOFS is to select a subset of salient features within a
smaller range, the length of the selected subset is preferred to be between 3 and 12 depend‐
ing on the given dataset. Thus, is set as [0.1, 0.6]. Then, normalize all the values of Pr in such
a way that the summation of all possible values of Pr is equal to 1.

Second, ACOFS utilizes all the values of Pr for the random selection scheme mentioned in
Figure 6 to determine the size of the subset, r eventually. This selection scheme is almost
similar to the classical roulette wheel procedure [55].

Figure 6. Pseudo-code of the random selection procedure.

6.2. Subset Evaluation

Subset evaluation has a significant role, along with other basic operations of ACO for select‐
ing salient features in FS tasks. In common practices, filter or wrapper approaches are in‐
volved for evaluation tasks. However, it is found in [7] that the performance of a wrapper
approach is always better than that of a filter approach. Therefore, the evaluation of the
constructed subsets is inspired by a feed-forward NN training scheme for each iteration. Such

Ant Colony Optimization - Techniques and Applications16

a NN classifier is not an inherent constraint; instead of NN, any other type of classifier, such
as SVM, can be used as well for this evaluation tasks. In this study, the evaluation of the subset
is represented by the percentage value of NN classification accuracy (CA) for the testing set.
A detailed discussion of the evaluation mechanism integrated into ACOFS as follows.

First, during training the features of a constructed subset, the NN is trained partially for τp

epochs. Training is performed sequentially using the examples of a training set and a back-
propagation (BP) learning algorithm [56]. The number of training epochs, τp, is specified by
the user. In partial training, which was first used in conjunction with an evolutionary algo‐
rithm [17], the NN is trained for a fixed number of epochs, regardless of whether the algo‐
rithm has converged on a result.

Second, check the progress of training to determine whether further training is necessary. If
training error is reduced by a predefined amount, ε, after the τp training epochs (as men‐
tioned in Eq. (4)), we assume that the training process has been progressing well, and that
further training is thus necessary, and then proceed to the first step. Otherwise, we go to the
next step for adding a hidden neuron. The error, E, is calculated as follows:

2

1 1

1 (() ())
2

P C

c c
p c

E o p t p
= =

= -åå (3)

where oc(p) and tc(p) are the actual and target responses of the c-th output neuron for the
training example p. The symbols P and C represent the total number of examples and of out‐
put neurons in the training set, respectively. The reduction of training error can be described
as follows:

() () , , 2 , 3 , .pE t E t tt e t t t- + > = ¼¼ (4)

On the other hand, in the case of adding the hidden neuron, the addition operation is guid‐
ed by computing the contributions of the current hidden neurons. If the contributions are
high, then it is assumed that another one more hidden neuron is required. Otherwise, freeze
the extension of the hidden layer size for further partial training of the NN. Computation of
the contribution of previously added hidden neurons in the NN is based on the CA of the
validation set. The CA can be calculated as follows:

100 vc

v

PCA
P

æ ö
= ç ÷

è ø
(5)

where Pvc refers to the number of examples in the validation set correctly classified by the
NN and Pv is the total number of patterns in the validation set.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

17

1
()

r l

i

n rP
n i

=

-
=

-å (2)

Here, Pr is maximized linearly as r is minimized, and the value of r is restricted by a con‐
straint, namely, 2 ≤ r ≤ δ. Therefore, r 2, 3,……,δ, where δ = μ xn and l = n - r. Here, μ is a
user-specified parameter that controls δ. Its value depends on the n for a given dataset. If is
closed to n, then the search space of finding the salient features becomes larger, which cer‐
tainly causes a high computational cost, and raises the risk that ineffective feature subsets
might be generated. Since the aim of ACOFS is to select a subset of salient features within a
smaller range, the length of the selected subset is preferred to be between 3 and 12 depend‐
ing on the given dataset. Thus, is set as [0.1, 0.6]. Then, normalize all the values of Pr in such
a way that the summation of all possible values of Pr is equal to 1.

Second, ACOFS utilizes all the values of Pr for the random selection scheme mentioned in
Figure 6 to determine the size of the subset, r eventually. This selection scheme is almost
similar to the classical roulette wheel procedure [55].

Figure 6. Pseudo-code of the random selection procedure.

6.2. Subset Evaluation

Subset evaluation has a significant role, along with other basic operations of ACO for select‐
ing salient features in FS tasks. In common practices, filter or wrapper approaches are in‐
volved for evaluation tasks. However, it is found in [7] that the performance of a wrapper
approach is always better than that of a filter approach. Therefore, the evaluation of the
constructed subsets is inspired by a feed-forward NN training scheme for each iteration. Such

Ant Colony Optimization - Techniques and Applications16

a NN classifier is not an inherent constraint; instead of NN, any other type of classifier, such
as SVM, can be used as well for this evaluation tasks. In this study, the evaluation of the subset
is represented by the percentage value of NN classification accuracy (CA) for the testing set.
A detailed discussion of the evaluation mechanism integrated into ACOFS as follows.

First, during training the features of a constructed subset, the NN is trained partially for τp

epochs. Training is performed sequentially using the examples of a training set and a back-
propagation (BP) learning algorithm [56]. The number of training epochs, τp, is specified by
the user. In partial training, which was first used in conjunction with an evolutionary algo‐
rithm [17], the NN is trained for a fixed number of epochs, regardless of whether the algo‐
rithm has converged on a result.

Second, check the progress of training to determine whether further training is necessary. If
training error is reduced by a predefined amount, ε, after the τp training epochs (as men‐
tioned in Eq. (4)), we assume that the training process has been progressing well, and that
further training is thus necessary, and then proceed to the first step. Otherwise, we go to the
next step for adding a hidden neuron. The error, E, is calculated as follows:

2

1 1

1 (() ())
2

P C

c c
p c

E o p t p
= =

= -åå (3)

where oc(p) and tc(p) are the actual and target responses of the c-th output neuron for the
training example p. The symbols P and C represent the total number of examples and of out‐
put neurons in the training set, respectively. The reduction of training error can be described
as follows:

() () , , 2 , 3 , .pE t E t tt e t t t- + > = ¼¼ (4)

On the other hand, in the case of adding the hidden neuron, the addition operation is guid‐
ed by computing the contributions of the current hidden neurons. If the contributions are
high, then it is assumed that another one more hidden neuron is required. Otherwise, freeze
the extension of the hidden layer size for further partial training of the NN. Computation of
the contribution of previously added hidden neurons in the NN is based on the CA of the
validation set. The CA can be calculated as follows:

100 vc

v

PCA
P

æ ö
= ç ÷

è ø
(5)

where Pvc refers to the number of examples in the validation set correctly classified by the
NN and Pv is the total number of patterns in the validation set.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

17

At this stage, the ACOFS measures error and CA in the validation set using Eqs. (3) and (5)
after every τp epochs of training. It then terminates training when either the validation CA
decreases or the validation error increases or both are satisfied for T successive times, which
are measured at the end of each of T successive τp epochs of training [16]. Finally, the testing
accuracy of the current NN architecture is checked with selected hidden neurons, using the
example of the testing set according to Eq. (5).

The idea behind this evaluation process is straightforward: minimize the training error, and
maximize the validation accuracy. To achieve these goals, ACOFS uses a constructive ap‐
proach to determine NN architectures automatically. Although other approaches, such as,
pruning [57] and regularization [58] could be used in ACOFS, the selection of an initial NN
architecture in these approaches is difficult [59]. This selection, however, is simple in the
case of a constructive approach. For example, the initial network architecture in a construc‐
tive approach can consist of a hidden layer with one neuron. On the other hand, an input
layer is set with r neurons, and an output layer with c neurons. More precisely, among r and
c neurons, one neuron for each feature of the corresponding subset and one neuron for each
class, respectively. If this minimal architecture cannot solve the given task, hidden neurons
can be added one by one. Due to the simplicity of initialization, the constructive approach is
used widely in multi-objective learning tasks [60].

6.3 Best Subset Selection

Generally, finding salient subsets with a reduced size is always preferable due to the low
cost in hardware implementation and less time consumed in operation. Unlike other exist‐
ing algorithms (e.g., [49,50]), in ACOFS, the best salient feature subset is recognized eventu‐
ally as a combination of the local best and global best selections as follows:

Local best selection: Determine the local best subset, Sl(t) for a particular t (t ∈ 1, 2, 3,…..)
iteration according to Max(Sk(t)), where Sk(t) is the number of subsets constructed by k ants,
and k 1, 2,…,n.

Global best selection: Determine the global best subset (Sg), that is, the best subset of salient
features from the all local best solutions in such a way that Sg is compared with the currently
decided local best subset, Sl(t) at every t iteration by their classification performances. If Sl(t)
is found better, then Sl(t) is replaced by Sg. One thing is that, during this selection process, if
the performances are found similar at any time, then select the one among the two, i.e., Sg

and Sl(t) as a best subset that has reduced size. Note that, at the first iteration Sl(t) is consid‐
ered as Sg.

6.4 Hybrid Search Process

The new hybrid search technique, incorporated in ACOFS, consists of wrapper and filter ap‐
proaches. A significant advantage of this search technique is that ants achieve a significant

Ant Colony Optimization - Techniques and Applications18

ability of utilizing previous successful moves and of expressing desirability of moves to‐
wards a high-quality solution in FS. This search process is composed of two sets of newly
designed rules, such as, the pheromone update rule and the heuristic information rule,
which are further described as follows.

6.4.1. Pheromone Update Rule

Pheromone updating in the ACO algorithm is a vital aspect of FS tasks. Ants exploit features
in SC that have been most suitable in prior iterations through the pheromone update rule,
consisting of local update and global update. More precisely, global update applies only to
those features that are a part of the best feature subset in the current iteration. It allows the
features to receive a large amount of pheromone update in equal shares. The aim of global
update is to encourage ants to construct subsets with a significant CA. In contrast to the
global update, local update not only causes the irrelevant features to be less desirable, but
also helps ants to select those features, which have never been explored before. This update
either decreases the strength of the pheromone trail or maintains the same level, based on
whether a particular feature has been selected.

In ACOFS, a set of new pheromone update rules has been designed on the basis of two basic
behaviors (that is to say, random and probabilistic) of ants during SCs. These rules have
been modified from the standard rule in [49] and [53], which aims to provide a proper bal‐
ance between exploration and exploitation of ants for the next iteration. Exploration is re‐
ported to prohibit ants from converging on a common path. Actual ants also have a similar
behavioral characteristic [61], which is an attractive property. If different paths can be ex‐
plored by different ants, then there is a higher probability that one of the ants may find a
better solution, as opposed to all ants converging on the same tour.

Random case: The rule presenting in Eq. (6) is modified only in the second term, which is
divided by mi. Such a modification provides for sufficient exploration of the ants for the fol‐
lowing constructions. The reason is that during the random behavior of the transition rule,
the features are being chosen to be selected randomly in practice, instead of according to
their experiences. Thus, to provide an exploration facility for the ants, the modification has
been adopted as follows:

τi(t + 1)= (1−ρ)τi(t) +
1
mi

∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t)) if i ∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t)) f i ∈S l(t)

0 otherwise

(6)

Here, i refers to the number of feature (i 1, 2,……n), and mi is the count for the specific se‐
lected feature i in the current iteration. Δτi

k (t)is the amount of pheromone received by the

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

19

At this stage, the ACOFS measures error and CA in the validation set using Eqs. (3) and (5)
after every τp epochs of training. It then terminates training when either the validation CA
decreases or the validation error increases or both are satisfied for T successive times, which
are measured at the end of each of T successive τp epochs of training [16]. Finally, the testing
accuracy of the current NN architecture is checked with selected hidden neurons, using the
example of the testing set according to Eq. (5).

The idea behind this evaluation process is straightforward: minimize the training error, and
maximize the validation accuracy. To achieve these goals, ACOFS uses a constructive ap‐
proach to determine NN architectures automatically. Although other approaches, such as,
pruning [57] and regularization [58] could be used in ACOFS, the selection of an initial NN
architecture in these approaches is difficult [59]. This selection, however, is simple in the
case of a constructive approach. For example, the initial network architecture in a construc‐
tive approach can consist of a hidden layer with one neuron. On the other hand, an input
layer is set with r neurons, and an output layer with c neurons. More precisely, among r and
c neurons, one neuron for each feature of the corresponding subset and one neuron for each
class, respectively. If this minimal architecture cannot solve the given task, hidden neurons
can be added one by one. Due to the simplicity of initialization, the constructive approach is
used widely in multi-objective learning tasks [60].

6.3 Best Subset Selection

Generally, finding salient subsets with a reduced size is always preferable due to the low
cost in hardware implementation and less time consumed in operation. Unlike other exist‐
ing algorithms (e.g., [49,50]), in ACOFS, the best salient feature subset is recognized eventu‐
ally as a combination of the local best and global best selections as follows:

Local best selection: Determine the local best subset, Sl(t) for a particular t (t ∈ 1, 2, 3,…..)
iteration according to Max(Sk(t)), where Sk(t) is the number of subsets constructed by k ants,
and k 1, 2,…,n.

Global best selection: Determine the global best subset (Sg), that is, the best subset of salient
features from the all local best solutions in such a way that Sg is compared with the currently
decided local best subset, Sl(t) at every t iteration by their classification performances. If Sl(t)
is found better, then Sl(t) is replaced by Sg. One thing is that, during this selection process, if
the performances are found similar at any time, then select the one among the two, i.e., Sg

and Sl(t) as a best subset that has reduced size. Note that, at the first iteration Sl(t) is consid‐
ered as Sg.

6.4 Hybrid Search Process

The new hybrid search technique, incorporated in ACOFS, consists of wrapper and filter ap‐
proaches. A significant advantage of this search technique is that ants achieve a significant

Ant Colony Optimization - Techniques and Applications18

ability of utilizing previous successful moves and of expressing desirability of moves to‐
wards a high-quality solution in FS. This search process is composed of two sets of newly
designed rules, such as, the pheromone update rule and the heuristic information rule,
which are further described as follows.

6.4.1. Pheromone Update Rule

Pheromone updating in the ACO algorithm is a vital aspect of FS tasks. Ants exploit features
in SC that have been most suitable in prior iterations through the pheromone update rule,
consisting of local update and global update. More precisely, global update applies only to
those features that are a part of the best feature subset in the current iteration. It allows the
features to receive a large amount of pheromone update in equal shares. The aim of global
update is to encourage ants to construct subsets with a significant CA. In contrast to the
global update, local update not only causes the irrelevant features to be less desirable, but
also helps ants to select those features, which have never been explored before. This update
either decreases the strength of the pheromone trail or maintains the same level, based on
whether a particular feature has been selected.

In ACOFS, a set of new pheromone update rules has been designed on the basis of two basic
behaviors (that is to say, random and probabilistic) of ants during SCs. These rules have
been modified from the standard rule in [49] and [53], which aims to provide a proper bal‐
ance between exploration and exploitation of ants for the next iteration. Exploration is re‐
ported to prohibit ants from converging on a common path. Actual ants also have a similar
behavioral characteristic [61], which is an attractive property. If different paths can be ex‐
plored by different ants, then there is a higher probability that one of the ants may find a
better solution, as opposed to all ants converging on the same tour.

Random case: The rule presenting in Eq. (6) is modified only in the second term, which is
divided by mi. Such a modification provides for sufficient exploration of the ants for the fol‐
lowing constructions. The reason is that during the random behavior of the transition rule,
the features are being chosen to be selected randomly in practice, instead of according to
their experiences. Thus, to provide an exploration facility for the ants, the modification has
been adopted as follows:

τi(t + 1)= (1−ρ)τi(t) +
1
mi

∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t)) if i ∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t)) f i ∈S l(t)

0 otherwise

(6)

Here, i refers to the number of feature (i 1, 2,……n), and mi is the count for the specific se‐
lected feature i in the current iteration. Δτi

k (t)is the amount of pheromone received by the

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

19

local update for feature i, which is included in Sk(t) at iteration t. Similarly, the global up‐
date,Δτi

g(t) , is the amount of pheromone for feature i that is included in Sl(t). Finally, ρ and
e refer to the pheromone decay value, and elitist parameter, respectively.

Probabilistic case: Eq. (7) shows the modified pheromone rule for the probabilistic case. The
rule is similar to the original form, but actual modification has been made only for the inner
portions of the second and third terms.

τi(t + 1)= (1−ρ)τi(t) + ∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t))×λi f i ∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t))×λi f i ∈S l(t)

0 otherwise

(7)

Here, feature i is rewarded by the global update, and Δ τg is in the third term, where i Sl(t)i.
It is important to emphasize that, i is maintained strictly here. That is, i at iteration i tti is
compared with i at iteration (tt -τp), where tt = t + τp, and τp 1, 2, 3,……In this regard, if
γ(Sl(tt)) max((γSl(ttpε)),), where ε refers to the number of CAs for those local best subsets that
maintain |Sl(tt)| = |Sl(ttp)|, then a number of features, nc are ignored to get Δτg, since those
features are available in Sl(tt), which causes to degrade its performance. Here, nc ∈Sl(tt) but
nc∉ Slb, where Slb provides max((γSl(ttp)),), and |Sl(tt)| implies the size of the subset Sl(tt).
Note that, the aim of this restriction is to provide Δτg only to those features that are actually
significant, because, global update has a vital role in selecting the salient features in ACOFS.
Distinguish such salient features and allow them to receive Δτg by imposing the above re‐
striction.

6.4.2. Heuristic Information Measurement

A heuristic value,η , for each feature generally represents the attractiveness of the features,
and depends on the dependency degree. It is therefore necessary to use ; otherwise, the algo‐
rithm may become too greedy, and ultimately a better solution may not be found [31]. Here,
a set of new rules is introduced for measuring heuristic information using the advantages of
wrapper and filter tools. More precisely, the outcome of subset evaluations using the NN is
used here as a wrapper tool, whereas the value of information gain for each feature is used
as a filter tool. These rules are, therefore, formulated according to the random and probabil‐
istic behaviors of the ants, which are described as follows.

Random case: In the initial iteration, while ants are involved in constructing the feature sub‐
sets randomly, the heuristic value of all features i can be estimated as follows:

Ant Colony Optimization - Techniques and Applications20

()

1

1 (())(1) ()
kS tn

k kn
i

ki

S t e if i S t
m

h g j
-

=

= + Îå (8)

Probabilistic case: In the following iterations, when ants complete the feature SCs on the ba‐
sis of the probabilistic behavior, the following formula is used to estimate for all features i :

()

1
(()) (1) ()

kS tn
k kn

i i i a i
k

m S t e if i S th f g l j
-

=

= + Îå (9)

In these two rules, φi refers to the number of a particular selected feature i that is a part of
the subsets that are constructed within the currently completed iterations, except for the ini‐
tial iteration. The aim of multiplying mi and φi is to provide a proper exploitation capability
for the ants during SCs. λi refers to the information gain for feature i. A detailed discussion
on measurement of information gain can be seen in [64]. However, the aim of including is
based on the following two factors:

a. reducing the greediness of some particular feature i in n during SCs, and

b. increasing the diversity between the features in n.

Thus, different features may get an opportunity to be selected in the SC for different itera‐
tions, thus definitely enhancing the exploration behavior of ants. Furthermore, one addition‐
al exponential term has been multiplied by these rules in aiming for a reduced size subset.
Here, is the user specified parameter that controls the exponential term.

6.5. Computational Complexity

In order to understand the actual computational cost of a method, an exact analysis of com‐
putational complexity is required. In this sense, the big-O notation [62] is a prominent ap‐
proach in terms of analyzing computational complexity. Thus, ACOFS here uses the above
process for this regard. There are seven basic steps in ACOFS, namely, information gain
measurement, subset construction, subset evaluation, termination criterion, subset determina‐
tion, pheromone update, and heuristic information measurement. The following paragraphs
present the computational complexity of ACOFS in order to show that inclusion of different
techniques does not increase computational complexity in selecting a feature subset.

i. Information Gain Measurement: In this step, information gain (IG) for each feature
is measured according to [64]. If the number of total features for a given dataset is
n, then the cost of measuring IG is O(n × P), where P denotes the number of exam‐
ples in the given dataset. It is further mentioning that this cost is required only
once, specifically, before starting the FS process.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

21

local update for feature i, which is included in Sk(t) at iteration t. Similarly, the global up‐
date,Δτi

g(t) , is the amount of pheromone for feature i that is included in Sl(t). Finally, ρ and
e refer to the pheromone decay value, and elitist parameter, respectively.

Probabilistic case: Eq. (7) shows the modified pheromone rule for the probabilistic case. The
rule is similar to the original form, but actual modification has been made only for the inner
portions of the second and third terms.

τi(t + 1)= (1−ρ)τi(t) + ∑
k=1

n
Δτi

k (t) + eΔτi
g(t)

Δτi
k (t)= {γ(S k (t))×λi f i ∈S k (t)

0 otherwise

Δτi
g(t)= {γ(S l(t))×λi f i ∈S l(t)

0 otherwise

(7)

Here, feature i is rewarded by the global update, and Δ τg is in the third term, where i Sl(t)i.
It is important to emphasize that, i is maintained strictly here. That is, i at iteration i tti is
compared with i at iteration (tt -τp), where tt = t + τp, and τp 1, 2, 3,……In this regard, if
γ(Sl(tt)) max((γSl(ttpε)),), where ε refers to the number of CAs for those local best subsets that
maintain |Sl(tt)| = |Sl(ttp)|, then a number of features, nc are ignored to get Δτg, since those
features are available in Sl(tt), which causes to degrade its performance. Here, nc ∈Sl(tt) but
nc∉ Slb, where Slb provides max((γSl(ttp)),), and |Sl(tt)| implies the size of the subset Sl(tt).
Note that, the aim of this restriction is to provide Δτg only to those features that are actually
significant, because, global update has a vital role in selecting the salient features in ACOFS.
Distinguish such salient features and allow them to receive Δτg by imposing the above re‐
striction.

6.4.2. Heuristic Information Measurement

A heuristic value,η , for each feature generally represents the attractiveness of the features,
and depends on the dependency degree. It is therefore necessary to use ; otherwise, the algo‐
rithm may become too greedy, and ultimately a better solution may not be found [31]. Here,
a set of new rules is introduced for measuring heuristic information using the advantages of
wrapper and filter tools. More precisely, the outcome of subset evaluations using the NN is
used here as a wrapper tool, whereas the value of information gain for each feature is used
as a filter tool. These rules are, therefore, formulated according to the random and probabil‐
istic behaviors of the ants, which are described as follows.

Random case: In the initial iteration, while ants are involved in constructing the feature sub‐
sets randomly, the heuristic value of all features i can be estimated as follows:

Ant Colony Optimization - Techniques and Applications20

()

1

1 (())(1) ()
kS tn

k kn
i

ki

S t e if i S t
m

h g j
-

=

= + Îå (8)

Probabilistic case: In the following iterations, when ants complete the feature SCs on the ba‐
sis of the probabilistic behavior, the following formula is used to estimate for all features i :

()

1
(()) (1) ()

kS tn
k kn

i i i a i
k

m S t e if i S th f g l j
-

=

= + Îå (9)

In these two rules, φi refers to the number of a particular selected feature i that is a part of
the subsets that are constructed within the currently completed iterations, except for the ini‐
tial iteration. The aim of multiplying mi and φi is to provide a proper exploitation capability
for the ants during SCs. λi refers to the information gain for feature i. A detailed discussion
on measurement of information gain can be seen in [64]. However, the aim of including is
based on the following two factors:

a. reducing the greediness of some particular feature i in n during SCs, and

b. increasing the diversity between the features in n.

Thus, different features may get an opportunity to be selected in the SC for different itera‐
tions, thus definitely enhancing the exploration behavior of ants. Furthermore, one addition‐
al exponential term has been multiplied by these rules in aiming for a reduced size subset.
Here, is the user specified parameter that controls the exponential term.

6.5. Computational Complexity

In order to understand the actual computational cost of a method, an exact analysis of com‐
putational complexity is required. In this sense, the big-O notation [62] is a prominent ap‐
proach in terms of analyzing computational complexity. Thus, ACOFS here uses the above
process for this regard. There are seven basic steps in ACOFS, namely, information gain
measurement, subset construction, subset evaluation, termination criterion, subset determina‐
tion, pheromone update, and heuristic information measurement. The following paragraphs
present the computational complexity of ACOFS in order to show that inclusion of different
techniques does not increase computational complexity in selecting a feature subset.

i. Information Gain Measurement: In this step, information gain (IG) for each feature
is measured according to [64]. If the number of total features for a given dataset is
n, then the cost of measuring IG is O(n × P), where P denotes the number of exam‐
ples in the given dataset. It is further mentioning that this cost is required only
once, specifically, before starting the FS process.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

21

ii. Subset Construction: Subset construction shows two different types of phenomena
according to Eq. (1). For the random case, if the total number of features for a given
dataset is n, then the cost of an ant constructing a single subset is O(r × n). Here,r
refers to the size of subsets. Since the total number of ants is k, the computational
cost is O(r × k × n) operations. However, in practice, r <n ; hence, the cost becomes
O(k × n) ≈ O(n2). In terms of the probabilistic case, ACOFS uses the Eq. (1) for select‐
ing the features in SC, which shows a constant computational cost of O(1) for each
ant. If the number of ants is k, then the computational cost becomes O(k).

iii. In ACOFS, five types of operations are necessarily required for evaluating a single
subset using a constructive NN training scheme: (a) partial training, (b) stopping
criterion, (c) further training, (d) contribution computation, and (e) addition of a
hidden neuron. The subsequent paragraphs describe these types in details.

a. Partial training: In case of training, standard BP [56] is used. During training each epoch
BP takes O(W) operations for one example. Here, W is the number of weights in the
current NN. Thus, training all examples in the training set for τp epochs requires O(τp ×
Pt × W) operations, where Pt denotes the number of examples in the training set.

b. Stopping criterion: During training, the stopping criterion uses either validation accura‐
cy or validation errors for subset evaluation. Since training error is computed as a part
of the training process, evaluating the termination criterion takes O(Pv × W) operations,
where Pv denotes the number of examples in the validation set. Since Pv< Pt, O(P × v ×
W) < O(p × kPt × W).

c. Further training: ACOFS uses Eq. (4) to check whether further training is necessary. The
evaluation of Eq. (4) takes a constant number of computational operations O(1), since
the error values used in Eq. (3) have already been evaluated during training.

d. Contribution computation: ACOFS computes the contribution of the added hidden neu‐
ron using Eq. (5). This computation takes O(Pv) operations, which is less than O(τp × Pt ×
W).

e. Addition of a hidden neuron: The computational cost for adding a hidden neuron is O(r
× c) for initializing the connection weights, where r is the number of features in the cur‐
rent subset, and c is the number of neurons in the output layer. Also note that O(r + c) <
O(p × Pt × W).

The aforementioned computation is done for a partial training session consisting of τp ep‐
ochs. In general, ACOFS requires a number, say M, of such partial training sessions for eval‐
uating a single subset. Thus, the cost becomes O(τp × M × Pt × W). Furthermore, by
considering all subsets, the computational cost required is O(k × τp × M × Pt × W) operations.

iv. Termination criterion: A termination criterion is employed in ACOFS for terminat‐
ing the FS process eventually. Since only one criterion is required to be executed (i.e.,
the algorithm achieves a predefined accuracy, or executes a iteration threshold, I), the
execution of such a criterion requires a constant computational cost of O(1).

Ant Colony Optimization - Techniques and Applications22

v. Subset determination: ACOFS requires two steps to determine the best subset,
namely, finding the local best subset and the global best subset. In order to find the
local best subset in each iteration t, ACOFS requires O(k) operations. The total com‐
putational cost for finding the local best subsets thus becomes O(k × t). In order to
find the global best subset, ACOFS requires O(1) operations. Thus, the total compu‐
tational cost for subset determination becomes O(k × t), which is less than O(k × τp ×
M × Pt × W).

vi. Pheromone update rule: ACOFS executes Eqs. (6) and (7) to update the pheromone
trails for each feature in terms of the random and probabilistic cases. Since the
number of features is n for a given learning dataset, the computation takes O(n)
constant operations, which is less than O(k × τp × M × Pt × W).

vii. Heuristic information measurement: Similar to the pheromone update operation,
ACOFS uses Eqs. (8) and (9) to update the heuristic value of n features. Thereafter,
the computational cost becomes O(n). Note that, O(n) O(k × τp × M × Pt × W).

In accordance with the above analysis, summarize the different parts of the entire computa‐
tional cost as O(n × P) + O(n2) + O(k) + O(k × τp × M × Pt × W). It is important to note here that
the first and second terms, namely, n × P and × n2, are the cost of operations performed only
once, and are much less than k × τp × M × Pt × P. On the other hand, O(k) << O(k × τp × M × Pt

× W). Hence, the total computational cost of ACOFS is O((τp × M × Pt × W), which is similar
to the cost of training a fixed network architecture using BP [56], and that the total cost is
similar to that of other existing ACO-based FS approaches [42]. Thus, it can be said that in‐
corporation of several techniques in ACOFS does not increase the computational cost.

7. Experimental Studies

The performance of ACOFS has been presented in this context on eight well-known bench‐
mark classification datasets, including the breast cancer, glass, vehicle, thyroid, ionosphere,
credit card, sonar, and gene datasets; and one gene expressional classification dataset, name‐
ly, the colon cancer dataset. These datasets have been the subject of many studies in NNs
and machine learning, covering examples of small, medium, high, and very high-dimen‐
sional datasets. The characteristics of these datasets, summarized in Table 1, show a consid‐
erable diversity in the number of features, classes, and examples. Now, the experimental
details, results, roles of subset size determination scheme in FS, the user specified parameter
μ in FS, and hybrid search in FS are described in this context. Finally, one additional experi‐
ment on ACOFS concerning performance for FS over real-world datasets mixed with some
noisy features, and comparisons of ACOFS with other existing works, are also discussed in
this context.

7.1. Experimental Setup

In order to ascertain the effectiveness of ACOFS for FS, extensive experiments have been carried
out on ACOFS that are adapted from [64]. To accomplish the FS task suitably in ACOFS, two

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

23

ii. Subset Construction: Subset construction shows two different types of phenomena
according to Eq. (1). For the random case, if the total number of features for a given
dataset is n, then the cost of an ant constructing a single subset is O(r × n). Here,r
refers to the size of subsets. Since the total number of ants is k, the computational
cost is O(r × k × n) operations. However, in practice, r <n ; hence, the cost becomes
O(k × n) ≈ O(n2). In terms of the probabilistic case, ACOFS uses the Eq. (1) for select‐
ing the features in SC, which shows a constant computational cost of O(1) for each
ant. If the number of ants is k, then the computational cost becomes O(k).

iii. In ACOFS, five types of operations are necessarily required for evaluating a single
subset using a constructive NN training scheme: (a) partial training, (b) stopping
criterion, (c) further training, (d) contribution computation, and (e) addition of a
hidden neuron. The subsequent paragraphs describe these types in details.

a. Partial training: In case of training, standard BP [56] is used. During training each epoch
BP takes O(W) operations for one example. Here, W is the number of weights in the
current NN. Thus, training all examples in the training set for τp epochs requires O(τp ×
Pt × W) operations, where Pt denotes the number of examples in the training set.

b. Stopping criterion: During training, the stopping criterion uses either validation accura‐
cy or validation errors for subset evaluation. Since training error is computed as a part
of the training process, evaluating the termination criterion takes O(Pv × W) operations,
where Pv denotes the number of examples in the validation set. Since Pv< Pt, O(P × v ×
W) < O(p × kPt × W).

c. Further training: ACOFS uses Eq. (4) to check whether further training is necessary. The
evaluation of Eq. (4) takes a constant number of computational operations O(1), since
the error values used in Eq. (3) have already been evaluated during training.

d. Contribution computation: ACOFS computes the contribution of the added hidden neu‐
ron using Eq. (5). This computation takes O(Pv) operations, which is less than O(τp × Pt ×
W).

e. Addition of a hidden neuron: The computational cost for adding a hidden neuron is O(r
× c) for initializing the connection weights, where r is the number of features in the cur‐
rent subset, and c is the number of neurons in the output layer. Also note that O(r + c) <
O(p × Pt × W).

The aforementioned computation is done for a partial training session consisting of τp ep‐
ochs. In general, ACOFS requires a number, say M, of such partial training sessions for eval‐
uating a single subset. Thus, the cost becomes O(τp × M × Pt × W). Furthermore, by
considering all subsets, the computational cost required is O(k × τp × M × Pt × W) operations.

iv. Termination criterion: A termination criterion is employed in ACOFS for terminat‐
ing the FS process eventually. Since only one criterion is required to be executed (i.e.,
the algorithm achieves a predefined accuracy, or executes a iteration threshold, I), the
execution of such a criterion requires a constant computational cost of O(1).

Ant Colony Optimization - Techniques and Applications22

v. Subset determination: ACOFS requires two steps to determine the best subset,
namely, finding the local best subset and the global best subset. In order to find the
local best subset in each iteration t, ACOFS requires O(k) operations. The total com‐
putational cost for finding the local best subsets thus becomes O(k × t). In order to
find the global best subset, ACOFS requires O(1) operations. Thus, the total compu‐
tational cost for subset determination becomes O(k × t), which is less than O(k × τp ×
M × Pt × W).

vi. Pheromone update rule: ACOFS executes Eqs. (6) and (7) to update the pheromone
trails for each feature in terms of the random and probabilistic cases. Since the
number of features is n for a given learning dataset, the computation takes O(n)
constant operations, which is less than O(k × τp × M × Pt × W).

vii. Heuristic information measurement: Similar to the pheromone update operation,
ACOFS uses Eqs. (8) and (9) to update the heuristic value of n features. Thereafter,
the computational cost becomes O(n). Note that, O(n) O(k × τp × M × Pt × W).

In accordance with the above analysis, summarize the different parts of the entire computa‐
tional cost as O(n × P) + O(n2) + O(k) + O(k × τp × M × Pt × W). It is important to note here that
the first and second terms, namely, n × P and × n2, are the cost of operations performed only
once, and are much less than k × τp × M × Pt × P. On the other hand, O(k) << O(k × τp × M × Pt

× W). Hence, the total computational cost of ACOFS is O((τp × M × Pt × W), which is similar
to the cost of training a fixed network architecture using BP [56], and that the total cost is
similar to that of other existing ACO-based FS approaches [42]. Thus, it can be said that in‐
corporation of several techniques in ACOFS does not increase the computational cost.

7. Experimental Studies

The performance of ACOFS has been presented in this context on eight well-known bench‐
mark classification datasets, including the breast cancer, glass, vehicle, thyroid, ionosphere,
credit card, sonar, and gene datasets; and one gene expressional classification dataset, name‐
ly, the colon cancer dataset. These datasets have been the subject of many studies in NNs
and machine learning, covering examples of small, medium, high, and very high-dimen‐
sional datasets. The characteristics of these datasets, summarized in Table 1, show a consid‐
erable diversity in the number of features, classes, and examples. Now, the experimental
details, results, roles of subset size determination scheme in FS, the user specified parameter
μ in FS, and hybrid search in FS are described in this context. Finally, one additional experi‐
ment on ACOFS concerning performance for FS over real-world datasets mixed with some
noisy features, and comparisons of ACOFS with other existing works, are also discussed in
this context.

7.1. Experimental Setup

In order to ascertain the effectiveness of ACOFS for FS, extensive experiments have been carried
out on ACOFS that are adapted from [64]. To accomplish the FS task suitably in ACOFS, two

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

23

basic steps need to be considered, namely, dimensionality reduction of the datasets and
assigning values for user-specified parameters. In case of dimensionality reduction, in con‐
trast to other datasets used in this study, colon cancer is being very high-dimensional data‐
sets containing a very large number of genes (features). The number of genes of colon cancer
(i.e., 2000 genes) is too high to manipulate in the learning classifier and not all genes are useful
for classification [63]. To remove such difficulties, we first reduced the dimension of the colon
cancer dataset to within 100 features, using an information gain (IG) measurement techni‐
que. Ordinarily, IG measurement determines statistically those features that are informative
for classifying a target. On the basis of such a concept, we have used such a technique for
reducing the dimension of the colon cancer dataset. Details about IG measurement can be
found in [64].

In case of user-specified parameters, we used a number of parameters, which are common for
the all datasets, reported in the Table 2. It should be noted that, these parameters are not specific
to our algorithm, rather usual for any ACO-based FS algorithm using NN. We have chosen
these parameters after some preliminary runs. They were not meant to be optimal. It is worth
mentioning that, among the parameters mentioned in Table 2, proper selection of the values
of parameters and , is helpful for achieving a level of balance between exploitation and
exploration of ants in selecting salient features. For example, if 0, then no pheromone infor‐
mation is used, that is to say, previous search experience is neglected. The search then changes
to a greedy search. If 0, then attractiveness, the potential benefit of moves, is neglected. In this
work, the values of and were chosen according to the suggestion of [53].

Parameter Value

Initial pheromone level for all features, τ 0.5

Initial heuristic value for all features, η 0.1

(,used in subset size determination 0.08 to 0.6

Strength of pheromone level, α 1

Strength of heuristic value, β 3

Pheromone decay parameter, ρ 0.4

Exponential term control parameter, φ 0.1

Iteration threshold, 10 to 18

Accuracy threshold Depends on dataset

Learning rate for BP algorithm 0.1 to 0.2

Momentum term for BP algorithm 0.5 to 0.9

Initial weights of NNs -1.0 to 1.0

The number of epochs for partial training, τ 20 to 40

Training error threshold, λ Depends on dataset

Training threshold for terminating NN training, T 3

Table 2. Common parameters for all datasets.

Ant Colony Optimization - Techniques and Applications24

7.2 Experimental Results

Tables 3 shows the results of ACOFS over 20 independent runs on nine real-world bench‐
mark classification datasets. The classification accuracy (CA) in Table 3 refers to the percent‐
age of exact classifications produced by trained NNs on the testing set of a classification
dataset. In addition, the weights of features for the above nine datasets over 20 independent
runs are exhibited in Tables 4-11. On the other hand, Figure 7 shows how the best solution
was selected in ACOFS for the glass dataset. In order to observe whether the internal proc‐
ess of FS in ACOFS is appropriately being performed, Figures. 8-11 have been considered.
Now, the following observations can be made from Tables 3-11 and Figures 7-11.

Dataset Avg. result with all features Avg. result with selected features

n SD CA (%) SD ns SD CA(%) SD

Cancer 9.00 0.00 97.97 0.42 3.50 1.36 98.91 0.40

Glass 9.00 0.00 76.60 2.55 3.30 1.14 82.54 1.44

Vehicle 18.00 0.00 60.71 11.76 2.90 1.37 75.90 0.64

Thyroid 21.0 0.00 98.04 0.58 3.00 1.34 99.08 0.11

Ionosphere 34.0 0.00 97.67 1.04 4.15 2.53 99.88 0.34

Credit card 51.0 0.00 85.23 0.67 5.85 1.76 87.99 0.38

Sonar 60.0 0.00 76.82 6.97 6.25 3.03 86.05 2.26

Gene 120.0 0.00 78.97 5.51 7.25 2.53 89.20 2.46

Colon cancer 100.0 0.00 59.06 5.75 5.25 2.48 84.06 3.68

Table 3. Performance of ACOFS for different classification datasets. Results were averaged over 20 independent runs.
Here, n and ns refer to the total number of original features and selected features, respectively. On the other hand, CA
and SD signify the classification accuracy and standard deviation, respectively.

i. As can be seen from Table 3, ACOFS was able to select a smaller number of fea‐
tures for solving different datasets. For example, ACOFS selected, on average, 3.00
features from a set of 21 features in solving the thyroid dataset. It also selected, on
average, 7.25 genes (features) from a set of 120 genes in solving the gene dataset.
On the other hand, a very large-dimensional dataset, that of colon cancer, was pre‐
processed from the original one to be utilized in ACOFS. In this manner, the origi‐
nal 2000 features of colon cancer were reduced to within 100 features. ACOFS then
obtained a small number of salient genes, 5.25 on average, from the set of 100 genes
for solving the colon cancer dataset. In fact, ACOFS selected a small number of fea‐
tures for all other datasets having more features. Feature reduction in such datasets
was several orders of magnitude (see Table 3).

ii. The positive effect of a small number of selected features (ns) is clearly visible when
we observe the CA. For example, for the vehicle dataset, the average CA of all fea‐
tures was 60.71%, whereas it had been 75.90% with 2.90 features. Similarly, ACOFS
produced an average CA of 86.05% with the average number of features of 6.25

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

25

basic steps need to be considered, namely, dimensionality reduction of the datasets and
assigning values for user-specified parameters. In case of dimensionality reduction, in con‐
trast to other datasets used in this study, colon cancer is being very high-dimensional data‐
sets containing a very large number of genes (features). The number of genes of colon cancer
(i.e., 2000 genes) is too high to manipulate in the learning classifier and not all genes are useful
for classification [63]. To remove such difficulties, we first reduced the dimension of the colon
cancer dataset to within 100 features, using an information gain (IG) measurement techni‐
que. Ordinarily, IG measurement determines statistically those features that are informative
for classifying a target. On the basis of such a concept, we have used such a technique for
reducing the dimension of the colon cancer dataset. Details about IG measurement can be
found in [64].

In case of user-specified parameters, we used a number of parameters, which are common for
the all datasets, reported in the Table 2. It should be noted that, these parameters are not specific
to our algorithm, rather usual for any ACO-based FS algorithm using NN. We have chosen
these parameters after some preliminary runs. They were not meant to be optimal. It is worth
mentioning that, among the parameters mentioned in Table 2, proper selection of the values
of parameters and , is helpful for achieving a level of balance between exploitation and
exploration of ants in selecting salient features. For example, if 0, then no pheromone infor‐
mation is used, that is to say, previous search experience is neglected. The search then changes
to a greedy search. If 0, then attractiveness, the potential benefit of moves, is neglected. In this
work, the values of and were chosen according to the suggestion of [53].

Parameter Value

Initial pheromone level for all features, τ 0.5

Initial heuristic value for all features, η 0.1

(,used in subset size determination 0.08 to 0.6

Strength of pheromone level, α 1

Strength of heuristic value, β 3

Pheromone decay parameter, ρ 0.4

Exponential term control parameter, φ 0.1

Iteration threshold, 10 to 18

Accuracy threshold Depends on dataset

Learning rate for BP algorithm 0.1 to 0.2

Momentum term for BP algorithm 0.5 to 0.9

Initial weights of NNs -1.0 to 1.0

The number of epochs for partial training, τ 20 to 40

Training error threshold, λ Depends on dataset

Training threshold for terminating NN training, T 3

Table 2. Common parameters for all datasets.

Ant Colony Optimization - Techniques and Applications24

7.2 Experimental Results

Tables 3 shows the results of ACOFS over 20 independent runs on nine real-world bench‐
mark classification datasets. The classification accuracy (CA) in Table 3 refers to the percent‐
age of exact classifications produced by trained NNs on the testing set of a classification
dataset. In addition, the weights of features for the above nine datasets over 20 independent
runs are exhibited in Tables 4-11. On the other hand, Figure 7 shows how the best solution
was selected in ACOFS for the glass dataset. In order to observe whether the internal proc‐
ess of FS in ACOFS is appropriately being performed, Figures. 8-11 have been considered.
Now, the following observations can be made from Tables 3-11 and Figures 7-11.

Dataset Avg. result with all features Avg. result with selected features

n SD CA (%) SD ns SD CA(%) SD

Cancer 9.00 0.00 97.97 0.42 3.50 1.36 98.91 0.40

Glass 9.00 0.00 76.60 2.55 3.30 1.14 82.54 1.44

Vehicle 18.00 0.00 60.71 11.76 2.90 1.37 75.90 0.64

Thyroid 21.0 0.00 98.04 0.58 3.00 1.34 99.08 0.11

Ionosphere 34.0 0.00 97.67 1.04 4.15 2.53 99.88 0.34

Credit card 51.0 0.00 85.23 0.67 5.85 1.76 87.99 0.38

Sonar 60.0 0.00 76.82 6.97 6.25 3.03 86.05 2.26

Gene 120.0 0.00 78.97 5.51 7.25 2.53 89.20 2.46

Colon cancer 100.0 0.00 59.06 5.75 5.25 2.48 84.06 3.68

Table 3. Performance of ACOFS for different classification datasets. Results were averaged over 20 independent runs.
Here, n and ns refer to the total number of original features and selected features, respectively. On the other hand, CA
and SD signify the classification accuracy and standard deviation, respectively.

i. As can be seen from Table 3, ACOFS was able to select a smaller number of fea‐
tures for solving different datasets. For example, ACOFS selected, on average, 3.00
features from a set of 21 features in solving the thyroid dataset. It also selected, on
average, 7.25 genes (features) from a set of 120 genes in solving the gene dataset.
On the other hand, a very large-dimensional dataset, that of colon cancer, was pre‐
processed from the original one to be utilized in ACOFS. In this manner, the origi‐
nal 2000 features of colon cancer were reduced to within 100 features. ACOFS then
obtained a small number of salient genes, 5.25 on average, from the set of 100 genes
for solving the colon cancer dataset. In fact, ACOFS selected a small number of fea‐
tures for all other datasets having more features. Feature reduction in such datasets
was several orders of magnitude (see Table 3).

ii. The positive effect of a small number of selected features (ns) is clearly visible when
we observe the CA. For example, for the vehicle dataset, the average CA of all fea‐
tures was 60.71%, whereas it had been 75.90% with 2.90 features. Similarly, ACOFS
produced an average CA of 86.05% with the average number of features of 6.25

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

25

substantially reduced for the sonar dataset, while the average CA had been 76.82%
with all 60 features. Other similar types of scenarios can also be seen for all remain‐
ing datasets in ACOFS. Thus, it can be said that ACOFS has a powerful searching
capability for providing high-quality solutions. CA improvement for such datasets
was several orders of magnitude (see Table 3). Furthermore, the use of ns caused a
relatively small standard deviation (SD), as presented in Table 3 for each entry. The
low SDs imply robustness of ACOFS. Robustness is represented by consistency of
an algorithm under different initial conditions.

Figure 7. Finding best subset of the glass dataset for a single run. Here, the classification accuracy is the accuracy of
the local best subset.

Figure 8. Number of selections of each feature by different ants for different iterations in the glass dataset for a single
run.

iii. The method of determination for the final solution of a subset in ACOFS can be
seen in Figure 7. We can observe that for the performances of the local best subsets,
the CAs varied together with the size of those subsets. There were also several
points, where the CAs were maximized, but the best solution was selected (indicat‐
ed by circle) by considering the reduced size subset. It can also be seen in Figure 7
that CAs varied due to size variations of local best subsets in different iterations.

Ant Colony Optimization - Techniques and Applications26

Furthermore, different features that were included in different local best subsets
caused variations in CAs.

Figure 9. Distribution of pheromone level of some selected features of the glass dataset in different iterations for a
single run.

Figure 10. Distribution of heuristic level of some selected features of the glass dataset in different iterations for a sin‐
gle run.

iv. In order to observe the manner, in which how the selection of salient features in
different iterations progresses in ACOFS, Figure 8 shows the scenario of such infor‐
mation for the glass dataset for a single run. We can see that features 1, 7, 8, 6, and
2 received most of the selections by ants during SCs compared to the other fea‐
tures. The selection of features was basically performed based on the values of
pheromone update (τ) and heuristic information (η) for individual features. Ac‐
cordingly, those features that had higher values of τ and η ordinarily obtained a
higher priority of selection, as could be seen in Figures 9 and 10. For clarity, these

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

27

substantially reduced for the sonar dataset, while the average CA had been 76.82%
with all 60 features. Other similar types of scenarios can also be seen for all remain‐
ing datasets in ACOFS. Thus, it can be said that ACOFS has a powerful searching
capability for providing high-quality solutions. CA improvement for such datasets
was several orders of magnitude (see Table 3). Furthermore, the use of ns caused a
relatively small standard deviation (SD), as presented in Table 3 for each entry. The
low SDs imply robustness of ACOFS. Robustness is represented by consistency of
an algorithm under different initial conditions.

Figure 7. Finding best subset of the glass dataset for a single run. Here, the classification accuracy is the accuracy of
the local best subset.

Figure 8. Number of selections of each feature by different ants for different iterations in the glass dataset for a single
run.

iii. The method of determination for the final solution of a subset in ACOFS can be
seen in Figure 7. We can observe that for the performances of the local best subsets,
the CAs varied together with the size of those subsets. There were also several
points, where the CAs were maximized, but the best solution was selected (indicat‐
ed by circle) by considering the reduced size subset. It can also be seen in Figure 7
that CAs varied due to size variations of local best subsets in different iterations.

Ant Colony Optimization - Techniques and Applications26

Furthermore, different features that were included in different local best subsets
caused variations in CAs.

Figure 9. Distribution of pheromone level of some selected features of the glass dataset in different iterations for a
single run.

Figure 10. Distribution of heuristic level of some selected features of the glass dataset in different iterations for a sin‐
gle run.

iv. In order to observe the manner, in which how the selection of salient features in
different iterations progresses in ACOFS, Figure 8 shows the scenario of such infor‐
mation for the glass dataset for a single run. We can see that features 1, 7, 8, 6, and
2 received most of the selections by ants during SCs compared to the other fea‐
tures. The selection of features was basically performed based on the values of
pheromone update (τ) and heuristic information (η) for individual features. Ac‐
cordingly, those features that had higher values of τ and η ordinarily obtained a
higher priority of selection, as could be seen in Figures 9 and 10. For clarity, these

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

27

figures represented five features, of which four (features 1, 7, 8, 6) had a higher rate
of selection by ants during SCs and one (feature 2) had a lower rate.

Dataset Feature

1 2 3 4 5 6 7 8 9

Cancer 0.186 0.042 0.129 0.142 0.129 0.2 0.115 0.042 0.015

Glass 0.258 0.045 0.258 0.107 0.06 0.015 0.182 0.06 0.015

Table 4. Weights of the features selected by ACOFS for the cancer and glass datasets.

Feature 1 2 4 7 9 10 11 12

Weight 0.189 0.103 0.069 0.051 0.086 0.086 0.103 0.086

Table 5. Weights of the features selected by ACOFS for the vehicle dataset.

Feature 1 7 17 19 20 21

Weight 0.052 0.052 0.332 0.1 0.069 0.15

Table 6. Weights of the features selected by ACOFS for the thyroid dataset.

Feature 1 3 4 5 7 8 12 27 29

Weight 0.108 0.036 0.036 0.036 0.06 0.12 0.06 0.12 0.036

Table 7. Weights of the features selected by ACOFS for the ionosphere dataset.

Feature 5 8 29 41 42 43 44 49 51

Weight 0.042 0.06 0.034 0.051 0.17 0.111 0.128 0.034 0.12

Table 8. Weights of the features selected by ACOFS for the credit card dataset.

Feature 2 9 10 11 12 15 17 18 44

Weight 0.037 0.046 0.056 0.084 0.112 0.037 0.037 0.037 0.06

Table 9. Weights of the features selected by ACOFS for the sonar dataset.

Feature 22 59 60 61 62 63 64 69 70 119

Weight 0.027 0.064 0.045 0.1 0.073 0.073 0.119 0.110 0.128 0.036

Table 10. Weights of the features selected by ACOFS for the gene dataset.

Ant Colony Optimization - Techniques and Applications28

Feature 47 72 249 267 493 765 1247 1325 1380 1843

Weight 0.051 0.038 0.051 0.038 0.051 0.038 0.038 0.038 0.051 0.051

Table 11. Weights of the features selected by ACOFS for the colon cancer dataset.

Figure 11. Training process for evaluating the subsets constructed by ants in the ionosphere dataset: (a) training error
on training set, (b) training error on validation set, (c) classification accuracy on validation set, and (d) the hidden neu‐
ron addition process.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

29

figures represented five features, of which four (features 1, 7, 8, 6) had a higher rate
of selection by ants during SCs and one (feature 2) had a lower rate.

Dataset Feature

1 2 3 4 5 6 7 8 9

Cancer 0.186 0.042 0.129 0.142 0.129 0.2 0.115 0.042 0.015

Glass 0.258 0.045 0.258 0.107 0.06 0.015 0.182 0.06 0.015

Table 4. Weights of the features selected by ACOFS for the cancer and glass datasets.

Feature 1 2 4 7 9 10 11 12

Weight 0.189 0.103 0.069 0.051 0.086 0.086 0.103 0.086

Table 5. Weights of the features selected by ACOFS for the vehicle dataset.

Feature 1 7 17 19 20 21

Weight 0.052 0.052 0.332 0.1 0.069 0.15

Table 6. Weights of the features selected by ACOFS for the thyroid dataset.

Feature 1 3 4 5 7 8 12 27 29

Weight 0.108 0.036 0.036 0.036 0.06 0.12 0.06 0.12 0.036

Table 7. Weights of the features selected by ACOFS for the ionosphere dataset.

Feature 5 8 29 41 42 43 44 49 51

Weight 0.042 0.06 0.034 0.051 0.17 0.111 0.128 0.034 0.12

Table 8. Weights of the features selected by ACOFS for the credit card dataset.

Feature 2 9 10 11 12 15 17 18 44

Weight 0.037 0.046 0.056 0.084 0.112 0.037 0.037 0.037 0.06

Table 9. Weights of the features selected by ACOFS for the sonar dataset.

Feature 22 59 60 61 62 63 64 69 70 119

Weight 0.027 0.064 0.045 0.1 0.073 0.073 0.119 0.110 0.128 0.036

Table 10. Weights of the features selected by ACOFS for the gene dataset.

Ant Colony Optimization - Techniques and Applications28

Feature 47 72 249 267 493 765 1247 1325 1380 1843

Weight 0.051 0.038 0.051 0.038 0.051 0.038 0.038 0.038 0.051 0.051

Table 11. Weights of the features selected by ACOFS for the colon cancer dataset.

Figure 11. Training process for evaluating the subsets constructed by ants in the ionosphere dataset: (a) training error
on training set, (b) training error on validation set, (c) classification accuracy on validation set, and (d) the hidden neu‐
ron addition process.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

29

v. Upon completion of the entire FS process, the features that were most salient could
be identified by means of weight computation for individual features. That is to
say, features having higher weight values were more significant. On the other
hand, for a particular feature to have a maximum weight value implied that the
feature had the maximum number of selections by ants in any algorithm for most
of the runs. Tables 4-11 show the weight of features for the cancer, glass, vehicle,
thyroid, ionosphere, credit card, sonar, gene, and colon cancer datasets, respective‐
ly, over 20 independent runs. We can see in Table 4 that ACOFS selected features 6,
1, 4, 3, 5, and 7 from the cancer dataset very frequently, that these features had rela‐
tively higher weight values, and preformed well as discriminators. Similarly, our
ACOFS selected features 42, 44, 51, 43, 8, and 5 as most important from the credit
card dataset (Table 8), as well as features 70, 64, 69, 61, 63, 59, and 60 from the gene
dataset (Table 10). Note that, weights for certain features are reported in Tables
5-11, whereas weights that were of negligible value for the rest of each dataset are
not included.

vi. Finally, we wish to note that a successful evaluation function leads to finding high-
quality solutions for ACOFS in FS. Our ACOFS uses a constructive NN model that
evaluates the subsets constructed by ants in each and every step during training.
As training process progresses, the training error for the training set converges to a
certain limit (Figure 11(a)). However, there is an instance in which the training er‐
ror increases. This is due to the addition of one unnecessary hidden neuron. Such
an addition also hampers the training error on the validation set (Figure 11(b)).
Therefore, ACOFS deletes such an unnecessary hidden neuron (Figure 11(d)) from
the NN architecture, since it cannot improve the classification accuracy on the vali‐
dation set (Figure 11(c)).

7.3. Effects of Subset Size Determination

The results presented in Table 3 show the ability of ACOFS in selecting salient features.
However, the effects resulting from determining the subset size to control ants in such a
manner as to construct the subset in a reduced boundary were not clear. To observe such
effects, we carried out a new set of experiments. The setups of these experiments were al‐
most exactly the same as those described before. The only difference was that ACOFS had
not determined the subset size earlier using a bounded scheme; instead the size of the subset
for each ant had been decided randomly.

Dataset ACOFS without bounded scheme ACOFS

ns SD CA(%) SD ns SD CA(%) SD

Vehicle 6.05 4.76 75.73 0.48 2.90 1.37 75.90 0.64

Credit card 15.30 8.25 88.34 0.22 5.85 1.76 87.99 0.38

Table 12. Effect of determining subset size on the average performances of ACOFS.

Ant Colony Optimization - Techniques and Applications30

Table 12 shows the average results of the new experiments for vehicle and credit card data‐
sets over only 20 independent runs. The positive effects of determining the subset size dur‐
ing the FS process are clearly visible. For example, for the credit card dataset, the average
values of ns of ACOFS without and with subset size determination were 15.30 and 5.85, re‐
spectively. A similar scenario can also be seen for the other dataset. In terms of CAs, the
average CAs for ACOFS with subset size determination were either better than or compara‐
ble to ACOFS without subset size determination for these two datasets.

7.4. Effect of µ

The essence of the proposed techniques in ACOFS can be seen in Table 3 for recognizing the
subsets of salient features from the given datasets; however, the effects of the inner compo‐
nent μ of subset size determination (see Section 6.1) on the overall results were not clear.
The reason is that the size of the subsets constructed by the ants depended roughly on the
value of μ. To observe such effects, we conducted a new set of experiments. The setups of
these experiments were almost exactly the same as those described before. The only differ‐
ence was that the value of μ varied within a range of 0.2 to 0.94 by a small threshold value
over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.40 0.64 2.60 0.91 80.09 2.69

0.50 0.74 3.05 1.16 82.16 1.51

0.60 0.84 3.30 1.14 82.54 1.44

0.70 0.94 3.45 1.39 81.98 1.39

Table 13. Effect of varying the value of µ on the average performances of ACOFS for the glass dataset. The value is
incremented by a threshold value of 0.01 over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.20 0.30 4.70 2.59 99.54 0.83

0.23 0.33 3.65 2.32 99.65 0.63

0.26 0.36 4.15 2.53 99.88 0.34

0.29 0.39 6.00 3.78 99.48 0.76

Table 14. Effect of varying the value of µ on the average performances of ACOFS for the ionosphere dataset. The
value is incremented by a threshold value of 0.005 over 20 individual runs.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

31

v. Upon completion of the entire FS process, the features that were most salient could
be identified by means of weight computation for individual features. That is to
say, features having higher weight values were more significant. On the other
hand, for a particular feature to have a maximum weight value implied that the
feature had the maximum number of selections by ants in any algorithm for most
of the runs. Tables 4-11 show the weight of features for the cancer, glass, vehicle,
thyroid, ionosphere, credit card, sonar, gene, and colon cancer datasets, respective‐
ly, over 20 independent runs. We can see in Table 4 that ACOFS selected features 6,
1, 4, 3, 5, and 7 from the cancer dataset very frequently, that these features had rela‐
tively higher weight values, and preformed well as discriminators. Similarly, our
ACOFS selected features 42, 44, 51, 43, 8, and 5 as most important from the credit
card dataset (Table 8), as well as features 70, 64, 69, 61, 63, 59, and 60 from the gene
dataset (Table 10). Note that, weights for certain features are reported in Tables
5-11, whereas weights that were of negligible value for the rest of each dataset are
not included.

vi. Finally, we wish to note that a successful evaluation function leads to finding high-
quality solutions for ACOFS in FS. Our ACOFS uses a constructive NN model that
evaluates the subsets constructed by ants in each and every step during training.
As training process progresses, the training error for the training set converges to a
certain limit (Figure 11(a)). However, there is an instance in which the training er‐
ror increases. This is due to the addition of one unnecessary hidden neuron. Such
an addition also hampers the training error on the validation set (Figure 11(b)).
Therefore, ACOFS deletes such an unnecessary hidden neuron (Figure 11(d)) from
the NN architecture, since it cannot improve the classification accuracy on the vali‐
dation set (Figure 11(c)).

7.3. Effects of Subset Size Determination

The results presented in Table 3 show the ability of ACOFS in selecting salient features.
However, the effects resulting from determining the subset size to control ants in such a
manner as to construct the subset in a reduced boundary were not clear. To observe such
effects, we carried out a new set of experiments. The setups of these experiments were al‐
most exactly the same as those described before. The only difference was that ACOFS had
not determined the subset size earlier using a bounded scheme; instead the size of the subset
for each ant had been decided randomly.

Dataset ACOFS without bounded scheme ACOFS

ns SD CA(%) SD ns SD CA(%) SD

Vehicle 6.05 4.76 75.73 0.48 2.90 1.37 75.90 0.64

Credit card 15.30 8.25 88.34 0.22 5.85 1.76 87.99 0.38

Table 12. Effect of determining subset size on the average performances of ACOFS.

Ant Colony Optimization - Techniques and Applications30

Table 12 shows the average results of the new experiments for vehicle and credit card data‐
sets over only 20 independent runs. The positive effects of determining the subset size dur‐
ing the FS process are clearly visible. For example, for the credit card dataset, the average
values of ns of ACOFS without and with subset size determination were 15.30 and 5.85, re‐
spectively. A similar scenario can also be seen for the other dataset. In terms of CAs, the
average CAs for ACOFS with subset size determination were either better than or compara‐
ble to ACOFS without subset size determination for these two datasets.

7.4. Effect of µ

The essence of the proposed techniques in ACOFS can be seen in Table 3 for recognizing the
subsets of salient features from the given datasets; however, the effects of the inner compo‐
nent μ of subset size determination (see Section 6.1) on the overall results were not clear.
The reason is that the size of the subsets constructed by the ants depended roughly on the
value of μ. To observe such effects, we conducted a new set of experiments. The setups of
these experiments were almost exactly the same as those described before. The only differ‐
ence was that the value of μ varied within a range of 0.2 to 0.94 by a small threshold value
over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.40 0.64 2.60 0.91 80.09 2.69

0.50 0.74 3.05 1.16 82.16 1.51

0.60 0.84 3.30 1.14 82.54 1.44

0.70 0.94 3.45 1.39 81.98 1.39

Table 13. Effect of varying the value of µ on the average performances of ACOFS for the glass dataset. The value is
incremented by a threshold value of 0.01 over 20 individual runs.

Values of μ Average performance

Initial Final ns SD CA (%) SD

0.20 0.30 4.70 2.59 99.54 0.83

0.23 0.33 3.65 2.32 99.65 0.63

0.26 0.36 4.15 2.53 99.88 0.34

0.29 0.39 6.00 3.78 99.48 0.76

Table 14. Effect of varying the value of µ on the average performances of ACOFS for the ionosphere dataset. The
value is incremented by a threshold value of 0.005 over 20 individual runs.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

31

Tables 13 and 14 show the average results of our new experiments over 20 independent
runs. The significance of the effect of varying μ. can be seen from these results. For example,
for the glass dataset (Table 13), the average percentage of the CA improved as the value of μ.
increased up to a certain point. Afterwards, the CA degraded as the value of μ. increased.
Thus, a subset of features was selected with a large size. A similar scenario can also be seen
for the ionosphere dataset (Table 14). It is clear here that the significance of the result of FS
in ACOFS depends on the value of μ. Furthermore, the determination of subset size in
ACOFS is an important aspect for suitable FS.

7.5. Effect of Hybrid Search

The capability of ACOFS for FS can be seen in Table 3, but the effect of using hybrid search
in ACOFS for FS is not clear. Therefore, a new set of experiments was carried out to ob‐
serve such effects. The setups of these experiments were almost exactly as same as those
described before. The only difference was that ACOFS did not use the modified rules of
pheromone update and heuristic value for each feature; instead, standard rules were used.
In such considerations, we avoided not only the incorporation of the information gain term,
but also the concept of random and probabilistic behaviors, during SC for both specific
rules. Furthermore, we ignored the exponential term in the heuristic measurement rule.

Dataset ACOFS without hybrid search ACOFS

ns SD CA (%) SD ns SD CA(%) SD

Glass 4.05 1.35 81.22 1.39 3.30 1.14 82.54 1.44

Credit card 6.15 2.21 87.26 0.66 5.85 1.76 87.99 0.38

Sonar 6.50 2.80 84.42 3.03 6.25 3.03 86.05 2.26

Colon cancer 6.35 4.05 82.18 4.08 5.25 2.48 84.06 3.68

Table 15. Effect of considering hybrid search on average performances of ACOFS. Results were averaged over 20
independent runs.

Table 15 shows the average results of our new experiments for the glass, credit card, sonar,
and colon cancer datasets over 20 independent runs. The positive effects of using a hybrid
search in ACOFS are clearly visible. For example, for the credit card dataset, the average
CAs of ACOFS with and without hybrid search were 87.99% and 87.26%, respectively. A
similar classification improvement for ACOFS with hybrid search was also observed for the
other datasets. On the other hand, in terms of ns, for the glass dataset, the average values of
ns of ACOFS and ACOFS without hybrid search were 3.30 and 4.05, respectively. For the
other datasets it was also found that ACOFS selected a smaller number of salient features.
We used t-test here to determine whether the difference of classification performances be‐
tween ACOFS and ACOFS without hybrid search was statistically significant. We found that

Ant Colony Optimization - Techniques and Applications32

ACOFS performed significantly better than ACOFS without local search operation at a 95%
confidence level for all the datasets, except for the colon cancer dataset. On the other hand,
the t-test was also used here to determine whether the difference in performances between
the above two approaches with regard to selecting a reduced number of salient features was
statistically significant. We found that ACOFS was significantly better than ACOFS without
hybrid search at a 95% confidence level for all four datasets.

In order to understand precisely how hybrid search plays an important role in ACOFS for
FS tasks, a set of experiments was additionally conducted. The setups of these experiments
were similar to those described before, and different initial conditions were maintained con‐
stant between these two experiments. Figures 12 and 13 show the CAs of ACOFS without
and with hybrid search, respectively. These CAs were produced by local best subsets in dif‐
ferent iterations of a single run. The positive role of using hybrid local search in ACOFS can
clearly be seen in these figures. In Figure 12, we can see that a better CA was found only in
the initial iteration because of the rigorous survey by the ants in finding salient features. For
the next iterations, the CAs fluctuated up to a higher iteration, 19, but were not able to reach
a best state. This occurred due to the absence of hybrid search, which resulted in a weak
search in ACOFS. The opposite scenario can be seen in Figure 13, where the search was suf‐
ficiently powerful that by a very low number of iterations, 5, ACOFS was able to achieve the
best accuracy (99.42%) of the salient feature subset. Thereafter, ACOFS terminated the
searching of salient features. The reason for such a high performance of FS was just the in‐
corporation of the hybrid search.

Figure 12. Classification accuracies (CAs) of the cancer dataset without considering hybrid search for a single run.
Here, CA is the accuracy of a local best subset.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

33

Tables 13 and 14 show the average results of our new experiments over 20 independent
runs. The significance of the effect of varying μ. can be seen from these results. For example,
for the glass dataset (Table 13), the average percentage of the CA improved as the value of μ.
increased up to a certain point. Afterwards, the CA degraded as the value of μ. increased.
Thus, a subset of features was selected with a large size. A similar scenario can also be seen
for the ionosphere dataset (Table 14). It is clear here that the significance of the result of FS
in ACOFS depends on the value of μ. Furthermore, the determination of subset size in
ACOFS is an important aspect for suitable FS.

7.5. Effect of Hybrid Search

The capability of ACOFS for FS can be seen in Table 3, but the effect of using hybrid search
in ACOFS for FS is not clear. Therefore, a new set of experiments was carried out to ob‐
serve such effects. The setups of these experiments were almost exactly as same as those
described before. The only difference was that ACOFS did not use the modified rules of
pheromone update and heuristic value for each feature; instead, standard rules were used.
In such considerations, we avoided not only the incorporation of the information gain term,
but also the concept of random and probabilistic behaviors, during SC for both specific
rules. Furthermore, we ignored the exponential term in the heuristic measurement rule.

Dataset ACOFS without hybrid search ACOFS

ns SD CA (%) SD ns SD CA(%) SD

Glass 4.05 1.35 81.22 1.39 3.30 1.14 82.54 1.44

Credit card 6.15 2.21 87.26 0.66 5.85 1.76 87.99 0.38

Sonar 6.50 2.80 84.42 3.03 6.25 3.03 86.05 2.26

Colon cancer 6.35 4.05 82.18 4.08 5.25 2.48 84.06 3.68

Table 15. Effect of considering hybrid search on average performances of ACOFS. Results were averaged over 20
independent runs.

Table 15 shows the average results of our new experiments for the glass, credit card, sonar,
and colon cancer datasets over 20 independent runs. The positive effects of using a hybrid
search in ACOFS are clearly visible. For example, for the credit card dataset, the average
CAs of ACOFS with and without hybrid search were 87.99% and 87.26%, respectively. A
similar classification improvement for ACOFS with hybrid search was also observed for the
other datasets. On the other hand, in terms of ns, for the glass dataset, the average values of
ns of ACOFS and ACOFS without hybrid search were 3.30 and 4.05, respectively. For the
other datasets it was also found that ACOFS selected a smaller number of salient features.
We used t-test here to determine whether the difference of classification performances be‐
tween ACOFS and ACOFS without hybrid search was statistically significant. We found that

Ant Colony Optimization - Techniques and Applications32

ACOFS performed significantly better than ACOFS without local search operation at a 95%
confidence level for all the datasets, except for the colon cancer dataset. On the other hand,
the t-test was also used here to determine whether the difference in performances between
the above two approaches with regard to selecting a reduced number of salient features was
statistically significant. We found that ACOFS was significantly better than ACOFS without
hybrid search at a 95% confidence level for all four datasets.

In order to understand precisely how hybrid search plays an important role in ACOFS for
FS tasks, a set of experiments was additionally conducted. The setups of these experiments
were similar to those described before, and different initial conditions were maintained con‐
stant between these two experiments. Figures 12 and 13 show the CAs of ACOFS without
and with hybrid search, respectively. These CAs were produced by local best subsets in dif‐
ferent iterations of a single run. The positive role of using hybrid local search in ACOFS can
clearly be seen in these figures. In Figure 12, we can see that a better CA was found only in
the initial iteration because of the rigorous survey by the ants in finding salient features. For
the next iterations, the CAs fluctuated up to a higher iteration, 19, but were not able to reach
a best state. This occurred due to the absence of hybrid search, which resulted in a weak
search in ACOFS. The opposite scenario can be seen in Figure 13, where the search was suf‐
ficiently powerful that by a very low number of iterations, 5, ACOFS was able to achieve the
best accuracy (99.42%) of the salient feature subset. Thereafter, ACOFS terminated the
searching of salient features. The reason for such a high performance of FS was just the in‐
corporation of the hybrid search.

Figure 12. Classification accuracies (CAs) of the cancer dataset without considering hybrid search for a single run.
Here, CA is the accuracy of a local best subset.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

33

Figure 13. Classification accuracies (CAs) of the cancer dataset in ACOFS for a single run. Here, CA is the accuracy of a
local best subset.

7.6. Performance on noisy features

The results presented in Table 3 exhibit the ability of ACOFS to select salient features from
real-valued datasets. In this study, we examine the sensitivity of ACOFS to noisy features
that have been synthetically inserted into a number of real-valued datasets. In order to gen‐
erate these noisy features, we followed the process discussed in [32]. Briefly, at first, we con‐
sidered four features, namely, fn1, fn2, fn3, fn4 and the values of these respective features were
generated randomly. Specifically, the values of fn1 and fn2 were bound up to [0, 1] and [-1,
+1], respectively. For the domains of fn3 and fn4, we first randomly selected two different fea‐
tures from the datasets. Subsequently, the data points of these two selected features were
taken as a random basis for use in the domains of fn3 and fn4.

Dataset With all features With selected features

ns S.D. CA (%) S.D. ns S.D. CA (%) S.D.

Cancer 13.00 0.00 97.80 0.89 3.80 1.80 98.74 0.46

Glass 13.00 0.00 73.86 2.81 4.45 1.71 81.69 2.31

Table 16. Performances of ACOFS for noisy datasets. Results were averaged over 20 independent runs.

Table 16 shows the average performances of ACOFS on the real-valued datasets of cancer
and glass mixed with noisy features over 20 independent runs. The ability of ACOFS for FS
over real-valued datasets can also be found in Table 3. In comparing Tables 3 and 16, the
following observations can be made. For the glass dataset, the average CAs with and with‐

Ant Colony Optimization - Techniques and Applications34

out noisy features were 81.69% and 82.54%, respectively. On the other hand, in terms of ns,
the average values were 4.45 and 3.30, respectively. A similar scenario can also be found for
the cancer dataset. Thus, it is clear that ACOFS has a strong ability to select the salient fea‐
tures from real-valued datasets even with a mixture of noisy features. We can observe that
ACOFS selected a slightly higher average number of salient features from the glass dataset
with noisy features. The reason is that adding the noisy features created confusion in the
feature space. This may assist our ACOFS in selecting a greater number of noiseless features
to resolve the confusion in the feature space caused by the noisy features.

7.7. Comparisons

The results of ACOFS obtained on nine real-world benchmark classification datasets are
compared here with the results of various existing FS algorithms (i.e., ACO-based and non
ACO-based) as well as with a normal ACO-based FS algorithm, as reported in Tables 17-19.
The various FS algorithms are as follows: ACO-based hybrid FS (ACOFSS[42]), ACO-based
attribute reduction (ACOAR[31]), genetic programming for FS (GPFS[32]), hybrid genetic al‐
gorithm for FS (HGAFS[23]), MLP-based FS method (MLPFS[4]), constructive approach for
feature selection (CAFS[47]), and artificial neural net input gain measurement approxima‐
tion (ANNIGMA[26]). The results reported in these tables are over 20 independent runs. In
comparing these algorithms, we have mainly used two parameters: classification accuracy
(CA) and the number of selected features (ns).

7.7.1. Comparison with other works

The comparisons between eight FS algorithms represent a wide range of FS techniques. Five
of the FS techniques, namely, ACOFS, ACOFSS, ACOAR, GPFS, and HGAFS, use global
search strategies for FS. Among them, ACOFS, ACOFSS, and ACOAR use the ant colony op‐
timization algorithm. HGAFS uses a GA in finding salient features, and GPFS uses genetic
programming, a variant of GA. For the remaining three FS techniques, namely, MLPFS, AN‐
NIGMA and CAFS; MLPFS and ANNIGMA use backward selection strategy for finding sa‐
lient features, while CAFS uses forward selection strategy. For evaluating the feature subset,
ACOFS, ACOFSS, MLPFS, CAFS, and ANNIGMA use a NN for classifiers, while GPFS and
HGAFS use a decision tree and support vector machine, respectively, for classifiers, and
ACOAR uses rough set theory by calculating a dependency degree. ACOFS, and CAFS uses
a training set, validation set and testing set, while ACOFSS and ANNIGMA use only a train‐
ing set and testing set. MLPFS and GPFS use 10-fold cross-validation. A similar method, that
is, 5-fold cross-validation, is used in HGAFS, where k refers to a value ranging from 2 to 10,
depending on the given dataset scale. The aforementioned algorithms not only use different
data partitions, but also employ a different number of independent runs in measuring aver‐
age performances. For example, ANNIGMA and CAFS use 30 runs, ACOFS uses 20 runs,
and MLPFS and GPFS use 10 runs. It is important to note that no further information re‐
garding the number of runs has been mentioned in the literature for ACOFSS and HGAFS.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

35

Figure 13. Classification accuracies (CAs) of the cancer dataset in ACOFS for a single run. Here, CA is the accuracy of a
local best subset.

7.6. Performance on noisy features

The results presented in Table 3 exhibit the ability of ACOFS to select salient features from
real-valued datasets. In this study, we examine the sensitivity of ACOFS to noisy features
that have been synthetically inserted into a number of real-valued datasets. In order to gen‐
erate these noisy features, we followed the process discussed in [32]. Briefly, at first, we con‐
sidered four features, namely, fn1, fn2, fn3, fn4 and the values of these respective features were
generated randomly. Specifically, the values of fn1 and fn2 were bound up to [0, 1] and [-1,
+1], respectively. For the domains of fn3 and fn4, we first randomly selected two different fea‐
tures from the datasets. Subsequently, the data points of these two selected features were
taken as a random basis for use in the domains of fn3 and fn4.

Dataset With all features With selected features

ns S.D. CA (%) S.D. ns S.D. CA (%) S.D.

Cancer 13.00 0.00 97.80 0.89 3.80 1.80 98.74 0.46

Glass 13.00 0.00 73.86 2.81 4.45 1.71 81.69 2.31

Table 16. Performances of ACOFS for noisy datasets. Results were averaged over 20 independent runs.

Table 16 shows the average performances of ACOFS on the real-valued datasets of cancer
and glass mixed with noisy features over 20 independent runs. The ability of ACOFS for FS
over real-valued datasets can also be found in Table 3. In comparing Tables 3 and 16, the
following observations can be made. For the glass dataset, the average CAs with and with‐

Ant Colony Optimization - Techniques and Applications34

out noisy features were 81.69% and 82.54%, respectively. On the other hand, in terms of ns,
the average values were 4.45 and 3.30, respectively. A similar scenario can also be found for
the cancer dataset. Thus, it is clear that ACOFS has a strong ability to select the salient fea‐
tures from real-valued datasets even with a mixture of noisy features. We can observe that
ACOFS selected a slightly higher average number of salient features from the glass dataset
with noisy features. The reason is that adding the noisy features created confusion in the
feature space. This may assist our ACOFS in selecting a greater number of noiseless features
to resolve the confusion in the feature space caused by the noisy features.

7.7. Comparisons

The results of ACOFS obtained on nine real-world benchmark classification datasets are
compared here with the results of various existing FS algorithms (i.e., ACO-based and non
ACO-based) as well as with a normal ACO-based FS algorithm, as reported in Tables 17-19.
The various FS algorithms are as follows: ACO-based hybrid FS (ACOFSS[42]), ACO-based
attribute reduction (ACOAR[31]), genetic programming for FS (GPFS[32]), hybrid genetic al‐
gorithm for FS (HGAFS[23]), MLP-based FS method (MLPFS[4]), constructive approach for
feature selection (CAFS[47]), and artificial neural net input gain measurement approxima‐
tion (ANNIGMA[26]). The results reported in these tables are over 20 independent runs. In
comparing these algorithms, we have mainly used two parameters: classification accuracy
(CA) and the number of selected features (ns).

7.7.1. Comparison with other works

The comparisons between eight FS algorithms represent a wide range of FS techniques. Five
of the FS techniques, namely, ACOFS, ACOFSS, ACOAR, GPFS, and HGAFS, use global
search strategies for FS. Among them, ACOFS, ACOFSS, and ACOAR use the ant colony op‐
timization algorithm. HGAFS uses a GA in finding salient features, and GPFS uses genetic
programming, a variant of GA. For the remaining three FS techniques, namely, MLPFS, AN‐
NIGMA and CAFS; MLPFS and ANNIGMA use backward selection strategy for finding sa‐
lient features, while CAFS uses forward selection strategy. For evaluating the feature subset,
ACOFS, ACOFSS, MLPFS, CAFS, and ANNIGMA use a NN for classifiers, while GPFS and
HGAFS use a decision tree and support vector machine, respectively, for classifiers, and
ACOAR uses rough set theory by calculating a dependency degree. ACOFS, and CAFS uses
a training set, validation set and testing set, while ACOFSS and ANNIGMA use only a train‐
ing set and testing set. MLPFS and GPFS use 10-fold cross-validation. A similar method, that
is, 5-fold cross-validation, is used in HGAFS, where k refers to a value ranging from 2 to 10,
depending on the given dataset scale. The aforementioned algorithms not only use different
data partitions, but also employ a different number of independent runs in measuring aver‐
age performances. For example, ANNIGMA and CAFS use 30 runs, ACOFS uses 20 runs,
and MLPFS and GPFS use 10 runs. It is important to note that no further information re‐
garding the number of runs has been mentioned in the literature for ACOFSS and HGAFS.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

35

Dataset Comparison

ACOFS ACOFSS ACOAR

Cancer ns 3.50 12.00

CA(%) 98.91 95.57

Thyroid ns 3.00 14.00 --

CA (%) 99.08 94.50 --

Credit card ns 5.85 - 8.00

CA (%) 87.99 - -

Colon cancer ns 5.25 - 8.00

CA(%) 84.06 - 59.5

Table 17. Comparisons between ACOFS, ACOFSS [42], ACOAR [31]. Here, “_” means not available.

We can see in Table 17 that ACOFS produced the best solutions in terms of a reduced num‐
ber of selected features, and the best CA in comparison with the two ACO-based FS algo‐
rithms, namely, ACOFSS and ACOAR, for all four datasets. Furthermore, the results produced
by ACOFS shown in Table 18 represented the best CA among the other algorithms for all four
datasets. For the remaining three datasets, while HGAFS achieved the best CA for two data‐
sets, GPFS achieved the best CA for one dataset. Note that, ACOFS and ANNIGMA jointly
achieved the best CA for the credit card dataset. In terms of ns, ACOFS selected the smallest
number of features for four out of seven datasets, and the second smallest for two dataset; that
is to say, CAFS and HGAFS. In a close observation, ACOFS achieved the smallest ns, which
resulted in the best CAs for the glass and ionosphere datasets in comparison with the other
five algorithms (see Table 18).

Dataset Comparison

ACOFS GPFS HGAFS MLPFS CAFS ANNIGMA

Cancer ns 3.50 2.23 3.00 8.00 6.33 5.80

CA(%) 98.91 96.84 94.24 89.40 98.76 96.50

Glass ns 3.30 -- 5.00 8.00 4.73 -

CA (%) 82.54 -- 65.51 44.10 76.91 -

Vehicle ns 2.90 5.37 11.00 13.00 2.70 -

CA(%) 75.90 78.45 76.36 74.60 74.56 -

Ionosphere ns 4.15 - 6.00 32 6.73 9.00

CA (%) 99.88 - 92.76 90.60 96.55 90.20

Credit card ns 5.85 - 1.00 - - 6.70

CA (%) 87.99 - 86.43 - - 88.00

Sonar ns 6.25 9.45 15.00 29.00 - -

CA (%) 86.05 86.26 87.02 59.10 - -

Colon cancer ns 5.25 - 6.00 - - -

CA (%) 84.06 - 86.77 - - -

Table 18. Comparisons between ACOFS, GPFS [32], HGAFS [23], MLPFS [4], CAFS [47], and ANNIGMA [26]. Here, “_”
means not available.

Ant Colony Optimization - Techniques and Applications36

Significantly, it can be said that FS improves the performance of classifiers by ignoring irrel‐
evant features in the original feature set. An important task in such a process is to capture
necessary information in selecting salient features; otherwise, the performance of classifiers
might be degraded. For example, for the cancer dataset, GPFS selected the smallest feature
subset consisting of 2.23 features, but achieved a lower CA. On the other hand, ACOFS se‐
lected a slightly larger feature subset that provided a better CA compared to others for the
cancer dataset. In fact, the results presented for other algorithms in Table 18 indicate that
having the smallest or largest feature subset did not guarantee performing with the best or
worst CA.

7.7.2. Comparison with normal ACO based FS algorithm

In this context, a normal ACO algorithm for solving FS is used, considering similar steps as
incorporated in ACOFS, except for a number of differences. We call this algorithm “NA‐
COFS”. In NACOFS, issues of guiding the ants and forcing the ants during SC were not con‐
sidered. Instead, the ants followed a process for SC where the size of subsets was fixed for
each iteration and increased at a fixed rate for following iterations. On the other hand, hy‐
brid search was not used here; that is to say, the concept of random and probabilistic behav‐
ior was not considered, including the incorporation of information gain in designing the
pheromone update rule and heuristic information measurement rule.

Dataset Comparison

ACOFS NACOFS

ns S.D. CA S.D. ns S.D. CA S.D.

Cancer 3.50 1.36 98.91 0.40 4.50 0.97 98.77 0.37

Glass 3.30 1.14 82.54 1.44 4.60 1.01 80.66 1.44

Ionosphere 4.15 2.53 99.88 0.34 11.45 6.17 99.88 0.34

Credit card 5.85 1.76 87.99 0.38 22.85 6.01 88.19 0.45

Table 19. Comparisons between ACOFS and NACOFS. Here, NACOFS refers to the normal ACO-based FS algorithm.

It is seen in Table 19 that the results produced by ACOFS achieved the best CA compared to
NACOFS for three out of four datasets. For the remaining dataset, NACOFS achieved the
best result. In terms of ns, ACOFS selected the smallest number of features for the all four
datasets, while NACOFS selected subsets of bulky size. Between these two algorithms, the
performances of the CAs seemed to be similar, but the results of the numbers of selected fea‐
tures were very different. The performance of ACOFS was also found to be very consistent,
exhibiting a low standard deviation (SD) under different experimental setups.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

37

Dataset Comparison

ACOFS ACOFSS ACOAR

Cancer ns 3.50 12.00

CA(%) 98.91 95.57

Thyroid ns 3.00 14.00 --

CA (%) 99.08 94.50 --

Credit card ns 5.85 - 8.00

CA (%) 87.99 - -

Colon cancer ns 5.25 - 8.00

CA(%) 84.06 - 59.5

Table 17. Comparisons between ACOFS, ACOFSS [42], ACOAR [31]. Here, “_” means not available.

We can see in Table 17 that ACOFS produced the best solutions in terms of a reduced num‐
ber of selected features, and the best CA in comparison with the two ACO-based FS algo‐
rithms, namely, ACOFSS and ACOAR, for all four datasets. Furthermore, the results produced
by ACOFS shown in Table 18 represented the best CA among the other algorithms for all four
datasets. For the remaining three datasets, while HGAFS achieved the best CA for two data‐
sets, GPFS achieved the best CA for one dataset. Note that, ACOFS and ANNIGMA jointly
achieved the best CA for the credit card dataset. In terms of ns, ACOFS selected the smallest
number of features for four out of seven datasets, and the second smallest for two dataset; that
is to say, CAFS and HGAFS. In a close observation, ACOFS achieved the smallest ns, which
resulted in the best CAs for the glass and ionosphere datasets in comparison with the other
five algorithms (see Table 18).

Dataset Comparison

ACOFS GPFS HGAFS MLPFS CAFS ANNIGMA

Cancer ns 3.50 2.23 3.00 8.00 6.33 5.80

CA(%) 98.91 96.84 94.24 89.40 98.76 96.50

Glass ns 3.30 -- 5.00 8.00 4.73 -

CA (%) 82.54 -- 65.51 44.10 76.91 -

Vehicle ns 2.90 5.37 11.00 13.00 2.70 -

CA(%) 75.90 78.45 76.36 74.60 74.56 -

Ionosphere ns 4.15 - 6.00 32 6.73 9.00

CA (%) 99.88 - 92.76 90.60 96.55 90.20

Credit card ns 5.85 - 1.00 - - 6.70

CA (%) 87.99 - 86.43 - - 88.00

Sonar ns 6.25 9.45 15.00 29.00 - -

CA (%) 86.05 86.26 87.02 59.10 - -

Colon cancer ns 5.25 - 6.00 - - -

CA (%) 84.06 - 86.77 - - -

Table 18. Comparisons between ACOFS, GPFS [32], HGAFS [23], MLPFS [4], CAFS [47], and ANNIGMA [26]. Here, “_”
means not available.

Ant Colony Optimization - Techniques and Applications36

Significantly, it can be said that FS improves the performance of classifiers by ignoring irrel‐
evant features in the original feature set. An important task in such a process is to capture
necessary information in selecting salient features; otherwise, the performance of classifiers
might be degraded. For example, for the cancer dataset, GPFS selected the smallest feature
subset consisting of 2.23 features, but achieved a lower CA. On the other hand, ACOFS se‐
lected a slightly larger feature subset that provided a better CA compared to others for the
cancer dataset. In fact, the results presented for other algorithms in Table 18 indicate that
having the smallest or largest feature subset did not guarantee performing with the best or
worst CA.

7.7.2. Comparison with normal ACO based FS algorithm

In this context, a normal ACO algorithm for solving FS is used, considering similar steps as
incorporated in ACOFS, except for a number of differences. We call this algorithm “NA‐
COFS”. In NACOFS, issues of guiding the ants and forcing the ants during SC were not con‐
sidered. Instead, the ants followed a process for SC where the size of subsets was fixed for
each iteration and increased at a fixed rate for following iterations. On the other hand, hy‐
brid search was not used here; that is to say, the concept of random and probabilistic behav‐
ior was not considered, including the incorporation of information gain in designing the
pheromone update rule and heuristic information measurement rule.

Dataset Comparison

ACOFS NACOFS

ns S.D. CA S.D. ns S.D. CA S.D.

Cancer 3.50 1.36 98.91 0.40 4.50 0.97 98.77 0.37

Glass 3.30 1.14 82.54 1.44 4.60 1.01 80.66 1.44

Ionosphere 4.15 2.53 99.88 0.34 11.45 6.17 99.88 0.34

Credit card 5.85 1.76 87.99 0.38 22.85 6.01 88.19 0.45

Table 19. Comparisons between ACOFS and NACOFS. Here, NACOFS refers to the normal ACO-based FS algorithm.

It is seen in Table 19 that the results produced by ACOFS achieved the best CA compared to
NACOFS for three out of four datasets. For the remaining dataset, NACOFS achieved the
best result. In terms of ns, ACOFS selected the smallest number of features for the all four
datasets, while NACOFS selected subsets of bulky size. Between these two algorithms, the
performances of the CAs seemed to be similar, but the results of the numbers of selected fea‐
tures were very different. The performance of ACOFS was also found to be very consistent,
exhibiting a low standard deviation (SD) under different experimental setups.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

37

7.8. Discussions

This section briefly explains the reason that the performance of ACOFS was better than those
of the other ACO-based FS algorithms compared in Table 17. There are three major differen‐
ces that might contribute to the better performance of ACOFS compared to the other algorithms.

The first reason is that ACOFS uses a bounded scheme to determine the subset size, while
ACOFSS, ACOAR, and other ACO-based FS algorithms (e.g., [11,49-52]) do not use such a
scheme. It is now clear that without a bounded scheme, ants are free to construct subsets of
bulky size. Accordingly, there is a high possibility of including a number of irrelevant fea‐
tures in the constructed subsets. Using the bounded scheme with assistance from other tech‐
niques, ACOFS includes the most highly salient features in a reduced number, although it
functioned upon a wide range of feature spaces. As shown in Table 17, ACOFS selected, on
average, 3.00 salient features, while ACOFSS selected 14.00 features, on average, from the
thyroid dataset. For the remaining other three datasets, ACOFS also selected a very small
number of salient features. The benefit of using the bounded scheme can also be seen from
the results of the selected subsets in ACOFS.

The second reason is the new hybrid search technique integrated in ACOFS. The algorithms
ACOFSS, ACOAR and others do not use such a hybrid search technique in performing pher‐
omone update and heuristic information measurement. The benefit of adopting the hybrid
search in ACOFS can clearly be seen in Figures 12 and 13. These figures show that ACOFS
achieved a powerful and faster searching capability in finding salient features in the feature
space. The above advantage can also be seen in Tables 17 and 18. We found that ACOFS had
a remarkable capability to produce significant classification performances from different da‐
tasets using a reduced number of salient features.

The third reason is that ACOFS used a constructive approach for determining appropriate
architectures, that is to say, an appropriate size of the hidden layer for the NN classifiers.
The NN then evaluated the subsets constructed by the ants in each iteration during train‐
ing. The existing ACO-based FS approaches (e.g., [42]) often ignored the above issue of the
NN classifiers. Furthermore, a number of other approaches (e.g., [49,50]) often ignored the
classifier portions to consider any heuristic methodology by which the activity of the clas‐
sifiers could be improved for evaluating the subsets effectively. Furthermore, most ACO-
based FS approaches performed the pheromone update rule based on classifier performances
in evaluating the subsets. In this sense, the evaluation function was one of the most cru‐
cial parts in these approaches for FS. However, the most common practice was to choose
the number of hidden neurons in the NN randomly. Thus, the random selection of hid‐
den neurons affected the generalization performances of the NNs. Furthermore, the entire
FS process was eventually affected, resulting in ineffective solutions in FS. It is also impor‐
tant to say that the performance of any NN was greatly dependent on the architecture [17,
57]. Thus, automatic determination of the number of hidden neurons’ lead to providing a
better solution for FS in ACOFS.

Ant Colony Optimization - Techniques and Applications38

8. Conclusions

In this chapter, an efficient hybrid ACO-based FS algorithm has been reported. Since ants
are the foremost strength of an ACO algorithm, guiding the ants in the correct directions is
an urgent requirement for high-quality solutions. Accordingly, ACOFS guides ants during
SC by determining the subset size. Furthermore, new sets of pheromone update and heuris‐
tic information measurement rules for individual features bring out the potential of the
global search capability of ACOFS.

Extensive experiments have been carried out in this chapter to evaluate how well ACOFS
has performed in finding salient features on different datasets (see Table 3). It is observed
that a set of high-quality solutions for FS was found from small, medium, large, and very
large dimensional datasets. The results of the low standard deviations of the average classi‐
fication accuracies as well as the average number of selected features, showed the robust‐
ness of this algorithm. On the other hand, in comparison with seven prominent FS
algorithms (see Tables 17 and 18), with only a few exceptions, ACOFS outperformed the
others in terms of a reduced number of selected features and best classification performan‐
ces. Furthermore, the estimated computational complexity of this algorithm reflected that
incorporation of several techniques did not increase the computational cost during FS in
comparison with other ACO-based FS algorithms (see Section 6.5).

We can see that there are a number of areas, where ACOFS failed to improve performances in
terms of number of selected features and classification accuracies. Accordingly, more suita‐
ble heuristic schemes are necessary in order to guide the ants appropriately. In the current
implementation, ACOFS has a number of user-specified parameters, given in Table 2, which
are common in the field of ACO-based algorithms using NNs for FS. Further tuning of the
user-specified parameters related to ACO provides some scope for further investigations in
future. On the other hand, among these parameters, μ, used in determining the subset size,
was sensitive to moderate change, according to our observations. One of the future improve‐
ments to ACOFS could be to reduce the number of parameters, or render them adaptive.

Acknowledgements

Supported by grants to K.M. from the Japanese Society for Promotion of Sciences, the Yazaki
Memorial Foundation for Science and Technology, and the University of Fukui.

Author details

Monirul Kabir1, Md Shahjahan2 and Kazuyuki Murase3*

*Address all correspondence to: murase@u-fukui.ac.jp

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

39

7.8. Discussions

This section briefly explains the reason that the performance of ACOFS was better than those
of the other ACO-based FS algorithms compared in Table 17. There are three major differen‐
ces that might contribute to the better performance of ACOFS compared to the other algorithms.

The first reason is that ACOFS uses a bounded scheme to determine the subset size, while
ACOFSS, ACOAR, and other ACO-based FS algorithms (e.g., [11,49-52]) do not use such a
scheme. It is now clear that without a bounded scheme, ants are free to construct subsets of
bulky size. Accordingly, there is a high possibility of including a number of irrelevant fea‐
tures in the constructed subsets. Using the bounded scheme with assistance from other tech‐
niques, ACOFS includes the most highly salient features in a reduced number, although it
functioned upon a wide range of feature spaces. As shown in Table 17, ACOFS selected, on
average, 3.00 salient features, while ACOFSS selected 14.00 features, on average, from the
thyroid dataset. For the remaining other three datasets, ACOFS also selected a very small
number of salient features. The benefit of using the bounded scheme can also be seen from
the results of the selected subsets in ACOFS.

The second reason is the new hybrid search technique integrated in ACOFS. The algorithms
ACOFSS, ACOAR and others do not use such a hybrid search technique in performing pher‐
omone update and heuristic information measurement. The benefit of adopting the hybrid
search in ACOFS can clearly be seen in Figures 12 and 13. These figures show that ACOFS
achieved a powerful and faster searching capability in finding salient features in the feature
space. The above advantage can also be seen in Tables 17 and 18. We found that ACOFS had
a remarkable capability to produce significant classification performances from different da‐
tasets using a reduced number of salient features.

The third reason is that ACOFS used a constructive approach for determining appropriate
architectures, that is to say, an appropriate size of the hidden layer for the NN classifiers.
The NN then evaluated the subsets constructed by the ants in each iteration during train‐
ing. The existing ACO-based FS approaches (e.g., [42]) often ignored the above issue of the
NN classifiers. Furthermore, a number of other approaches (e.g., [49,50]) often ignored the
classifier portions to consider any heuristic methodology by which the activity of the clas‐
sifiers could be improved for evaluating the subsets effectively. Furthermore, most ACO-
based FS approaches performed the pheromone update rule based on classifier performances
in evaluating the subsets. In this sense, the evaluation function was one of the most cru‐
cial parts in these approaches for FS. However, the most common practice was to choose
the number of hidden neurons in the NN randomly. Thus, the random selection of hid‐
den neurons affected the generalization performances of the NNs. Furthermore, the entire
FS process was eventually affected, resulting in ineffective solutions in FS. It is also impor‐
tant to say that the performance of any NN was greatly dependent on the architecture [17,
57]. Thus, automatic determination of the number of hidden neurons’ lead to providing a
better solution for FS in ACOFS.

Ant Colony Optimization - Techniques and Applications38

8. Conclusions

In this chapter, an efficient hybrid ACO-based FS algorithm has been reported. Since ants
are the foremost strength of an ACO algorithm, guiding the ants in the correct directions is
an urgent requirement for high-quality solutions. Accordingly, ACOFS guides ants during
SC by determining the subset size. Furthermore, new sets of pheromone update and heuris‐
tic information measurement rules for individual features bring out the potential of the
global search capability of ACOFS.

Extensive experiments have been carried out in this chapter to evaluate how well ACOFS
has performed in finding salient features on different datasets (see Table 3). It is observed
that a set of high-quality solutions for FS was found from small, medium, large, and very
large dimensional datasets. The results of the low standard deviations of the average classi‐
fication accuracies as well as the average number of selected features, showed the robust‐
ness of this algorithm. On the other hand, in comparison with seven prominent FS
algorithms (see Tables 17 and 18), with only a few exceptions, ACOFS outperformed the
others in terms of a reduced number of selected features and best classification performan‐
ces. Furthermore, the estimated computational complexity of this algorithm reflected that
incorporation of several techniques did not increase the computational cost during FS in
comparison with other ACO-based FS algorithms (see Section 6.5).

We can see that there are a number of areas, where ACOFS failed to improve performances in
terms of number of selected features and classification accuracies. Accordingly, more suita‐
ble heuristic schemes are necessary in order to guide the ants appropriately. In the current
implementation, ACOFS has a number of user-specified parameters, given in Table 2, which
are common in the field of ACO-based algorithms using NNs for FS. Further tuning of the
user-specified parameters related to ACO provides some scope for further investigations in
future. On the other hand, among these parameters, μ, used in determining the subset size,
was sensitive to moderate change, according to our observations. One of the future improve‐
ments to ACOFS could be to reduce the number of parameters, or render them adaptive.

Acknowledgements

Supported by grants to K.M. from the Japanese Society for Promotion of Sciences, the Yazaki
Memorial Foundation for Science and Technology, and the University of Fukui.

Author details

Monirul Kabir1, Md Shahjahan2 and Kazuyuki Murase3*

*Address all correspondence to: murase@u-fukui.ac.jp

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

39

1 Department of Electrical and Electronic Engineering, Dhaka University of Engineering and
Technology (DUET), Bangladesh

2 Department of Electrical and Electronic Engineering, Khulna University of Engineering
and Technology (KUET), Bangladesh

3 Department of Human and Artificial Intelligence Systems and Research and Education
Program for Life Science, University of Fukui, Japan

References

[1] Abraham, A., Grosan, C., & Ramos, V. (2006). Swarm Intelligence in Data Mining.
Springer-Verlag Press.

[2] Liu, H., & Lei, Tu. (2004). Toward Integrating Feature Selection Algorithms for Clas‐
sification and Clustering. IEEE Transactions on Knowledge and Data Engineering;, 17(4),
491-502.

[3] Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating Search Methods in Feature Se‐
lection. Pattern Recognition Letters, 15(11), 1119-1125.

[4] Gasca, E., Sanchez, J. S., & Alonso, R. (2006). Eliminating Redundancy and Irrele‐
vance using a New MLP-based Feature Selection Method. Pattern Recognition, 39,
313-315.

[5] Setiono, R., & Liu, H. (1997). Neural Network Feature Selector. IEEE Trans. on Neural
Networks, 8.

[6] Verikas, A., & Bacauskiene, M. (2002). Feature Selection with Neural Networks. Pat‐
tern Recognition Letters, 23, 1323-1335.

[7] Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3-1157.

[8] Photo by Aksoy S. (2012). http://retina.cs.bilkent.edu.tr/papers/patrec_tutorial1.pdf,
Accessed 02 July.

[9] Floreano, D., Kato, T., Marocco, D., & Sauser, E. (2004). Coevolution and Active Vi‐
sion and Feature Selection. Biological Cybernetics, 90(3), 218-228.

[10] Dash, M., Kollipakkam, D., & Liu, H. (2006). Automatic View Selection: An Applica‐
tion to Image Mining: proceedings of the International Conference. PAKDD, 107-113.

[11] Robbins, K. R., Zhang, W., & Bertrand, J. K. (2008). The Ant Colony Algorithm for
Feature Selection in High-Dimension Gene Expression Data for Disease Classifica‐
tion. Journal of Mathematical Medicine and Biology, 1-14.

[12] Ooi, C. H., & Tan, P. (2003). Genetic Algorithm Applied to Multi-class Prediction for
the Analysis of Gene Expression Data. Bioinformatics, 19(1), 37-44.

Ant Colony Optimization - Techniques and Applications40

[13] Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature Selection for Text Classification
with Naïve Bayes. Expert Systems with Applications, 36, 5432-5435.

[14] Fayyad, U. M., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances
in Knowledge Discovery and Data Mining. AAAI: MIT Press.

[15] Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI Repository of Ma‐
chine Learning Databases. University of California, Irvine, http://www.ics.uci.edu/
~mlearn/MLRepository.html, Accessed 02 July 2012.

[16] Prechelt, L. (1994). PROBEN1-A set of Neural Network Benchmark Problems and
Benchmarking Rules. Technical Report 21/94, Faculty of Informatics, University of Karls‐
ruhe.

[17] Yao, X., & Liu, Y. (1997). A New Evolutionary System for Evolving Artificial Neural
Networks. IEEE Trans. on Neural Networks, 8(3), 694-713.

[18] Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J.
(1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor
and Normal Colon Tissues Probed by Oligonucleotide Arrays: proceedings of Inter‐
national Academic Science. USA, 96, 6745-6750.

[19] Alizadeh, AA, et al. (2000). Distinct Types of Diffuse Large B-cell Lymphoma Identi‐
fied by Gene Expression Profiling. Nature, 403-503.

[20] Golub, T., et al. (1999). Molecular Classification of Cancer: Class Discovery and Class
Prediction by Gene Expression. Science, 286(5439), 531-537.

[21] Guyon, I., & Elisseeff, A. An Introduction to Variable and Feature Selection. Journal of
Machine Learning Research, 3, 1157-1182.

[22] Dash, M., & Liu, H. (1997). Feature Selection for Classification. Intelligent Data Analy‐
sis, 1, 131-156.

[23] Huang, J, Cai, Y, & Xu, X. (2007). A Hybrid Genetic Algorithm for Feature Selection
Wrapper based on Mutual Information. Pattern Recognition Letters, 28, 1825-1844.

[24] Guan, S., Liu, J., & Qi, Y. (2004). An Incremental Approach to Contribution-based
Feature Selection. Journal of Intelligence Systems, 13(1).

[25] Peng, H., Long, F., & Ding, C. (2003). Overfitting in Making Comparisons between
Variable Selection Methods. Journal of Machine Learning Research, 3, 1371-1382.

[26] Hsu, C., Huang, H., & Schuschel, D. (2002). The ANNIGMA-Wrapper Approach to
Fast Feature Selection for Neural Nets. IEEE Trans. on Systems, Man, and Cybernetics-
Part B: Cybernetics, 32(2), 207-212.

[27] Caruana, R., & Freitag, D. (1994). Greedy Attribute Selection: proceedings of the 11th

International Conference of Machine Learning. USA, Morgan Kaufmann.

[28] Lai, C., Reinders, M. J. T., & Wessels, L. (2006). Random Subspace Method for Multi‐
variate Feature Selection. Pattern Recognition Letters, 27, 1067-1076.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

41

1 Department of Electrical and Electronic Engineering, Dhaka University of Engineering and
Technology (DUET), Bangladesh

2 Department of Electrical and Electronic Engineering, Khulna University of Engineering
and Technology (KUET), Bangladesh

3 Department of Human and Artificial Intelligence Systems and Research and Education
Program for Life Science, University of Fukui, Japan

References

[1] Abraham, A., Grosan, C., & Ramos, V. (2006). Swarm Intelligence in Data Mining.
Springer-Verlag Press.

[2] Liu, H., & Lei, Tu. (2004). Toward Integrating Feature Selection Algorithms for Clas‐
sification and Clustering. IEEE Transactions on Knowledge and Data Engineering;, 17(4),
491-502.

[3] Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating Search Methods in Feature Se‐
lection. Pattern Recognition Letters, 15(11), 1119-1125.

[4] Gasca, E., Sanchez, J. S., & Alonso, R. (2006). Eliminating Redundancy and Irrele‐
vance using a New MLP-based Feature Selection Method. Pattern Recognition, 39,
313-315.

[5] Setiono, R., & Liu, H. (1997). Neural Network Feature Selector. IEEE Trans. on Neural
Networks, 8.

[6] Verikas, A., & Bacauskiene, M. (2002). Feature Selection with Neural Networks. Pat‐
tern Recognition Letters, 23, 1323-1335.

[7] Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3-1157.

[8] Photo by Aksoy S. (2012). http://retina.cs.bilkent.edu.tr/papers/patrec_tutorial1.pdf,
Accessed 02 July.

[9] Floreano, D., Kato, T., Marocco, D., & Sauser, E. (2004). Coevolution and Active Vi‐
sion and Feature Selection. Biological Cybernetics, 90(3), 218-228.

[10] Dash, M., Kollipakkam, D., & Liu, H. (2006). Automatic View Selection: An Applica‐
tion to Image Mining: proceedings of the International Conference. PAKDD, 107-113.

[11] Robbins, K. R., Zhang, W., & Bertrand, J. K. (2008). The Ant Colony Algorithm for
Feature Selection in High-Dimension Gene Expression Data for Disease Classifica‐
tion. Journal of Mathematical Medicine and Biology, 1-14.

[12] Ooi, C. H., & Tan, P. (2003). Genetic Algorithm Applied to Multi-class Prediction for
the Analysis of Gene Expression Data. Bioinformatics, 19(1), 37-44.

Ant Colony Optimization - Techniques and Applications40

[13] Chen, J., Huang, H., Tian, S., & Qu, Y. (2009). Feature Selection for Text Classification
with Naïve Bayes. Expert Systems with Applications, 36, 5432-5435.

[14] Fayyad, U. M., Piatesky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances
in Knowledge Discovery and Data Mining. AAAI: MIT Press.

[15] Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI Repository of Ma‐
chine Learning Databases. University of California, Irvine, http://www.ics.uci.edu/
~mlearn/MLRepository.html, Accessed 02 July 2012.

[16] Prechelt, L. (1994). PROBEN1-A set of Neural Network Benchmark Problems and
Benchmarking Rules. Technical Report 21/94, Faculty of Informatics, University of Karls‐
ruhe.

[17] Yao, X., & Liu, Y. (1997). A New Evolutionary System for Evolving Artificial Neural
Networks. IEEE Trans. on Neural Networks, 8(3), 694-713.

[18] Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine, A. J.
(1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor
and Normal Colon Tissues Probed by Oligonucleotide Arrays: proceedings of Inter‐
national Academic Science. USA, 96, 6745-6750.

[19] Alizadeh, AA, et al. (2000). Distinct Types of Diffuse Large B-cell Lymphoma Identi‐
fied by Gene Expression Profiling. Nature, 403-503.

[20] Golub, T., et al. (1999). Molecular Classification of Cancer: Class Discovery and Class
Prediction by Gene Expression. Science, 286(5439), 531-537.

[21] Guyon, I., & Elisseeff, A. An Introduction to Variable and Feature Selection. Journal of
Machine Learning Research, 3, 1157-1182.

[22] Dash, M., & Liu, H. (1997). Feature Selection for Classification. Intelligent Data Analy‐
sis, 1, 131-156.

[23] Huang, J, Cai, Y, & Xu, X. (2007). A Hybrid Genetic Algorithm for Feature Selection
Wrapper based on Mutual Information. Pattern Recognition Letters, 28, 1825-1844.

[24] Guan, S., Liu, J., & Qi, Y. (2004). An Incremental Approach to Contribution-based
Feature Selection. Journal of Intelligence Systems, 13(1).

[25] Peng, H., Long, F., & Ding, C. (2003). Overfitting in Making Comparisons between
Variable Selection Methods. Journal of Machine Learning Research, 3, 1371-1382.

[26] Hsu, C., Huang, H., & Schuschel, D. (2002). The ANNIGMA-Wrapper Approach to
Fast Feature Selection for Neural Nets. IEEE Trans. on Systems, Man, and Cybernetics-
Part B: Cybernetics, 32(2), 207-212.

[27] Caruana, R., & Freitag, D. (1994). Greedy Attribute Selection: proceedings of the 11th

International Conference of Machine Learning. USA, Morgan Kaufmann.

[28] Lai, C., Reinders, M. J. T., & Wessels, L. (2006). Random Subspace Method for Multi‐
variate Feature Selection. Pattern Recognition Letters, 27, 1067-1076.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

41

[29] Straceezzi, D J, & Utgoff, P E. (2004). Randomized Variable Elimination. Journal of
Machine Learning Research;, 5, 1331-1362.

[30] Abe, S. (2005). Modified Backward Feature Selection by Cross Validation. proceedings
of the European Symposium on Artificial Neural Networks, 163-168.

[31] Ke, L., Feng, Z., & Ren, Z. (2008). An Efficient Ant Colony Optimization Approach to
Attribute Reduction in Rough Set Theory. Pattern Recognition Letters, 29, 1351-1357.

[32] Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic Programming for Simultaneous Fea‐
ture Selection and Classifier Design. IEEE Trans. on Systems, Man, and Cybernetics-Part
B: Cybernetics, 36(1), 106-117.

[33] Oh, I., Lee, J., & Moon, B. (2004). Hybrid Genetic Algorithms for Feature Selection.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(11), 1424-1437.

[34] Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2007). Feature Selection based on
Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, 28(4),
459-471.

[35] Yang, J. H., & Honavar, V. (1998). Feature Subset Selection using a Genetic Algo‐
rithm. IEEE Intelligent Systems, 13(2), 44-49.

[36] Pal, N. R., & Chintalapudi, K. (1997). A Connectionist System for Feature Selection.
International Journal of Neural, Parallel and Scientific Computation, 5, 359-361.

[37] Rakotomamonjy, A. (2003). Variable Selection using SVM-based Criteria. Journal of
Machine Learning Research, 3, 1357-1370.

[38] Wang, L., Zhou, N., & Chu, F. (2008). A General Wrapper Approach to Selection of
Class-dependent Features. IEEE Trans. on Neural Networks, 19(7), 1267-1278.

[39] Chow, T W S, & Huang, D. (2005). Estimating Optimal Feature Subsets using Effi‐
cient Estimation of High-dimensional Mutual Information. IEEE Trans. Neural Net‐
work, 16(1), 213-224.

[40] Hall, M A. (2000). Correlation-based Feature Selection for Discrete and Numeric
Class Machine Learning:. Proceedings of 17th International Conference on Machine Learn‐
ing.

[41] Sindhwani, V., Rakshit, S., Deodhare, D., Erdogmus, D., Principe, J. C., & Niyogi, P.
(2004). Feature Selection in MLPs and SVMs based on Maximum Output Informa‐
tion. IEEE Trans. on Neural Networks, 15(4), 937-948.

[42] Sivagaminathan, R. K., & Ramakrishnan, S. (2007). A Hybrid Approach for Feature
Subset Selection using Neural Networks and Ant Colony Optimization. Expert Sys‐
tems with Applications, 33-49.

[43] Kambhatla, N., & Leen, T. K. (1997). Dimension Reduction by Local Principal Com‐
ponent Analysis. Neural Computation, 9(7), 1493-1516.

Ant Colony Optimization - Techniques and Applications42

[44] Back, A D, & Trappenberg, T P. (2001). Selecting Inputs for Modeling using Normal‐
ized Higher Order Statistics and Independent Component Analysis. IEEE Trans. Neu‐
ral Network, 12(3), 612-617.

[45] Mao, K Z. (2002). Fast Orthogonal Forward Selection Algorithm for Feature Subset
Selection. IEEE Trans. Neural Network, 13(5), 1218-1224.

[46] Caruana, R., & De Sa, V. (2003). Benefitting from the Variables that Variable Selection
Discards. Journal of Machine Learning Research, 3, 1245-1264.

[47] Kabir, M. M., Islam, M. M., & Murase, K. (2010). A New Wrapper Feature Selection
Approach using Neural Network. Neurocomputing, 73, 3273-3283.

[48] Chakraborty, D., & Pal, N. R. (2004). A Neuro-fuzzy Scheme for Simultaneous Fea‐
ture Selection and Fuzzy Rule-based Classification. IEEE Trans. on Neural Networks,
15(1), 110-123.

[49] Aghdam, M H, Aghaee, N G, & Basiri, M E. (2009). Test Feature Selection using Ant
Colony Optimization. Expert Systems with Applications, 36, 6843-6853.

[50] Ani, A. (2005). Feature Subset Selection using Ant Colony Optimization. International
Journal of Computational Intelligence, 2, 53-58.

[51] Kanan, H. R., Faez, K., & Taheri, S. M. (2007). Feature Selection using Ant Colony
Optimization (ACO): A New Method and Comparative Study in the Application of
Face Recognition System. Proceedings of International Conference on Data Mining, 63-76.

[52] Khushaba, R. N., Alsukker, A., Ani, A. A., & Jumaily, A. A. (2008). Enhanced Feature
Selection Algorithm using Ant Colony Optimization and Fuzzy Memberships: pro‐
ceedings of the sixth international conference on biomedical engineering. IASTED,
34-39.

[53] Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press.

[54] Filippone, M., Masulli, F., & Rovetta, S. (2006). Supervised Cassification and Gene Se‐
lection using Simulated Annealing. Proceedings of International Joint Conference on Neu‐
ral Networks, 3566-3571.

[55] Goldberg, D E. (2004). Genetic Algorithms in Search. Genetic Algorithms in Search, Op‐
timization and Machine Learning, Addison-Wesley Press.

[56] Rumelhart, D. E., & Mc Clelland, J. (1986). Parallel Distributed Processing. MIT Press.

[57] Reed, R. (1993). Pruning Algorithms-a Survey. IEEE Trans. on Neural Networks, 4(5),
740-747.

[58] Girosi, F., Jones, M., & Poggio, T. (1995). Regularization Theory and Neural Net‐
works Architectures. Neural Computation, 7(2), 219-269.

[59] Kwok, T Y, & Yeung, D Y. (1997). Constructive Algorithms for Structure Learning in
Feed-forward Neural Networks for Regression Problems. IEEE Trans. on Neural Net‐
works, 8, 630-645.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

43

[29] Straceezzi, D J, & Utgoff, P E. (2004). Randomized Variable Elimination. Journal of
Machine Learning Research;, 5, 1331-1362.

[30] Abe, S. (2005). Modified Backward Feature Selection by Cross Validation. proceedings
of the European Symposium on Artificial Neural Networks, 163-168.

[31] Ke, L., Feng, Z., & Ren, Z. (2008). An Efficient Ant Colony Optimization Approach to
Attribute Reduction in Rough Set Theory. Pattern Recognition Letters, 29, 1351-1357.

[32] Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic Programming for Simultaneous Fea‐
ture Selection and Classifier Design. IEEE Trans. on Systems, Man, and Cybernetics-Part
B: Cybernetics, 36(1), 106-117.

[33] Oh, I., Lee, J., & Moon, B. (2004). Hybrid Genetic Algorithms for Feature Selection.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(11), 1424-1437.

[34] Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2007). Feature Selection based on
Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, 28(4),
459-471.

[35] Yang, J. H., & Honavar, V. (1998). Feature Subset Selection using a Genetic Algo‐
rithm. IEEE Intelligent Systems, 13(2), 44-49.

[36] Pal, N. R., & Chintalapudi, K. (1997). A Connectionist System for Feature Selection.
International Journal of Neural, Parallel and Scientific Computation, 5, 359-361.

[37] Rakotomamonjy, A. (2003). Variable Selection using SVM-based Criteria. Journal of
Machine Learning Research, 3, 1357-1370.

[38] Wang, L., Zhou, N., & Chu, F. (2008). A General Wrapper Approach to Selection of
Class-dependent Features. IEEE Trans. on Neural Networks, 19(7), 1267-1278.

[39] Chow, T W S, & Huang, D. (2005). Estimating Optimal Feature Subsets using Effi‐
cient Estimation of High-dimensional Mutual Information. IEEE Trans. Neural Net‐
work, 16(1), 213-224.

[40] Hall, M A. (2000). Correlation-based Feature Selection for Discrete and Numeric
Class Machine Learning:. Proceedings of 17th International Conference on Machine Learn‐
ing.

[41] Sindhwani, V., Rakshit, S., Deodhare, D., Erdogmus, D., Principe, J. C., & Niyogi, P.
(2004). Feature Selection in MLPs and SVMs based on Maximum Output Informa‐
tion. IEEE Trans. on Neural Networks, 15(4), 937-948.

[42] Sivagaminathan, R. K., & Ramakrishnan, S. (2007). A Hybrid Approach for Feature
Subset Selection using Neural Networks and Ant Colony Optimization. Expert Sys‐
tems with Applications, 33-49.

[43] Kambhatla, N., & Leen, T. K. (1997). Dimension Reduction by Local Principal Com‐
ponent Analysis. Neural Computation, 9(7), 1493-1516.

Ant Colony Optimization - Techniques and Applications42

[44] Back, A D, & Trappenberg, T P. (2001). Selecting Inputs for Modeling using Normal‐
ized Higher Order Statistics and Independent Component Analysis. IEEE Trans. Neu‐
ral Network, 12(3), 612-617.

[45] Mao, K Z. (2002). Fast Orthogonal Forward Selection Algorithm for Feature Subset
Selection. IEEE Trans. Neural Network, 13(5), 1218-1224.

[46] Caruana, R., & De Sa, V. (2003). Benefitting from the Variables that Variable Selection
Discards. Journal of Machine Learning Research, 3, 1245-1264.

[47] Kabir, M. M., Islam, M. M., & Murase, K. (2010). A New Wrapper Feature Selection
Approach using Neural Network. Neurocomputing, 73, 3273-3283.

[48] Chakraborty, D., & Pal, N. R. (2004). A Neuro-fuzzy Scheme for Simultaneous Fea‐
ture Selection and Fuzzy Rule-based Classification. IEEE Trans. on Neural Networks,
15(1), 110-123.

[49] Aghdam, M H, Aghaee, N G, & Basiri, M E. (2009). Test Feature Selection using Ant
Colony Optimization. Expert Systems with Applications, 36, 6843-6853.

[50] Ani, A. (2005). Feature Subset Selection using Ant Colony Optimization. International
Journal of Computational Intelligence, 2, 53-58.

[51] Kanan, H. R., Faez, K., & Taheri, S. M. (2007). Feature Selection using Ant Colony
Optimization (ACO): A New Method and Comparative Study in the Application of
Face Recognition System. Proceedings of International Conference on Data Mining, 63-76.

[52] Khushaba, R. N., Alsukker, A., Ani, A. A., & Jumaily, A. A. (2008). Enhanced Feature
Selection Algorithm using Ant Colony Optimization and Fuzzy Memberships: pro‐
ceedings of the sixth international conference on biomedical engineering. IASTED,
34-39.

[53] Dorigo, M., & Stutzle, T. (2004). Ant Colony Optimization. MIT Press.

[54] Filippone, M., Masulli, F., & Rovetta, S. (2006). Supervised Cassification and Gene Se‐
lection using Simulated Annealing. Proceedings of International Joint Conference on Neu‐
ral Networks, 3566-3571.

[55] Goldberg, D E. (2004). Genetic Algorithms in Search. Genetic Algorithms in Search, Op‐
timization and Machine Learning, Addison-Wesley Press.

[56] Rumelhart, D. E., & Mc Clelland, J. (1986). Parallel Distributed Processing. MIT Press.

[57] Reed, R. (1993). Pruning Algorithms-a Survey. IEEE Trans. on Neural Networks, 4(5),
740-747.

[58] Girosi, F., Jones, M., & Poggio, T. (1995). Regularization Theory and Neural Net‐
works Architectures. Neural Computation, 7(2), 219-269.

[59] Kwok, T Y, & Yeung, D Y. (1997). Constructive Algorithms for Structure Learning in
Feed-forward Neural Networks for Regression Problems. IEEE Trans. on Neural Net‐
works, 8, 630-645.

Ant Colony Optimization Toward Feature Selection
http://dx.doi.org/10.5772/51707

43

[60] Lehtokangas, M. (2000). Modified Cascade-correlation Learning for Classification.
IEEE Transactions on Neural Networks, 11, 795-798.

[61] Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant Algorithm for Discrete Op‐
timization. Artificial Life, 5(2), 137-172.

[62] Kudo, M., & Sklansky, J. (2000). Comparison of Algorithms that Select Features for
Pattern Classifiers. Pattern Recognition, 33, 25-41.

[63] Kim, K., & Cho, S. (2004). Prediction of Colon Cancer using an Evolutionary Neural
Network. Neurocomputing, 61, 61-379.

[64] Kabir, M. M., Shahjahan, M., & Murase, K. (2012). A New Hybrid Ant Colony Opti‐
mization Algorithm for Feature Selection. Expert Systems with Applications, 39,
3747-3763.

Ant Colony Optimization - Techniques and Applications44

Chapter 2

Parallel Ant Colony Optimization: Algorithmic Models

and Hardware Implementations

Pierre Delisle

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54252

Provisional chapter

Parallel Ant Colony Optimization: Algorithmic

Models and Hardware Implementations

Pierre Delisle

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/CHAPTERDOI

1. Introduction

The Ant Colony Optimization (ACO) metaheuristic [1] is a constructive population-based
approach based on the social behavior of ants. As it is acknowledged as a powerful method to
solve academic and industrial combinatorial optimization problems, a considerable amount
of research is dedicated to improving its performance. Among the proposed solutions, we
find the use of parallel computing to reduce computation time, improve solution quality or
both.

Most parallel ACO implementations can be classified into two general approaches. The first
one is the parallel execution of the ants construction phase in a single colony. Initiated by
Bullnheimer et al. [2], it aims to accelerate computations by distributing ants to computing
elements. The second one, introduced by Stützle [3], is the execution of multiple ant
colonies. In this case, entire ant colonies are attributed to processors in order to speedup
computations as well as to potentially improve solution quality by introducing cooperation
schemes between colonies.

Recently, a more detailed classification was proposed by Pedemonte et al. [4]. It shows that
most existing works are based on designing parallel ACO algorithms at a relatively high
level of abstraction which may be suitable for conventional parallel computers. However,
as research on parallel architectures is rapidly evolving, new types of hardware have
recently become available for high performance computing. Among them, we find multicore
processors and graphics processing units (GPU) which provide great computing power
at an affordable cost but are more difficult to program. In fact, it is not clear that
conventional high-level abstraction models are suitable for expressing parallelism in a way
that is efficiently implementable and reproducible on these architectures. As academic and
industrial combinatorial optimization problems always increase in size and complexity, the
field of parallel metaheuristics has to follow this evolution of high performance computing.

©2012 Delisle, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Delisle; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Delisle, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[60] Lehtokangas, M. (2000). Modified Cascade-correlation Learning for Classification.
IEEE Transactions on Neural Networks, 11, 795-798.

[61] Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant Algorithm for Discrete Op‐
timization. Artificial Life, 5(2), 137-172.

[62] Kudo, M., & Sklansky, J. (2000). Comparison of Algorithms that Select Features for
Pattern Classifiers. Pattern Recognition, 33, 25-41.

[63] Kim, K., & Cho, S. (2004). Prediction of Colon Cancer using an Evolutionary Neural
Network. Neurocomputing, 61, 61-379.

[64] Kabir, M. M., Shahjahan, M., & Murase, K. (2012). A New Hybrid Ant Colony Opti‐
mization Algorithm for Feature Selection. Expert Systems with Applications, 39,
3747-3763.

Ant Colony Optimization - Techniques and Applications44

Chapter 2

Parallel Ant Colony Optimization: Algorithmic Models

and Hardware Implementations

Pierre Delisle

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54252

Provisional chapter

Parallel Ant Colony Optimization: Algorithmic

Models and Hardware Implementations

Pierre Delisle

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/CHAPTERDOI

1. Introduction

The Ant Colony Optimization (ACO) metaheuristic [1] is a constructive population-based
approach based on the social behavior of ants. As it is acknowledged as a powerful method to
solve academic and industrial combinatorial optimization problems, a considerable amount
of research is dedicated to improving its performance. Among the proposed solutions, we
find the use of parallel computing to reduce computation time, improve solution quality or
both.

Most parallel ACO implementations can be classified into two general approaches. The first
one is the parallel execution of the ants construction phase in a single colony. Initiated by
Bullnheimer et al. [2], it aims to accelerate computations by distributing ants to computing
elements. The second one, introduced by Stützle [3], is the execution of multiple ant
colonies. In this case, entire ant colonies are attributed to processors in order to speedup
computations as well as to potentially improve solution quality by introducing cooperation
schemes between colonies.

Recently, a more detailed classification was proposed by Pedemonte et al. [4]. It shows that
most existing works are based on designing parallel ACO algorithms at a relatively high
level of abstraction which may be suitable for conventional parallel computers. However,
as research on parallel architectures is rapidly evolving, new types of hardware have
recently become available for high performance computing. Among them, we find multicore
processors and graphics processing units (GPU) which provide great computing power
at an affordable cost but are more difficult to program. In fact, it is not clear that
conventional high-level abstraction models are suitable for expressing parallelism in a way
that is efficiently implementable and reproducible on these architectures. As academic and
industrial combinatorial optimization problems always increase in size and complexity, the
field of parallel metaheuristics has to follow this evolution of high performance computing.

©2012 Delisle, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Delisle; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Delisle, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

2 And Colony Optimization

The main purpose of this chapter is to complement existing parallel ACO models with a
computational design that relates more closely to high performance computing architectures.
Emerging from several years of work by the authors on the parallelization of ACO in various
computing environments including clusters, symmetric multiprocessors (SMP), multicore
processors and graphics processing units (GPU) [5–10], it is based on the concepts of
computing entities and memory structures. It provides a conceptual vision of parallel
ACO that we believe more balanced between theory and practice. We revisit the existing
literature and present various implementations from this viewpoint. Extensive experimental
results are presented to validate the proposed approaches across a broad range of computing
environments. Key algorithmic, technical and programming issues are also addressed in this
context.

2. Literature review on Parallel Ant Colony Optimization

During the past 20 years, the ACO metaheuristic has improved significantly to become one
of the most effective combinatorial optimization methods. For about a decade, following
this trend, a number of parallelization techniques have been proposed to further enhance
its search process. Works on traditional CPU-based parallel ACO can be classified into
two general approaches: parallel ants and multiple ant colonies. These approaches are
briefly explained in Sections 2.1 and 2.2. On the other hand, few authors have proposed
parallel implementations dedicated to specific architectures. Section 2.3 is dedicated to these
hardware-oriented approaches. In all cases, a survey of related works is also provided.

2.1. Parallel ants

Works related to the parallel ants approach, which aims to execute the ants tour construction
phase on many processing elements, were initiated by Bullnheimer et al. [2]. They
proposed two parallelization strategies for the Ant System on a message passing and
distributed-memory architecture. The first one is a low-level and synchronous strategy that
aims to accelerate computations by distributing ants to processors in a master-slave fashion.
At each iteration, the master broadcasts the pheromone structure to slaves, which then
compute their tours in parallel and send them back to the master. The time needed for these
global communications and synchronizations implies a considerable overhead. The second
strategy aims to reduce it by letting the algorithm perform a given number of iterations
without exchanging information. The authors conclude that this partially asynchronous
strategy is preferable due to the considerable reduction of the communication overhead.

The works of Talbi et al. [11], Randall and Lewis [12], Islam et al. [13], Craus and Rudeanu
[14], Stützle [3] and Doerner et al. [15] are based on a similar parallelization approach
and a distributed memory architecture. Delisle et al. [5, 6] implemented this scheme on
shared-memory architectures like SMP computers and multi-core processors. They also
compared performance between the two types of architectures [7].

2.2. Multiple ant colonies

The multiple ant colonies approach, also based on a message-passing and distributed
memory architecture, aims to execute whole ant colonies on available processing elements.

Ant Colony Optimization - Techniques and Applications46
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 3

http://dx.doi.org/10.5772/CHAPTERDOI

It was introduced by Stützle [3] with the parallel execution of multiple independent copies
of the same algorithm. Middendorf et al. [16] extended this approach by introducing four
information exchange strategies between ant colonies: exchange of globally best solution,
circular exchange of locally best solutions, migrants or locally best solutions plus migrants.
It is shown that it can be advantageous for ant colonies to avoid communicating too much
information and too often. Giving up on the idea of sharing whole pheromone information,
they based their strategy on the trade of a single solution at each exchange step.

Chu et al. [17], Manfrin et al. [18], Ellabib et al. [19] and Alba et al. [20] have also
proposed different information exchange strategies for the multiple ant colony approach.
Many parameters are studied like the topology of the links between processors as well as
the nature and frequency of information exchanges. These strategies are implemented using
MPI on distributed memory architectures. On the other hand, Delisle et al. [8] adapted some
of them on shared-memory architectures.

2.3. Hardware-oriented parallel ACO

Even though they mostly follow the parallel ants and multiple ant colonies approaches,
hardware-oriented approaches are dedicated to specific and untraditional parallel
architectures. Scheuermann et al. [21, 22] designed parallel implementations of ACO on
Field Programmable Gate Arrays (FPGA). Considerable changes to the algorithmic structure
of the metaheuristic were needed to take benefit of this particular architecture.

Few authors have tackled the problem of parallelizing ACO on GPU in the form of
preliminary work. Catala et al. [23] propose an implementation of ACO to solve the
Orienteering Problem. Instances of up to a few thousand nodes are solved by building
solutions on GPU. Wang et al. [24] propose an implementation of the MMAS where the tour
construction phase is executed on a GPU to solve a 30 city TSP. Similar implementations are
reported by You [25], Zhu and Curry [26], Li et al. [27], Cecilia et al. [28] and Delévacq et

al. [9] . Following these works, Delévacq et al. [10] have proposed various parallelization
strategies for ACO on GPU as well as a comparative study to show the influence of various
parameters on search efficiency.

Finally, concerning grid applications, Weis and Lewis [29] implemented an ACO algorithm
on an ad-hoc grid for the design of a radio frequency antenna structure. Mocholi et al. [30]
also proposed a medium grain master-slave algorithm to solve the Orienteering Problem.

In addition to a complete survey, Pedemonte et al. [4] proposed a taxonomy for Parallel
ACO which is illustrated in Fig. 1. Although it provides a comprehensive view of the
field, its relatively high level of abstraction does not capture some important features that
are crucial for obtaining efficient implementations on modern high performance computing
architectures.

The present work does not seek to replace this taxonomy but rather provides a conceptual
view of parallel ACO that relates more closely to real parallel architectures. By bringing
together the high-level concepts of parallel ACO and the lower-level parallel computing
models, it aims to serve as a methodological framework for the design of efficient ACO
implementations.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

47

2 And Colony Optimization

The main purpose of this chapter is to complement existing parallel ACO models with a
computational design that relates more closely to high performance computing architectures.
Emerging from several years of work by the authors on the parallelization of ACO in various
computing environments including clusters, symmetric multiprocessors (SMP), multicore
processors and graphics processing units (GPU) [5–10], it is based on the concepts of
computing entities and memory structures. It provides a conceptual vision of parallel
ACO that we believe more balanced between theory and practice. We revisit the existing
literature and present various implementations from this viewpoint. Extensive experimental
results are presented to validate the proposed approaches across a broad range of computing
environments. Key algorithmic, technical and programming issues are also addressed in this
context.

2. Literature review on Parallel Ant Colony Optimization

During the past 20 years, the ACO metaheuristic has improved significantly to become one
of the most effective combinatorial optimization methods. For about a decade, following
this trend, a number of parallelization techniques have been proposed to further enhance
its search process. Works on traditional CPU-based parallel ACO can be classified into
two general approaches: parallel ants and multiple ant colonies. These approaches are
briefly explained in Sections 2.1 and 2.2. On the other hand, few authors have proposed
parallel implementations dedicated to specific architectures. Section 2.3 is dedicated to these
hardware-oriented approaches. In all cases, a survey of related works is also provided.

2.1. Parallel ants

Works related to the parallel ants approach, which aims to execute the ants tour construction
phase on many processing elements, were initiated by Bullnheimer et al. [2]. They
proposed two parallelization strategies for the Ant System on a message passing and
distributed-memory architecture. The first one is a low-level and synchronous strategy that
aims to accelerate computations by distributing ants to processors in a master-slave fashion.
At each iteration, the master broadcasts the pheromone structure to slaves, which then
compute their tours in parallel and send them back to the master. The time needed for these
global communications and synchronizations implies a considerable overhead. The second
strategy aims to reduce it by letting the algorithm perform a given number of iterations
without exchanging information. The authors conclude that this partially asynchronous
strategy is preferable due to the considerable reduction of the communication overhead.

The works of Talbi et al. [11], Randall and Lewis [12], Islam et al. [13], Craus and Rudeanu
[14], Stützle [3] and Doerner et al. [15] are based on a similar parallelization approach
and a distributed memory architecture. Delisle et al. [5, 6] implemented this scheme on
shared-memory architectures like SMP computers and multi-core processors. They also
compared performance between the two types of architectures [7].

2.2. Multiple ant colonies

The multiple ant colonies approach, also based on a message-passing and distributed
memory architecture, aims to execute whole ant colonies on available processing elements.

Ant Colony Optimization - Techniques and Applications46
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 3

http://dx.doi.org/10.5772/CHAPTERDOI

It was introduced by Stützle [3] with the parallel execution of multiple independent copies
of the same algorithm. Middendorf et al. [16] extended this approach by introducing four
information exchange strategies between ant colonies: exchange of globally best solution,
circular exchange of locally best solutions, migrants or locally best solutions plus migrants.
It is shown that it can be advantageous for ant colonies to avoid communicating too much
information and too often. Giving up on the idea of sharing whole pheromone information,
they based their strategy on the trade of a single solution at each exchange step.

Chu et al. [17], Manfrin et al. [18], Ellabib et al. [19] and Alba et al. [20] have also
proposed different information exchange strategies for the multiple ant colony approach.
Many parameters are studied like the topology of the links between processors as well as
the nature and frequency of information exchanges. These strategies are implemented using
MPI on distributed memory architectures. On the other hand, Delisle et al. [8] adapted some
of them on shared-memory architectures.

2.3. Hardware-oriented parallel ACO

Even though they mostly follow the parallel ants and multiple ant colonies approaches,
hardware-oriented approaches are dedicated to specific and untraditional parallel
architectures. Scheuermann et al. [21, 22] designed parallel implementations of ACO on
Field Programmable Gate Arrays (FPGA). Considerable changes to the algorithmic structure
of the metaheuristic were needed to take benefit of this particular architecture.

Few authors have tackled the problem of parallelizing ACO on GPU in the form of
preliminary work. Catala et al. [23] propose an implementation of ACO to solve the
Orienteering Problem. Instances of up to a few thousand nodes are solved by building
solutions on GPU. Wang et al. [24] propose an implementation of the MMAS where the tour
construction phase is executed on a GPU to solve a 30 city TSP. Similar implementations are
reported by You [25], Zhu and Curry [26], Li et al. [27], Cecilia et al. [28] and Delévacq et

al. [9] . Following these works, Delévacq et al. [10] have proposed various parallelization
strategies for ACO on GPU as well as a comparative study to show the influence of various
parameters on search efficiency.

Finally, concerning grid applications, Weis and Lewis [29] implemented an ACO algorithm
on an ad-hoc grid for the design of a radio frequency antenna structure. Mocholi et al. [30]
also proposed a medium grain master-slave algorithm to solve the Orienteering Problem.

In addition to a complete survey, Pedemonte et al. [4] proposed a taxonomy for Parallel
ACO which is illustrated in Fig. 1. Although it provides a comprehensive view of the
field, its relatively high level of abstraction does not capture some important features that
are crucial for obtaining efficient implementations on modern high performance computing
architectures.

The present work does not seek to replace this taxonomy but rather provides a conceptual
view of parallel ACO that relates more closely to real parallel architectures. By bringing
together the high-level concepts of parallel ACO and the lower-level parallel computing
models, it aims to serve as a methodological framework for the design of efficient ACO
implementations.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

47

4 And Colony Optimization

Figure 1. Taxonomy for parallel ACO [4].

3. A new architecture-oriented taxonomy for parallel ACO

The efficient implementation of a parallel metaheuristic in optimization software generally
requires the consideration of the underlying architecture. Inspired by Talbi [31], we
distinguish the following main parallel architectures: clusters/networks of workstations,
symmetric multiprocessors / multicore processors, grids and graphics processing units.

Clusters and Networks of Workstations (COWs/NOWs) are distributed-memory
architectures where each processor has its own memory (Fig. 2(a)). Information exchanges
between processors require explicit message passing which implies programming efforts and
communication costs. NOWs may be seen as an heterogeneous group of computers whereas
COWs are homogeneous, unified computing devices.

Figure 2. Shared-memory and distributed-memory parallel architectures [31].

Symmetric multiprocessors (SMPs) and multicore processors are shared-memory
architectures where the processors are connected to a common memory (Fig. 2(b)).
Information exchanges between processors are facilitated by the single address space but
synchronizations still have to be managed. SMPs consist of many processors that are linked
to a bus network and multicore processors contain many processors on a single chip.

Ant Colony Optimization - Techniques and Applications48
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 5

http://dx.doi.org/10.5772/CHAPTERDOI

Grids may be considered as pools of heterogeneous and dynamic computing resources
geographically distributed across multiple administrative domains and owned by different
organizations ([32]). These resources are usually high performance computing platforms
connected with a dedicated high-speed network or workstations linked by a nondedicated
network such as the Internet. In such volatile systems, security, fault tolerance and resource
discovery are important issues to address. Fortunately, middleware usually frees the grid
application programmer from much of these issues.

Finally, graphics processing units (GPUs) are devices that are used in computers to
manipulate computer graphics. As GPU technology has evolved drastically in the last few
years, it has been increasingly used to accelerate general-purpose scientific and engineering
applications. As shown in Figure 3, the conventional NVIDIA GPU [33] includes many
multiprocessors and processors which execute multiple coordinated threads. Several
memories are distinguished on this special hardware, differing in size, latency and access
type.

Figure 3. NVIDIA GPU architecture [33].

Considering the variety of architectures currently available in the world of high performance
computing, the successful design and implementation of a parallel ACO algorithm on one
platform or another may be a significant challenge. Moreover, most computers fall into many
categories: a computational cluster may be composed of many distributed nodes which
include multicore processors and GPUs. The challenge then becomes two fold: identifying
a suitable combination of parallel strategies and implementing it on the target system. In
order to make this process simpler, we propose a taxonomy for parallel ACO which takes
implementation details into account. It distinguishes three criteria: the ACO granularity
level, the "computational entity" associated to that level and the memory structure available
at that level.

3.1. ACO granularity level

The decomposition of an ACO algorithm into tasks to be executed by different processors
may be performed according to several granularities. One of the main goals of the
parallelization process is to find an equitable compromise between the number of tasks and
the cost associated to the management of these tasks. Based on the algorithmic structure of

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

49

4 And Colony Optimization

Figure 1. Taxonomy for parallel ACO [4].

3. A new architecture-oriented taxonomy for parallel ACO

The efficient implementation of a parallel metaheuristic in optimization software generally
requires the consideration of the underlying architecture. Inspired by Talbi [31], we
distinguish the following main parallel architectures: clusters/networks of workstations,
symmetric multiprocessors / multicore processors, grids and graphics processing units.

Clusters and Networks of Workstations (COWs/NOWs) are distributed-memory
architectures where each processor has its own memory (Fig. 2(a)). Information exchanges
between processors require explicit message passing which implies programming efforts and
communication costs. NOWs may be seen as an heterogeneous group of computers whereas
COWs are homogeneous, unified computing devices.

Figure 2. Shared-memory and distributed-memory parallel architectures [31].

Symmetric multiprocessors (SMPs) and multicore processors are shared-memory
architectures where the processors are connected to a common memory (Fig. 2(b)).
Information exchanges between processors are facilitated by the single address space but
synchronizations still have to be managed. SMPs consist of many processors that are linked
to a bus network and multicore processors contain many processors on a single chip.

Ant Colony Optimization - Techniques and Applications48
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 5

http://dx.doi.org/10.5772/CHAPTERDOI

Grids may be considered as pools of heterogeneous and dynamic computing resources
geographically distributed across multiple administrative domains and owned by different
organizations ([32]). These resources are usually high performance computing platforms
connected with a dedicated high-speed network or workstations linked by a nondedicated
network such as the Internet. In such volatile systems, security, fault tolerance and resource
discovery are important issues to address. Fortunately, middleware usually frees the grid
application programmer from much of these issues.

Finally, graphics processing units (GPUs) are devices that are used in computers to
manipulate computer graphics. As GPU technology has evolved drastically in the last few
years, it has been increasingly used to accelerate general-purpose scientific and engineering
applications. As shown in Figure 3, the conventional NVIDIA GPU [33] includes many
multiprocessors and processors which execute multiple coordinated threads. Several
memories are distinguished on this special hardware, differing in size, latency and access
type.

Figure 3. NVIDIA GPU architecture [33].

Considering the variety of architectures currently available in the world of high performance
computing, the successful design and implementation of a parallel ACO algorithm on one
platform or another may be a significant challenge. Moreover, most computers fall into many
categories: a computational cluster may be composed of many distributed nodes which
include multicore processors and GPUs. The challenge then becomes two fold: identifying
a suitable combination of parallel strategies and implementing it on the target system. In
order to make this process simpler, we propose a taxonomy for parallel ACO which takes
implementation details into account. It distinguishes three criteria: the ACO granularity
level, the "computational entity" associated to that level and the memory structure available
at that level.

3.1. ACO granularity level

The decomposition of an ACO algorithm into tasks to be executed by different processors
may be performed according to several granularities. One of the main goals of the
parallelization process is to find an equitable compromise between the number of tasks and
the cost associated to the management of these tasks. Based on the algorithmic structure of

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

49

6 And Colony Optimization

ACO, the proposed classification distinguishes four granularity levels from coarsest to finest:
colony, iteration, ant and solution element.

Parallelization at the colony level consists in defining the execution of a whole ACO
algorithm as a task and assigning it to a processor. The multiple independent colonies
and the multiple cooperating colonies approaches, as defined respectively by Stützle [3] and
Middendorf et al. [16], may be associated to this level. A single colony is typically assigned
to a processor but it is possible to assign many with some form of scheduling. At this level,
the main factors to consider in the parallelization process are the homogeneity of the colonies
as well as their interactions.

Depending on design choices, parallelization at the iteration level may be considered as a
particular case of either the colony level or the ant level parallelizations. In fact, it may
be seen as a hybrid between these two levels instead of a full level. The idea is then to
share the iterations of the algorithm between available processors. A first way to implement
this strategy is to divide the ants of a single colony into groups and to let each group
evolve independently during the algorithm. A second way is to let these groups share their
pheromone information after a given number of iterations in a way similar to the partially
asynchronous implementation of Bullnheimer et al. [2]. At this level, the way the iterations
are coordinated between groups will effect the global parallel performance.

Parallelization at the ant level implies the distribution of the tasks included in an iteration to
available processors. It is mainly the ants construction phase but also operations associated
to pheromone update and solution management. This level is related to the typical parallel
ants strategy where one or many ants are assigned to each processing element. In that
case, special care must be taken to ensure that pheromone updates and general management
operations like the identification and update of the best ant do not significantly degrade the
performance of the implementation.

Until a few years ago, parallelization at the ant level was generally the finest granularity
considered for most optimization problems. However, the emergence of massively parallel
architectures like the GPU have resulted in the need for finer approaches. At the solution
element level, the main operations that are considered for parallelization are the state
transition rule and solution evaluation. In the first case, one possible strategy is to evaluate
several candidates in parallel to speedup the choice of the next move by an ant. In the second
case, the evaluation of the objective function of a particular ant is decomposed among several
processors.

The approach proposed in this section sought to determine a parallelization framework
taking into account both the main ACO components and the multiple possible granularities.
In the next section, it is augmented by considering the underlying computational
architecture.

3.2. Computational entity

Nowadays, the typical high performance parallel computer is composed of a hierarchy of
several different architectures. For example, it is common to find a computational cluster
with multiple distributed SMP nodes, each one of them being composed of multicore
processors and GPU cards. Moreover, this type of machine is often found in computational
grids. In order to obtain the best possible performance on these platforms, an algorithm has

Ant Colony Optimization - Techniques and Applications50
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 7

http://dx.doi.org/10.5772/CHAPTERDOI

to be implemented according to at least a part of this hierarchy. The proposed classification
distinguishes each level of this hierarchy from the parallel programming perspective. This
translates into the definition of five computational entities: system, node, process, block and
thread.

A system defines a parallel computer as a unified computational resource which may be a
standard workstation or a cluster. A distinction is made between these single systems and
grids which are considered multiple systems.

A node is a discernable part of a system to which tasks can be assigned. A system may then
be composed of a single node which is the case of the standard workstation, or of multiple
nodes which is the case of clusters.

A process is a computational entity that manages and executes sequential and parallel
programs. As this concept refers to the typical process in operating systems, it can hold
one or many threads which may be grouped together or not. When a process executes only
sequential code, it is considered as the smallest indivisible entity of an implementation.

A block is an intermediate entity between process and thread. This notion comes from
the field of GPU computing in which a block is composed of many threads. The standard
processor may be seen as a particular case where a single block is executed. A sequential
processor then holds one block and one thread whereas a multicore processor holds one
block and several threads.

Finally, a thread is a sequential flow of instructions that is part of a block. It represents an
indivisible entity and the smallest one in the model: it is always sequential and executes
instructions on a processor at a given time. Therefore, even though in practice there may
be more threads than processors (some threads will be executed while some others will be
idle), in this model we consider that these threads may be merged into a smaller number of
threads corresponding to the number of available processors.

Complementary to the notion of computational entity, we add the concept of memory that
may be relevant to all five levels previously defined.

3.3. Memory

Memory is an important aspect of ACO algorithms. It serves as a container for pheromone
information, problem data and various parameters. It also serves as a channel for information
exchange in many parallel implementations. Therefore, as accessibility and access speed will
have a significant impact on the feasibility and performance of the parallel implementation,
three categories are distinguished: local, global and remote.

Local memory refers to a memory space that is directly accessible by the computational
entities of a given level and fast in access time relatively to this particular level. For example,
the shared memory of one multiprocessor of a GPU (see Figure 3) is considered as local
memory for all the threads that are executed by a block on this multiprocessor. The registers
of a processor could also be considered as local memory if they were managed directly,
although it is usually not the case.

Global memory is a memory space that can also be accessed directly by the computational
entities of a given level, but relatively slow in access time. For example, the device memory of

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

51

6 And Colony Optimization

ACO, the proposed classification distinguishes four granularity levels from coarsest to finest:
colony, iteration, ant and solution element.

Parallelization at the colony level consists in defining the execution of a whole ACO
algorithm as a task and assigning it to a processor. The multiple independent colonies
and the multiple cooperating colonies approaches, as defined respectively by Stützle [3] and
Middendorf et al. [16], may be associated to this level. A single colony is typically assigned
to a processor but it is possible to assign many with some form of scheduling. At this level,
the main factors to consider in the parallelization process are the homogeneity of the colonies
as well as their interactions.

Depending on design choices, parallelization at the iteration level may be considered as a
particular case of either the colony level or the ant level parallelizations. In fact, it may
be seen as a hybrid between these two levels instead of a full level. The idea is then to
share the iterations of the algorithm between available processors. A first way to implement
this strategy is to divide the ants of a single colony into groups and to let each group
evolve independently during the algorithm. A second way is to let these groups share their
pheromone information after a given number of iterations in a way similar to the partially
asynchronous implementation of Bullnheimer et al. [2]. At this level, the way the iterations
are coordinated between groups will effect the global parallel performance.

Parallelization at the ant level implies the distribution of the tasks included in an iteration to
available processors. It is mainly the ants construction phase but also operations associated
to pheromone update and solution management. This level is related to the typical parallel
ants strategy where one or many ants are assigned to each processing element. In that
case, special care must be taken to ensure that pheromone updates and general management
operations like the identification and update of the best ant do not significantly degrade the
performance of the implementation.

Until a few years ago, parallelization at the ant level was generally the finest granularity
considered for most optimization problems. However, the emergence of massively parallel
architectures like the GPU have resulted in the need for finer approaches. At the solution
element level, the main operations that are considered for parallelization are the state
transition rule and solution evaluation. In the first case, one possible strategy is to evaluate
several candidates in parallel to speedup the choice of the next move by an ant. In the second
case, the evaluation of the objective function of a particular ant is decomposed among several
processors.

The approach proposed in this section sought to determine a parallelization framework
taking into account both the main ACO components and the multiple possible granularities.
In the next section, it is augmented by considering the underlying computational
architecture.

3.2. Computational entity

Nowadays, the typical high performance parallel computer is composed of a hierarchy of
several different architectures. For example, it is common to find a computational cluster
with multiple distributed SMP nodes, each one of them being composed of multicore
processors and GPU cards. Moreover, this type of machine is often found in computational
grids. In order to obtain the best possible performance on these platforms, an algorithm has

Ant Colony Optimization - Techniques and Applications50
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 7

http://dx.doi.org/10.5772/CHAPTERDOI

to be implemented according to at least a part of this hierarchy. The proposed classification
distinguishes each level of this hierarchy from the parallel programming perspective. This
translates into the definition of five computational entities: system, node, process, block and
thread.

A system defines a parallel computer as a unified computational resource which may be a
standard workstation or a cluster. A distinction is made between these single systems and
grids which are considered multiple systems.

A node is a discernable part of a system to which tasks can be assigned. A system may then
be composed of a single node which is the case of the standard workstation, or of multiple
nodes which is the case of clusters.

A process is a computational entity that manages and executes sequential and parallel
programs. As this concept refers to the typical process in operating systems, it can hold
one or many threads which may be grouped together or not. When a process executes only
sequential code, it is considered as the smallest indivisible entity of an implementation.

A block is an intermediate entity between process and thread. This notion comes from
the field of GPU computing in which a block is composed of many threads. The standard
processor may be seen as a particular case where a single block is executed. A sequential
processor then holds one block and one thread whereas a multicore processor holds one
block and several threads.

Finally, a thread is a sequential flow of instructions that is part of a block. It represents an
indivisible entity and the smallest one in the model: it is always sequential and executes
instructions on a processor at a given time. Therefore, even though in practice there may
be more threads than processors (some threads will be executed while some others will be
idle), in this model we consider that these threads may be merged into a smaller number of
threads corresponding to the number of available processors.

Complementary to the notion of computational entity, we add the concept of memory that
may be relevant to all five levels previously defined.

3.3. Memory

Memory is an important aspect of ACO algorithms. It serves as a container for pheromone
information, problem data and various parameters. It also serves as a channel for information
exchange in many parallel implementations. Therefore, as accessibility and access speed will
have a significant impact on the feasibility and performance of the parallel implementation,
three categories are distinguished: local, global and remote.

Local memory refers to a memory space that is directly accessible by the computational
entities of a given level and fast in access time relatively to this particular level. For example,
the shared memory of one multiprocessor of a GPU (see Figure 3) is considered as local
memory for all the threads that are executed by a block on this multiprocessor. The registers
of a processor could also be considered as local memory if they were managed directly,
although it is usually not the case.

Global memory is a memory space that can also be accessed directly by the computational
entities of a given level, but relatively slow in access time. For example, the device memory of

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

51

8 And Colony Optimization

a GPU is considered as global memory for the threads of a given block. The shared memory
of a SMP node is also considered as global memory for the processors or cores of that node.

Remote memory is a memory space that can not be directly accessed by the entities, but
for which the information can be made available by an explicit operation between entities.
Obviously, remote memory access is considered to be slower than global memory access. For
example, the memory available to a processor located in a specific node of a cluster will be
considered as remote for the processors on other nodes.

Table 1 summarizes the proposed taxonomy. According to it, designing a parallel ACO
implementation implies to link a computational entity and a memory structure to each
ACO granularity level. In the next section, two case studies, extracted from the author’s
previous works, are proposed and expressed according to this taxonomy. In each case, the
parallelization strategy and experimental results are synthesized and discussed in order to
illustrate various features of the classification.

ACO granularity Computational entity Memory

Colony System Local
Iteration Node Global

Ant Process Remote
Solution element Block

Thread

Table 1. Architecture-based taxonomy for parallel ACO.

4. Case studies

Two case studies are presented to illustrate how the proposed framework relates to real
implementations. In order to cover the two main general parallelization strategies for ACO,
both parallel ants and multicolony approaches are proposed. In the first case, SMP and
muticore processors are considered as underlying architectures. In the second case, a GPU is
used as a coprocessor of a sequential processor. This section is then concluded with a more
general discussion about how this taxonomy applies to most other combinations of ACO
algorithms and parallel architectures.

4.1. Multi-Colony parallel ACO on a SMP and multicore architecture

This approach deals with the management of multiple colonies which use a global shared
memory to exchange information. The whole algorithm executes on a single system and
a single node so there is no parallelism at these levels. The colonies are executed in
parallel and spawn multiple parallel ants. Therefore, colonies are associated to processes
and ants to threads. At the programming level, this can be implemented either with multiple
operating system processes and multiple threads or with multiple nested threads. In this
implementation, we choose the latter as the available SMP node supports nested threads
with a shared memory available to all processors. Therefore, this implementation is defined

as COLONY
global
process-ITERATION

global
process-ANT

global
thread . There is no additionnal parallelism at the

solution element level so it is not specified here.

Ant Colony Optimization - Techniques and Applications52
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 9

http://dx.doi.org/10.5772/CHAPTERDOI

The proposed implementation is defined assuming a shared-memory model based on threads
in which algorithm execution begins with a single thread called the master thread and
executed sequentially. To execute a part of the algorithm in parallel, a parallel region
is defined where many threads are created, each one of them executing that part of the
algorithm concurrently. All threads have access to the whole shared memory, but we can
define private data, which is data that will be accessible only by a single thread. Inside a
parallel region, we can define a parallel loop, which is a loop where cycles are divided among
existing threads in a work-sharing manner. To manage synchronizations between threads,
some form of explicit control must be used. A barrier, as the name implies, is a point in
the execution of the algorithm beyond which no thread may execute until all threads have
reached that point. Also, a critical region is a part of a parallel region which can be executed
only by one thread at a time. It is usually used to avoid concurrent writes to shared data. We
can now describe the shared-memory parallelization strategy for ACO.

Two versions of the multicolony strategy are proposed which are related to the author’s
previous work ([6, 8]). The first one, related to parallel independent runs as defined by Stützle
[3], implies multiple threads each executing their own copy of the sequential metaheuristic.
For the second strategy, we let the colonies cooperate by using a common global best known
solution in the shared memory. In both cases, ants are executed in parallel by many nested
threads.

In the first implementation, search processes are independent. There are as many copies
of data structures as there are colonies. In particular, even if they all reside in the shared
memory, pheromone structures are private and exclusive to each thread. ACO parameters
are also private, which means that they could be different even if it will not be experimented
in this study. In a theoretical context, this kind of parallelization should imply minimal
communication and synchronization overheads, hence maximal efficiency. However, this is
not the case in a practical context. Even if the data structures are private, colonies need to
simultaneously access them through common system resources. At this point, it is up to the
computer system to efficiently manage this concurrency.

Parallelizing ACO in multiple search processes is quite simple: we only need to create a
parallel region at the beginning of the sequential algorithm. This way, we can create as many
threads as we have colonies. A memory location dedicated to store the global best solution
known by all processors is reserved in the shared memory and is accessible by all threads. At
the end of the parallel region, a critical section lets each thread verify if the best solution it has
found qualifies for replacing the global best one and update the data structure accordingly.
The best solution of the parallel independent runs can then be identified after the parallel
region as the result of the parallel algorithm.

To illustrate the scheme of multiple interacting colonies in a shared-memory model, the
simple case of a common best global solution located in the shared memory is implemented.
This relates to the first strategy defined by Middendorf [16], that is, exchange of the globally
best solution. The exchange rule of this strategy implies that in each information exchange
step, the globally best known solution is broadcast to all colonies where it becomes the locally
best solution. Information exchanges are performed at each given number of cycles.

In a shared-memory context, there is no such thing as an explicit broadcast communication
step. It is replaced by the use of the global best solution as a dedicated structure in the shared
memory. However, it is now used differently and more frequently. At each information

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

53

8 And Colony Optimization

a GPU is considered as global memory for the threads of a given block. The shared memory
of a SMP node is also considered as global memory for the processors or cores of that node.

Remote memory is a memory space that can not be directly accessed by the entities, but
for which the information can be made available by an explicit operation between entities.
Obviously, remote memory access is considered to be slower than global memory access. For
example, the memory available to a processor located in a specific node of a cluster will be
considered as remote for the processors on other nodes.

Table 1 summarizes the proposed taxonomy. According to it, designing a parallel ACO
implementation implies to link a computational entity and a memory structure to each
ACO granularity level. In the next section, two case studies, extracted from the author’s
previous works, are proposed and expressed according to this taxonomy. In each case, the
parallelization strategy and experimental results are synthesized and discussed in order to
illustrate various features of the classification.

ACO granularity Computational entity Memory

Colony System Local
Iteration Node Global

Ant Process Remote
Solution element Block

Thread

Table 1. Architecture-based taxonomy for parallel ACO.

4. Case studies

Two case studies are presented to illustrate how the proposed framework relates to real
implementations. In order to cover the two main general parallelization strategies for ACO,
both parallel ants and multicolony approaches are proposed. In the first case, SMP and
muticore processors are considered as underlying architectures. In the second case, a GPU is
used as a coprocessor of a sequential processor. This section is then concluded with a more
general discussion about how this taxonomy applies to most other combinations of ACO
algorithms and parallel architectures.

4.1. Multi-Colony parallel ACO on a SMP and multicore architecture

This approach deals with the management of multiple colonies which use a global shared
memory to exchange information. The whole algorithm executes on a single system and
a single node so there is no parallelism at these levels. The colonies are executed in
parallel and spawn multiple parallel ants. Therefore, colonies are associated to processes
and ants to threads. At the programming level, this can be implemented either with multiple
operating system processes and multiple threads or with multiple nested threads. In this
implementation, we choose the latter as the available SMP node supports nested threads
with a shared memory available to all processors. Therefore, this implementation is defined

as COLONY
global
process-ITERATION

global
process-ANT

global
thread . There is no additionnal parallelism at the

solution element level so it is not specified here.

Ant Colony Optimization - Techniques and Applications52
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 9

http://dx.doi.org/10.5772/CHAPTERDOI

The proposed implementation is defined assuming a shared-memory model based on threads
in which algorithm execution begins with a single thread called the master thread and
executed sequentially. To execute a part of the algorithm in parallel, a parallel region
is defined where many threads are created, each one of them executing that part of the
algorithm concurrently. All threads have access to the whole shared memory, but we can
define private data, which is data that will be accessible only by a single thread. Inside a
parallel region, we can define a parallel loop, which is a loop where cycles are divided among
existing threads in a work-sharing manner. To manage synchronizations between threads,
some form of explicit control must be used. A barrier, as the name implies, is a point in
the execution of the algorithm beyond which no thread may execute until all threads have
reached that point. Also, a critical region is a part of a parallel region which can be executed
only by one thread at a time. It is usually used to avoid concurrent writes to shared data. We
can now describe the shared-memory parallelization strategy for ACO.

Two versions of the multicolony strategy are proposed which are related to the author’s
previous work ([6, 8]). The first one, related to parallel independent runs as defined by Stützle
[3], implies multiple threads each executing their own copy of the sequential metaheuristic.
For the second strategy, we let the colonies cooperate by using a common global best known
solution in the shared memory. In both cases, ants are executed in parallel by many nested
threads.

In the first implementation, search processes are independent. There are as many copies
of data structures as there are colonies. In particular, even if they all reside in the shared
memory, pheromone structures are private and exclusive to each thread. ACO parameters
are also private, which means that they could be different even if it will not be experimented
in this study. In a theoretical context, this kind of parallelization should imply minimal
communication and synchronization overheads, hence maximal efficiency. However, this is
not the case in a practical context. Even if the data structures are private, colonies need to
simultaneously access them through common system resources. At this point, it is up to the
computer system to efficiently manage this concurrency.

Parallelizing ACO in multiple search processes is quite simple: we only need to create a
parallel region at the beginning of the sequential algorithm. This way, we can create as many
threads as we have colonies. A memory location dedicated to store the global best solution
known by all processors is reserved in the shared memory and is accessible by all threads. At
the end of the parallel region, a critical section lets each thread verify if the best solution it has
found qualifies for replacing the global best one and update the data structure accordingly.
The best solution of the parallel independent runs can then be identified after the parallel
region as the result of the parallel algorithm.

To illustrate the scheme of multiple interacting colonies in a shared-memory model, the
simple case of a common best global solution located in the shared memory is implemented.
This relates to the first strategy defined by Middendorf [16], that is, exchange of the globally
best solution. The exchange rule of this strategy implies that in each information exchange
step, the globally best known solution is broadcast to all colonies where it becomes the locally
best solution. Information exchanges are performed at each given number of cycles.

In a shared-memory context, there is no such thing as an explicit broadcast communication
step. It is replaced by the use of the global best solution as a dedicated structure in the shared
memory. However, it is now used differently and more frequently. At each information

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

53

10 And Colony Optimization

exchange step, each thread compare its local value of the best solution with the global best
solution. If it has lower cost, it then becomes the new global best known solution. The use
of a critical region lets threads do their comparison without risking concurrent writes to the
data structure. At this point, the new global best known solution is used by all colonies for
the upcoming pheromone update. Since all threads need to have done their comparisons for
the new global best solution to be effectively known globally, a synchronization barrier needs
to be placed before the pheromone update procedure.

Each colony executes its own ants in parallel by creating a nested group of threads with
an additional parallel region. Ants are then distributed to the available processor cores and
update the global shared pheromone structure of the colony. Therefore, these updates must
be carried out within some form of critical zone to guarantee that unmanaged concurrent
writes are avoided. Next subsection shows how these strategies translate into a real
computing environment.

4.1.1. Experimental results

The proposed experimentations are based on the Ant Colony System (ACS) applied to
the Travelling Salesman Problem ([34]). Both implementations have been experimented
on ROMEO II in the Centre de Calcul de Champagne-Ardenne. ROMEO II is a
parallel supercomputer of cluster type, consisting of 8 Novascale SMP nodes dedicated to
computations. Each node includes 4 Intel Itanium II dual-core processors running at 1.6
GHz with 8MB of cache memory, for a total number of 8 cores, as well as from 16 GB to
128 GB of memory. Each execution is performed on a single node using from 1 to 8 cores.
Application code is written in C++ with OpenMP directives for parallelization. The chosen
TSP instances range in size from 783 cities to 13 509 cities. For a more detailed version of the
experimental setup and results, the reader may consult Delisle et al. [8].

Table 2 provides the summary of the experimentations with 1 to 8 independent colonies,
each colony residing on a separate core. For each problem and number of cores, the 4
columns provide respectively the speedup, the average tour length, the best tour length and
the relative closeness of the average tour length to the optimal solution. For each execution,
computed time comes from the last colony that finishes its search and tour length comes
from the colony that found the best solution.

We first notice that this implementation is quite scalable. In fact, speedups are relatively
close to the number of cores in all configurations. Obviously, there are still some system
costs associated to the parallel execution in a shared memory environment, which tend to
slightly grow as the number of processors/cores increases. Also, as each core performs
the computations associated with a whole ant colony, workload is considerably large in the
parallel region. The ratio between parallelism costs and total execution time per core is then
greatly reduced.

Table 3 provides results obtained with multiple cooperating colonies. Every 10 iterations, the
global best solution is used for the global pheromone update. For the remaining iterations,
each colony uses its own best known solution to update its pheromone structure. We first
note that the exchange strategy does not significantly hurt the execution time as speedups are
still excellent with up to 8 processors. Still, when 4 and 8 processors are used, most efficiency
measures are slightly inferior to the ones obtained with independent colonies. This was

Ant Colony Optimization - Techniques and Applications54
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 11

http://dx.doi.org/10.5772/CHAPTERDOI

Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.98 8,823 8,806 99.81
4 3.69 8,820 8,815 99.84
8 5.93 8,829 8,822 99.74

d2103

1 - 80,511 80,466 99.92
2 1.97 80,573 80,466 99.85
4 4.00 80,508 80,477 99.93
8 6.92 80,501 80,463 99.94

pla7397

1 - 23,365,444 23,353,738 99.55
2 1.99 23,352,192 23,332,663 99.61
4 3.80 23,380,613 23,350,736 99.48
8 7.80 23,425,288 23,396,612 99.29

usa13509

1 - 20,465,969 20,414,755 97.58
2 1.89 20,376,567 20,250,719 98.03
4 3.65 20,443,190 20,423,250 97.70
8 7.30 20,441,068 20,410,519 97.71

Table 2. Multiple independent colonies: number of cores, speedup, average tour length, best tour length and relative

closeness of the average tour length to the optimal solution.

Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.95 8,822 8,810 99.82
4 3.69 8,819 8,815 99.86
8 5.72 8,816 8,812 99.89

d2103

1 - 80,511 80,466 99.92
2 1.95 80,475 80,450 99.97
4 3.81 80,489 80,450 99.95
8 6.85 80,484 80,454 99.96

pla7397

1 - 23,365,444 23,353,738 99.55
2 2.00 23,348,946 23,322,729 99.62
4 3.89 23,358,733 23,334,364 99.58
8 7.75 23,356,251 23,350,596 99.59

usa13509

1 - 20,465,969 20,414,755 97.58
2 2.02 20,456,702 20,392,284 97.63
4 3.20 20,450,581 20,414,972 97.66
8 5.55 20,434,287 20,375,145 97.74

Table 3. Multiple cooperating colonies - Global best exchange each 10 cycles: number of cores, speedup, average tour

length, best tour length and relative closeness of the average tour length to the optimal solution.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

55

10 And Colony Optimization

exchange step, each thread compare its local value of the best solution with the global best
solution. If it has lower cost, it then becomes the new global best known solution. The use
of a critical region lets threads do their comparison without risking concurrent writes to the
data structure. At this point, the new global best known solution is used by all colonies for
the upcoming pheromone update. Since all threads need to have done their comparisons for
the new global best solution to be effectively known globally, a synchronization barrier needs
to be placed before the pheromone update procedure.

Each colony executes its own ants in parallel by creating a nested group of threads with
an additional parallel region. Ants are then distributed to the available processor cores and
update the global shared pheromone structure of the colony. Therefore, these updates must
be carried out within some form of critical zone to guarantee that unmanaged concurrent
writes are avoided. Next subsection shows how these strategies translate into a real
computing environment.

4.1.1. Experimental results

The proposed experimentations are based on the Ant Colony System (ACS) applied to
the Travelling Salesman Problem ([34]). Both implementations have been experimented
on ROMEO II in the Centre de Calcul de Champagne-Ardenne. ROMEO II is a
parallel supercomputer of cluster type, consisting of 8 Novascale SMP nodes dedicated to
computations. Each node includes 4 Intel Itanium II dual-core processors running at 1.6
GHz with 8MB of cache memory, for a total number of 8 cores, as well as from 16 GB to
128 GB of memory. Each execution is performed on a single node using from 1 to 8 cores.
Application code is written in C++ with OpenMP directives for parallelization. The chosen
TSP instances range in size from 783 cities to 13 509 cities. For a more detailed version of the
experimental setup and results, the reader may consult Delisle et al. [8].

Table 2 provides the summary of the experimentations with 1 to 8 independent colonies,
each colony residing on a separate core. For each problem and number of cores, the 4
columns provide respectively the speedup, the average tour length, the best tour length and
the relative closeness of the average tour length to the optimal solution. For each execution,
computed time comes from the last colony that finishes its search and tour length comes
from the colony that found the best solution.

We first notice that this implementation is quite scalable. In fact, speedups are relatively
close to the number of cores in all configurations. Obviously, there are still some system
costs associated to the parallel execution in a shared memory environment, which tend to
slightly grow as the number of processors/cores increases. Also, as each core performs
the computations associated with a whole ant colony, workload is considerably large in the
parallel region. The ratio between parallelism costs and total execution time per core is then
greatly reduced.

Table 3 provides results obtained with multiple cooperating colonies. Every 10 iterations, the
global best solution is used for the global pheromone update. For the remaining iterations,
each colony uses its own best known solution to update its pheromone structure. We first
note that the exchange strategy does not significantly hurt the execution time as speedups are
still excellent with up to 8 processors. Still, when 4 and 8 processors are used, most efficiency
measures are slightly inferior to the ones obtained with independent colonies. This was

Ant Colony Optimization - Techniques and Applications54
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 11

http://dx.doi.org/10.5772/CHAPTERDOI

Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.98 8,823 8,806 99.81
4 3.69 8,820 8,815 99.84
8 5.93 8,829 8,822 99.74

d2103

1 - 80,511 80,466 99.92
2 1.97 80,573 80,466 99.85
4 4.00 80,508 80,477 99.93
8 6.92 80,501 80,463 99.94

pla7397

1 - 23,365,444 23,353,738 99.55
2 1.99 23,352,192 23,332,663 99.61
4 3.80 23,380,613 23,350,736 99.48
8 7.80 23,425,288 23,396,612 99.29

usa13509

1 - 20,465,969 20,414,755 97.58
2 1.89 20,376,567 20,250,719 98.03
4 3.65 20,443,190 20,423,250 97.70
8 7.30 20,441,068 20,410,519 97.71

Table 2. Multiple independent colonies: number of cores, speedup, average tour length, best tour length and relative

closeness of the average tour length to the optimal solution.

Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.95 8,822 8,810 99.82
4 3.69 8,819 8,815 99.86
8 5.72 8,816 8,812 99.89

d2103

1 - 80,511 80,466 99.92
2 1.95 80,475 80,450 99.97
4 3.81 80,489 80,450 99.95
8 6.85 80,484 80,454 99.96

pla7397

1 - 23,365,444 23,353,738 99.55
2 2.00 23,348,946 23,322,729 99.62
4 3.89 23,358,733 23,334,364 99.58
8 7.75 23,356,251 23,350,596 99.59

usa13509

1 - 20,465,969 20,414,755 97.58
2 2.02 20,456,702 20,392,284 97.63
4 3.20 20,450,581 20,414,972 97.66
8 5.55 20,434,287 20,375,145 97.74

Table 3. Multiple cooperating colonies - Global best exchange each 10 cycles: number of cores, speedup, average tour

length, best tour length and relative closeness of the average tour length to the optimal solution.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

55

12 And Colony Optimization

expected as the information exchange steps imply a synchronization cost that grows with
the number of colonies used.

Concerning solution quality, the reader may observe that in all cases, the average tour length
obtained with multiple cooperating colonies is closer to the optimal solution than with
independent colonies or sequential execution. In most cases, the minimum solution found
is also better. It shows that the information exchange scheme, while simple, is benefical to

solution quality. Overall, results show that a COLONY
global
process-ITERATION

global
process-ANT

global
thread

implementation can be efficiently implemented on a SMP and multi-core computer node
containing up to 8 processors.

4.2. Parallel ants on Graphics Processing Units

This approach deals with the execution of a single ant colony on a GPU architecure as defined
in the author’s previous work ([10]). Ants are associated to blocks and solution elements are
associated to threads. As it is shown below, ants may communicate with the relatively slow
device memory of the GPU and solution elements may do so with the faster, shared memory
of a multiprocessor. As the ACO is not parallelized at the colony and iteration levels, their
execution remain sequential and memory structure is not specified. This implementation is

then defined as COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread.
Before providing more details about this implementation, a brief description of the
underlying GPU architecture and computational model are given.

As it may be seen in Figure 3, the conventional NVIDIA GPU [33] includes many Streaming
Multiprocessors (SM), each one of them being composed of Streaming Processors (SP). Several
memories are distinguished on this special hardware, differing in size, latency and access
type (read-only or read/write). Device memory is relatively large in size but slow in access
time. The global and local memory spaces are specific regions of the device memory that can
be accessed in read and write modes. Data structures of a computer program to be executed
on GPU must be created on the CPU and transferred on global memory which is accessible
to all SPs of the GPU. On the other hand, local memory stores automatic data structures that
consume more registers than available.

Each SM employs an architecture model called SIMT (Single Instruction, Multiple Thread)
which allows the execution of many coordinated threads in a data-parallel fashion. It is
composed of a constant memory cache, a texture memory cache, a shared memory and registers.
Constant and texture caches are linked to the constant and texture memories that are
physically located in the device memory. Consequently, they are accessible in read-only
mode by the SPs and faster in access time than the rest of the device memory. The constant
memory is very limited in size whereas texture memory size can be adjusted in order to
occupy the available device memory. All SPs can read and write in their local shared
memory, which is fast in access time but small in size. It is divided into memory banks
of 32-bits words that can be accessed simultaneously. This implies that parallel requests for
memory addresses that fall into the same memory bank cause the serialization of accesses
[33]. Registers are the fastest memories available on a GPU but involve the use of slow
local memory when too many are used. Moreover, accesses may be delayed due to register
read-after-write dependencies and register memory bank conflicts.

Ant Colony Optimization - Techniques and Applications56
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 13

http://dx.doi.org/10.5772/CHAPTERDOI

GPUs are programmable through different Application Programming Interfaces like CUDA,
OpenCL or DirectX. However, as current general-purpose APIs are still closely tied to specific
GPU models, we choose CUDA to fully exploit the available state-of-the-art NVIDIA Fermi
architecture. In the CUDA programming model [33], the GPU works as a SIMT co-processor
of a conventional CPU. It is based on the concept of kernels, which are functions (written
in C) executed in parallel by a given number of CUDA threads. These threads are grouped
together into blocks that are distributed on the GPU SMs to be executed independently of
each other. However, the number of blocks that an SM can process at the same time (active
blocks) is restricted and depends on the quantity of registers and shared memory used by
the threads of each block. Threads within a block can cooperate by sharing data through the
shared memory and by synchronizing their execution to coordinate memory accesses. In a
block, the system groups threads (typically 32) into warps which are executed simultaneously
on successive clock cycles. The number of threads per block must be a multiple of its size to
maximize efficiency. Much of the global memory latency can then be hidden by the thread
scheduler if there are sufficient independent arithmetic instructions that can be issued while
waiting for the global memory access to complete. Consequently, the more active blocks
there are per SM, and also active warps, the more the latency can be hidden.

It is important to note that in the context of GPU execution, flow control instructions (if,
switch, do, for, while) can affect the efficiency of an algorithm. In fact, depending on the
provided data, these instructions may force threads of a same warp to diverge, in other
words, to take different paths in the program. In that case, execution paths must be serialized,
increasing the total number of instructions executed by this warp.

In the parallel ants general strategy, ants of a single colony are distributed to processing
elements in order to execute tour constructions in parallel. On a conventional CPU
architecture, the concept of processing element is usually associated to a single-core processor
or to one of the cores of a multi-core processor. On a GPU architecture, the main choices are
to associate this concept either to an SP or to an SM. As this case study is concerned with
the latter, each ant is associated to a CUDA block and runs its tour construction phase in
parallel on a specific SM of the GPU. A dedicated thread of a given block is then in charge of
managing the tour construction of an ant, but an additional level of parallelism, the solution
element level, may be exploited in the computation of the state transition rule. In fact, an ant
evaluates several candidates before selecting the one to add to its current solution. As these
evaluations can be done in parallel, they are assigned to the remaining threads of the block.

A simple implementation would then imply keeping ant’s private data structures in the
global memory. However, as only one ant is assigned to a block and so to an SM, taking
advantage of the shared-memory is possible. Data needed to compute the ant state transition
rule is then stored in this memory that is faster and accessible by all threads that participate
in the computation. Most remaining issues encountered in the GPU implementation of the
parallel ants general strategy are related to memory management. More particularly, data
transfers between CPU and GPU as well as global memory accesses require considerable
time. As it was mentioned before, these accesses may be reduced by storing the related data
structures in shared memory. However, in the case of ACO, the three central data structures
are the pheromone matrix, the penalty matrix (typically the transition cost between all pairs
of solution elements) and the candidates lists, which are needed by all ants of the colony
while being too large (typically ranging from O(n) to O(n2) in size) to fit in shared memory.
They are then kept in global memory. On the other hand, as they are not modified during

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

57

12 And Colony Optimization

expected as the information exchange steps imply a synchronization cost that grows with
the number of colonies used.

Concerning solution quality, the reader may observe that in all cases, the average tour length
obtained with multiple cooperating colonies is closer to the optimal solution than with
independent colonies or sequential execution. In most cases, the minimum solution found
is also better. It shows that the information exchange scheme, while simple, is benefical to

solution quality. Overall, results show that a COLONY
global
process-ITERATION

global
process-ANT

global
thread

implementation can be efficiently implemented on a SMP and multi-core computer node
containing up to 8 processors.

4.2. Parallel ants on Graphics Processing Units

This approach deals with the execution of a single ant colony on a GPU architecure as defined
in the author’s previous work ([10]). Ants are associated to blocks and solution elements are
associated to threads. As it is shown below, ants may communicate with the relatively slow
device memory of the GPU and solution elements may do so with the faster, shared memory
of a multiprocessor. As the ACO is not parallelized at the colony and iteration levels, their
execution remain sequential and memory structure is not specified. This implementation is

then defined as COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread.
Before providing more details about this implementation, a brief description of the
underlying GPU architecture and computational model are given.

As it may be seen in Figure 3, the conventional NVIDIA GPU [33] includes many Streaming
Multiprocessors (SM), each one of them being composed of Streaming Processors (SP). Several
memories are distinguished on this special hardware, differing in size, latency and access
type (read-only or read/write). Device memory is relatively large in size but slow in access
time. The global and local memory spaces are specific regions of the device memory that can
be accessed in read and write modes. Data structures of a computer program to be executed
on GPU must be created on the CPU and transferred on global memory which is accessible
to all SPs of the GPU. On the other hand, local memory stores automatic data structures that
consume more registers than available.

Each SM employs an architecture model called SIMT (Single Instruction, Multiple Thread)
which allows the execution of many coordinated threads in a data-parallel fashion. It is
composed of a constant memory cache, a texture memory cache, a shared memory and registers.
Constant and texture caches are linked to the constant and texture memories that are
physically located in the device memory. Consequently, they are accessible in read-only
mode by the SPs and faster in access time than the rest of the device memory. The constant
memory is very limited in size whereas texture memory size can be adjusted in order to
occupy the available device memory. All SPs can read and write in their local shared
memory, which is fast in access time but small in size. It is divided into memory banks
of 32-bits words that can be accessed simultaneously. This implies that parallel requests for
memory addresses that fall into the same memory bank cause the serialization of accesses
[33]. Registers are the fastest memories available on a GPU but involve the use of slow
local memory when too many are used. Moreover, accesses may be delayed due to register
read-after-write dependencies and register memory bank conflicts.

Ant Colony Optimization - Techniques and Applications56
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 13

http://dx.doi.org/10.5772/CHAPTERDOI

GPUs are programmable through different Application Programming Interfaces like CUDA,
OpenCL or DirectX. However, as current general-purpose APIs are still closely tied to specific
GPU models, we choose CUDA to fully exploit the available state-of-the-art NVIDIA Fermi
architecture. In the CUDA programming model [33], the GPU works as a SIMT co-processor
of a conventional CPU. It is based on the concept of kernels, which are functions (written
in C) executed in parallel by a given number of CUDA threads. These threads are grouped
together into blocks that are distributed on the GPU SMs to be executed independently of
each other. However, the number of blocks that an SM can process at the same time (active
blocks) is restricted and depends on the quantity of registers and shared memory used by
the threads of each block. Threads within a block can cooperate by sharing data through the
shared memory and by synchronizing their execution to coordinate memory accesses. In a
block, the system groups threads (typically 32) into warps which are executed simultaneously
on successive clock cycles. The number of threads per block must be a multiple of its size to
maximize efficiency. Much of the global memory latency can then be hidden by the thread
scheduler if there are sufficient independent arithmetic instructions that can be issued while
waiting for the global memory access to complete. Consequently, the more active blocks
there are per SM, and also active warps, the more the latency can be hidden.

It is important to note that in the context of GPU execution, flow control instructions (if,
switch, do, for, while) can affect the efficiency of an algorithm. In fact, depending on the
provided data, these instructions may force threads of a same warp to diverge, in other
words, to take different paths in the program. In that case, execution paths must be serialized,
increasing the total number of instructions executed by this warp.

In the parallel ants general strategy, ants of a single colony are distributed to processing
elements in order to execute tour constructions in parallel. On a conventional CPU
architecture, the concept of processing element is usually associated to a single-core processor
or to one of the cores of a multi-core processor. On a GPU architecture, the main choices are
to associate this concept either to an SP or to an SM. As this case study is concerned with
the latter, each ant is associated to a CUDA block and runs its tour construction phase in
parallel on a specific SM of the GPU. A dedicated thread of a given block is then in charge of
managing the tour construction of an ant, but an additional level of parallelism, the solution
element level, may be exploited in the computation of the state transition rule. In fact, an ant
evaluates several candidates before selecting the one to add to its current solution. As these
evaluations can be done in parallel, they are assigned to the remaining threads of the block.

A simple implementation would then imply keeping ant’s private data structures in the
global memory. However, as only one ant is assigned to a block and so to an SM, taking
advantage of the shared-memory is possible. Data needed to compute the ant state transition
rule is then stored in this memory that is faster and accessible by all threads that participate
in the computation. Most remaining issues encountered in the GPU implementation of the
parallel ants general strategy are related to memory management. More particularly, data
transfers between CPU and GPU as well as global memory accesses require considerable
time. As it was mentioned before, these accesses may be reduced by storing the related data
structures in shared memory. However, in the case of ACO, the three central data structures
are the pheromone matrix, the penalty matrix (typically the transition cost between all pairs
of solution elements) and the candidates lists, which are needed by all ants of the colony
while being too large (typically ranging from O(n) to O(n2) in size) to fit in shared memory.
They are then kept in global memory. On the other hand, as they are not modified during

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

57

14 And Colony Optimization

the tour construction phase, it is possible to take benefit of the texture cache to reduce their
access times.

4.2.1. Experimental results

The proposed GPU strategy is implemented into an MMAS algorithm ([35]) and
experimented on various TSPs with sizes varying from 51 to 2103 cities. Minimums and
averages are computed from 25 trials for problems with less than 1000 cities and from
10 trials for larger instances. An effort is made to keep the algorithm and parameters as
close as possible to the original MMAS. Following the guidelines of Barr and Hickman [36]
and Alba [37], the relative speedup metric is computed on mean execution times to evaluate
the performance of the proposed implementation. Speedups are calculated by dividing the
sequential CPU time with the parallel time, which is obtained with the same CPU and the
GPU acting as a co-processor.

Experiments were made on one GPU of an NVIDIA Fermi C2050 server available at the
Centre de Calcul de Champagne-Ardenne. It contains 14 SMs, 32 SPs per SM, 48 KB of
shared memory per SM and a warp size of 32. The CPU code runs on one core of a 4-core
Xeon E5640 CPUs running at 2.67 Ghz and 24 GB of DDR3 memory. Application code was
written in the "C for CUDA V3.1" programming environment.

The implementation uses a number of blocks equal to the number of ants, each one of them
being composed of a number of threads equal to the size of candidate lists, in that case 20.
Also, the number of iterations is set with the intent of globally keeping the same global
number of tour constructions for each experiment. For more details on the experimental
setup, the reader may consult Delévacq et al. ([10]).

A first step in our experiments is to compare solution quality obtained by sequential and
parallel versions of the algorithm. Table 4 presents average tour length, best tour length
and closeness to the optimal solution for each problem. The reader may note the similarity
between the results obtained by our sequential implementation and the ones provided by
the authors of the original MMAS ([35]), as well as their significant closeness to optimal
solutions.

A second step is to evaluate and compare the reduction of execution time that is obtained
with the GPU parallelization strategy. Table 4 shows the speedups obtained for each
problem. The reader may notice that speedups are ranging from 6.84 to 19.47. This shows
that distributing ants to blocks and sharing the computation of the state transition rule
between several threads of a block is efficient. Also, speedup generally increases with
problem size, indicating the good scalabilty of the strategy. However, a slight decrease
is encountered with the 2103 cities problem. In that case, the large workload and data
structures imply memory access latencies and bank conflicts costs that grow faster than
the benefits of parallelizing available work. Associated to the combined effect of the
increasing number of blocks required to perform computations and a limited number
of active blocks per SM, performance gains become less significative. Overall, results

show that a COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread
implementation can be efficiently implemented on a state-of-the-art GPU.

Ant Colony Optimization - Techniques and Applications58
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 15

http://dx.doi.org/10.5772/CHAPTERDOI

Problem Speedup
Stützle Avg. tour Best tour

Closeness
and Hoos length length

eil51
Sequential - 427.80 427.32 426 99.69

Parallel 6.84 - 427.20 426 99.72

kroA100
Sequential - 21,336.90 21,314.36 21,282 99.85

Parallel 8.12 - 21,317.32 21,282 99.83

d198
Sequential - 15,952.30 15,973.84 15,913 98.77

Parallel 11.13 - 15,961.64 15,851 98.85

lin318
Sequential - 42,346.60 42,341.72 42,107 99.26

Parallel 11.03 - 42,325.32 42,147 99.29

rat783
Sequential - - 9,042.44 8,923 97.32

Parallel 15.58 - 9,002.32 8,899 97.77

fl1577
Sequential - - 24,490.30 24,201 89.83

Parallel 19.47 - 24,287.80 23,938 90.84

d2103
Sequential - - 82,754.30 82,378 97.14

Parallel 17.64 - 82,756.00 82,547 97.13

Table 4. GPU implementation: speedup, average tour length from Stützle and Hoos original MMAS implementation [35],

average tour length, best tour length and relative closeness of the average tour length to the optimal solution.

5. Conclusion

The main objective of this chapter was to provide a new algorithmic model to formalize the
implementation of Ant Colony Optimization on high performance computing platforms. The
proposed taxonomy managed to capture important features related to both the algorithmic
structure of ACO and the architecture of parallel computers. Case studies were also
presented in order to illustrate how this classification translates into real applications. Finally,
with its synthesized literature review and experimental study, this chapter served as an
overview of current works on parallel ACO.

Still, as it is the case in the field of parallel metaheuristics in general, much can still be done
for the effective use of state-of-the-art parallel computing platforms. For example, maximal
exploitation of computing resources often requires algorithmic configurations that do not let
ACO perform an effective exploration and exploitation of the search space. On the other
hand, parallel performance is strongly influenced by the combined effects of parameters
related to the metaheuristic, the hardware technical architecture and the granularity of the
parallelization. As it becomes clear that the future of computers no longer relies on increasing
the performance on a single computing core but on using many of them in a hybrid system,
it becomes desirable to adapt optimization tools for parallel execution on many kinds of
architectures. We believe that the global acceptance of parallel computing in optimization
systems requires algorithms and software that are not only effective, but also usable by a
wide range of academicians and practitioners.

Acknowledgements

This work is supported by the Agence Nationale de la Recherche (ANR) under grant no.
ANR-2010-COSI-003-03 and by the Centre de Calcul de Champagne-Ardenne ROMEO which
provides the computational resources used for experiments.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

59

14 And Colony Optimization

the tour construction phase, it is possible to take benefit of the texture cache to reduce their
access times.

4.2.1. Experimental results

The proposed GPU strategy is implemented into an MMAS algorithm ([35]) and
experimented on various TSPs with sizes varying from 51 to 2103 cities. Minimums and
averages are computed from 25 trials for problems with less than 1000 cities and from
10 trials for larger instances. An effort is made to keep the algorithm and parameters as
close as possible to the original MMAS. Following the guidelines of Barr and Hickman [36]
and Alba [37], the relative speedup metric is computed on mean execution times to evaluate
the performance of the proposed implementation. Speedups are calculated by dividing the
sequential CPU time with the parallel time, which is obtained with the same CPU and the
GPU acting as a co-processor.

Experiments were made on one GPU of an NVIDIA Fermi C2050 server available at the
Centre de Calcul de Champagne-Ardenne. It contains 14 SMs, 32 SPs per SM, 48 KB of
shared memory per SM and a warp size of 32. The CPU code runs on one core of a 4-core
Xeon E5640 CPUs running at 2.67 Ghz and 24 GB of DDR3 memory. Application code was
written in the "C for CUDA V3.1" programming environment.

The implementation uses a number of blocks equal to the number of ants, each one of them
being composed of a number of threads equal to the size of candidate lists, in that case 20.
Also, the number of iterations is set with the intent of globally keeping the same global
number of tour constructions for each experiment. For more details on the experimental
setup, the reader may consult Delévacq et al. ([10]).

A first step in our experiments is to compare solution quality obtained by sequential and
parallel versions of the algorithm. Table 4 presents average tour length, best tour length
and closeness to the optimal solution for each problem. The reader may note the similarity
between the results obtained by our sequential implementation and the ones provided by
the authors of the original MMAS ([35]), as well as their significant closeness to optimal
solutions.

A second step is to evaluate and compare the reduction of execution time that is obtained
with the GPU parallelization strategy. Table 4 shows the speedups obtained for each
problem. The reader may notice that speedups are ranging from 6.84 to 19.47. This shows
that distributing ants to blocks and sharing the computation of the state transition rule
between several threads of a block is efficient. Also, speedup generally increases with
problem size, indicating the good scalabilty of the strategy. However, a slight decrease
is encountered with the 2103 cities problem. In that case, the large workload and data
structures imply memory access latencies and bank conflicts costs that grow faster than
the benefits of parallelizing available work. Associated to the combined effect of the
increasing number of blocks required to perform computations and a limited number
of active blocks per SM, performance gains become less significative. Overall, results

show that a COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread
implementation can be efficiently implemented on a state-of-the-art GPU.

Ant Colony Optimization - Techniques and Applications58
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 15

http://dx.doi.org/10.5772/CHAPTERDOI

Problem Speedup
Stützle Avg. tour Best tour

Closeness
and Hoos length length

eil51
Sequential - 427.80 427.32 426 99.69

Parallel 6.84 - 427.20 426 99.72

kroA100
Sequential - 21,336.90 21,314.36 21,282 99.85

Parallel 8.12 - 21,317.32 21,282 99.83

d198
Sequential - 15,952.30 15,973.84 15,913 98.77

Parallel 11.13 - 15,961.64 15,851 98.85

lin318
Sequential - 42,346.60 42,341.72 42,107 99.26

Parallel 11.03 - 42,325.32 42,147 99.29

rat783
Sequential - - 9,042.44 8,923 97.32

Parallel 15.58 - 9,002.32 8,899 97.77

fl1577
Sequential - - 24,490.30 24,201 89.83

Parallel 19.47 - 24,287.80 23,938 90.84

d2103
Sequential - - 82,754.30 82,378 97.14

Parallel 17.64 - 82,756.00 82,547 97.13

Table 4. GPU implementation: speedup, average tour length from Stützle and Hoos original MMAS implementation [35],

average tour length, best tour length and relative closeness of the average tour length to the optimal solution.

5. Conclusion

The main objective of this chapter was to provide a new algorithmic model to formalize the
implementation of Ant Colony Optimization on high performance computing platforms. The
proposed taxonomy managed to capture important features related to both the algorithmic
structure of ACO and the architecture of parallel computers. Case studies were also
presented in order to illustrate how this classification translates into real applications. Finally,
with its synthesized literature review and experimental study, this chapter served as an
overview of current works on parallel ACO.

Still, as it is the case in the field of parallel metaheuristics in general, much can still be done
for the effective use of state-of-the-art parallel computing platforms. For example, maximal
exploitation of computing resources often requires algorithmic configurations that do not let
ACO perform an effective exploration and exploitation of the search space. On the other
hand, parallel performance is strongly influenced by the combined effects of parameters
related to the metaheuristic, the hardware technical architecture and the granularity of the
parallelization. As it becomes clear that the future of computers no longer relies on increasing
the performance on a single computing core but on using many of them in a hybrid system,
it becomes desirable to adapt optimization tools for parallel execution on many kinds of
architectures. We believe that the global acceptance of parallel computing in optimization
systems requires algorithms and software that are not only effective, but also usable by a
wide range of academicians and practitioners.

Acknowledgements

This work is supported by the Agence Nationale de la Recherche (ANR) under grant no.
ANR-2010-COSI-003-03 and by the Centre de Calcul de Champagne-Ardenne ROMEO which
provides the computational resources used for experiments.

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

59

16 And Colony Optimization

Author details

Pierre Delisle

CReSTIC, Université de Reims Champagne-Ardenne, Reims, France

6. References

[1] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press/Bradford Books, 2004.

[2] B. Bullnheimer, G. Kotsis, and C. Strauss. Parallelization strategies for the ant system. In
R. De Leone, A. Murli, P. Pardalos, and G. Toraldo, editors, High Performance Algorithms
and Software in Nonlinear Optimization, volume 24 of Applied Optimization, pages 87–100.
Kluwer, Dordrecht, 1997.

[3] T. Stützle. Parallelisation strategies for ant colony optimization. In A.E. Eiben,
T. Bäck, H.-P. Schwefel, and M. Schoenauer, editors, Proceedings of the Fifth International
Conference on Parallel Problem Solving from Nature (PPSN V), volume 1498, pages 722–731.
Springer-Verlag, New York, 1998.

[4] M. Pedemonte, S. Nesmachnow, and H. Cancela. A survey on parallel ant colony
optimization. Applied Soft Computing, 11:5181–5197, 2011.

[5] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné. Parallel implementation of an ant
colony optimization metaheuristic with openmp. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 3rd European Workshop on
OpenMP (EWOMP’01), pages 8–12, Barcelona, Spain, 2001.

[6] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W. L. Price. A shared memory parallel
implementation of ant colony optimization. In Proceedings of the 6th Metaheuristics
International Conference (MIC’2005), pages 257–264, Vienna, Autria, 2005.

[7] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W. L. Price. Comparing
parallelization of an aco: Message passing vs. shared-memory. In M.J. Blesa, C. Blum,
A. Roli, and M. Sampels, editors, Proceedings of the 2nd International Conference on
Hybrid Metaheuristics, volume 3636 of Lecture Notes in Computer Science, pages 1–11.
Springer-Verlag Berlin Heidelberg, 2005.

[8] P. Delisle, M. Gravel, and M. Krajecki. Multi-colony parallel ant colony optimization
on smp and multi-core computers. In Proceedings of the World Congress on Nature and
Biologically Inspired Computing (NaBIC 2009), pages 318–323. IEEE, 2009.

[9] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization
on graphics processing units. In H. R. Arabnia, S. C. Chiu, G. A. Gravvanis, M. Ito,
K. Joe, H. Nishikawa, and A. M. G. Solo, editors, Proceedings of the 16th International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’10),
pages 196–202. CSREA Press, 2010.

[10] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization
on graphics processing units. Journal of Parallel and Distributed Computing, page doi :
10.1016/j.jpdc.2012.01.003, 2012.

Ant Colony Optimization - Techniques and Applications60
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 17

http://dx.doi.org/10.5772/CHAPTERDOI

[11] E. Talbi, O. Roux, C. Fonlupt, and D. Robillard. Parallel ant colonies for the quadratic
assignment problem. Future Generation Computer Systems, 17(4):441–449, 2001.

[12] M. Randall and A. Lewis. A parallel implementation of ant colony optimization. Journal
of Parallel and Distributed Computing, 62(9):1421–1432, 2002.

[13] M. T. Islam, P. Thulasiraman, and R. K. Thulasiram. A parallel ant colony optimization
algorithm for all-pair routing in manets. In Proceedings of the 17th international Symposium
on Parallel and Distributed Processing. IEEE Computer Society, 2003.

[14] M. Craus and L. Rudeanu. Parallel framework for ant-like algorithms. In
Proceedings of the Third International Symposium on Parallel and Distributed Computing
(ISPDC/HeteroPar’04), pages 36–41, 2004.

[15] K. Doerner, R. Hartl, S. Benker, and M. Lucka. Parallel cooperative savings based ant
colony optimization - multiple search and decomposition approaches. Parallel Processing
Letters, 16(3):351–370, 2006.

[16] M. Middendorf, F. Reischle, and H. Schmeck. Multi colony ant algorithms. Journal of
Heuristics, 8(3):305–320, 2002.

[17] D. Chu and A. Y. Zomaya. Parallel ant colony optimization for 3d protein structure
prediction using the hp lattice model. In N. Nedjah, L. de Macedo, and E. Alba, editors,
Parallel Evolutionary Computations, volume 22 of Studies in Computational Intelligence,
chapter 9, pages 177–198. Springer, 2006.

[18] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo. Parallel ant colony optimization
for the traveling salesman problem. In Proceedings of the 5th International Workshop on
Ant Colony Optimization and Swarm Intelligence, volume 4150 of Lecture Notes in Computer
Science, pages 224–234, 2006.

[19] I. Ellabib, P. Calamai, and O. Basir. Exchange strategies for multiple ant colony system.
Information Sciences, 177(5):1248–1264, 2007.

[20] E. Alba, G. Leguizamon, and G. Ordonez. Two models of parallel aco algorithms
for the minimum tardy task problem. International Journal of High Performance Systems
Architecture, 1(1):50–59, 2007.

[21] B. Scheuermann, K. So, M. Guntsch, M. Middendorf, O. Diessel, H. ElGindy, and
H. Schmeck. Fpga implementation of population-based ant colony optimization. Applied
Soft Computing, 4:303–322, 2004.

[22] B. Scheuermann, S. Janson, and M. Middendorf. Hardware-oriented ant colony
optimization. Journal of Systems Architecture, 53:386–402, 2007.

[23] A. Catala, J. Jaen, and J. Mocholi. Strategies for accelerating ant colony optimization
algorithms on graphical processing units. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 492–500. IEEE Press, 2007.

[24] J. Wang, J. Dong, and C. Zhang. Implementation of ant colony algorithm based on gpu.
In E. Banissi, M. Sarfraz, J. Zhang, A. Ursyn, W. C. Jeng, M. W. Bannatyne, J. J. Zhang,
L. H. San, and M. L. Huang, editors, Proceedings of the Sixth International Conference on

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

61

16 And Colony Optimization

Author details

Pierre Delisle

CReSTIC, Université de Reims Champagne-Ardenne, Reims, France

6. References

[1] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press/Bradford Books, 2004.

[2] B. Bullnheimer, G. Kotsis, and C. Strauss. Parallelization strategies for the ant system. In
R. De Leone, A. Murli, P. Pardalos, and G. Toraldo, editors, High Performance Algorithms
and Software in Nonlinear Optimization, volume 24 of Applied Optimization, pages 87–100.
Kluwer, Dordrecht, 1997.

[3] T. Stützle. Parallelisation strategies for ant colony optimization. In A.E. Eiben,
T. Bäck, H.-P. Schwefel, and M. Schoenauer, editors, Proceedings of the Fifth International
Conference on Parallel Problem Solving from Nature (PPSN V), volume 1498, pages 722–731.
Springer-Verlag, New York, 1998.

[4] M. Pedemonte, S. Nesmachnow, and H. Cancela. A survey on parallel ant colony
optimization. Applied Soft Computing, 11:5181–5197, 2011.

[5] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné. Parallel implementation of an ant
colony optimization metaheuristic with openmp. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 3rd European Workshop on
OpenMP (EWOMP’01), pages 8–12, Barcelona, Spain, 2001.

[6] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W. L. Price. A shared memory parallel
implementation of ant colony optimization. In Proceedings of the 6th Metaheuristics
International Conference (MIC’2005), pages 257–264, Vienna, Autria, 2005.

[7] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W. L. Price. Comparing
parallelization of an aco: Message passing vs. shared-memory. In M.J. Blesa, C. Blum,
A. Roli, and M. Sampels, editors, Proceedings of the 2nd International Conference on
Hybrid Metaheuristics, volume 3636 of Lecture Notes in Computer Science, pages 1–11.
Springer-Verlag Berlin Heidelberg, 2005.

[8] P. Delisle, M. Gravel, and M. Krajecki. Multi-colony parallel ant colony optimization
on smp and multi-core computers. In Proceedings of the World Congress on Nature and
Biologically Inspired Computing (NaBIC 2009), pages 318–323. IEEE, 2009.

[9] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization
on graphics processing units. In H. R. Arabnia, S. C. Chiu, G. A. Gravvanis, M. Ito,
K. Joe, H. Nishikawa, and A. M. G. Solo, editors, Proceedings of the 16th International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’10),
pages 196–202. CSREA Press, 2010.

[10] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization
on graphics processing units. Journal of Parallel and Distributed Computing, page doi :
10.1016/j.jpdc.2012.01.003, 2012.

Ant Colony Optimization - Techniques and Applications60
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations 17

http://dx.doi.org/10.5772/CHAPTERDOI

[11] E. Talbi, O. Roux, C. Fonlupt, and D. Robillard. Parallel ant colonies for the quadratic
assignment problem. Future Generation Computer Systems, 17(4):441–449, 2001.

[12] M. Randall and A. Lewis. A parallel implementation of ant colony optimization. Journal
of Parallel and Distributed Computing, 62(9):1421–1432, 2002.

[13] M. T. Islam, P. Thulasiraman, and R. K. Thulasiram. A parallel ant colony optimization
algorithm for all-pair routing in manets. In Proceedings of the 17th international Symposium
on Parallel and Distributed Processing. IEEE Computer Society, 2003.

[14] M. Craus and L. Rudeanu. Parallel framework for ant-like algorithms. In
Proceedings of the Third International Symposium on Parallel and Distributed Computing
(ISPDC/HeteroPar’04), pages 36–41, 2004.

[15] K. Doerner, R. Hartl, S. Benker, and M. Lucka. Parallel cooperative savings based ant
colony optimization - multiple search and decomposition approaches. Parallel Processing
Letters, 16(3):351–370, 2006.

[16] M. Middendorf, F. Reischle, and H. Schmeck. Multi colony ant algorithms. Journal of
Heuristics, 8(3):305–320, 2002.

[17] D. Chu and A. Y. Zomaya. Parallel ant colony optimization for 3d protein structure
prediction using the hp lattice model. In N. Nedjah, L. de Macedo, and E. Alba, editors,
Parallel Evolutionary Computations, volume 22 of Studies in Computational Intelligence,
chapter 9, pages 177–198. Springer, 2006.

[18] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo. Parallel ant colony optimization
for the traveling salesman problem. In Proceedings of the 5th International Workshop on
Ant Colony Optimization and Swarm Intelligence, volume 4150 of Lecture Notes in Computer
Science, pages 224–234, 2006.

[19] I. Ellabib, P. Calamai, and O. Basir. Exchange strategies for multiple ant colony system.
Information Sciences, 177(5):1248–1264, 2007.

[20] E. Alba, G. Leguizamon, and G. Ordonez. Two models of parallel aco algorithms
for the minimum tardy task problem. International Journal of High Performance Systems
Architecture, 1(1):50–59, 2007.

[21] B. Scheuermann, K. So, M. Guntsch, M. Middendorf, O. Diessel, H. ElGindy, and
H. Schmeck. Fpga implementation of population-based ant colony optimization. Applied
Soft Computing, 4:303–322, 2004.

[22] B. Scheuermann, S. Janson, and M. Middendorf. Hardware-oriented ant colony
optimization. Journal of Systems Architecture, 53:386–402, 2007.

[23] A. Catala, J. Jaen, and J. Mocholi. Strategies for accelerating ant colony optimization
algorithms on graphical processing units. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 492–500. IEEE Press, 2007.

[24] J. Wang, J. Dong, and C. Zhang. Implementation of ant colony algorithm based on gpu.
In E. Banissi, M. Sarfraz, J. Zhang, A. Ursyn, W. C. Jeng, M. W. Bannatyne, J. J. Zhang,
L. H. San, and M. L. Huang, editors, Proceedings of the Sixth International Conference on

Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
http://dx.doi.org/10.5772/54252

61

18 And Colony Optimization

Computer Graphics, Imaging and Visualization: New Advances and Trends, pages 50–53. IEEE
Computer Society, 2009.

[25] Y. You. Parallel ant system for traveling salesman problem on gpus. In Proceedings of
GECCO 2009 - Genetic and Evolutionary Computation, pages 1–2, 2009.

[26] W. Zhu and J. Curry. Parallel ant colony for nonlinear function optimization with
graphics hardware acceleration. In Proceedings of the 2009 IEEE international conference
on Systems, Man and Cybernetics, pages 1803–1808. IEEE Press, 2009.

[27] J. Li, X. Hu, Z. Pang, and K. Qian. A parallel ant colony optimization algorithm based on
fine-grained model with gpu-acceleration. International Journal of Innovative Computing,
Information and Control, 5(11(A)):3707–3716, 2009.

[28] J. M. Cecilia, J. M. Garcia, A. Nisbet, M. Amos, and M. Ujaldon.

[29] G. Weis and A. Lewis. Using xmpp for ad-hoc grid computing - an application example
using parallel ant colony optimisation. In Proceedings of the International Symposium on
Parallel and Distributed Processing, pages 1–4, 2009.

[30] J. Mocholí, J. Martínez, and J. Canós. A grid ant colony algorithm for the orienteering
problem. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 942–949.
IEEE Press, 2005.

[31] E. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.

[32] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[33] CUDA : Computer Unified Device Architecture Programming Guide 3.1, 2010.

[34] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1):53–66, 1997.

[35] T. Stützle and H. Hoos. Max-min ant system. Future Generation Computer Systems,
16(8):889–914, 2000.

[36] R. S. Barr and B. L. Hickman. Reporting computational experiments with parallel
algorithms : Issues, measures and experts’ opinions. ORSA Journal on Computing,
5(1):2–18, 1993.

[37] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters, 82(1):7–13, 2002.

Ant Colony Optimization - Techniques and Applications62

Chapter 3

Strategies for Parallel Ant Colony Optimization on
Graphics Processing Units

Jaqueline S. Angelo, Douglas A. Augusto and
Helio J. C. Barbosa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51679

Provisional chapter

Strategies for Parallel Ant Colony Optimization on

Graphics Processing Units

Jaqueline S. Angelo,

Douglas A. Augusto and Helio J. C. Barbosa

Additional information is available at the end of the chapter

1. Introduction

Ant colony optimization (ACO) is a population-based metaheuristic inspired by the collective
behavior of ants which is used for solving optimization problems in general and, in
particular, those that can be reduced to finding good paths through graphs. In ACO a set of
agents (artificial ants) cooperate in trying to find good solutions to the problem at hand [1].

Ant colony algorithms are known to have a significant ability of finding high-quality
solutions in a reasonable time [2]. However, the computational time of these methods is
seriously compromised when the current instance of the problem has a high dimension
and/or is hard to solve. In this line, a significant amount of research has been done in order
to reduce computation time and improve the solution quality of ACO algorithms by using
parallel computing. Due to the independence of the artificial ants, which are guided by an
indirect communication via their environment (pheromone trail and heuristic information),
ACO algorithms are naturally suitable for parallel implementation.

Parallel computing has become attractive during the last decade as an instrument to improve
the efficiency of population-based methods. One can highlight different reasons to parallelize
an algorithm: to (i) reduce the execution time, (ii) enable to increase the size of the problem,
(iii) expand the class of problems computationally treatable, and so on. In the literature one
can find many possibilities on how to explore parallelism, and the final performance strongly
depends on both the problem they are applied to and the hardware available [3].

In the last years, several works were devoted to the implementation of parallel ACO
algorithms [4]. Most of these use clusters of PCs, where the workload is distributed to
multiple computers [5]. More recently, the emergence of parallel architectures such as
multi-core processors and graphics processing units (GPU) allowed new implementations
of parallel ACO algorithms in order to speedup the computational performance.

©2012 Angelo et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 S. Angelo et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 S. Angelo et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

18 And Colony Optimization

Computer Graphics, Imaging and Visualization: New Advances and Trends, pages 50–53. IEEE
Computer Society, 2009.

[25] Y. You. Parallel ant system for traveling salesman problem on gpus. In Proceedings of
GECCO 2009 - Genetic and Evolutionary Computation, pages 1–2, 2009.

[26] W. Zhu and J. Curry. Parallel ant colony for nonlinear function optimization with
graphics hardware acceleration. In Proceedings of the 2009 IEEE international conference
on Systems, Man and Cybernetics, pages 1803–1808. IEEE Press, 2009.

[27] J. Li, X. Hu, Z. Pang, and K. Qian. A parallel ant colony optimization algorithm based on
fine-grained model with gpu-acceleration. International Journal of Innovative Computing,
Information and Control, 5(11(A)):3707–3716, 2009.

[28] J. M. Cecilia, J. M. Garcia, A. Nisbet, M. Amos, and M. Ujaldon.

[29] G. Weis and A. Lewis. Using xmpp for ad-hoc grid computing - an application example
using parallel ant colony optimisation. In Proceedings of the International Symposium on
Parallel and Distributed Processing, pages 1–4, 2009.

[30] J. Mocholí, J. Martínez, and J. Canós. A grid ant colony algorithm for the orienteering
problem. In Proceedings of the IEEE Congress on Evolutionary Computation, pages 942–949.
IEEE Press, 2005.

[31] E. Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing, 2009.

[32] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[33] CUDA : Computer Unified Device Architecture Programming Guide 3.1, 2010.

[34] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1):53–66, 1997.

[35] T. Stützle and H. Hoos. Max-min ant system. Future Generation Computer Systems,
16(8):889–914, 2000.

[36] R. S. Barr and B. L. Hickman. Reporting computational experiments with parallel
algorithms : Issues, measures and experts’ opinions. ORSA Journal on Computing,
5(1):2–18, 1993.

[37] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters, 82(1):7–13, 2002.

Ant Colony Optimization - Techniques and Applications62

Chapter 3

Strategies for Parallel Ant Colony Optimization on
Graphics Processing Units

Jaqueline S. Angelo, Douglas A. Augusto and
Helio J. C. Barbosa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51679

Provisional chapter

Strategies for Parallel Ant Colony Optimization on

Graphics Processing Units

Jaqueline S. Angelo,

Douglas A. Augusto and Helio J. C. Barbosa

Additional information is available at the end of the chapter

1. Introduction

Ant colony optimization (ACO) is a population-based metaheuristic inspired by the collective
behavior of ants which is used for solving optimization problems in general and, in
particular, those that can be reduced to finding good paths through graphs. In ACO a set of
agents (artificial ants) cooperate in trying to find good solutions to the problem at hand [1].

Ant colony algorithms are known to have a significant ability of finding high-quality
solutions in a reasonable time [2]. However, the computational time of these methods is
seriously compromised when the current instance of the problem has a high dimension
and/or is hard to solve. In this line, a significant amount of research has been done in order
to reduce computation time and improve the solution quality of ACO algorithms by using
parallel computing. Due to the independence of the artificial ants, which are guided by an
indirect communication via their environment (pheromone trail and heuristic information),
ACO algorithms are naturally suitable for parallel implementation.

Parallel computing has become attractive during the last decade as an instrument to improve
the efficiency of population-based methods. One can highlight different reasons to parallelize
an algorithm: to (i) reduce the execution time, (ii) enable to increase the size of the problem,
(iii) expand the class of problems computationally treatable, and so on. In the literature one
can find many possibilities on how to explore parallelism, and the final performance strongly
depends on both the problem they are applied to and the hardware available [3].

In the last years, several works were devoted to the implementation of parallel ACO
algorithms [4]. Most of these use clusters of PCs, where the workload is distributed to
multiple computers [5]. More recently, the emergence of parallel architectures such as
multi-core processors and graphics processing units (GPU) allowed new implementations
of parallel ACO algorithms in order to speedup the computational performance.

©2012 Angelo et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 S. Angelo et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 S. Angelo et al., licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

2 Ant Colony Optimization

GPU devices have been traditionally used for graphics processing, which requires a high
computational power to process a large number of pixels in a short time-frame. The
massively parallel architecture of the GPUs makes them more efficient than general-purpose
CPUs when large amount of independent data need to be processed in parallel.

The main type of parallelism in ACO algorithms is the parallel ant approach, which is the
parallelism at the level of individual ants. Other steps of the ACO algorithms are also
considered for speeding up their performance, such as the tour construction, evaluation
of the solution and the pheromone update procedure.

The purpose of this chapter is to present a survey of the recent developments for parallel ant
colony algorithms on GPU devices, highlighting and detailing parallelism strategies for each
step of an ACO algorithm.

1.1. Ant Colony Optimization

Ant Colony Optimization is a metaheuristic inspired by the observation of real ants’ behavior,
applied with great success to a large number of difficult optimization problems.

Ant colonies, and other insects that live in colony, present interesting characteristics by the
view of the collective behavior of those entities. Some characteristics of social groups in
swarm intelligence are widely discussed in [6]. Among them, ant colonies in particular
present a highly structured social organization, making them capable of self-organizing,
without a centralized controller, in order to accomplish complex tasks for the survival of
the entire colony [2]. Those capabilities, such as division of labor, foraging behavior, brood
sorting and cooperative transportation, inspired different kinds of ant colony algorithms. The
first ACO algorithm was inspired on the capability of ants to find the shortest path between
a food source and their nest.

In all those examples ants coordinate their activities via stigmergy [7], which is an indirect
communication mediated by modifications on the environment. While moving, ants deposit
pheromone (chemical substance) on the ground to mark paths that may be followed by
other members of the colony, which then reinforce the pheromone on that path. This
behavior leads to a self-reinforcing process that results in path marked by high concentration
of pheromone while less used paths tend to have a decreasing pheromone level due to
evaporation. However, real ants can choose a path that has not the highest concentration
of pheromone, so that new sources of food and/or shorter paths can be found.

1.2. Combinatorial problems

In combinatorial optimization problems one wants to find discrete values for solution
variables that lead to the optimal solution with respect to a given objective function. An
interesting characteristic of combinatorial problems is that they are easy to understand but
very difficult to be solved [2].

One of the most extensively studied combinatorial problem is the Traveling Salesman
Problem (TSP) [8] and it was the first problem approached by the ACO metaheuristic. The
first developed ACO algorithm, called Ant System [1, 9], was initially applied to the TSP,
then later improved and applied to many kinds of optimization problems [10].

Ant Colony Optimization - Techniques and Applications64
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 3

In the Traveling Salesman Problem (TSP), a salesman, starting from an initial city, wants to
travel the shortest path to serve its customers in the neighboring towns, eventually returning
to the city where he originally came from, visiting each city once. The representation of the
TSP can be done through a fully connected graph G = (N, A), with N being the set of nodes
representing cities and A the set of edges fully connecting the nodes. For each arc (i, j) is
assigned a value dij, which may be distance, time, price, or other factor of interest associated
with edges ai,j ∈ A. The TSP can be symmetric or asymmetric. Using distances (associated
with each arc) as cost values, in the symmetric TSP the distance between cities i and j is the
same as between j and i, i.e. dij = dji; in the asymmetric TSP the direction used for crossing
an arc is taken into consideration and so there is at least one arc in which dij �= dji. The
objective of the problem is to find the minimum Hamiltonian cycle, where a Hamiltonian
cycle is a closed tour visiting each of the n = |N| nodes (cities) of G exactly once.

2. Graphics Processing Unit

Until recently the only viable choice as a platform for parallel programming was the
conventional CPU processor, be it single- or multi-core. Usually many of them were
arranged either tightly as multiprocessors, sharing a single memory space, or loosely as
multicomputers, with the communication among them done indirectly due to the isolated
memory spaces.

The parallelism provided by the CPU is reasonably efficient and still very attractive,
particularly for tasks with low degree of parallelism, but a new trendy platform for parallel
computing has emerged in the past few years, the graphics processing unit, or simply the GPU
architecture.

The beginning of the GPU architecture dates back to a couple of decades ago when some
primitive devices were developed to offload certain basic graphics operations from the CPU.
Graphics operations, which end up being essentially the task to determine the right color of
each individual pixel per frame, are in general both independent and specialized, allowing a
high degree of parallelism to be explored. However, doing such operations on conventional
CPU processors, which are general-purpose and back then were exclusively sequential, is
slow and inefficient. The advantage of parallel devices designed for such particular purpose
was then becoming progressively evident, enabling and inviting a new world of graphics
applications.

One of those applications was the computer game, which played an important role on the
entire development history of the GPU. As with other graphics applications, games involve
computing and displaying—possibly in parallel—numerous pixels at a time. But differently
from other graphics applications, computer games were always popular among all range of
computer users, and thus very attractive from a business perspective. Better and visually
appealing games sell more, but they require more computational power. This demand, as a
consequence, has been pushing forward the GPU development since the early days, which
in turn has been enabling the creation of more and more complex games.

Of course, in the meantime the CPU development had also been advancing, with the
processors becoming progressively more complex, particularly due to the addition of cache
memory hierarchies and many specific-purpose control units (such as branch prediction,
speculative and out-of-order execution, and so on) [11]. Another source of development has

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

65

2 Ant Colony Optimization

GPU devices have been traditionally used for graphics processing, which requires a high
computational power to process a large number of pixels in a short time-frame. The
massively parallel architecture of the GPUs makes them more efficient than general-purpose
CPUs when large amount of independent data need to be processed in parallel.

The main type of parallelism in ACO algorithms is the parallel ant approach, which is the
parallelism at the level of individual ants. Other steps of the ACO algorithms are also
considered for speeding up their performance, such as the tour construction, evaluation
of the solution and the pheromone update procedure.

The purpose of this chapter is to present a survey of the recent developments for parallel ant
colony algorithms on GPU devices, highlighting and detailing parallelism strategies for each
step of an ACO algorithm.

1.1. Ant Colony Optimization

Ant Colony Optimization is a metaheuristic inspired by the observation of real ants’ behavior,
applied with great success to a large number of difficult optimization problems.

Ant colonies, and other insects that live in colony, present interesting characteristics by the
view of the collective behavior of those entities. Some characteristics of social groups in
swarm intelligence are widely discussed in [6]. Among them, ant colonies in particular
present a highly structured social organization, making them capable of self-organizing,
without a centralized controller, in order to accomplish complex tasks for the survival of
the entire colony [2]. Those capabilities, such as division of labor, foraging behavior, brood
sorting and cooperative transportation, inspired different kinds of ant colony algorithms. The
first ACO algorithm was inspired on the capability of ants to find the shortest path between
a food source and their nest.

In all those examples ants coordinate their activities via stigmergy [7], which is an indirect
communication mediated by modifications on the environment. While moving, ants deposit
pheromone (chemical substance) on the ground to mark paths that may be followed by
other members of the colony, which then reinforce the pheromone on that path. This
behavior leads to a self-reinforcing process that results in path marked by high concentration
of pheromone while less used paths tend to have a decreasing pheromone level due to
evaporation. However, real ants can choose a path that has not the highest concentration
of pheromone, so that new sources of food and/or shorter paths can be found.

1.2. Combinatorial problems

In combinatorial optimization problems one wants to find discrete values for solution
variables that lead to the optimal solution with respect to a given objective function. An
interesting characteristic of combinatorial problems is that they are easy to understand but
very difficult to be solved [2].

One of the most extensively studied combinatorial problem is the Traveling Salesman
Problem (TSP) [8] and it was the first problem approached by the ACO metaheuristic. The
first developed ACO algorithm, called Ant System [1, 9], was initially applied to the TSP,
then later improved and applied to many kinds of optimization problems [10].

Ant Colony Optimization - Techniques and Applications64
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 3

In the Traveling Salesman Problem (TSP), a salesman, starting from an initial city, wants to
travel the shortest path to serve its customers in the neighboring towns, eventually returning
to the city where he originally came from, visiting each city once. The representation of the
TSP can be done through a fully connected graph G = (N, A), with N being the set of nodes
representing cities and A the set of edges fully connecting the nodes. For each arc (i, j) is
assigned a value dij, which may be distance, time, price, or other factor of interest associated
with edges ai,j ∈ A. The TSP can be symmetric or asymmetric. Using distances (associated
with each arc) as cost values, in the symmetric TSP the distance between cities i and j is the
same as between j and i, i.e. dij = dji; in the asymmetric TSP the direction used for crossing
an arc is taken into consideration and so there is at least one arc in which dij �= dji. The
objective of the problem is to find the minimum Hamiltonian cycle, where a Hamiltonian
cycle is a closed tour visiting each of the n = |N| nodes (cities) of G exactly once.

2. Graphics Processing Unit

Until recently the only viable choice as a platform for parallel programming was the
conventional CPU processor, be it single- or multi-core. Usually many of them were
arranged either tightly as multiprocessors, sharing a single memory space, or loosely as
multicomputers, with the communication among them done indirectly due to the isolated
memory spaces.

The parallelism provided by the CPU is reasonably efficient and still very attractive,
particularly for tasks with low degree of parallelism, but a new trendy platform for parallel
computing has emerged in the past few years, the graphics processing unit, or simply the GPU
architecture.

The beginning of the GPU architecture dates back to a couple of decades ago when some
primitive devices were developed to offload certain basic graphics operations from the CPU.
Graphics operations, which end up being essentially the task to determine the right color of
each individual pixel per frame, are in general both independent and specialized, allowing a
high degree of parallelism to be explored. However, doing such operations on conventional
CPU processors, which are general-purpose and back then were exclusively sequential, is
slow and inefficient. The advantage of parallel devices designed for such particular purpose
was then becoming progressively evident, enabling and inviting a new world of graphics
applications.

One of those applications was the computer game, which played an important role on the
entire development history of the GPU. As with other graphics applications, games involve
computing and displaying—possibly in parallel—numerous pixels at a time. But differently
from other graphics applications, computer games were always popular among all range of
computer users, and thus very attractive from a business perspective. Better and visually
appealing games sell more, but they require more computational power. This demand, as a
consequence, has been pushing forward the GPU development since the early days, which
in turn has been enabling the creation of more and more complex games.

Of course, in the meantime the CPU development had also been advancing, with the
processors becoming progressively more complex, particularly due to the addition of cache
memory hierarchies and many specific-purpose control units (such as branch prediction,
speculative and out-of-order execution, and so on) [11]. Another source of development has

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

65

4 Ant Colony Optimization

been the technological advance in the manufacturing process, which has been allowing the
manufactures to systematically increase the transistor density on a microchip. However, all
those progresses recently begun to decline with the Moore’s Law [12] being threatened by the
approaching of the physical limits of the technology on the transistor density and operating
frequency. The response from the industry to continually raise the computational power was
to migrate from the sequential single-core to the parallel multi-core design.

Although the nowadays multi-core CPU processors perform fairly well, the decades of
accumulative architectural optimizations toward sequential tasks have led to big and complex
CPU cores, hence restricting the amount of them that could be packed on a single
processor—not more than a few cores. As a consequence, the current CPU design cannot take
advantage of workloads having high degree of parallelism, in other words, it is inefficient for
massive parallelism.

Contrary to the development philosophy of the CPU, because of the requirements of graphics
operations the GPU took since its infancy the massive parallelism as a design goal. Filling

the processor with numerous ALUs1 means that there is not much die area left for anything
else, such as cache memory and control units. The benefit of this design choice is two-fold:
(i) it simplifies the architecture due to the uniformity; and (ii) since there is a high portion
of transistors dedicated to actual computation (spread over many ALUs), the theoretical
computational power is proportionally high. As one can expect, the GPU reaches its peak of
efficiency when the device is fully occupied, that is, when there are enough parallel tasks to
utilize each one of the thousands of ALUs, as commonly found on a modern GPU.

Besides being highly parallel, this feature alone would not be enough to establish the GPU
architecture as a compelling platform for mainstream high-performance computation. In
the early days, the graphics operations were mainly primitive and thus could be more
easily and efficiently implemented in hardware through fixed, i.e. specialized, functional
units. But again, such operations were becoming increasingly more complex, particularly
in visually-rich computer games, that the GPU was forced to switch to a programmable
architecture, where it was possible to execute not only strict graphics operations, but also
arbitrary instructions. The union of an efficient massively parallel architecture with the
general-purpose capability has created one of the most exciting processor, the modern GPU
architecture, outstanding in performance with respect to power consumption, price and space
occupied.

The following section will introduce the increasingly adopted open standard for
heterogeneous programming, including of course the GPU, known as OpenCL.

2.1. Open Computing Language – OpenCL

An interesting fact about the CPU and GPU architectures is that while the CPU started as a
general-purpose processor and got more and more parallelism through the multi-core design,
the GPU did the opposite path, that is, started as a highly specialized parallel processor and
was increasingly endowed with general-purpose capabilities as well. In other words, these
architectures have been slowly converging into a common design, although each one still
has—and probably will always have due to fundamental architectural differences—divergent
strengths: the CPU is optimized for achieving low-latency in sequential tasks whereas the
GPU is optimized for maximizing the throughput in highly parallel tasks [13].

1 Arithmetic and Logic Unit, the most basic form of computational unit.

Ant Colony Optimization - Techniques and Applications66
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 5

It is in this convergence that OpenCL is situated. In these days, most of the processors are,
to some extent, both parallel and general purpose; therefore, it should be possible to come
along with a uniform programming interface to target such different but fundamentally
related architectures. This is the main idea behind OpenCL, a platform for uniform parallel
programming of heterogeneous systems [14].

OpenCL is an open standard managed by a non-profit organization, the Khronos Group [14],
that is architecture- and vendor-independent, so it is designed to work across multiple
devices from different manufactures. The two main goals of OpenCL are portability and
efficiency. Portability is achieved by the guarantee that every supported device conforms
with a common set of functionality defined by the OpenCL specification [15].2 As for
efficiency, it is obtained through the flexible multi-device programming model and a rich
set of relatively low-level instructions that allow the programmer to greatly optimize the
parallel implementation (possibly targeting a specific architecture if so desirable) without
loss of portability.3

2.1.1. Fundamental Concepts and Terminology

An OpenCL program comprises two distinct types of code: the host, which runs sequentially
on the CPU, and the kernel, which runs in parallel on one or more devices, including CPUs
and GPUs. The host code is responsible for managing the OpenCL devices and setting
up/controlling the execution of kernels on them, whereas the actual parallel processing is
programmed in the kernel code.

2.1.1.1. Host code

The tasks performed by the host portion usually involve: (1) discovering and enumeration
of the available compute devices; (2) loading and compilation of the kernels’ source code;
(3) loading of domain-specific data, such as algorithm’s parameters and problem’s data;
(4) setting up kernels’ parameters; (5) launching and coordinating kernel executions; and
finally (6) outputting the results. The host code can be written in the C/C++ programming
language.4

2.1.1.2. Kernel code

Since it implements the parallel decomposition of a given problem—a parallel strategy—, the
kernel is usually the most critical aspect of an OpenCL program and so care should be taken
in its design.

The OpenCL kernel is similar to the concept of a procedure in a programming language,
which takes a set of input arguments, performs computation on them, and writes back the
result. The main difference is that an OpenCL kernel is a procedure that, when launched,
actually multiple instances of them are spawned simultaneously, each one assigned to an
individual execution unit of a parallel device.

2 In fact, all the parallel strategies described in Section 4 can be readily applied on a CPU device (or any other
OpenCL-supported device, such as DSPs and FPGAs) without modification.

3 Of course, although OpenCL guarantees the functional portability, i.e. that the code will run on any other supported
device, doing optimizations aimed at getting the most out of a specific device or architecture may lead to the loss of
what is known as performance portability.

4 C and C++ are the only officially supported languages by the OpenCL specification, but there exist many other
third-party languages that could also be used.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

67

4 Ant Colony Optimization

been the technological advance in the manufacturing process, which has been allowing the
manufactures to systematically increase the transistor density on a microchip. However, all
those progresses recently begun to decline with the Moore’s Law [12] being threatened by the
approaching of the physical limits of the technology on the transistor density and operating
frequency. The response from the industry to continually raise the computational power was
to migrate from the sequential single-core to the parallel multi-core design.

Although the nowadays multi-core CPU processors perform fairly well, the decades of
accumulative architectural optimizations toward sequential tasks have led to big and complex
CPU cores, hence restricting the amount of them that could be packed on a single
processor—not more than a few cores. As a consequence, the current CPU design cannot take
advantage of workloads having high degree of parallelism, in other words, it is inefficient for
massive parallelism.

Contrary to the development philosophy of the CPU, because of the requirements of graphics
operations the GPU took since its infancy the massive parallelism as a design goal. Filling

the processor with numerous ALUs1 means that there is not much die area left for anything
else, such as cache memory and control units. The benefit of this design choice is two-fold:
(i) it simplifies the architecture due to the uniformity; and (ii) since there is a high portion
of transistors dedicated to actual computation (spread over many ALUs), the theoretical
computational power is proportionally high. As one can expect, the GPU reaches its peak of
efficiency when the device is fully occupied, that is, when there are enough parallel tasks to
utilize each one of the thousands of ALUs, as commonly found on a modern GPU.

Besides being highly parallel, this feature alone would not be enough to establish the GPU
architecture as a compelling platform for mainstream high-performance computation. In
the early days, the graphics operations were mainly primitive and thus could be more
easily and efficiently implemented in hardware through fixed, i.e. specialized, functional
units. But again, such operations were becoming increasingly more complex, particularly
in visually-rich computer games, that the GPU was forced to switch to a programmable
architecture, where it was possible to execute not only strict graphics operations, but also
arbitrary instructions. The union of an efficient massively parallel architecture with the
general-purpose capability has created one of the most exciting processor, the modern GPU
architecture, outstanding in performance with respect to power consumption, price and space
occupied.

The following section will introduce the increasingly adopted open standard for
heterogeneous programming, including of course the GPU, known as OpenCL.

2.1. Open Computing Language – OpenCL

An interesting fact about the CPU and GPU architectures is that while the CPU started as a
general-purpose processor and got more and more parallelism through the multi-core design,
the GPU did the opposite path, that is, started as a highly specialized parallel processor and
was increasingly endowed with general-purpose capabilities as well. In other words, these
architectures have been slowly converging into a common design, although each one still
has—and probably will always have due to fundamental architectural differences—divergent
strengths: the CPU is optimized for achieving low-latency in sequential tasks whereas the
GPU is optimized for maximizing the throughput in highly parallel tasks [13].

1 Arithmetic and Logic Unit, the most basic form of computational unit.

Ant Colony Optimization - Techniques and Applications66
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 5

It is in this convergence that OpenCL is situated. In these days, most of the processors are,
to some extent, both parallel and general purpose; therefore, it should be possible to come
along with a uniform programming interface to target such different but fundamentally
related architectures. This is the main idea behind OpenCL, a platform for uniform parallel
programming of heterogeneous systems [14].

OpenCL is an open standard managed by a non-profit organization, the Khronos Group [14],
that is architecture- and vendor-independent, so it is designed to work across multiple
devices from different manufactures. The two main goals of OpenCL are portability and
efficiency. Portability is achieved by the guarantee that every supported device conforms
with a common set of functionality defined by the OpenCL specification [15].2 As for
efficiency, it is obtained through the flexible multi-device programming model and a rich
set of relatively low-level instructions that allow the programmer to greatly optimize the
parallel implementation (possibly targeting a specific architecture if so desirable) without
loss of portability.3

2.1.1. Fundamental Concepts and Terminology

An OpenCL program comprises two distinct types of code: the host, which runs sequentially
on the CPU, and the kernel, which runs in parallel on one or more devices, including CPUs
and GPUs. The host code is responsible for managing the OpenCL devices and setting
up/controlling the execution of kernels on them, whereas the actual parallel processing is
programmed in the kernel code.

2.1.1.1. Host code

The tasks performed by the host portion usually involve: (1) discovering and enumeration
of the available compute devices; (2) loading and compilation of the kernels’ source code;
(3) loading of domain-specific data, such as algorithm’s parameters and problem’s data;
(4) setting up kernels’ parameters; (5) launching and coordinating kernel executions; and
finally (6) outputting the results. The host code can be written in the C/C++ programming
language.4

2.1.1.2. Kernel code

Since it implements the parallel decomposition of a given problem—a parallel strategy—, the
kernel is usually the most critical aspect of an OpenCL program and so care should be taken
in its design.

The OpenCL kernel is similar to the concept of a procedure in a programming language,
which takes a set of input arguments, performs computation on them, and writes back the
result. The main difference is that an OpenCL kernel is a procedure that, when launched,
actually multiple instances of them are spawned simultaneously, each one assigned to an
individual execution unit of a parallel device.

2 In fact, all the parallel strategies described in Section 4 can be readily applied on a CPU device (or any other
OpenCL-supported device, such as DSPs and FPGAs) without modification.

3 Of course, although OpenCL guarantees the functional portability, i.e. that the code will run on any other supported
device, doing optimizations aimed at getting the most out of a specific device or architecture may lead to the loss of
what is known as performance portability.

4 C and C++ are the only officially supported languages by the OpenCL specification, but there exist many other
third-party languages that could also be used.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

67

6 Ant Colony Optimization

An instance of a kernel is formally called a work-item. The total number of work-items is
referred to as global size, and defines the level of decomposition of the problem: the larger
the global size, the finer is the granularity, and is always preferred over a coarser granularity
when targeting a GPU device in order to maximize its utilization—if that does not imply in
a substantial raise of the communication overhead.

The mapping between a work-item and the problem’s data is set up through the concept
known as N-dimensional domain range, or just N-D domain, where N denotes a one-, two-, or
three-dimensional domain. In practice, this is the mechanism that connects the work-items
execution (“compute domain”) with the problem’s data (“data domain”). More specifically,
the OpenCL runtime assigns to each work-item a unique identifier, a globalid, which in turn
makes it possible to an individual work-item to operate on a subset of the problem’s data by
somehow indexing these elements through the identifier.

Figure 1 illustrates the concept of a mapping between the compute and data domains.
Suppose one is interested in computing in parallel a certain operation over an array of four
dimensions (n = 4), e.g. computing the square root of each element. A trivial strategy would
be to dedicate a work-item per element, but let us assume one wants to limit the number
of work-items to just two, that is, globalsize = 2. This means that a single work-item will
have to handle two data elements, thus the granularity g = 2. So, how could one connect
the compute and data domains? There are different ways of doing that, but one way is to,
from within the work-item, index the elements of the input and output by the expression
g × t + globalid, where t ∈ {0, 1} is the time step (iteration).

Figure 1. Example of a mapping between the compute and data domains.

A pseudo-OpenCL kernel implementing such strategy is presented in Algorithm 1.5 At step
t0, the first and second work-items will be accessing, respectively, the indices 0 and 1, and at
t1 they will access the indices 2 and 3.

Algorithm 1: Example of a pseudo-OpenCL kernel

for t ← 0 to n
globalsize

− 1 do

output[g × t + globalid] ←
√

input[g × t + globalid];

5 An actual OpenCL kernel is implemented in OpenCL C, which is almost indistinguishable from the C language, but
adds a few extensions and also some restrictions [15].

Ant Colony Optimization - Techniques and Applications68
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 7

The N-D domain range can also be extended to higher dimensions. For instance, in a 2-D
domain a work-item would have two identifiers, global0

id and global1
id, where the first could be

mapped to index the row and the second the column of a matrix. The reasoning is analogous
for a 3-D domain range.

2.1.1.3. Communication and Synchronization

There are situations in which it is desirable or required to allow work-items to communicate
and synchronize among them. For efficiency reasons, such operations are not arbitrarily
allowed among work-items across the whole N-D domain.6 For that purpose, though, one
can resort to the notion of work-group, which in a nutshell is just a collection of work-items.
All the work-items within a work-group are free to communicate and synchronize with each
other. The number of work-items per work-group is given by the parameter local size, which
in practice determines how the global domain is partitioned. For example, if globalsize is
256 and localsize is 64, then the computational domain is partitioned into 4 work-groups
(256/64) with each work-group having 64 work-items. Again, the OpenCL runtime provides
means that allow each work-group and work-item to identify themselves. A work-group
is identified with respect to the global N-D domain through groupid, and a work-item is
identified locally within its work-group via localid.

2.1.2. Compute Device Abstraction

In order to provide a uniform programming interface, OpenCL abstracts the architecture of
a parallel compute device, as shown in Figure 2. There are two fundamental concepts in this
abstraction, the compute and memory hierarchies.

Figure 2. Abstraction of a parallel compute device architecture [16].

OpenCL defines two levels of compute hardware organization, the compute units (CU) and
processing elements (PE). Not coincidentally this partitioning matches the software abstraction
of work-groups and work-items. In fact, OpenCL guarantees that a work-group is entirely
executed on a single compute unit whereas work-items are executed by processing elements.
Nowadays GPUs usually have thousands of processing elements clustered in a dozen of

6 There are two main reasons why those operations are restricted: (i) to encourage the better programming practice
of avoiding dependence on communication as much as possible; and, most importantly, (ii) to allow the OpenCL
to support even those rather limited devices that cannot keep—at least not efficiently—the state of all the running
work-items as needed to fulfill the requirements to implement the global synchronization.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

69

6 Ant Colony Optimization

An instance of a kernel is formally called a work-item. The total number of work-items is
referred to as global size, and defines the level of decomposition of the problem: the larger
the global size, the finer is the granularity, and is always preferred over a coarser granularity
when targeting a GPU device in order to maximize its utilization—if that does not imply in
a substantial raise of the communication overhead.

The mapping between a work-item and the problem’s data is set up through the concept
known as N-dimensional domain range, or just N-D domain, where N denotes a one-, two-, or
three-dimensional domain. In practice, this is the mechanism that connects the work-items
execution (“compute domain”) with the problem’s data (“data domain”). More specifically,
the OpenCL runtime assigns to each work-item a unique identifier, a globalid, which in turn
makes it possible to an individual work-item to operate on a subset of the problem’s data by
somehow indexing these elements through the identifier.

Figure 1 illustrates the concept of a mapping between the compute and data domains.
Suppose one is interested in computing in parallel a certain operation over an array of four
dimensions (n = 4), e.g. computing the square root of each element. A trivial strategy would
be to dedicate a work-item per element, but let us assume one wants to limit the number
of work-items to just two, that is, globalsize = 2. This means that a single work-item will
have to handle two data elements, thus the granularity g = 2. So, how could one connect
the compute and data domains? There are different ways of doing that, but one way is to,
from within the work-item, index the elements of the input and output by the expression
g × t + globalid, where t ∈ {0, 1} is the time step (iteration).

Figure 1. Example of a mapping between the compute and data domains.

A pseudo-OpenCL kernel implementing such strategy is presented in Algorithm 1.5 At step
t0, the first and second work-items will be accessing, respectively, the indices 0 and 1, and at
t1 they will access the indices 2 and 3.

Algorithm 1: Example of a pseudo-OpenCL kernel

for t ← 0 to n
globalsize

− 1 do

output[g × t + globalid] ←
√

input[g × t + globalid];

5 An actual OpenCL kernel is implemented in OpenCL C, which is almost indistinguishable from the C language, but
adds a few extensions and also some restrictions [15].

Ant Colony Optimization - Techniques and Applications68
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 7

The N-D domain range can also be extended to higher dimensions. For instance, in a 2-D
domain a work-item would have two identifiers, global0

id and global1
id, where the first could be

mapped to index the row and the second the column of a matrix. The reasoning is analogous
for a 3-D domain range.

2.1.1.3. Communication and Synchronization

There are situations in which it is desirable or required to allow work-items to communicate
and synchronize among them. For efficiency reasons, such operations are not arbitrarily
allowed among work-items across the whole N-D domain.6 For that purpose, though, one
can resort to the notion of work-group, which in a nutshell is just a collection of work-items.
All the work-items within a work-group are free to communicate and synchronize with each
other. The number of work-items per work-group is given by the parameter local size, which
in practice determines how the global domain is partitioned. For example, if globalsize is
256 and localsize is 64, then the computational domain is partitioned into 4 work-groups
(256/64) with each work-group having 64 work-items. Again, the OpenCL runtime provides
means that allow each work-group and work-item to identify themselves. A work-group
is identified with respect to the global N-D domain through groupid, and a work-item is
identified locally within its work-group via localid.

2.1.2. Compute Device Abstraction

In order to provide a uniform programming interface, OpenCL abstracts the architecture of
a parallel compute device, as shown in Figure 2. There are two fundamental concepts in this
abstraction, the compute and memory hierarchies.

Figure 2. Abstraction of a parallel compute device architecture [16].

OpenCL defines two levels of compute hardware organization, the compute units (CU) and
processing elements (PE). Not coincidentally this partitioning matches the software abstraction
of work-groups and work-items. In fact, OpenCL guarantees that a work-group is entirely
executed on a single compute unit whereas work-items are executed by processing elements.
Nowadays GPUs usually have thousands of processing elements clustered in a dozen of

6 There are two main reasons why those operations are restricted: (i) to encourage the better programming practice
of avoiding dependence on communication as much as possible; and, most importantly, (ii) to allow the OpenCL
to support even those rather limited devices that cannot keep—at least not efficiently—the state of all the running
work-items as needed to fulfill the requirements to implement the global synchronization.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

69

8 Ant Colony Optimization

compute units. Therefore, to fully utilize such devices, there is needed at the very least
this same amount of work-items in flight—however, the optimal amount of work-items in
execution should be substantially more than that in order to the device have enough room to
hide latencies [17, 18].

As for the memories, OpenCL exposes three memory spaces; from the more general to
the more specific: the (i) global/constant memory, which is the main memory of the device,
accessible from all the work-items—the constant space is a slightly optimized global memory
for read-only access; (ii) the local memory, a very fast low-latency memory which is shared
only across the work-items within their work-group—normally used as a programmable
cache memory or as a means to share data (communicate); and (iii) the private memory, also
a very fast memory, but only visible to the corresponding work-item.

3. Review of the literature

In the last few years, many works have been devoted to parallel implementations of
ACO algorithms in GPU devices, motivated by the powerful massively parallel architecture
provided by the GPU.

In reference [19], the authors proposed two parallel ACO implementations to solve the
Orienteering Problem (OP). The strategies applied to the GPU were based on the intrinsically
data-parallelism provided by the vertex processor and the fragment processor. The first
experiments compared a grid implementation with 32 workstations equipped with CPUs
Intel Pentium IV at 2.4GHz against one workstation with a GPU NVIDIA GeForce 6600 GT.
Both strategies performed similarly with respect to the quality of the obtained solutions. The
second experiment compared both the GPU parallel strategies proposed, showing that the
strategy applied to the fragment processor performed about 35% faster than the strategy
applied to the vertex processor.

In [20], the authors implemented a parallel MMAS using multiple colonies, where each
colony is associated with a work-group and ants are associated with work-items within each
work-group. The experiments compared a parallel version of MMAS on the GPU, with
three serial CPU versions. In the parallel implementation the CPU initializes the pheromone
trails, parameters, and also controls the iteration process, while the GPU is responsible for
running the main steps of the algorithm: solution construction, choice of the best solution,
and pheromone evaporation and updating. Six instances from the Travelling Salesman
Problem library (TSPLIB), containing up to 400 cities, were solved using a workstation with
a CPU AMD Athlon X2 3600+ running at 1.9GHz and a GPU NVIDIA GeForce GTX 8800 at
1.35GHz with 128 processing elements. The parallel GPU version was 2 to 32 times faster than
the sequential version, whereas the solutions quality of the parallel version outperformed
all the three MMAS serial versions. In order to accelerate the choice of the iteration-best
solution, the authors used a parallel reduction technique that “hangs up” the execution of
certain work-items. This technique requires the use of barrier synchronization in order to
ensure consistency of memory.

In the work described in [21] the authors implemented a parallel ACO algorithm with a
pattern search procedure to solve continuous functions with bound constraints. The parallel
method was compared with a serial CPU implementation. Each work-item is responsible for
evaluating the solution’s costs and constraints, constructing solutions and improving them

Ant Colony Optimization - Techniques and Applications70
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 9

via a local search procedure, while the CPU controls the initialization process, pheromone
evaporation and updating, the sorting of the generated solutions, and the updating of the
probability vectors. The experiments were executed on a workstation equipped with a CPU
Intel Xeon E5420 at 2.5GHz and a GPU NVIDIA GeForce GTX 280 at 1296MHz and 240
processing elements. The computational experiments showed acceleration values between
128 and almost 404 in the parallel GPU implementation. On the other hand, both the parallel
and serial versions obtained satisfactory results. However, regarding the solution quality
under a time limit of one second, the parallel version outperformed the sequential one in
most of the test problems. As a side note, the results could have been ever better if the
authors had generated the random numbers directly on the GPU instead of pre computing
them on the CPU.

A parallel MMAS under a MATLAB environment was presented in [22]. The authors
proposed an algorithm implementation which arranges the data into large scale matrices,
taking advantage of the fact that the integration of MATLAB with the Jacket accelerator
handles matrices on the GPU more naturally and efficiently than it could do with other data
types. Therefore, auxiliary matrices were created, besides the usual matrices (τ and η) in
a standard ACO algorithm. Instances from the TSPLIB were solved using a workstation
with a CPU Intel i7 at 3.3GHz and GPU NVIDIA Tesla C1060 at 1.3GHz and 240 processing
elements. Given a fixed number of iterations, the experimental evaluation showed that the
CPU and GPU implementations obtained similar results, yet with the parallel GPU version
much faster than the CPU. The speedup values had been growing with the number of TSP
nodes, but when the number of nodes reached 439 the growth could not be sustained and
slowed down drastically due to the frequent data-transfer operations between the CPU and
GPU.

In [23], the authors make use of the GPU parallel computing power to solve pathfinding
in games. The ACO algorithm proposed was implemented on a GPU device, where
the parallelism strategies follow a similar strategy to the one presented in [19]. In
this strategy, ants works in parallel to obtain a solution to the problem. The author
intended to study the algorithm scalability when large size problems are solved, against
a corresponding implementation on a CPU. The hardware architecture was not available but
the computational experiments showed that the GPU version was 15 times faster than its
corresponding CPU implementation.

In [24] an ACO algorithm was proposed for epistasis7 analysis. In order to tackle large
scale problems, the authors proposed a multi-GPU parallel implementation consisting of
one, three and six devices. The experiments show that the results generated by the GPU
implementation outperformed two other sequential versions in almost all trials and, when
the dataset increased, the GPU performed faster than the other implementations.

The Quadratic Assignment Problem (QAP) was solved in [25] by a parallel ACO based
algorithm. Besides the initialization process, all the algorithm steps are performed on the
GPU, and all data (pheromone matrix, set of solutions, etc.) are located in the global memory
of the GPU. Therefore, no data was needed to be transferred between the CPU and GPU, only
the best-so-far solution which checks if the termination condition is satisfied. The authors
focus on a parallelism strategy for the 2-opt local search procedure since, from previews
experiments, this was the most costly step. The experiments were done in a workstation

7 Phenomenon where the effects of one gene are modified by one or several other genes.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

71

8 Ant Colony Optimization

compute units. Therefore, to fully utilize such devices, there is needed at the very least
this same amount of work-items in flight—however, the optimal amount of work-items in
execution should be substantially more than that in order to the device have enough room to
hide latencies [17, 18].

As for the memories, OpenCL exposes three memory spaces; from the more general to
the more specific: the (i) global/constant memory, which is the main memory of the device,
accessible from all the work-items—the constant space is a slightly optimized global memory
for read-only access; (ii) the local memory, a very fast low-latency memory which is shared
only across the work-items within their work-group—normally used as a programmable
cache memory or as a means to share data (communicate); and (iii) the private memory, also
a very fast memory, but only visible to the corresponding work-item.

3. Review of the literature

In the last few years, many works have been devoted to parallel implementations of
ACO algorithms in GPU devices, motivated by the powerful massively parallel architecture
provided by the GPU.

In reference [19], the authors proposed two parallel ACO implementations to solve the
Orienteering Problem (OP). The strategies applied to the GPU were based on the intrinsically
data-parallelism provided by the vertex processor and the fragment processor. The first
experiments compared a grid implementation with 32 workstations equipped with CPUs
Intel Pentium IV at 2.4GHz against one workstation with a GPU NVIDIA GeForce 6600 GT.
Both strategies performed similarly with respect to the quality of the obtained solutions. The
second experiment compared both the GPU parallel strategies proposed, showing that the
strategy applied to the fragment processor performed about 35% faster than the strategy
applied to the vertex processor.

In [20], the authors implemented a parallel MMAS using multiple colonies, where each
colony is associated with a work-group and ants are associated with work-items within each
work-group. The experiments compared a parallel version of MMAS on the GPU, with
three serial CPU versions. In the parallel implementation the CPU initializes the pheromone
trails, parameters, and also controls the iteration process, while the GPU is responsible for
running the main steps of the algorithm: solution construction, choice of the best solution,
and pheromone evaporation and updating. Six instances from the Travelling Salesman
Problem library (TSPLIB), containing up to 400 cities, were solved using a workstation with
a CPU AMD Athlon X2 3600+ running at 1.9GHz and a GPU NVIDIA GeForce GTX 8800 at
1.35GHz with 128 processing elements. The parallel GPU version was 2 to 32 times faster than
the sequential version, whereas the solutions quality of the parallel version outperformed
all the three MMAS serial versions. In order to accelerate the choice of the iteration-best
solution, the authors used a parallel reduction technique that “hangs up” the execution of
certain work-items. This technique requires the use of barrier synchronization in order to
ensure consistency of memory.

In the work described in [21] the authors implemented a parallel ACO algorithm with a
pattern search procedure to solve continuous functions with bound constraints. The parallel
method was compared with a serial CPU implementation. Each work-item is responsible for
evaluating the solution’s costs and constraints, constructing solutions and improving them

Ant Colony Optimization - Techniques and Applications70
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 9

via a local search procedure, while the CPU controls the initialization process, pheromone
evaporation and updating, the sorting of the generated solutions, and the updating of the
probability vectors. The experiments were executed on a workstation equipped with a CPU
Intel Xeon E5420 at 2.5GHz and a GPU NVIDIA GeForce GTX 280 at 1296MHz and 240
processing elements. The computational experiments showed acceleration values between
128 and almost 404 in the parallel GPU implementation. On the other hand, both the parallel
and serial versions obtained satisfactory results. However, regarding the solution quality
under a time limit of one second, the parallel version outperformed the sequential one in
most of the test problems. As a side note, the results could have been ever better if the
authors had generated the random numbers directly on the GPU instead of pre computing
them on the CPU.

A parallel MMAS under a MATLAB environment was presented in [22]. The authors
proposed an algorithm implementation which arranges the data into large scale matrices,
taking advantage of the fact that the integration of MATLAB with the Jacket accelerator
handles matrices on the GPU more naturally and efficiently than it could do with other data
types. Therefore, auxiliary matrices were created, besides the usual matrices (τ and η) in
a standard ACO algorithm. Instances from the TSPLIB were solved using a workstation
with a CPU Intel i7 at 3.3GHz and GPU NVIDIA Tesla C1060 at 1.3GHz and 240 processing
elements. Given a fixed number of iterations, the experimental evaluation showed that the
CPU and GPU implementations obtained similar results, yet with the parallel GPU version
much faster than the CPU. The speedup values had been growing with the number of TSP
nodes, but when the number of nodes reached 439 the growth could not be sustained and
slowed down drastically due to the frequent data-transfer operations between the CPU and
GPU.

In [23], the authors make use of the GPU parallel computing power to solve pathfinding
in games. The ACO algorithm proposed was implemented on a GPU device, where
the parallelism strategies follow a similar strategy to the one presented in [19]. In
this strategy, ants works in parallel to obtain a solution to the problem. The author
intended to study the algorithm scalability when large size problems are solved, against
a corresponding implementation on a CPU. The hardware architecture was not available but
the computational experiments showed that the GPU version was 15 times faster than its
corresponding CPU implementation.

In [24] an ACO algorithm was proposed for epistasis7 analysis. In order to tackle large
scale problems, the authors proposed a multi-GPU parallel implementation consisting of
one, three and six devices. The experiments show that the results generated by the GPU
implementation outperformed two other sequential versions in almost all trials and, when
the dataset increased, the GPU performed faster than the other implementations.

The Quadratic Assignment Problem (QAP) was solved in [25] by a parallel ACO based
algorithm. Besides the initialization process, all the algorithm steps are performed on the
GPU, and all data (pheromone matrix, set of solutions, etc.) are located in the global memory
of the GPU. Therefore, no data was needed to be transferred between the CPU and GPU, only
the best-so-far solution which checks if the termination condition is satisfied. The authors
focus on a parallelism strategy for the 2-opt local search procedure since, from previews
experiments, this was the most costly step. The experiments were done in a workstation

7 Phenomenon where the effects of one gene are modified by one or several other genes.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

71

10 Ant Colony Optimization

with CPU Intel i7 965 at 3.2GHz and GPU NVIDIA GeForce GTX 480 at 1401MHz and 480
processing elements. Instances from the Quadratic Assignment Problem library (QAPLIB)
were solved with the problem size ranging from 50 to 150. The GPU computing performed
24 times faster than the CPU.

An ACO based parallel algorithm was proposed for design validation of circuits [26]. The
ACO method is different from the standard ACO implementation, since it does not use
pheromones trails to guide the search process. The proposed method explores the maximum
occupancy of the GPU, defining the global size as the number of work-groups times the
amount of work-items per work-group. A workstation with CPU Intel i7 at 3.33GHz
and a GPU NVIDIA GeForce GTX 285 with 240 processing elements were used for the
computational experiments. The results showed average speedup values between 7 and 11
regarding all the test problems, and reaching a peak speedup value of 228 in a specific test
problem when compared with two other methods.

In [27], the MMAS with a 3-opt local search was implemented in parallel on the GPU.
The authors proposed four parallel strategies, two based on parallel ants and two based on
multiple ant colonies. In the first parallel-ants strategy, ants are assigned to work-items,
each one responsible for all calculation needed in the tour construction process. The second
parallel-ants proposal assigned each ant to a work-group, making possible to extract an
additional level of parallelism in the computation of the state transition rule. In the multiple
colony strategy, a single GPU and multiples GPUs—each one associated to a colony—were
used, applying the same parallel-ants strategies proposed. TSP instances varying from 51 to
2103 cities were used as test problems. The experiments were done using two CPUs 4-core
Xeon E5640 at 2.67GHz and two GPUs NVIDIA Fermi C2050 with 448 processing elements.
Evaluating the parallel ants strategies against the sequential version of the MMAS, the
overall experiments showed that the solutions quality were similar, when no local search was
used. However, speedup values ranging from 6.84 to 19.47 could be achieved when the ants
were associated with work-groups. For the multiple colonies strategies the speedup varied
between 16.24 and 23.60.

The authors in [28] proposed parallel strategies for the tour construction and the pheromone
updating phases. In the tour construction phase three different aspects were reworked
in order to increase parallelism: (i) the choice-info matrix calculation, which combines
pheromone and heuristic information; (ii) the roulette wheel selection procedure; and (iii)
the decomposition granularity, which switched to the parallel processing of both ants and
tours. Regarding the pheromone trails updating, the authors applied a scatter to gather based
design to avoid atomic instructions required for proper updating the pheromone matrix.
The hardware used for the computational experiments were composed by a CPU Intel Xeon
E5620 running at 2.4Ghz and a GPU NVIDIA Tesla C2050 at 1.15GHz and 448 processing
elements. For the phase of the construction of the solution, the parallel version performed
up to 21 times faster than the sequential version, while for the pheromone updating the
scatter to gather technique performed poorly. However, considering a data-based parallelism
with atomic instructions, the authors presented a strategy that was up to 20 times faster than
a sequential execution.

The next section will present strategies for the parallel ACO on the GPU for each step of the
algorithm.

Ant Colony Optimization - Techniques and Applications72
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 11

4. Parallelization strategies

In ACO algorithms, artificial ants cooperate while exploring the search space, searching good
solutions for the problem through a communication mediated by artificial pheromone trails.
The construction solution process is incremental, where a solution is built by adding solution
components to an initially empty solution under construction. The ant’s heuristic rule
probabilistically decides the next solution component guided by (i) the heuristic information
(η), representing a priori information about the problem instance to be solved; and (ii) the
pheromone trail (τ), which encodes a memory about the ant colony search process that is
continuously updated by the ants.

The main steps of the Ant System (AS) algorithm [1, 9] can be described as: initialization
phase, ants’ solutions construction, ants’ solutions evaluation and pheromone trails updating.
In Algorithm 2 a pseudo-code of AS is given. As opposed to the following parallel strategies,
this algorithm is meant to be implemented and run as host code, preparing and transferring
data to/from the GPU, setting kernels’ arguments and managing their executions.

Algorithm 2: Pseudo-code of Ant System.

// Initialization phase

Pheromone trails τ;
Heuristic information η;

// Iterative phase

while termination criteria not met do
Ants’ solutions construction;
Ants’ solutions evaluation;
Pheromone trails updating;

Return the best solution;

After setting the parameters, the first step of the algorithm is the initialization procedure,
which initializes the heuristic information and the pheromone trails. In ants’ solution
construction, each ant starts with a randomly chosen node (city) and incrementally builds
solutions according to the decision policy of choosing an unvisited node j being at node i,
which is guided by the pheromone trails (τij) and the heuristic information (ηij) associated
with that arc. When all ants construct a complete path (feasible solution), the solutions are
evaluated. Then, the pheromone trails are updated considering the quality of the candidate
solutions found; also a certain level of evaporation is applied. When the iterative phase is
complete, that is, when the termination criteria is met, the algorithm returns the best solution
generated.

As showed in the previous section, different parallel techniques for ACO algorithms
were proposed, each one adapted to the optimization problem considered and the GPU
architecture available. In all cases, researchers tried to extract the maximum efficiency of the
parallel computing provided by the GPU.

This section is dedicated to describe, in a pseudo-OpenCL form, parallelization strategies of
the ACO algorithm described in Algorithm 2, taking the TSP as an illustrative reference

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

73

10 Ant Colony Optimization

with CPU Intel i7 965 at 3.2GHz and GPU NVIDIA GeForce GTX 480 at 1401MHz and 480
processing elements. Instances from the Quadratic Assignment Problem library (QAPLIB)
were solved with the problem size ranging from 50 to 150. The GPU computing performed
24 times faster than the CPU.

An ACO based parallel algorithm was proposed for design validation of circuits [26]. The
ACO method is different from the standard ACO implementation, since it does not use
pheromones trails to guide the search process. The proposed method explores the maximum
occupancy of the GPU, defining the global size as the number of work-groups times the
amount of work-items per work-group. A workstation with CPU Intel i7 at 3.33GHz
and a GPU NVIDIA GeForce GTX 285 with 240 processing elements were used for the
computational experiments. The results showed average speedup values between 7 and 11
regarding all the test problems, and reaching a peak speedup value of 228 in a specific test
problem when compared with two other methods.

In [27], the MMAS with a 3-opt local search was implemented in parallel on the GPU.
The authors proposed four parallel strategies, two based on parallel ants and two based on
multiple ant colonies. In the first parallel-ants strategy, ants are assigned to work-items,
each one responsible for all calculation needed in the tour construction process. The second
parallel-ants proposal assigned each ant to a work-group, making possible to extract an
additional level of parallelism in the computation of the state transition rule. In the multiple
colony strategy, a single GPU and multiples GPUs—each one associated to a colony—were
used, applying the same parallel-ants strategies proposed. TSP instances varying from 51 to
2103 cities were used as test problems. The experiments were done using two CPUs 4-core
Xeon E5640 at 2.67GHz and two GPUs NVIDIA Fermi C2050 with 448 processing elements.
Evaluating the parallel ants strategies against the sequential version of the MMAS, the
overall experiments showed that the solutions quality were similar, when no local search was
used. However, speedup values ranging from 6.84 to 19.47 could be achieved when the ants
were associated with work-groups. For the multiple colonies strategies the speedup varied
between 16.24 and 23.60.

The authors in [28] proposed parallel strategies for the tour construction and the pheromone
updating phases. In the tour construction phase three different aspects were reworked
in order to increase parallelism: (i) the choice-info matrix calculation, which combines
pheromone and heuristic information; (ii) the roulette wheel selection procedure; and (iii)
the decomposition granularity, which switched to the parallel processing of both ants and
tours. Regarding the pheromone trails updating, the authors applied a scatter to gather based
design to avoid atomic instructions required for proper updating the pheromone matrix.
The hardware used for the computational experiments were composed by a CPU Intel Xeon
E5620 running at 2.4Ghz and a GPU NVIDIA Tesla C2050 at 1.15GHz and 448 processing
elements. For the phase of the construction of the solution, the parallel version performed
up to 21 times faster than the sequential version, while for the pheromone updating the
scatter to gather technique performed poorly. However, considering a data-based parallelism
with atomic instructions, the authors presented a strategy that was up to 20 times faster than
a sequential execution.

The next section will present strategies for the parallel ACO on the GPU for each step of the
algorithm.

Ant Colony Optimization - Techniques and Applications72
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 11

4. Parallelization strategies

In ACO algorithms, artificial ants cooperate while exploring the search space, searching good
solutions for the problem through a communication mediated by artificial pheromone trails.
The construction solution process is incremental, where a solution is built by adding solution
components to an initially empty solution under construction. The ant’s heuristic rule
probabilistically decides the next solution component guided by (i) the heuristic information
(η), representing a priori information about the problem instance to be solved; and (ii) the
pheromone trail (τ), which encodes a memory about the ant colony search process that is
continuously updated by the ants.

The main steps of the Ant System (AS) algorithm [1, 9] can be described as: initialization
phase, ants’ solutions construction, ants’ solutions evaluation and pheromone trails updating.
In Algorithm 2 a pseudo-code of AS is given. As opposed to the following parallel strategies,
this algorithm is meant to be implemented and run as host code, preparing and transferring
data to/from the GPU, setting kernels’ arguments and managing their executions.

Algorithm 2: Pseudo-code of Ant System.

// Initialization phase

Pheromone trails τ;
Heuristic information η;

// Iterative phase

while termination criteria not met do
Ants’ solutions construction;
Ants’ solutions evaluation;
Pheromone trails updating;

Return the best solution;

After setting the parameters, the first step of the algorithm is the initialization procedure,
which initializes the heuristic information and the pheromone trails. In ants’ solution
construction, each ant starts with a randomly chosen node (city) and incrementally builds
solutions according to the decision policy of choosing an unvisited node j being at node i,
which is guided by the pheromone trails (τij) and the heuristic information (ηij) associated
with that arc. When all ants construct a complete path (feasible solution), the solutions are
evaluated. Then, the pheromone trails are updated considering the quality of the candidate
solutions found; also a certain level of evaporation is applied. When the iterative phase is
complete, that is, when the termination criteria is met, the algorithm returns the best solution
generated.

As showed in the previous section, different parallel techniques for ACO algorithms
were proposed, each one adapted to the optimization problem considered and the GPU
architecture available. In all cases, researchers tried to extract the maximum efficiency of the
parallel computing provided by the GPU.

This section is dedicated to describe, in a pseudo-OpenCL form, parallelization strategies of
the ACO algorithm described in Algorithm 2, taking the TSP as an illustrative reference

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

73

12 Ant Colony Optimization

problem.8 Those strategies, however, should be readily applicable, with minor or no
adaptations at all, to all the problems that belong to the same class of the TSP.9

4.1. Data initialization

This phase is responsible for defining the stopping criteria, initializing the parameters and
allocating all data structures of the algorithm. The list of parameters is: α and β, which
regulate the relative importance of the pheromone trails and the heuristic information,
respectively; ρ, the pheromone evaporation rate; τ0, the initial pheromone value; number
of ants (numberants); and the number of nodes (numbernodes). The parameters setting is done
on the host and then passed as kernel’s arguments.

In the following kernels all the data structures, in particular the matrices, are actually
allocated and accessed as linear arrays, since OpenCL does not provide abstraction for
higher-dimensional data structures. Therefore, the element aij ∈ A is indexed in its linear
form as A[i × n + j], where n is the number of columns of matrix A.

4.1.1. Pheromone Trails and Heuristic Information

To initialize the pheromone trails, all connections (i, j) must be set to the same initial value
(τ0), whereas in the heuristic information each connection (i, j) is set as the distance between
the nodes i and j of the TSP instance being solved. Since the initialization operation is
inherently independent it can be trivially parallelized. Algorithm 3 presents the kernel
implementation in which a 2-D domain range10 is used and defined as

global0
size ← numbernodes

global1
size ← numbernodes

(1)

Algorithm 3: OpenCL kernel for initializing τ and η

τ[global0
id × global1

size + global1
id] ← τ0;

η[global0
id × global1

size + global1
id] ← Distance(x[global0

id], y[global1
id]);

In the kernel, the helper function Distance(i, j) returns the distance between nodes i and j.
The input data are two arrays with the coordinates x and y of each node. This function should
implement the Euclidean, Manhattan or other distance function defined by the problem. The
input coordinates must be set on the CPU, by reading the TSP instance, then transferred to
the GPU prior to the kernel launch.

8 In this chapter only the key components to the understanding of the parallel strategies—the OpenCL kernels and
the corresponding setup of the N-dimensional domains—are presented. For specific details regarding secondary
elements, such as the host code and the actual OpenCL kernel, please refer to the appropriated OpenCL literature.

9 It might be necessary some adaptations concerning the algorithmic structure (data initialization, evaluation of costs,
etc.) that might have particular needs with respect to the underlying strategy of parallelism.

10 The OpenCL kernels presented throughout this chapter are either in a one- or two-dimensional domain range,
depending on which one fits more naturally the particular mapping between the data and compute domains.

Ant Colony Optimization - Techniques and Applications74
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 13

4.2. Solution construction

For the TSP, this phase is the most costly of the ACO algorithm and needs special attention
regarding the parallel strategy.

In this section, a parallel implementation for the solution construction will be presented—the
ant-based parallelism—which associates an ant with a work-item.

4.2.1. Caching the Pheromone and Heuristic Information

The probability of choosing a node j being at node i is associated with [τij]
α[ηij]

β. Each of
those values need to be computed by all ants, hence, in order to reduce the computation
time [2] an additional matrix, choicein f o[·][·], is utilized to cache them. For this caching
computation, a 2-D domain range is employed and defined as

global0
size ← numbernodes

global1
size ← numbernodes,

(2)

with the corresponding kernel described in Algorithm 4.

Algorithm 4: OpenCL kernel for calculating the choice-info cache

choicein f o [global0
id × global1

size + global1
id] ←

τ[global0
id × global1

size + global1
id]

α
× η[global0

id × global1
size + global1

id]
β;

Whenever the pheromone trails τ is modified (4.1 and 4.4), the matrix choicein f o also needs
to be updated since it depends on the former. In other words, the caching data is recalculated
at each iteration, just before the actual construction of the solution.

4.2.2. Ant-based Parallelism (AP)

In this strategy, each ant is associated with a work-item, each one responsible for constructing
a complete solution, managing all data required for this phase (list of visited cities,
probabilities calculations, and so on). Algorithm 5 presents a kernel which implements the
AS decision rule, where the 1-D domain range is set as

globalsize ← numberants (3)

The matrix of candidate solutions (solution[·][·]) stores the ants’ paths, with each row
representing a complete ant’s solution. The set of visited nodes, visited[·], keeps track of
the current visited nodes for each ant, preventing duplicate selection as forbidden by the
TSP: the i-th element is set to true when the i-th node is chosen to be part of the ant’s
solution (initially all elements are set to false). At a current node c, selectionprob[i] stores
the probability of each node i being selected, which is based on the pheromone trails and
heuristic information—such data is cached in choicein f o[c][i].

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

75

12 Ant Colony Optimization

problem.8 Those strategies, however, should be readily applicable, with minor or no
adaptations at all, to all the problems that belong to the same class of the TSP.9

4.1. Data initialization

This phase is responsible for defining the stopping criteria, initializing the parameters and
allocating all data structures of the algorithm. The list of parameters is: α and β, which
regulate the relative importance of the pheromone trails and the heuristic information,
respectively; ρ, the pheromone evaporation rate; τ0, the initial pheromone value; number
of ants (numberants); and the number of nodes (numbernodes). The parameters setting is done
on the host and then passed as kernel’s arguments.

In the following kernels all the data structures, in particular the matrices, are actually
allocated and accessed as linear arrays, since OpenCL does not provide abstraction for
higher-dimensional data structures. Therefore, the element aij ∈ A is indexed in its linear
form as A[i × n + j], where n is the number of columns of matrix A.

4.1.1. Pheromone Trails and Heuristic Information

To initialize the pheromone trails, all connections (i, j) must be set to the same initial value
(τ0), whereas in the heuristic information each connection (i, j) is set as the distance between
the nodes i and j of the TSP instance being solved. Since the initialization operation is
inherently independent it can be trivially parallelized. Algorithm 3 presents the kernel
implementation in which a 2-D domain range10 is used and defined as

global0
size ← numbernodes

global1
size ← numbernodes

(1)

Algorithm 3: OpenCL kernel for initializing τ and η

τ[global0
id × global1

size + global1
id] ← τ0;

η[global0
id × global1

size + global1
id] ← Distance(x[global0

id], y[global1
id]);

In the kernel, the helper function Distance(i, j) returns the distance between nodes i and j.
The input data are two arrays with the coordinates x and y of each node. This function should
implement the Euclidean, Manhattan or other distance function defined by the problem. The
input coordinates must be set on the CPU, by reading the TSP instance, then transferred to
the GPU prior to the kernel launch.

8 In this chapter only the key components to the understanding of the parallel strategies—the OpenCL kernels and
the corresponding setup of the N-dimensional domains—are presented. For specific details regarding secondary
elements, such as the host code and the actual OpenCL kernel, please refer to the appropriated OpenCL literature.

9 It might be necessary some adaptations concerning the algorithmic structure (data initialization, evaluation of costs,
etc.) that might have particular needs with respect to the underlying strategy of parallelism.

10 The OpenCL kernels presented throughout this chapter are either in a one- or two-dimensional domain range,
depending on which one fits more naturally the particular mapping between the data and compute domains.

Ant Colony Optimization - Techniques and Applications74
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 13

4.2. Solution construction

For the TSP, this phase is the most costly of the ACO algorithm and needs special attention
regarding the parallel strategy.

In this section, a parallel implementation for the solution construction will be presented—the
ant-based parallelism—which associates an ant with a work-item.

4.2.1. Caching the Pheromone and Heuristic Information

The probability of choosing a node j being at node i is associated with [τij]
α[ηij]

β. Each of
those values need to be computed by all ants, hence, in order to reduce the computation
time [2] an additional matrix, choicein f o[·][·], is utilized to cache them. For this caching
computation, a 2-D domain range is employed and defined as

global0
size ← numbernodes

global1
size ← numbernodes,

(2)

with the corresponding kernel described in Algorithm 4.

Algorithm 4: OpenCL kernel for calculating the choice-info cache

choicein f o [global0
id × global1

size + global1
id] ←

τ[global0
id × global1

size + global1
id]

α
× η[global0

id × global1
size + global1

id]
β;

Whenever the pheromone trails τ is modified (4.1 and 4.4), the matrix choicein f o also needs
to be updated since it depends on the former. In other words, the caching data is recalculated
at each iteration, just before the actual construction of the solution.

4.2.2. Ant-based Parallelism (AP)

In this strategy, each ant is associated with a work-item, each one responsible for constructing
a complete solution, managing all data required for this phase (list of visited cities,
probabilities calculations, and so on). Algorithm 5 presents a kernel which implements the
AS decision rule, where the 1-D domain range is set as

globalsize ← numberants (3)

The matrix of candidate solutions (solution[·][·]) stores the ants’ paths, with each row
representing a complete ant’s solution. The set of visited nodes, visited[·], keeps track of
the current visited nodes for each ant, preventing duplicate selection as forbidden by the
TSP: the i-th element is set to true when the i-th node is chosen to be part of the ant’s
solution (initially all elements are set to false). At a current node c, selectionprob[i] stores
the probability of each node i being selected, which is based on the pheromone trails and
heuristic information—such data is cached in choicein f o[c][i].

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

75

14 Ant Colony Optimization

Algorithm 5: OpenCL kernel for the ant-based solution construction

// Initialization

visited[·] ← f alse;

// Selection of the initial node

Initialnode ← Random(0, numbernodes − 1);
solution[globalid × numbernodes + 0] ← Initialnode;
visited[globalid × numbernodes + Initialnode] ← true;

for step ← 1 to numbernodes − 1 do

sumprob ← 0.0;

currentnode ← solution[globalid × numbernodes + (step − 1)];

// Calculation of the nodes’ probabilities

for i ← 0 to numbernodes − 1 do

if visited[globalid × numbernodes + i] then

selectionprob[globalid × numbernodes + i] ← 0.0;

else

selectionprob[globalid × numbernodes + i] ← choicein f o [currentnode × numbernodes + i];

sumprob ← sumprob + selectionprob[globalid × numbernodes + i];

// Node selection via roulette wheel

r ← Random(0, sumprob);

i ← 0;
p ← selectionprob[globalid × numbernodes + 0];

while p < r do

i ← i + 1;
p ← p + selectionprob[globalid × numbernodes + i];

solution[globalid × numbernodes + step] ← i;
visited[globalid × numbernodes + i] ← true;

The function Random(a, b) returns a uniform real-valued pseudo-number between a and b.
The random number generator could be easily implemented on the GPU through the simple
linear congruential method [29]; the only requirement would be to keep in the device’s global
memory a state information (an integral number) for each work-item that must persist across
kernel executions.

There exist data-based parallel strategies for the construction of the solutions, where usually
a work-group takes care of an ant and its work-items compute in parallel some portion of
the construction procedure. For instance, the ANTblock strategy in [27], which in parallel
evaluates and chooses the next node (city) from all the possible candidates. However, those
strategies are considerably more complex than the ant-based parallelism, and for large-scale
problems in which the number of ants is reasonably high—i.e. the class of problems that one
would make use of GPUs—the ant-based strategy is enough to saturate the GPU.

4.3. Solution evaluation

When all solutions are constructed, they must be evaluated. The direct approach is to
parallelize this step by the number of ants, dedicating a work-item per solution. However,
in many problems it is possible to decompose the evaluation of the solution itself, leading

Ant Colony Optimization - Techniques and Applications76
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 15

to a second level of parallelism: each work-group takes care of an ant, with each work-item
within this group in charge of a subset of the solution.

4.3.1. Ant-based Evaluation (AE)

The simplest strategy for evaluating the solutions is to parallelize by the number of ants,
assigning each solution evaluation to a work-item. In this case, the kernel could be written
as in Algorithm 6, with the 1-D domain range as

globalsize ← numberants (4)

The cost resulting from the evaluation of the complete solution of ant k, which in the kernel

Algorithm 6: OpenCL kernel for the ant-based evaluation

solutionvalue[globalid] ← 0.0;

for i ← 0 to numbernodes − 2 do

j ← solution[globalid × numbernodes + i];
h ← solution[globalid × numbernodes + (i + 1)];
solutionvalue[globalid] ← solutionvalue[globalid] + η[j × numbernodes + h];

j ← solution[globalid × numbernodes + (numbernodes − 1)];
h ← solution[globalid × numbernodes + 0];
solutionvalue[globalid] ← solutionvalue[globalid] + η[j × numbernodes + h];

is denoted by globalid, is put into the array solutionvalue[k] of dimension numberants.

4.3.2. Data-based Evaluation (DE)

This second strategy adds one more level of parallelism than the one previously presented.
In the case of TSP, the costs of traveling from node i to j, j to k and so on can be summed up
in parallel. To this end, the parallel primitive known as prefix sum is employed [30]. Its idea is
illustrated in Figure 3, where w0 . . . wN−1 correspond to the work-items within a work-group.
The computational step complexity of the parallel prefix sum is O(log2N), meaning that, for
instance, the sum of an array of 8 nodes is computed in just 3 iterations.

In order to apply this primitive to a TSP’s solution, a preparatory step is required: the cost
for each adjacent node must be obtained from the distance matrix and put into an array,
let us call it δ.11 This preprocessing is done in parallel, as shown in Algorithm 7, which
also describes the subsequent prefix sum procedure. In the kernel, the helper function
Distance(k, i) returns the distance between the node i and i + 1 for ant k; when i is the last
node, the function returns the distance from this one to the first node. One can notice the
use of the function Barrier(). In OpenCL, a barrier is a synchronization point that ensures
that a memory region written by other work-items is consistent at that point. The first barrier
is necessary because δ[localid − s] references a memory region that was written by the s-th
previous work-item. As for the second barrier, it is needed to prevent δ[localid] from being
updated before the s-th next work-item reads it. Finally, the final sum, which ends up at the
last element of δ, is stored in the solutionvalue vector for the ant indexed by groupid.

11 To improve efficiency, the array δ could—and frequently is—be allocated directly in the local memory (cf. 2.1).

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

77

14 Ant Colony Optimization

Algorithm 5: OpenCL kernel for the ant-based solution construction

// Initialization

visited[·] ← f alse;

// Selection of the initial node

Initialnode ← Random(0, numbernodes − 1);
solution[globalid × numbernodes + 0] ← Initialnode;
visited[globalid × numbernodes + Initialnode] ← true;

for step ← 1 to numbernodes − 1 do

sumprob ← 0.0;

currentnode ← solution[globalid × numbernodes + (step − 1)];

// Calculation of the nodes’ probabilities

for i ← 0 to numbernodes − 1 do

if visited[globalid × numbernodes + i] then

selectionprob[globalid × numbernodes + i] ← 0.0;

else

selectionprob[globalid × numbernodes + i] ← choicein f o [currentnode × numbernodes + i];

sumprob ← sumprob + selectionprob[globalid × numbernodes + i];

// Node selection via roulette wheel

r ← Random(0, sumprob);

i ← 0;
p ← selectionprob[globalid × numbernodes + 0];

while p < r do

i ← i + 1;
p ← p + selectionprob[globalid × numbernodes + i];

solution[globalid × numbernodes + step] ← i;
visited[globalid × numbernodes + i] ← true;

The function Random(a, b) returns a uniform real-valued pseudo-number between a and b.
The random number generator could be easily implemented on the GPU through the simple
linear congruential method [29]; the only requirement would be to keep in the device’s global
memory a state information (an integral number) for each work-item that must persist across
kernel executions.

There exist data-based parallel strategies for the construction of the solutions, where usually
a work-group takes care of an ant and its work-items compute in parallel some portion of
the construction procedure. For instance, the ANTblock strategy in [27], which in parallel
evaluates and chooses the next node (city) from all the possible candidates. However, those
strategies are considerably more complex than the ant-based parallelism, and for large-scale
problems in which the number of ants is reasonably high—i.e. the class of problems that one
would make use of GPUs—the ant-based strategy is enough to saturate the GPU.

4.3. Solution evaluation

When all solutions are constructed, they must be evaluated. The direct approach is to
parallelize this step by the number of ants, dedicating a work-item per solution. However,
in many problems it is possible to decompose the evaluation of the solution itself, leading

Ant Colony Optimization - Techniques and Applications76
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 15

to a second level of parallelism: each work-group takes care of an ant, with each work-item
within this group in charge of a subset of the solution.

4.3.1. Ant-based Evaluation (AE)

The simplest strategy for evaluating the solutions is to parallelize by the number of ants,
assigning each solution evaluation to a work-item. In this case, the kernel could be written
as in Algorithm 6, with the 1-D domain range as

globalsize ← numberants (4)

The cost resulting from the evaluation of the complete solution of ant k, which in the kernel

Algorithm 6: OpenCL kernel for the ant-based evaluation

solutionvalue[globalid] ← 0.0;

for i ← 0 to numbernodes − 2 do

j ← solution[globalid × numbernodes + i];
h ← solution[globalid × numbernodes + (i + 1)];
solutionvalue[globalid] ← solutionvalue[globalid] + η[j × numbernodes + h];

j ← solution[globalid × numbernodes + (numbernodes − 1)];
h ← solution[globalid × numbernodes + 0];
solutionvalue[globalid] ← solutionvalue[globalid] + η[j × numbernodes + h];

is denoted by globalid, is put into the array solutionvalue[k] of dimension numberants.

4.3.2. Data-based Evaluation (DE)

This second strategy adds one more level of parallelism than the one previously presented.
In the case of TSP, the costs of traveling from node i to j, j to k and so on can be summed up
in parallel. To this end, the parallel primitive known as prefix sum is employed [30]. Its idea is
illustrated in Figure 3, where w0 . . . wN−1 correspond to the work-items within a work-group.
The computational step complexity of the parallel prefix sum is O(log2N), meaning that, for
instance, the sum of an array of 8 nodes is computed in just 3 iterations.

In order to apply this primitive to a TSP’s solution, a preparatory step is required: the cost
for each adjacent node must be obtained from the distance matrix and put into an array,
let us call it δ.11 This preprocessing is done in parallel, as shown in Algorithm 7, which
also describes the subsequent prefix sum procedure. In the kernel, the helper function
Distance(k, i) returns the distance between the node i and i + 1 for ant k; when i is the last
node, the function returns the distance from this one to the first node. One can notice the
use of the function Barrier(). In OpenCL, a barrier is a synchronization point that ensures
that a memory region written by other work-items is consistent at that point. The first barrier
is necessary because δ[localid − s] references a memory region that was written by the s-th
previous work-item. As for the second barrier, it is needed to prevent δ[localid] from being
updated before the s-th next work-item reads it. Finally, the final sum, which ends up at the
last element of δ, is stored in the solutionvalue vector for the ant indexed by groupid.

11 To improve efficiency, the array δ could—and frequently is—be allocated directly in the local memory (cf. 2.1).

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

77

16 Ant Colony Optimization

Figure 3. Parallel prefix sum: each element of the final array is the sum of all the previous elements, i.e. the partial cost; the

last element is the total cost.

Algorithm 7: OpenCL kernel for the data-based evaluation

// Preparatory step

δ[localid] ← Distance(groupid, localid);

// Prefix sum

tmp ← δ[localid];
s ← 1;
while s < localsize do

Barrier();
if localid ≥ s then

tmp ← δ[localid] + δ[localid − s];

Barrier();
δ[localid] ← tmp;
s ← s × 2;

if localid = groupsize − 1 then

solutionvalue[groupid] ← δ[groupsize − 1];

Regarding the N-D domain definition, since there are numberants ants and for each ant
(solution) there are numbernodes distances, the global size is given by

globalsize ← numberants × numbernodes (5)

and the local size, i.e. the amount of work-items devoted to compute the total cost per
solution, simply by

localsize ← numbernodes, (6)

resulting in numberants work-groups (one per ant).12

12 For the sake of simplicity, it is assumed that the number of nodes (cities) is such that the resulting local size is less
than the device’s maximum supported local size, a hardware limit. If this is not the case, then Algorithm 7 should
be modified in such a way that each work-item would compute more than just one partial sum.

Ant Colony Optimization - Techniques and Applications78
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 17

4.3.3. Finding the Best Solution

It is important at each iteration to keep track of the best-so-far solution. This could be
achieved naively by iterating over all the evaluated solutions sequentially. There is though
a parallel alternative to that which utilizes a primitive, analogous to the previous one,
called reduction [30]. The idea of the parallel reduction is visualized in Figure 4. It

Figure 4. O(log2 N) parallel reduction: the remaining element is the smallest of the array.

starts by comparing the elements of an array—that is, solutionvalue—by pairs to find the
smallest element between each pair. The next iteration finds the smallest values of the
previously reduced ones, then the process continues until a single value remains; this is
the smallest element—or cost—of the entire array. The implementation is somewhat similar
to the prefix sum, and will not be detailed here. The global and local sizes should both
be set to numberants, meaning that the reduction will occur within one work-group since
synchronization is required. The actual implementation will also need a mapping between
the cost values (the solutionvalue array) and the corresponding solutions in order to link the
smallest cost found with the respective solution.

4.4. Pheromone Trails Updating

After all ants have constructed their tours (solutions), the pheromone trails are updated. In
AS, the pheromone update step starts evaporating all arcs by a constant factor, followed by a
reinforcement on the arcs visited by the ants in their tours.

4.4.1. Pheromone Evaporation

In the pheromone evaporation, each element of the pheromone matrix has its value decreased
by a constant factor ρ ∈ (0, 1]. Hence, the parallel implementation can explore parallelism
in the order of numbernodes × numbernodes. For this step, the kernel can be described as in
Algorithm 8, with the 2-D domain range given by

global0
size ← numbernodes

global1
size ← numbernodes

(7)

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

79

16 Ant Colony Optimization

Figure 3. Parallel prefix sum: each element of the final array is the sum of all the previous elements, i.e. the partial cost; the

last element is the total cost.

Algorithm 7: OpenCL kernel for the data-based evaluation

// Preparatory step

δ[localid] ← Distance(groupid, localid);

// Prefix sum

tmp ← δ[localid];
s ← 1;
while s < localsize do

Barrier();
if localid ≥ s then

tmp ← δ[localid] + δ[localid − s];

Barrier();
δ[localid] ← tmp;
s ← s × 2;

if localid = groupsize − 1 then

solutionvalue[groupid] ← δ[groupsize − 1];

Regarding the N-D domain definition, since there are numberants ants and for each ant
(solution) there are numbernodes distances, the global size is given by

globalsize ← numberants × numbernodes (5)

and the local size, i.e. the amount of work-items devoted to compute the total cost per
solution, simply by

localsize ← numbernodes, (6)

resulting in numberants work-groups (one per ant).12

12 For the sake of simplicity, it is assumed that the number of nodes (cities) is such that the resulting local size is less
than the device’s maximum supported local size, a hardware limit. If this is not the case, then Algorithm 7 should
be modified in such a way that each work-item would compute more than just one partial sum.

Ant Colony Optimization - Techniques and Applications78
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 17

4.3.3. Finding the Best Solution

It is important at each iteration to keep track of the best-so-far solution. This could be
achieved naively by iterating over all the evaluated solutions sequentially. There is though
a parallel alternative to that which utilizes a primitive, analogous to the previous one,
called reduction [30]. The idea of the parallel reduction is visualized in Figure 4. It

Figure 4. O(log2 N) parallel reduction: the remaining element is the smallest of the array.

starts by comparing the elements of an array—that is, solutionvalue—by pairs to find the
smallest element between each pair. The next iteration finds the smallest values of the
previously reduced ones, then the process continues until a single value remains; this is
the smallest element—or cost—of the entire array. The implementation is somewhat similar
to the prefix sum, and will not be detailed here. The global and local sizes should both
be set to numberants, meaning that the reduction will occur within one work-group since
synchronization is required. The actual implementation will also need a mapping between
the cost values (the solutionvalue array) and the corresponding solutions in order to link the
smallest cost found with the respective solution.

4.4. Pheromone Trails Updating

After all ants have constructed their tours (solutions), the pheromone trails are updated. In
AS, the pheromone update step starts evaporating all arcs by a constant factor, followed by a
reinforcement on the arcs visited by the ants in their tours.

4.4.1. Pheromone Evaporation

In the pheromone evaporation, each element of the pheromone matrix has its value decreased
by a constant factor ρ ∈ (0, 1]. Hence, the parallel implementation can explore parallelism
in the order of numbernodes × numbernodes. For this step, the kernel can be described as in
Algorithm 8, with the 2-D domain range given by

global0
size ← numbernodes

global1
size ← numbernodes

(7)

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

79

18 Ant Colony Optimization

Algorithm 8: OpenCL kernel for computing the pheromone evaporation

τ[global0
id × global1

size + global1
id] ← (1 − ρ)× τ[global0

id × global1
size + global1

id];

4.4.2. Pheromone Updating

After evaporation, ants deposit different quantities of pheromone on the arcs that they
crossed. Therefore, in an ant-based parallel implementation each element of the pheromone
matrix may potentially be updated by many ants at the same time, leading of course to
memory inconsistency. An alternative is to parallelize on the ant’s solution, taking advantage
of the fact that in the TSP there is no duplicate node in a given solution. This strategy works
on one ant k at a time, but all edges (i, j) are processed in parallel. Hence, the 1-D domain
range is given by

globalsize ← numbernodes − 1, (8)

with the corresponding kernel described in Algorithm 9. The kernel should be launched
numberants times from the host code, each time passing a different k ∈ [0, numberants) as a
kernel’s argument—the only way of guaranteeing global memory consistency (synchronism)
in OpenCL, which is necessary to prevent two or more ants from being processed
simultaneously, is when a kernel finishes its execution.

Algorithm 9: OpenCL kernel for updating the pheromone for ant k

i ← solution[k × numbernodes + globalid];
j ← solution[k × numbernodes + globalid + 1];

τ[i × numbernodes + j] ← τ[i × numbernodes + j] + 1.0/solutionvalue[k];
τ[j × numbernodes + i] ← τ[i × numbernodes + j];

5. Conclusions

This chapter has presented and discussed different parallelization strategies for
implementing an Ant Colony Optimization algorithm on Graphics Processing Unit,
presenting also a list of references on previous works on this area.

The chapter also provided straightforward explanation of the GPU architecture and gave
special attention to the Open Computing Language (OpenCL), explaining in details the
concepts behind these two topics, which are often just mentioned in references in the
literature.

It was shown that each step of an ACO algorithm, from the initialization phase through the
return of the final solution, can be parallelized to some degree, at least at the granularity of
the number of ants. For complex or large-scale problems—in which numerous ants would be
desired—the ant-based parallel strategies should suffice to fully explore the computational
power of the GPUs.

Although the chapter has focused on a particular computing architecture, the GPU, all the
described kernels can be promptly executed on any other OpenCL parallel device, such as
the multi-core CPUs.

Ant Colony Optimization - Techniques and Applications80
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 19

Finally, it is expected that this chapter will provide the readers with an extensive view of
the existing ACO parallel strategies on the GPU and will assist them in developing new or
derived parallel strategies to suit their particular needs.

Acknowledgments

The authors thank the support from the Brazilian agencies CNPq (grants 141519/2010-0 and
308317/2009-2) and FAPERJ (grant E-26/102.025/2009).

Author details

Jaqueline S. Angelo1,⋆,
Douglas A. Augusto1 and Helio J. C. Barbosa1,2

⋆ Address all correspondence to: jsangelo@lncc.br; douglas@lncc.br; hcbm@lncc.br

1 Laboratório Nacional de Computação Científica (LNCC/MCTI), Petropólis, RJ, Brazil
2 Universidade Federal de Juiz de Fora (UFJF), MG, Brazil

References

[1] Marco Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Dipartimento
di Elettronica, Politecnico di Milano, Milan, 1992.

[2] Marco Dorigo and Thomas Stutzle. Ant Colony Optimization. The MIT Press, 2004.

[3] Thomas Stutzle. Parallelization strategies for ant colony optimization. In Proc. of
PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, pages
722–731. Springer-Verlag, 1998.

[4] Martín Pedemonte, Sergio Nesmachnow, and Héctor Cancela. A survey on parallel ant
colony optimization. Appl. Soft Comput., 11(8):5181–5197, December 2011.

[5] Stefan Janson, Daniel Merkle, and Martin Middendorf. Parallel Ant Colony Algorithms,
pages 171–201. John Wiley and Sons, Inc., 2005.

[6] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Swarm Intelligence. Oxford University
Press, Oxford, New York, 1999.

[7] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stigmergy.
Future Gener. Comput. Syst., 16(9):851–871, 2000.

[8] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5:137–172, 1999.

[9] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: Optimization by
a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics–Part B,
26(1):29–41, 1996.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

81

18 Ant Colony Optimization

Algorithm 8: OpenCL kernel for computing the pheromone evaporation

τ[global0
id × global1

size + global1
id] ← (1 − ρ)× τ[global0

id × global1
size + global1

id];

4.4.2. Pheromone Updating

After evaporation, ants deposit different quantities of pheromone on the arcs that they
crossed. Therefore, in an ant-based parallel implementation each element of the pheromone
matrix may potentially be updated by many ants at the same time, leading of course to
memory inconsistency. An alternative is to parallelize on the ant’s solution, taking advantage
of the fact that in the TSP there is no duplicate node in a given solution. This strategy works
on one ant k at a time, but all edges (i, j) are processed in parallel. Hence, the 1-D domain
range is given by

globalsize ← numbernodes − 1, (8)

with the corresponding kernel described in Algorithm 9. The kernel should be launched
numberants times from the host code, each time passing a different k ∈ [0, numberants) as a
kernel’s argument—the only way of guaranteeing global memory consistency (synchronism)
in OpenCL, which is necessary to prevent two or more ants from being processed
simultaneously, is when a kernel finishes its execution.

Algorithm 9: OpenCL kernel for updating the pheromone for ant k

i ← solution[k × numbernodes + globalid];
j ← solution[k × numbernodes + globalid + 1];

τ[i × numbernodes + j] ← τ[i × numbernodes + j] + 1.0/solutionvalue[k];
τ[j × numbernodes + i] ← τ[i × numbernodes + j];

5. Conclusions

This chapter has presented and discussed different parallelization strategies for
implementing an Ant Colony Optimization algorithm on Graphics Processing Unit,
presenting also a list of references on previous works on this area.

The chapter also provided straightforward explanation of the GPU architecture and gave
special attention to the Open Computing Language (OpenCL), explaining in details the
concepts behind these two topics, which are often just mentioned in references in the
literature.

It was shown that each step of an ACO algorithm, from the initialization phase through the
return of the final solution, can be parallelized to some degree, at least at the granularity of
the number of ants. For complex or large-scale problems—in which numerous ants would be
desired—the ant-based parallel strategies should suffice to fully explore the computational
power of the GPUs.

Although the chapter has focused on a particular computing architecture, the GPU, all the
described kernels can be promptly executed on any other OpenCL parallel device, such as
the multi-core CPUs.

Ant Colony Optimization - Techniques and Applications80
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 19

Finally, it is expected that this chapter will provide the readers with an extensive view of
the existing ACO parallel strategies on the GPU and will assist them in developing new or
derived parallel strategies to suit their particular needs.

Acknowledgments

The authors thank the support from the Brazilian agencies CNPq (grants 141519/2010-0 and
308317/2009-2) and FAPERJ (grant E-26/102.025/2009).

Author details

Jaqueline S. Angelo1,⋆,
Douglas A. Augusto1 and Helio J. C. Barbosa1,2

⋆ Address all correspondence to: jsangelo@lncc.br; douglas@lncc.br; hcbm@lncc.br

1 Laboratório Nacional de Computação Científica (LNCC/MCTI), Petropólis, RJ, Brazil
2 Universidade Federal de Juiz de Fora (UFJF), MG, Brazil

References

[1] Marco Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Dipartimento
di Elettronica, Politecnico di Milano, Milan, 1992.

[2] Marco Dorigo and Thomas Stutzle. Ant Colony Optimization. The MIT Press, 2004.

[3] Thomas Stutzle. Parallelization strategies for ant colony optimization. In Proc. of
PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, pages
722–731. Springer-Verlag, 1998.

[4] Martín Pedemonte, Sergio Nesmachnow, and Héctor Cancela. A survey on parallel ant
colony optimization. Appl. Soft Comput., 11(8):5181–5197, December 2011.

[5] Stefan Janson, Daniel Merkle, and Martin Middendorf. Parallel Ant Colony Algorithms,
pages 171–201. John Wiley and Sons, Inc., 2005.

[6] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Swarm Intelligence. Oxford University
Press, Oxford, New York, 1999.

[7] Marco Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stigmergy.
Future Gener. Comput. Syst., 16(9):851–871, 2000.

[8] Marco Dorigo, Gianni Di Caro, and Luca M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5:137–172, 1999.

[9] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: Optimization by
a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics–Part B,
26(1):29–41, 1996.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

81

20 Ant Colony Optimization

[10] R.J. Mullen, D. Monekosso, S. Barman, and P. Remagnino. A review of ant algorithms.
Expert Systems with Applications, 36(6):9608 – 9617, 2009.

[11] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. The
Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2011.

[12] Ethan Mollick. Establishing Moore’s law. IEEE Ann. Hist. Comput., 28:62–75, July 2006.

[13] Michael Garland and David B. Kirk. Understanding throughput-oriented architectures.
Commun. ACM, 53:58–66, November 2010.

[14] Khronos Group. OpenCL - the open standard for parallel programming of
heterogeneous systems.

[15] Khronos OpenCL Working Group. The OpenCL Specification, version 1.2, November 2011.

[16] Douglas A. Augusto and Helio J.C. Barbosa. Accelerated parallel genetic programming
tree evaluation with opencl. Journal of Parallel and Distributed Computing, (0):–, 2012.

[17] Advanced Micro Devices. AMD Accelerated Parallel Processing Programming Guide -
OpenCL, 12 2010.

[18] NVIDIA Corporation. OpenCL Best Practices Guide, 2010.

[19] A. Catala, J. Jaen, and J.A. Modioli. Strategies for accelerating ant colony optimization
algorithms on graphical processing units. In Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on, pages 492 –500, 2007.

[20] Hongtao Bai, Dantong OuYanga, Ximing Li, Lili He, and Haihong Yu. MAX-MIN ant
system on GPU with CUDA. In Fourth International Conference on Innovative Computing,
Information and Control, pages 801–804, 2009.

[21] Weihang Zhu and James Curry. Parallel ant colony for nonlinear function optimization
with graphics hardware acceleration. In Proceedings of the 2009 IEEE international
conference on Systems, Man and Cybernetics, SMC’09, pages 1803–1808. IEEE Press, 2009.

[22] Jie Fu, Lin Lei, and Guohua Zhou. A parallel ant colony optimization algorithm with
gpu-acceleration based on all-in-roulette selection. In Advanced Computational Intelligence
(IWACI), 2010 Third International Workshop on, pages 260–264, 2010.

[23] Jose A. Mocholi, Javier Jaen, Alejandro Catala, and Elena Navarro. An emotionally
biased ant colony algorithm for pathfinding in games. Expert Systems with Applications,
37:4921–4927, 2010.

[24] Nicholas A. Sinnott-Armstrong, Casey S. Greene, and Jason H. Moore. Fast
genome-wide epistasis analysis using ant colony optimization for multifactor
dimensionality reduction analysis on graphics processing units. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, GECCO 2010, pages 215–216,
New York, NY, USA, 2010. ACM.

Ant Colony Optimization - Techniques and Applications82
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 21

[25] S. Tsutsui and N. Fujimoto. Fast qap solving by aco with 2-opt local search on a gpu.
pages 812 –819, june 2011.

[26] Min Li, Kelson Gent, and Michael S. Hsiao. Utilizing gpgpus for design validation with
a modified ant colony optimization. High-Level Design, Validation, and Test Workshop,
IEEE International, 0:128–135, 2011.

[27] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization on
graphics processing units. J. Parallel Distrib. Comput., 2012.

[28] José M. Cecilia, José M. García, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing data parallelism for ant colony optimization on gpus. Journal of Parallel and
Distributed Computing, 2012.

[29] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd
Edition). Addison-Wesley Professional, 3 edition, November 1997.

[30] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29(12):1170–1183, December 1986.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

83

20 Ant Colony Optimization

[10] R.J. Mullen, D. Monekosso, S. Barman, and P. Remagnino. A review of ant algorithms.
Expert Systems with Applications, 36(6):9608 – 9617, 2009.

[11] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. The
Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science, 2011.

[12] Ethan Mollick. Establishing Moore’s law. IEEE Ann. Hist. Comput., 28:62–75, July 2006.

[13] Michael Garland and David B. Kirk. Understanding throughput-oriented architectures.
Commun. ACM, 53:58–66, November 2010.

[14] Khronos Group. OpenCL - the open standard for parallel programming of
heterogeneous systems.

[15] Khronos OpenCL Working Group. The OpenCL Specification, version 1.2, November 2011.

[16] Douglas A. Augusto and Helio J.C. Barbosa. Accelerated parallel genetic programming
tree evaluation with opencl. Journal of Parallel and Distributed Computing, (0):–, 2012.

[17] Advanced Micro Devices. AMD Accelerated Parallel Processing Programming Guide -
OpenCL, 12 2010.

[18] NVIDIA Corporation. OpenCL Best Practices Guide, 2010.

[19] A. Catala, J. Jaen, and J.A. Modioli. Strategies for accelerating ant colony optimization
algorithms on graphical processing units. In Evolutionary Computation, 2007. CEC 2007.
IEEE Congress on, pages 492 –500, 2007.

[20] Hongtao Bai, Dantong OuYanga, Ximing Li, Lili He, and Haihong Yu. MAX-MIN ant
system on GPU with CUDA. In Fourth International Conference on Innovative Computing,
Information and Control, pages 801–804, 2009.

[21] Weihang Zhu and James Curry. Parallel ant colony for nonlinear function optimization
with graphics hardware acceleration. In Proceedings of the 2009 IEEE international
conference on Systems, Man and Cybernetics, SMC’09, pages 1803–1808. IEEE Press, 2009.

[22] Jie Fu, Lin Lei, and Guohua Zhou. A parallel ant colony optimization algorithm with
gpu-acceleration based on all-in-roulette selection. In Advanced Computational Intelligence
(IWACI), 2010 Third International Workshop on, pages 260–264, 2010.

[23] Jose A. Mocholi, Javier Jaen, Alejandro Catala, and Elena Navarro. An emotionally
biased ant colony algorithm for pathfinding in games. Expert Systems with Applications,
37:4921–4927, 2010.

[24] Nicholas A. Sinnott-Armstrong, Casey S. Greene, and Jason H. Moore. Fast
genome-wide epistasis analysis using ant colony optimization for multifactor
dimensionality reduction analysis on graphics processing units. In Proceedings of the 12th
annual conference on Genetic and evolutionary computation, GECCO 2010, pages 215–216,
New York, NY, USA, 2010. ACM.

Ant Colony Optimization - Techniques and Applications82
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units 21

[25] S. Tsutsui and N. Fujimoto. Fast qap solving by aco with 2-opt local search on a gpu.
pages 812 –819, june 2011.

[26] Min Li, Kelson Gent, and Michael S. Hsiao. Utilizing gpgpus for design validation with
a modified ant colony optimization. High-Level Design, Validation, and Test Workshop,
IEEE International, 0:128–135, 2011.

[27] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki. Parallel ant colony optimization on
graphics processing units. J. Parallel Distrib. Comput., 2012.

[28] José M. Cecilia, José M. García, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing data parallelism for ant colony optimization on gpus. Journal of Parallel and
Distributed Computing, 2012.

[29] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd
Edition). Addison-Wesley Professional, 3 edition, November 1997.

[30] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29(12):1170–1183, December 1986.

Strategies for Parallel Ant Colony Optimization on Graphics Processing Units
http://dx.doi.org/10.5772/51679

83

Section 2

Applications

Section 2

Applications

Chapter 4

An Ant Colony Optimization Algorithm for Area Traffic
Control

Soner Haldenbilen, Ozgur Baskan and Cenk Ozan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51695

1. Introduction

The optimization of traffic signal control is at the heart of urban traffic control. Traffic signal
control which encloses delay, queuing, pollution, fuel consumption is a multi-objective opti‐
mization. For a signal-controlled road network, using the optimization techniques in deter‐
mining signal timings has been discussed greatly for decades. Due to complexity of the Area
Traffic Control (ATC) problem, new methods and approaches are needed to improve effi‐
ciency of signal control in a signalized road network. In urban networks, traffic signals are
used to control vehicle movements so as to reduce congestion, improve safety, and enable
specific strategies such as minimizing delays, improving environmental pollution, etc. [1].
Signal systems that control road junctions are operated according to the type of junction. Al‐
though the optimization of signal timings for an isolated junction is relatively easy, the opti‐
mization of signal timings in coordinated road networks requires further research due to the
“offset” term. Early methods such as that of [2] only considered an isolated signalized junc‐
tion. Later, fixed time strategies were developed that optimizing a group of signalized junc‐
tions using historical flow data [3]. For the ATC, TRANSYT-7F is one of the most useful
network study software tools for optimizing signal timing and also the most widely used
program of its type. It consists of two main parts: A traffic flow model and a signal timing
optimizer. Traffic model utilizes a platoon dispersion algorithm that simulates the normal
dispersion of platoons as they travel downstream. It simulates traffic in a network of signal‐
ized intersections to produce a cyclic flow profile of arrivals at each intersection that is used
to compute a Performance Index (PI) for a given signal timing and staging plan. The PI in
TRANSYT-7F may be defined in a number of ways. One of the TRANSYT-7F’s PI is the Dis‐
utility Index (DI). The DI is a measure of disadvantageous operation; that is stops, delay,
fuel consumption, etc. Optimization in TRANSYT-7F consists of a series of trial simulation

© 2013 Haldenbilen et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Haldenbilen et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 4

An Ant Colony Optimization Algorithm for Area Traffic
Control

Soner Haldenbilen, Ozgur Baskan and Cenk Ozan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51695

1. Introduction

The optimization of traffic signal control is at the heart of urban traffic control. Traffic signal
control which encloses delay, queuing, pollution, fuel consumption is a multi-objective opti‐
mization. For a signal-controlled road network, using the optimization techniques in deter‐
mining signal timings has been discussed greatly for decades. Due to complexity of the Area
Traffic Control (ATC) problem, new methods and approaches are needed to improve effi‐
ciency of signal control in a signalized road network. In urban networks, traffic signals are
used to control vehicle movements so as to reduce congestion, improve safety, and enable
specific strategies such as minimizing delays, improving environmental pollution, etc. [1].
Signal systems that control road junctions are operated according to the type of junction. Al‐
though the optimization of signal timings for an isolated junction is relatively easy, the opti‐
mization of signal timings in coordinated road networks requires further research due to the
“offset” term. Early methods such as that of [2] only considered an isolated signalized junc‐
tion. Later, fixed time strategies were developed that optimizing a group of signalized junc‐
tions using historical flow data [3]. For the ATC, TRANSYT-7F is one of the most useful
network study software tools for optimizing signal timing and also the most widely used
program of its type. It consists of two main parts: A traffic flow model and a signal timing
optimizer. Traffic model utilizes a platoon dispersion algorithm that simulates the normal
dispersion of platoons as they travel downstream. It simulates traffic in a network of signal‐
ized intersections to produce a cyclic flow profile of arrivals at each intersection that is used
to compute a Performance Index (PI) for a given signal timing and staging plan. The PI in
TRANSYT-7F may be defined in a number of ways. One of the TRANSYT-7F’s PI is the Dis‐
utility Index (DI). The DI is a measure of disadvantageous operation; that is stops, delay,
fuel consumption, etc. Optimization in TRANSYT-7F consists of a series of trial simulation

© 2013 Haldenbilen et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Haldenbilen et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

runs, using the TRANSYT-7F simulation engine. Each simulation run is assigned a unique
signal timing plan by the optimization processor. The optimizer applies the Hill-Climbing
(HC) or Genetic Algorithm (GA) searching strategies. The trial simulation run resulting in
the best performance is reported as optimal. Although the GA is mathematically better suit‐
ed for determining the absolute or global optimal solution, relative to HC optimization, it
generally requires longer program running times, relative to HC optimization [4].

This chapter proposes Ant Colony Optimization (ACO) based algorithm called ACORSES
proposed by [5] for finding optimum signal parameters in coordinated signalized networks
for given fixed set of link flows. The ACO is the one of the most recent techniques for ap‐
proximate optimization methods. The main idea is that it is indirect local communication
among the individuals of a population of artificial ants. The core of ant’s behaviour is the
communication between the ants by means of chemical pheromone trails, which enables
them to find shortest paths between their nest and food sources. This behaviour of real ant
colonies is exploited to solve optimization problems. The proposed algorithm is based on
each ant searches only around the best solution of the previous iteration with reduced
search space. It is proposed for improving ACO’s solution performance to reach global opti‐
mum fairly quickly. In this study, for solving the ATC problem, Ant Colony Optimization
TRANSYT (ACOTRANS) model is developed. TRANSYT-7F traffic model is used to esti‐
mate total network PI.

Wong (1995) proposed group-based optimization of signal timings for area traffic control. In
addition, the optimization of signal timings for ATC using group-based control variables
was proposed by [7]. However, it was reported that obtaining the derivations of the PI for
each of the control variable was mathematically difficult. Heydecker (1996) decomposed the
optimization of traffic signal timings into two levels; first, optimizing the signal timings at
the individual junction level using the group-based approach, and second, combining the re‐
sults from individual junction level with network level decision variables such as offset and
common cycle time. Wong et al. (2000) developed a time-dependent TRANSYT traffic model
for the evaluation of PI. It was found that the time-dependent model produces a reasonable
estimate of PI for under saturated to moderately oversaturated conditions. Wong et al.
(2002) developed a time-dependent TRANSYT traffic model which is a weighted combina‐
tion of the estimated delay and number of stops. A remarkable improvement over the aver‐
age flow scenario was obtained and when compared with the signal plans from
independent analyses, a good improvement was found. Girianna and Benekohal (2002) pre‐
sented two different GA techniques which are applied on signal coordination for oversatu‐
rated networks. Signal coordination was formulated as a dynamic optimization problem
and is solved using GA for the entire duration of congestion.

Similarly, Ceylan (2006) developed a GA with TRANSYT-HC optimization routine, and pro‐
posed a method for decreasing the search space to solve the ATC problem. Proposed ap‐
proach is better than signal timing optimization regarding optimal values of timings and PI
when it is compared with TRANSYT. Chen and Xu (2006) investigated the application of
Particle Swarm Optimization (PSO) algorithm to solve signal timing optimization problem.
Their results showed that PSO can be applied to the traffic signal timing optimization prob‐

Ant Colony Optimization - Techniques and Applications88

lem under different traffic demands. A hybrid optimization algorithm for simultaneously
solving delay-minimizing and capacity-maximizing ATC was presented by [14]. Numerical
computations and comparisons were conducted on a variety of road networks. Numerical
tests showed that the effectiveness and robustness of this hybrid heuristic algorithm. Similar‐
ly, Chiou (2007) presented a computation algorithm based on the projected Quasi-Newton
method to effectively solve the ATC problem. The proposed method combining the locally
optimal search and global search heuristic achieved substantially better performance than did
traditional approaches in solving the ATC problem with expansions of link capacity.

Dan and Xiaohong (2008) developed a real-coded improved GA with microscopic traffic
simulation model to find optimal signal plans for ATC problem, which takes the coordina‐
tion of signals timing for all signal-controlled junction into account. The results showed that
the method based on GA could minimize delay time and improve capacity of network. Li
(2011) presented an arterial signal optimization model that consider queue blockage among
intersection lane groups under oversaturated conditions. The proposed model captures traf‐
fic dynamics with the cell transmission concept, which takes into account complex flow in‐
teractions among different lane groups. Through comparisons with signal-timing plans from
TRANSYT-7F, the model was successful for signal-timing optimization particularly under
congested conditions. The optimization of signal timings on coordinated signalized road
network, which includes a set of non-linear mathematical formulations, is very difficult.
Therefore, new methods and approaches are needed to improve efficiency of signal control
in a road network due to complexity of the ATC problem. Although there are many studies
in literature with different heuristic methods to optimize traffic signal timings, there is no
application of ACO to this area. Thus, this study proposes Ant Colony Optimization
TRANSYT-7F (ACOTRANS) model in which ACO and TRANSYT-7F are combined for solv‐
ing the ATC problem. The remaining content of this chapter is organized as follows. ACO
algorithm and its solution process are given in Section 2, and definition of the ACOTRANS
model is provided in Section 3. Numerical application is presented in Section 4. Last section
is about the conclusions.

2. Ant Colony Optimization

Ant algorithms were inspired by the observation of real ant colonies. Ants are social insects
that live in colonies and whose behaviour is directed more to the survival of the colony as a
whole than to that of a single individual component of the colony. Social insects have cap‐
tured the attention of many scientists because of the high structuration level their colonies
can achieve, especially when compared to the relative simplicity of the colony’s individuals.
An important and interesting behaviour of ant colonies is their foraging behaviour, and, in
particular, how ants can find shortest paths between food sources and their nest [18]. Ants
are capable of finding the shortest path from food source to their nest or vice versa by smell‐
ing pheromones which are chemical substances they leave on the ground while walking.
Each ant probabilistically prefers to follow a direction rich in pheromone. This behaviour of
real ants can be used to explain how they can find a shortest path [19]. The main idea is that

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

89

runs, using the TRANSYT-7F simulation engine. Each simulation run is assigned a unique
signal timing plan by the optimization processor. The optimizer applies the Hill-Climbing
(HC) or Genetic Algorithm (GA) searching strategies. The trial simulation run resulting in
the best performance is reported as optimal. Although the GA is mathematically better suit‐
ed for determining the absolute or global optimal solution, relative to HC optimization, it
generally requires longer program running times, relative to HC optimization [4].

This chapter proposes Ant Colony Optimization (ACO) based algorithm called ACORSES
proposed by [5] for finding optimum signal parameters in coordinated signalized networks
for given fixed set of link flows. The ACO is the one of the most recent techniques for ap‐
proximate optimization methods. The main idea is that it is indirect local communication
among the individuals of a population of artificial ants. The core of ant’s behaviour is the
communication between the ants by means of chemical pheromone trails, which enables
them to find shortest paths between their nest and food sources. This behaviour of real ant
colonies is exploited to solve optimization problems. The proposed algorithm is based on
each ant searches only around the best solution of the previous iteration with reduced
search space. It is proposed for improving ACO’s solution performance to reach global opti‐
mum fairly quickly. In this study, for solving the ATC problem, Ant Colony Optimization
TRANSYT (ACOTRANS) model is developed. TRANSYT-7F traffic model is used to esti‐
mate total network PI.

Wong (1995) proposed group-based optimization of signal timings for area traffic control. In
addition, the optimization of signal timings for ATC using group-based control variables
was proposed by [7]. However, it was reported that obtaining the derivations of the PI for
each of the control variable was mathematically difficult. Heydecker (1996) decomposed the
optimization of traffic signal timings into two levels; first, optimizing the signal timings at
the individual junction level using the group-based approach, and second, combining the re‐
sults from individual junction level with network level decision variables such as offset and
common cycle time. Wong et al. (2000) developed a time-dependent TRANSYT traffic model
for the evaluation of PI. It was found that the time-dependent model produces a reasonable
estimate of PI for under saturated to moderately oversaturated conditions. Wong et al.
(2002) developed a time-dependent TRANSYT traffic model which is a weighted combina‐
tion of the estimated delay and number of stops. A remarkable improvement over the aver‐
age flow scenario was obtained and when compared with the signal plans from
independent analyses, a good improvement was found. Girianna and Benekohal (2002) pre‐
sented two different GA techniques which are applied on signal coordination for oversatu‐
rated networks. Signal coordination was formulated as a dynamic optimization problem
and is solved using GA for the entire duration of congestion.

Similarly, Ceylan (2006) developed a GA with TRANSYT-HC optimization routine, and pro‐
posed a method for decreasing the search space to solve the ATC problem. Proposed ap‐
proach is better than signal timing optimization regarding optimal values of timings and PI
when it is compared with TRANSYT. Chen and Xu (2006) investigated the application of
Particle Swarm Optimization (PSO) algorithm to solve signal timing optimization problem.
Their results showed that PSO can be applied to the traffic signal timing optimization prob‐

Ant Colony Optimization - Techniques and Applications88

lem under different traffic demands. A hybrid optimization algorithm for simultaneously
solving delay-minimizing and capacity-maximizing ATC was presented by [14]. Numerical
computations and comparisons were conducted on a variety of road networks. Numerical
tests showed that the effectiveness and robustness of this hybrid heuristic algorithm. Similar‐
ly, Chiou (2007) presented a computation algorithm based on the projected Quasi-Newton
method to effectively solve the ATC problem. The proposed method combining the locally
optimal search and global search heuristic achieved substantially better performance than did
traditional approaches in solving the ATC problem with expansions of link capacity.

Dan and Xiaohong (2008) developed a real-coded improved GA with microscopic traffic
simulation model to find optimal signal plans for ATC problem, which takes the coordina‐
tion of signals timing for all signal-controlled junction into account. The results showed that
the method based on GA could minimize delay time and improve capacity of network. Li
(2011) presented an arterial signal optimization model that consider queue blockage among
intersection lane groups under oversaturated conditions. The proposed model captures traf‐
fic dynamics with the cell transmission concept, which takes into account complex flow in‐
teractions among different lane groups. Through comparisons with signal-timing plans from
TRANSYT-7F, the model was successful for signal-timing optimization particularly under
congested conditions. The optimization of signal timings on coordinated signalized road
network, which includes a set of non-linear mathematical formulations, is very difficult.
Therefore, new methods and approaches are needed to improve efficiency of signal control
in a road network due to complexity of the ATC problem. Although there are many studies
in literature with different heuristic methods to optimize traffic signal timings, there is no
application of ACO to this area. Thus, this study proposes Ant Colony Optimization
TRANSYT-7F (ACOTRANS) model in which ACO and TRANSYT-7F are combined for solv‐
ing the ATC problem. The remaining content of this chapter is organized as follows. ACO
algorithm and its solution process are given in Section 2, and definition of the ACOTRANS
model is provided in Section 3. Numerical application is presented in Section 4. Last section
is about the conclusions.

2. Ant Colony Optimization

Ant algorithms were inspired by the observation of real ant colonies. Ants are social insects
that live in colonies and whose behaviour is directed more to the survival of the colony as a
whole than to that of a single individual component of the colony. Social insects have cap‐
tured the attention of many scientists because of the high structuration level their colonies
can achieve, especially when compared to the relative simplicity of the colony’s individuals.
An important and interesting behaviour of ant colonies is their foraging behaviour, and, in
particular, how ants can find shortest paths between food sources and their nest [18]. Ants
are capable of finding the shortest path from food source to their nest or vice versa by smell‐
ing pheromones which are chemical substances they leave on the ground while walking.
Each ant probabilistically prefers to follow a direction rich in pheromone. This behaviour of
real ants can be used to explain how they can find a shortest path [19]. The main idea is that

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

89

it is indirect local communication among the individuals of a population of artificial ants.
The core of ant’s behavior is the communication between the ants by means of chemical
pheromone trails, which enables them to find shortest paths between their nest and food
sources. This behaviour of real ant colonies is exploited to solve optimization problems [20].
The general ACO algorithm is illustrated in Fig. 1. The first step consists mainly on the initi‐
alization of the pheromone trail. At beginning, each ant builds a complete solution to the
problem according to a probabilistic state transition rules. They depend mainly on the state
of the pheromone.

Figure 1. A generic ant algorithm.

Once all ants generate a solution, then global pheromone updating rule is applied in two
phases; an evaporation phase, where a fraction of the pheromone evaporates, and a reinforce‐
ment phase, where each ant deposits an amount of pheromone which is proportional to the
fitness. This process is repeated until stopping criteria is met. The ACORSES proposed by [5]
is consisted of three main phases; Initialization, pheromone update and solution phase. All of
these phases build a complete search to the global optimum as can be seen in Fig. 2.

As shown in Figure 2, pheromone update phase is located after the initialization phase,
means that quantity of pheromone intensifies at each iteration within the reduced search
space. Thus, global optimum is searched within the reduced search space using best values
obtained from new ant colony in the previous iteration. Main advantageous of the ACORS‐
ES is that Feasible Search Space (FSS) is reduced with β and it uses the information taken
from previous iteration.

At the beginning of the first cycle, all ants search randomly to the best solution of a given
problem within the FSS, and old ant colony is created at initialization phase. After that,
quantity of pheromone is updated. In the solution phase, new ant colony is created based
on the best solution from the old ant colony using Equation (1) and (2). Then, the best
solutions of two colonies are compared. At the end of the first cycle, FSS is reduced by
β and best solution obtained from the previous iteration is kept. Global or near global
optimum solution is then searched in the reduced search space during the solution prog‐
ress. The ACORSES reaches to the global or near global optimum as ants find their routes
in the limited space [5].

Ant Colony Optimization - Techniques and Applications90

Figure 2. Steps of ACORSES [5].

Let number of m ants being associated with m random initial vectors(x k , k =1, 2, 3,m).
The solution vector of each ant is updated using following expression:

() ()

(1, 2,.....,)

k new k old
t tx x
t I

a= ±
=

(1)

where xt
k (new)is the solution vector of the k th ant at cycle t, xt

k (old)is the solution obtained

from the previous step at cycle t, and αis a vector generated randomly to determine the
length of jump. αcontrols the global optimum search direction not being trapped at bad lo‐

cal optimum. Ant vector xt
k (new)obtained at t th cycle in (1) is determined using the value of

same ant obtained from previous step. Furthermore, in expression (1), (+) sign is used when

point xt
k is on the left of the best solution on the x coordinate axis. (-) sign is used when point

xt
k is on the right of the best solution on the same axis. The direction of search is defined by

expression (2).

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

91

it is indirect local communication among the individuals of a population of artificial ants.
The core of ant’s behavior is the communication between the ants by means of chemical
pheromone trails, which enables them to find shortest paths between their nest and food
sources. This behaviour of real ant colonies is exploited to solve optimization problems [20].
The general ACO algorithm is illustrated in Fig. 1. The first step consists mainly on the initi‐
alization of the pheromone trail. At beginning, each ant builds a complete solution to the
problem according to a probabilistic state transition rules. They depend mainly on the state
of the pheromone.

Figure 1. A generic ant algorithm.

Once all ants generate a solution, then global pheromone updating rule is applied in two
phases; an evaporation phase, where a fraction of the pheromone evaporates, and a reinforce‐
ment phase, where each ant deposits an amount of pheromone which is proportional to the
fitness. This process is repeated until stopping criteria is met. The ACORSES proposed by [5]
is consisted of three main phases; Initialization, pheromone update and solution phase. All of
these phases build a complete search to the global optimum as can be seen in Fig. 2.

As shown in Figure 2, pheromone update phase is located after the initialization phase,
means that quantity of pheromone intensifies at each iteration within the reduced search
space. Thus, global optimum is searched within the reduced search space using best values
obtained from new ant colony in the previous iteration. Main advantageous of the ACORS‐
ES is that Feasible Search Space (FSS) is reduced with β and it uses the information taken
from previous iteration.

At the beginning of the first cycle, all ants search randomly to the best solution of a given
problem within the FSS, and old ant colony is created at initialization phase. After that,
quantity of pheromone is updated. In the solution phase, new ant colony is created based
on the best solution from the old ant colony using Equation (1) and (2). Then, the best
solutions of two colonies are compared. At the end of the first cycle, FSS is reduced by
β and best solution obtained from the previous iteration is kept. Global or near global
optimum solution is then searched in the reduced search space during the solution prog‐
ress. The ACORSES reaches to the global or near global optimum as ants find their routes
in the limited space [5].

Ant Colony Optimization - Techniques and Applications90

Figure 2. Steps of ACORSES [5].

Let number of m ants being associated with m random initial vectors(x k , k =1, 2, 3,m).
The solution vector of each ant is updated using following expression:

() ()

(1, 2,.....,)

k new k old
t tx x
t I

a= ±
=

(1)

where xt
k (new)is the solution vector of the k th ant at cycle t, xt

k (old)is the solution obtained

from the previous step at cycle t, and αis a vector generated randomly to determine the
length of jump. αcontrols the global optimum search direction not being trapped at bad lo‐

cal optimum. Ant vector xt
k (new)obtained at t th cycle in (1) is determined using the value of

same ant obtained from previous step. Furthermore, in expression (1), (+) sign is used when

point xt
k is on the left of the best solution on the x coordinate axis. (-) sign is used when point

xt
k is on the right of the best solution on the same axis. The direction of search is defined by

expression (2).

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

91

(*0.01)best best best
t t tx x x= + (2)

If f (x̄ t best)≤ f (xt best), (+) sign is used in (1). Otherwise, (-) sign is used. (±)sign defines the
search direction to reach to the global optimum. α value is used to define the length of jump,
and it will be gradually decreased in order not to pass over global optimum, as shown in
Fig. 2. At the end of each cycle, a new ant colony is developed as the number of ants gener‐
ated in old colony. Quantity of pheromone (τt) is reduced to simulate the evaporation proc‐
ess of real ant colonies using (3) in the pheromone update phase. After reducing of the
number of pheromone, it is updated using (4). Quantity of pheromone only intensifies
around the best objective function value. This process is repeated until the given number of
cycle, I, is completed. Initial pheromone intensity is set to the value of 100.

10.1*t tt t -= (3)

1 10.01* ()best
t t tf xt t - -= + (4)

ACO uses real numbers instead of coding them as in GA to optimise any given objective
function. This is one of the main advantage of ACO that it provides to optimise the signal
timings with less mathematically lengthy. Moreover, ACORSES algorithm has ability to reach
to the global optimum quickly without being trapped in bad local optimum because it uses
the reduced search space and the values of optimum signal timings are then searched in the
reduced search space during the algorithm progress. The ACORSES reaches to the global
optimum or near global optimum as ants find their routes in the limited space. For better
understanding, consider a problem of five ants represents the formulation of the problem.

Figure 3. Main idea of the ACORSES [5].

Ant Colony Optimization - Techniques and Applications92

As shown in Fig.3, five ants being associated five random initial vectors. At the beginning of
the first cycle (Fig. 3a), old ant colony is randomly created within the feasible search space
for any given problem. After pheromone update phase, new ant colony is created at the last
phase of the first cycle according to old ant colony using Equation (1) and (2). After that, the
best values of the two colonies are compared. According to the best value obtained so far by
comparing the old and new colonies and β, the FSS is reduced at the beginning of the sec‐
ond cycle and once again old ant colony is created, as can be seen in Fig. 3b. The new ant
colony is created at the last phase of the second cycle according to randomly generated α
value using Equation (1). Any of the newly created solution vectors may be outside the re‐
duced search space that is created at the beginning of the second cycle. Therefore, created
new ant colony prevents being trapped in bad local optimum [5].

3. ACOTRANS for area traffic control

The ACOTRANS consists of two main parts namely ACO based algorithm and TRANS‐
YT-7F traffic model. ACO algorithm optimizes traffic signal timings under fixed set of link
flows. TRANSYT-7F traffic model is used to compute PI, which is called objective function,
for a given signal timing and staging plan in network. The network Disutility Index (DI),
one of the TRANSYT-7F’s PI, is used as objective function. The DI is a measure of disadvan‐
tageous operation; that is stops, delay, fuel consumption, etc. The standard TRANSYT-7F’s
DI is linear combination of delay and stops. The objective function and corresponding con‐
straints are given in Eq. (5).

() ()
,

a ad a s a
fixed a L

PI Min DI w d K w Sy y
= Î

é ù= = × + × ×ë ûå
ψ q

(5)

Subject to ψ(c, θ,φ)∈Ω0; {cmin ≤c ≤cmax cycle time constraints
0≤θ ≤c values of offset constraints
φmin ≤φ ≤c green time constraints

∑
i=1

z
(φ + I)i =c

}
where d a is delay on link a (L set of links), wda

is link-specific weighting factor for delay d, K
is stop penalty factor to express the importance of stops relative to delay, S a is stop on link a
per second, wsa

is link-specific weighting factor for stops S on link a, q is fixed set of link
flows, ψ is signal setting parameters, c is common cycle time (sec), θ is offset time (sec), φis
green time (sec), Ω0 is feasible region for signal timings, I is intergreen time (sec), and z is
number of stages at each signalized intersection in a given road network.

The green timings can be distributed to all signal stages in a road network according to Eq.
(6) in order to provide the cycle time constraint [21].

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

93

(*0.01)best best best
t t tx x x= + (2)

If f (x̄ t best)≤ f (xt best), (+) sign is used in (1). Otherwise, (-) sign is used. (±)sign defines the
search direction to reach to the global optimum. α value is used to define the length of jump,
and it will be gradually decreased in order not to pass over global optimum, as shown in
Fig. 2. At the end of each cycle, a new ant colony is developed as the number of ants gener‐
ated in old colony. Quantity of pheromone (τt) is reduced to simulate the evaporation proc‐
ess of real ant colonies using (3) in the pheromone update phase. After reducing of the
number of pheromone, it is updated using (4). Quantity of pheromone only intensifies
around the best objective function value. This process is repeated until the given number of
cycle, I, is completed. Initial pheromone intensity is set to the value of 100.

10.1*t tt t -= (3)

1 10.01* ()best
t t tf xt t - -= + (4)

ACO uses real numbers instead of coding them as in GA to optimise any given objective
function. This is one of the main advantage of ACO that it provides to optimise the signal
timings with less mathematically lengthy. Moreover, ACORSES algorithm has ability to reach
to the global optimum quickly without being trapped in bad local optimum because it uses
the reduced search space and the values of optimum signal timings are then searched in the
reduced search space during the algorithm progress. The ACORSES reaches to the global
optimum or near global optimum as ants find their routes in the limited space. For better
understanding, consider a problem of five ants represents the formulation of the problem.

Figure 3. Main idea of the ACORSES [5].

Ant Colony Optimization - Techniques and Applications92

As shown in Fig.3, five ants being associated five random initial vectors. At the beginning of
the first cycle (Fig. 3a), old ant colony is randomly created within the feasible search space
for any given problem. After pheromone update phase, new ant colony is created at the last
phase of the first cycle according to old ant colony using Equation (1) and (2). After that, the
best values of the two colonies are compared. According to the best value obtained so far by
comparing the old and new colonies and β, the FSS is reduced at the beginning of the sec‐
ond cycle and once again old ant colony is created, as can be seen in Fig. 3b. The new ant
colony is created at the last phase of the second cycle according to randomly generated α
value using Equation (1). Any of the newly created solution vectors may be outside the re‐
duced search space that is created at the beginning of the second cycle. Therefore, created
new ant colony prevents being trapped in bad local optimum [5].

3. ACOTRANS for area traffic control

The ACOTRANS consists of two main parts namely ACO based algorithm and TRANS‐
YT-7F traffic model. ACO algorithm optimizes traffic signal timings under fixed set of link
flows. TRANSYT-7F traffic model is used to compute PI, which is called objective function,
for a given signal timing and staging plan in network. The network Disutility Index (DI),
one of the TRANSYT-7F’s PI, is used as objective function. The DI is a measure of disadvan‐
tageous operation; that is stops, delay, fuel consumption, etc. The standard TRANSYT-7F’s
DI is linear combination of delay and stops. The objective function and corresponding con‐
straints are given in Eq. (5).

() ()
,

a ad a s a
fixed a L

PI Min DI w d K w Sy y
= Î

é ù= = × + × ×ë ûå
ψ q

(5)

Subject to ψ(c, θ,φ)∈Ω0; {cmin ≤c ≤cmax cycle time constraints
0≤θ ≤c values of offset constraints
φmin ≤φ ≤c green time constraints

∑
i=1

z
(φ + I)i =c

}
where d a is delay on link a (L set of links), wda

is link-specific weighting factor for delay d, K
is stop penalty factor to express the importance of stops relative to delay, S a is stop on link a
per second, wsa

is link-specific weighting factor for stops S on link a, q is fixed set of link
flows, ψ is signal setting parameters, c is common cycle time (sec), θ is offset time (sec), φis
green time (sec), Ω0 is feasible region for signal timings, I is intergreen time (sec), and z is
number of stages at each signalized intersection in a given road network.

The green timings can be distributed to all signal stages in a road network according to Eq.
(6) in order to provide the cycle time constraint [21].

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

93

min, min,
1 1

1

()

1, 2, .

z z
i

i i k kz
k k

i
k

p c I
p

i z

j j j
= =

=

= + - -

= ¼

å å
å (6)

where φi is the green time (sec) for stage i, φmin,iis minimum green time (sec) for stage i, p i is
generated randomly green timings (sec) for stage i, z is the number of stages and I is inter‐
green time (sec) between signal stages and c is the common cycle time of the network (sec).

Figure 4. The flowchart of the ACOTRANS.

In the ACOTRANS, optimization steps can be given in the following way:

Step 0: Initialization. Define the user specified parameters; the number of decision varia‐
bles (n) (this number is sum of the number of green times as stage numbers at each intersec‐
tion, the number of offset times as intersection numbers and common cycle time), the
constraints for each decision variable, the size of ant colony (m), search space value (β) for
each decision variable.

Step 1: Sett =1.

Ant Colony Optimization - Techniques and Applications94

Step 2: Generate the random initial signal timings, ψ(c, θ, φ)within the constraints of deci‐
sion variables.

Step 3: Distribute to the initial green timings to the stages according to distribution rule as
mentioned above. At this step, randomly generated green timings at Step 2 are distributed
to the stages according to generated cycle time at the same step, minimum green and inter‐
green time.

Step 4: Get the network data and fixed set of link flows for TRANSYT-7F traffic model.

Step 5: Run TRANSYT-7F.

Step 6: Get the network PI. At this step, the PI is determined using TRANSYT-7F traffic model.

Step 7: If t = tmax then terminate the algorithm; otherwise, t = t + 1and go to Step 2.

The flowchart of the ACOTRANS can be seen in Fig. (4).

4. Numerical Application

The ACOTRANS is tested on two example networks taken from literature. First, it is applied
to two junction road network. The network contains one origin destination pair, eight links
and six signal setting variables. The network and its representation of signal stages can be
seen in Fig. (5a) and (5b). The fixed set of link flows, taken from [22] is given in Table 1.

Figure 5. a) Two junction network ; b) Representation of signal stages of two-junction network.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

95

min, min,
1 1

1

()

1, 2, .

z z
i

i i k kz
k k

i
k

p c I
p

i z

j j j
= =

=

= + - -

= ¼

å å
å (6)

where φi is the green time (sec) for stage i, φmin,iis minimum green time (sec) for stage i, p i is
generated randomly green timings (sec) for stage i, z is the number of stages and I is inter‐
green time (sec) between signal stages and c is the common cycle time of the network (sec).

Figure 4. The flowchart of the ACOTRANS.

In the ACOTRANS, optimization steps can be given in the following way:

Step 0: Initialization. Define the user specified parameters; the number of decision varia‐
bles (n) (this number is sum of the number of green times as stage numbers at each intersec‐
tion, the number of offset times as intersection numbers and common cycle time), the
constraints for each decision variable, the size of ant colony (m), search space value (β) for
each decision variable.

Step 1: Sett =1.

Ant Colony Optimization - Techniques and Applications94

Step 2: Generate the random initial signal timings, ψ(c, θ, φ)within the constraints of deci‐
sion variables.

Step 3: Distribute to the initial green timings to the stages according to distribution rule as
mentioned above. At this step, randomly generated green timings at Step 2 are distributed
to the stages according to generated cycle time at the same step, minimum green and inter‐
green time.

Step 4: Get the network data and fixed set of link flows for TRANSYT-7F traffic model.

Step 5: Run TRANSYT-7F.

Step 6: Get the network PI. At this step, the PI is determined using TRANSYT-7F traffic model.

Step 7: If t = tmax then terminate the algorithm; otherwise, t = t + 1and go to Step 2.

The flowchart of the ACOTRANS can be seen in Fig. (4).

4. Numerical Application

The ACOTRANS is tested on two example networks taken from literature. First, it is applied
to two junction road network. The network contains one origin destination pair, eight links
and six signal setting variables. The network and its representation of signal stages can be
seen in Fig. (5a) and (5b). The fixed set of link flows, taken from [22] is given in Table 1.

Figure 5. a) Two junction network ; b) Representation of signal stages of two-junction network.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

95

Link

number

Link

flow

(veh/h)

Saturation

flow

(veh/h)

Free-flow

travel time

(sec)

1 615 1800 20

2 45 1800 20

3 225 1800 20

4 615 1800 20

5 225 1800 20

6 45 1800 20

Table 1. Fixed set of link flows on two junction network.

The constraints on signal timings are set as follows:

36≤c ≤90cycle time constraint

0≤θ ≤c offsets

7≤φ ≤cgreen split

I1−2 = I2−1 =5seconds intergreen time

The ACOTRANS model was coded by the MATLAB software. It is performed with the fol‐
lowing user-specified parameters: colony size is 20, and maximum number of cycle (t max) is
75. The convergence of the model can be seen in Fig. (6).

Figure 6. The convergence of the ACOTRANS for small sized network.

Ant Colony Optimization - Techniques and Applications96

In 75th cycle, ACOTRANS is reached to PI value of 8.16. The common network cycle time
obtained from the ACOTRANS is 76 sec. In addition, two junction road network is opti‐
mized using TRANSYT-7F which included GA and HC optimization tools. In GA parame‐
ters, population size and maximum number of cycle are chosen 20 and 300, respectively. In
HC optimization tool in TRANSYT-7F, the default optimization parameters used by pro‐
gram are effective and system is simulated for every integer cycle length between minimum
and maximum cycle length. Therefore, HC optimization parameters are not being manipu‐
lated. For two junction road network, the ACOTRANS model and TRANSYT-7F optimizers’
results are given in Table 2.

Performance

Index

Cycle

Time

c (s)

Junction

number

i

Duration of stages (s) Offsets

(s)

I1−2 = I2−1 =5
Stage 1

θi

Stage 2

φi ,1

ACOTRANS 8.16 76
1 55 21 0

2 66 10 36

TRANSYT-7F with

HC
8.18 78

1 55 23 0

2 68 10 0

TRANSYT-7F with

GA
8.17 79

1 58 21 0

2 69 10 6

Table 2. The best PI and signal timings for two junction road network

While the best PI is 8.18 in TRANSYT-7F with HC, the best PI is 8.17 in TRANSYT-7F with
GA. The common network cycle time is 79 sec and 78 sec in TRANSYT-7F with GA and HC.
As can be seen in Table 2, the PI obtained from the ACOTRANS model is slightly better than
the values obtained from the TRANSYT-7F with GA and HC. These results indicate that the
ACOTRANS produces comparable results to the in TRANSYT-7F with GA and HC. Hence,
the proposed ACOTRANS model provides an alternative to the HC and GA optimization
algorithm in TRANSYT-7F that could produce better results in terms of the PI for this small
sized network.

In order to test the ACOTRANS model’s effectiveness and robustness, it is also ap‐
plied to medium sized road network. The network is illustrated based upon the one
used by [23]. Basic layouts of the network and stage configurations are given in Fig.
(7) and (8). This network includes 23 links and 21 signal setting variables at six signal-
controlled junctions.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

97

Link

number

Link

flow

(veh/h)

Saturation

flow

(veh/h)

Free-flow

travel time

(sec)

1 615 1800 20

2 45 1800 20

3 225 1800 20

4 615 1800 20

5 225 1800 20

6 45 1800 20

Table 1. Fixed set of link flows on two junction network.

The constraints on signal timings are set as follows:

36≤c ≤90cycle time constraint

0≤θ ≤c offsets

7≤φ ≤cgreen split

I1−2 = I2−1 =5seconds intergreen time

The ACOTRANS model was coded by the MATLAB software. It is performed with the fol‐
lowing user-specified parameters: colony size is 20, and maximum number of cycle (t max) is
75. The convergence of the model can be seen in Fig. (6).

Figure 6. The convergence of the ACOTRANS for small sized network.

Ant Colony Optimization - Techniques and Applications96

In 75th cycle, ACOTRANS is reached to PI value of 8.16. The common network cycle time
obtained from the ACOTRANS is 76 sec. In addition, two junction road network is opti‐
mized using TRANSYT-7F which included GA and HC optimization tools. In GA parame‐
ters, population size and maximum number of cycle are chosen 20 and 300, respectively. In
HC optimization tool in TRANSYT-7F, the default optimization parameters used by pro‐
gram are effective and system is simulated for every integer cycle length between minimum
and maximum cycle length. Therefore, HC optimization parameters are not being manipu‐
lated. For two junction road network, the ACOTRANS model and TRANSYT-7F optimizers’
results are given in Table 2.

Performance

Index

Cycle

Time

c (s)

Junction

number

i

Duration of stages (s) Offsets

(s)

I1−2 = I2−1 =5
Stage 1

θi

Stage 2

φi ,1

ACOTRANS 8.16 76
1 55 21 0

2 66 10 36

TRANSYT-7F with

HC
8.18 78

1 55 23 0

2 68 10 0

TRANSYT-7F with

GA
8.17 79

1 58 21 0

2 69 10 6

Table 2. The best PI and signal timings for two junction road network

While the best PI is 8.18 in TRANSYT-7F with HC, the best PI is 8.17 in TRANSYT-7F with
GA. The common network cycle time is 79 sec and 78 sec in TRANSYT-7F with GA and HC.
As can be seen in Table 2, the PI obtained from the ACOTRANS model is slightly better than
the values obtained from the TRANSYT-7F with GA and HC. These results indicate that the
ACOTRANS produces comparable results to the in TRANSYT-7F with GA and HC. Hence,
the proposed ACOTRANS model provides an alternative to the HC and GA optimization
algorithm in TRANSYT-7F that could produce better results in terms of the PI for this small
sized network.

In order to test the ACOTRANS model’s effectiveness and robustness, it is also ap‐
plied to medium sized road network. The network is illustrated based upon the one
used by [23]. Basic layouts of the network and stage configurations are given in Fig.
(7) and (8). This network includes 23 links and 21 signal setting variables at six signal-
controlled junctions.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

97

Figure 7. Layout for medium sized network

Ant Colony Optimization - Techniques and Applications98

Figure 8. Stage configurations for medium sized network

The fixed set of link flows, taken from [22], is given in Table 3.

Link

number

Link

flow

(veh/h)

Saturation flow

(veh/h)

Free-flow

travel time (sec)

1 716 2000 1

2 463 1600 1

3 716 3200 10

4 569 3200 15

5 636 1800 20

6 173 1850 20

7 462 1800 10

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

99

Figure 7. Layout for medium sized network

Ant Colony Optimization - Techniques and Applications98

Figure 8. Stage configurations for medium sized network

The fixed set of link flows, taken from [22], is given in Table 3.

Link

number

Link

flow

(veh/h)

Saturation flow

(veh/h)

Free-flow

travel time (sec)

1 716 2000 1

2 463 1600 1

3 716 3200 10

4 569 3200 15

5 636 1800 20

6 173 1850 20

7 462 1800 10

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

99

Link

number

Link

flow

(veh/h)

Saturation flow

(veh/h)

Free-flow

travel time (sec)

8 478 1850 15

9 120 1700 15

10 479 2200 10

11 499 2000 1

12 250 1800 1

13 450 2200 1

14 789 3200 20

15 790 2600 15

16 663 2900 10

17 409 1700 10

18 350 1700 15

19 625 1500 10

20 1290 2800 1

21 1057 3200 15

22 1250 3600 1

23 837 3200 15

Table 3. Fixed set of link flows on medium sized network

The constraints on signal timings are set as follows:

36≤c ≤140cycle time constraint

0≤θ ≤c offsets

7≤φ ≤cgreen split

I1−2 = I2−1 =5seconds intergreen time

In Fig. (9), the convergence of the ACOTRANS for medium sized network can be seen. The
best signal timings obtained from the previous cycle are stored in order not to being bad lo‐
cal optimum. By means of the generated new ant colony, global optimum is searched
around the best signal setting parameters using reduced search space during the algorithm
process. As shown Fig. 9, the ACORSES starts the solution process according to random
generated signal timings and it was found that the value of PI is about 551. The ACORSES
keeps the best solution and then it uses the best solution to the optimum in the reduced
search space. Optimum solution is then searched in the reduced search space during the al‐
gorithm progress. The significant improvement on the objective function takes place in the
first few cycle because the ACORSES starts with randomly generated ants in a large colony
size. After that, small improvements to the objective function takes place since the phero‐
mone updating rule and new created ant colony provide new solution vectors on the differ‐

Ant Colony Optimization - Techniques and Applications100

ent search directions. Finally, the minimum number of PI reached to the value of about 362
after 150 cycles.

This numerical test shows that the ACORSES is able to prevent being trapped in bad local
optimum for solving ATC problem. In order to overcome non-convexity, the ACORSES
starts with a large base of solutions, each of which provided that the solution converges to
the optimum and it also uses the reduced search space technique. In ACORSES, new ant col‐
ony is created according to randomly generated α value. For this reason, any of the newly
created solution vectors may be outside the reduced search space. Therefore, created new
ant colony prevents being trapped in bad local optimum. The ACORSES is able to achieve
global optimum or near global optimum to optimise signal timings because it uses concur‐
rently the reduce search technique and the orientation of all ants to the global optimum.

Figure 9. The convergence of the ACOTRANS for medium sized network

The common network cycle time obtained from the ACOTRANS is 106 sec. Moreover,
medium sized network is optimized using TRANSYT-7F, which are GA and HC optimiza‐
tion tools. For studied network, the ACOTRANS and TRANSYT-7F optimizers’ results are
given in Table 4. The best PI is found as 410.0 in TRANSYT-7F with GA while its value is
obtained as 420.5 in TRANSYT-7F with HC. The common network cycle time is 114 sec
and 120 sec in TRANSYT-7F with HC and GA, respectively. The ACOTRANS improves
network’s PI 11.7% and 13.9 % when it is compared with TRANSYT-7F with GA and HC.
It also decreases common cycle time 11.5% and 7% when it is compared with the cycle
times produced TRANSYT-7F with GA and HC. These results showed that the ACO‐
TRANS model illustrates good performance for optimizing traffic signal timings in coordi‐
nated networks with fixed set of link flows. Hence, the ACOTRANS provides an alternative
to the HC and GA optimization tools in TRANSYT-7F that could produce better results in
terms of PI.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

101

Link

number

Link

flow

(veh/h)

Saturation flow

(veh/h)

Free-flow

travel time (sec)

8 478 1850 15

9 120 1700 15

10 479 2200 10

11 499 2000 1

12 250 1800 1

13 450 2200 1

14 789 3200 20

15 790 2600 15

16 663 2900 10

17 409 1700 10

18 350 1700 15

19 625 1500 10

20 1290 2800 1

21 1057 3200 15

22 1250 3600 1

23 837 3200 15

Table 3. Fixed set of link flows on medium sized network

The constraints on signal timings are set as follows:

36≤c ≤140cycle time constraint

0≤θ ≤c offsets

7≤φ ≤cgreen split

I1−2 = I2−1 =5seconds intergreen time

In Fig. (9), the convergence of the ACOTRANS for medium sized network can be seen. The
best signal timings obtained from the previous cycle are stored in order not to being bad lo‐
cal optimum. By means of the generated new ant colony, global optimum is searched
around the best signal setting parameters using reduced search space during the algorithm
process. As shown Fig. 9, the ACORSES starts the solution process according to random
generated signal timings and it was found that the value of PI is about 551. The ACORSES
keeps the best solution and then it uses the best solution to the optimum in the reduced
search space. Optimum solution is then searched in the reduced search space during the al‐
gorithm progress. The significant improvement on the objective function takes place in the
first few cycle because the ACORSES starts with randomly generated ants in a large colony
size. After that, small improvements to the objective function takes place since the phero‐
mone updating rule and new created ant colony provide new solution vectors on the differ‐

Ant Colony Optimization - Techniques and Applications100

ent search directions. Finally, the minimum number of PI reached to the value of about 362
after 150 cycles.

This numerical test shows that the ACORSES is able to prevent being trapped in bad local
optimum for solving ATC problem. In order to overcome non-convexity, the ACORSES
starts with a large base of solutions, each of which provided that the solution converges to
the optimum and it also uses the reduced search space technique. In ACORSES, new ant col‐
ony is created according to randomly generated α value. For this reason, any of the newly
created solution vectors may be outside the reduced search space. Therefore, created new
ant colony prevents being trapped in bad local optimum. The ACORSES is able to achieve
global optimum or near global optimum to optimise signal timings because it uses concur‐
rently the reduce search technique and the orientation of all ants to the global optimum.

Figure 9. The convergence of the ACOTRANS for medium sized network

The common network cycle time obtained from the ACOTRANS is 106 sec. Moreover,
medium sized network is optimized using TRANSYT-7F, which are GA and HC optimiza‐
tion tools. For studied network, the ACOTRANS and TRANSYT-7F optimizers’ results are
given in Table 4. The best PI is found as 410.0 in TRANSYT-7F with GA while its value is
obtained as 420.5 in TRANSYT-7F with HC. The common network cycle time is 114 sec
and 120 sec in TRANSYT-7F with HC and GA, respectively. The ACOTRANS improves
network’s PI 11.7% and 13.9 % when it is compared with TRANSYT-7F with GA and HC.
It also decreases common cycle time 11.5% and 7% when it is compared with the cycle
times produced TRANSYT-7F with GA and HC. These results showed that the ACO‐
TRANS model illustrates good performance for optimizing traffic signal timings in coordi‐
nated networks with fixed set of link flows. Hence, the ACOTRANS provides an alternative
to the HC and GA optimization tools in TRANSYT-7F that could produce better results in
terms of PI.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

101

PI

Cycle

Time

c (s)

Junction

number

i

Duration of stages (s) Offsets

(s)

7≤φ≤c
Stage 1

I1−2 = I2−1 =5

Stage 2

θi

Stage 3

φi ,1

ACOTRANS 361.9 106

1 46 60 - 0

2 64 42 - 96

3 62 44 - 10

4 38 34 34 36

5 15 33 58 38

6 34 72 - 74

TRANSYT-7F with HC 420.5 114

1 44 70 - 0

2 56 58 - 98

3 69 45 - 98

4 43 36 35 98

5 15 36 63 98

6 39 75 - 98

TRANSYT-7F with GA 410.0 120

1 60 60 - 0

2 74 46 - 89

3 71 49 - 37

4 44 38 38 106

5 15 38 67 75

6 60 60 - 55

Table 4. The results for medium sized network

5. Conclusions

This study deals with the area traffic control problem using the ACOTRANS. For this pur‐
pose, ACO based algorithm called ACORSES was used. The ACORSES algorithm for solv‐
ing ATC problem differs from approaches in that new ant colony is generated at each cycle
with the assistance of the best solution of the previous information. Moreover, the best solu‐
tion that is obtained from the previous evaluation is saved to prevent being trapped in bad
local optimum. The ACOTRANS is introduced to optimize traffic signal timings at coordi‐
nated signalized network. TRANSYT-7F is used to compute PI for a given set of signal tim‐
ing and staging plan in network. The ACOTRANS is tested on two road networks in order
to show its robustness and effectiveness. For first test network which contains two junctions,
results showed that the ACOTRANS produces slightly better results than TRANSYT-7F
with GA and HC. Proposed algorithm was also applied to medium sized network which

Ant Colony Optimization - Techniques and Applications102

contains six junctions. Results also showed that the ACOTRANS improves network’s PI by
11.7 % and 13.9 % according to TRANSYT-7F with GA and HC. The ACOTRANS provides
an alternative to the HC and GA optimization tools in TRANSYT-7F that could produce bet‐
ter results in terms of the PI. As a result, the ACOTRANS may be used to optimize traffic
signal timings at coordinated signalized network. In future works, the ACOTRANS will be
applied to a real-sized network in order to demonstrate the applicability and the effective‐
ness of the proposed model.

Author details

Soner Haldenbilen*, Ozgur Baskan and Cenk Ozan

*Address all correspondence to: shaldenbilen@pau.edu.tr

Pamukkale University, Engineering Faculty, Department of Civil Engineering, Transporta‐
tion Division, Turkey

References

[1] Teklu, F., Sumalee, A., & Watling, D. (2007). A genetic algorithm approach for opti‐
mizing traffic control signals considering routing. Computer-Aided Civil and Infrastruc‐
ture Engineering, 22, 31-43.

[2] Webster, F. V. (1958). Traffic Signal Settings Road Research Technical Paper. HMSO
London [39].

[3] Robertson, DI. (1969). TRANSYT’ method for area traffic control. Traffic Engineering
and Control, 10, 276-81.

[4] TRANSYT-7F Release 11.3 Users Guide,. (2008). McTrans Center, University of Flori‐
da, Gaineville, Florida.

[5] Baskan, O., Haldenbilen, S., Ceylan, H., & Ceylan, H. (2009). A new solution algo‐
rithm for improving performance of ant colony optimization. Applied Mathematics and
Computation, 211(1), 75-84.

[6] Wong, SC. (1995). Derivatives of the performance index for the traffic model from
TRANSYT. Transportation Research Part B, 29(5), 303-327.

[7] Wong, SC. (1996). Group-based optimisation of signal timings using the TRANSYT
traffic model. Transportation Research Part B, 30(3), 217-244.

[8] Heydecker, BG. (1996). A decomposed approach for signal optimization in road net‐
works. Transportation Research Part B, 30(2), 99-114.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

103

PI

Cycle

Time

c (s)

Junction

number

i

Duration of stages (s) Offsets

(s)

7≤φ≤c
Stage 1

I1−2 = I2−1 =5

Stage 2

θi

Stage 3

φi ,1

ACOTRANS 361.9 106

1 46 60 - 0

2 64 42 - 96

3 62 44 - 10

4 38 34 34 36

5 15 33 58 38

6 34 72 - 74

TRANSYT-7F with HC 420.5 114

1 44 70 - 0

2 56 58 - 98

3 69 45 - 98

4 43 36 35 98

5 15 36 63 98

6 39 75 - 98

TRANSYT-7F with GA 410.0 120

1 60 60 - 0

2 74 46 - 89

3 71 49 - 37

4 44 38 38 106

5 15 38 67 75

6 60 60 - 55

Table 4. The results for medium sized network

5. Conclusions

This study deals with the area traffic control problem using the ACOTRANS. For this pur‐
pose, ACO based algorithm called ACORSES was used. The ACORSES algorithm for solv‐
ing ATC problem differs from approaches in that new ant colony is generated at each cycle
with the assistance of the best solution of the previous information. Moreover, the best solu‐
tion that is obtained from the previous evaluation is saved to prevent being trapped in bad
local optimum. The ACOTRANS is introduced to optimize traffic signal timings at coordi‐
nated signalized network. TRANSYT-7F is used to compute PI for a given set of signal tim‐
ing and staging plan in network. The ACOTRANS is tested on two road networks in order
to show its robustness and effectiveness. For first test network which contains two junctions,
results showed that the ACOTRANS produces slightly better results than TRANSYT-7F
with GA and HC. Proposed algorithm was also applied to medium sized network which

Ant Colony Optimization - Techniques and Applications102

contains six junctions. Results also showed that the ACOTRANS improves network’s PI by
11.7 % and 13.9 % according to TRANSYT-7F with GA and HC. The ACOTRANS provides
an alternative to the HC and GA optimization tools in TRANSYT-7F that could produce bet‐
ter results in terms of the PI. As a result, the ACOTRANS may be used to optimize traffic
signal timings at coordinated signalized network. In future works, the ACOTRANS will be
applied to a real-sized network in order to demonstrate the applicability and the effective‐
ness of the proposed model.

Author details

Soner Haldenbilen*, Ozgur Baskan and Cenk Ozan

*Address all correspondence to: shaldenbilen@pau.edu.tr

Pamukkale University, Engineering Faculty, Department of Civil Engineering, Transporta‐
tion Division, Turkey

References

[1] Teklu, F., Sumalee, A., & Watling, D. (2007). A genetic algorithm approach for opti‐
mizing traffic control signals considering routing. Computer-Aided Civil and Infrastruc‐
ture Engineering, 22, 31-43.

[2] Webster, F. V. (1958). Traffic Signal Settings Road Research Technical Paper. HMSO
London [39].

[3] Robertson, DI. (1969). TRANSYT’ method for area traffic control. Traffic Engineering
and Control, 10, 276-81.

[4] TRANSYT-7F Release 11.3 Users Guide,. (2008). McTrans Center, University of Flori‐
da, Gaineville, Florida.

[5] Baskan, O., Haldenbilen, S., Ceylan, H., & Ceylan, H. (2009). A new solution algo‐
rithm for improving performance of ant colony optimization. Applied Mathematics and
Computation, 211(1), 75-84.

[6] Wong, SC. (1995). Derivatives of the performance index for the traffic model from
TRANSYT. Transportation Research Part B, 29(5), 303-327.

[7] Wong, SC. (1996). Group-based optimisation of signal timings using the TRANSYT
traffic model. Transportation Research Part B, 30(3), 217-244.

[8] Heydecker, BG. (1996). A decomposed approach for signal optimization in road net‐
works. Transportation Research Part B, 30(2), 99-114.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

103

[9] Wong, S. C., Wong, W. T., Xu, J., & Tong, C. O. (2000). A Time-dependent TRANSYT
Traffic Model for Area Traffic Control. Proceedings of the Second International Confer‐
ence on Transportation and Traffic Studies. ICTTS, 578-585.

[10] Wong, S. C., Wong, W. T., Leung, C. M., & Tong, C. O. (2002). Group-based optimi‐
zation of a time-dependent TRANSYT traffic model for area traffic control. Transpor‐
tation Research Part B, 36, 291-312.

[11] Girianna, M., & Benekohal, R. F. (2002). Application of Genetic Algorithms to Gener‐
ate Optimum Signal Coordination for Congested Networks. Proceedings of the Seventh
International Conference on Applications of Advanced Technologies in Transportation,
762-769.

[12] Ceylan, H. (2006). Developing Combined Genetic Algorithm-Hill-Climbing Optimi‐
zation Method for Area Traffic Control. Journal of Transportation Engineering, 132(8),
663-671.

[13] Chen, J., & Xu, L. (2006). Road-Junction Traffic Signal Timing Optimization by an
adaptive Particle Swarm Algorithm. 9th International Conference On Control, Automa‐
tion, Robotics And Vision, 1- 5, 1103-1109.

[14] Chiou, S-W. (2007). A hybrid optimization algorithm for area traffic control problem.
Journal of the Operational Research Society, 58, 816-823.

[15] Chiou, S. W. (2007). An efficient computation algorithm for area traffic control prob‐
lem with link capacity expansions. Applied Mathematics and Computation, 188,
1094-1102.

[16] Dan, C., & Xiaohong, G. (2008). Study on Intelligent Control of Traffic Signal of Ur‐
ban Area and Microscopic Simulation. Proceedings of the Eighth International Confer‐
ence of Chinese Logistics and Transportation Professionals, Logistics: The Emerging
Frontiers of Transportation and Development in China, 4597-4604.

[17] Li, Z. (2011). Modeling Arterial Signal Optimization with Enhanced Cell Transmis‐
sion Formulations. Journal of Transportation Engineering, 137(7), 445-454.

[18] Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant Algorithms for Discrete
Optimization. Artificial Life, MIT press.

[19] Eshghi, K., & Kazemi, M. (1999). Ant colony algorithm for the shortest loop design
problem. Computers & Industrial Engineering, 50, 358-366.

[20] Baskan, O., & Haldenbilen, S. (2011). Ant Colony Optimization Approach for Opti‐
mizing Traffic Signal Timings. Ant Colony Optimization- Methods and Applications, In‐
Tech, 205-220.

[21] Ceylan, H., & Bell, M. G. H. (2004). Traffic signal timing optimisation based on genet‐
ic algorithm approach, including drivers’ routing. Transportation Research Part B,
38(4), 329-342.

Ant Colony Optimization - Techniques and Applications104

[22] Ceylan, H. (2002). A genetic algorithm approach to the equilibrium network design

problem. Ph.D. Thesis, University of Newcastle upon Tyne, UK.

[23] Allsop, R. E., & Charlesworth, J. A. (1977). Traffic in a signal-controlled road net‐

work: an example of different signal timings including different routings. Traffic En‐

gineering Control, 18(5), 262-264.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

105

[9] Wong, S. C., Wong, W. T., Xu, J., & Tong, C. O. (2000). A Time-dependent TRANSYT
Traffic Model for Area Traffic Control. Proceedings of the Second International Confer‐
ence on Transportation and Traffic Studies. ICTTS, 578-585.

[10] Wong, S. C., Wong, W. T., Leung, C. M., & Tong, C. O. (2002). Group-based optimi‐
zation of a time-dependent TRANSYT traffic model for area traffic control. Transpor‐
tation Research Part B, 36, 291-312.

[11] Girianna, M., & Benekohal, R. F. (2002). Application of Genetic Algorithms to Gener‐
ate Optimum Signal Coordination for Congested Networks. Proceedings of the Seventh
International Conference on Applications of Advanced Technologies in Transportation,
762-769.

[12] Ceylan, H. (2006). Developing Combined Genetic Algorithm-Hill-Climbing Optimi‐
zation Method for Area Traffic Control. Journal of Transportation Engineering, 132(8),
663-671.

[13] Chen, J., & Xu, L. (2006). Road-Junction Traffic Signal Timing Optimization by an
adaptive Particle Swarm Algorithm. 9th International Conference On Control, Automa‐
tion, Robotics And Vision, 1- 5, 1103-1109.

[14] Chiou, S-W. (2007). A hybrid optimization algorithm for area traffic control problem.
Journal of the Operational Research Society, 58, 816-823.

[15] Chiou, S. W. (2007). An efficient computation algorithm for area traffic control prob‐
lem with link capacity expansions. Applied Mathematics and Computation, 188,
1094-1102.

[16] Dan, C., & Xiaohong, G. (2008). Study on Intelligent Control of Traffic Signal of Ur‐
ban Area and Microscopic Simulation. Proceedings of the Eighth International Confer‐
ence of Chinese Logistics and Transportation Professionals, Logistics: The Emerging
Frontiers of Transportation and Development in China, 4597-4604.

[17] Li, Z. (2011). Modeling Arterial Signal Optimization with Enhanced Cell Transmis‐
sion Formulations. Journal of Transportation Engineering, 137(7), 445-454.

[18] Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant Algorithms for Discrete
Optimization. Artificial Life, MIT press.

[19] Eshghi, K., & Kazemi, M. (1999). Ant colony algorithm for the shortest loop design
problem. Computers & Industrial Engineering, 50, 358-366.

[20] Baskan, O., & Haldenbilen, S. (2011). Ant Colony Optimization Approach for Opti‐
mizing Traffic Signal Timings. Ant Colony Optimization- Methods and Applications, In‐
Tech, 205-220.

[21] Ceylan, H., & Bell, M. G. H. (2004). Traffic signal timing optimisation based on genet‐
ic algorithm approach, including drivers’ routing. Transportation Research Part B,
38(4), 329-342.

Ant Colony Optimization - Techniques and Applications104

[22] Ceylan, H. (2002). A genetic algorithm approach to the equilibrium network design

problem. Ph.D. Thesis, University of Newcastle upon Tyne, UK.

[23] Allsop, R. E., & Charlesworth, J. A. (1977). Traffic in a signal-controlled road net‐

work: an example of different signal timings including different routings. Traffic En‐

gineering Control, 18(5), 262-264.

An Ant Colony Optimization Algorithm for Area Traffic Control
http://dx.doi.org/10.5772/51695

105

Chapter 5

ANGEL: A Simplified Hybrid Metaheuristic for
Structural Optimization

Anikó Csébfalvi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52188

1. Introduction

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might cause differ‐
ent types of structural instability. According to the nonlinear behavior of the resulted light‐
weight truss structures, a special treatment is required in order to tackle the “hidden” global
stability problems during the optimization process. Therefore, we have to replace the tradi‐
tional “design variables → response variables” like approach with a more time-consuming
"design variables → response functions" like approach, where the response functions de‐
scribe the structural response history of the loading process up to the maximal load intensity
without constraint violation.

In this study, a higher order path-following method [1] is embedded into a hybrid heuristic op‐
timization method in order to tackle the structural stability constraints within the truss optimi‐
zation. The proposed path-following method is based on the perturbation technique of the
stability theory and a non-linear modification of the classical linear homotopy method.

The nonlinear function of the total potential energy for conservative systems can be ex‐
pressed in terms of nodal displacements and the load parameter. The equilibrium equations
are given from the principle of stationary value of total potential energy. The stability inves‐
tigation is based on the eigenvalue computation of the Hessian matrix. In each step of the
path-following process, we get information about the displacement, stresses, local, and glob‐
al stability of the structure.

© 2013 Csébfalvi; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Csébfalvi; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 5

ANGEL: A Simplified Hybrid Metaheuristic for
Structural Optimization

Anikó Csébfalvi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52188

1. Introduction

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might cause differ‐
ent types of structural instability. According to the nonlinear behavior of the resulted light‐
weight truss structures, a special treatment is required in order to tackle the “hidden” global
stability problems during the optimization process. Therefore, we have to replace the tradi‐
tional “design variables → response variables” like approach with a more time-consuming
"design variables → response functions" like approach, where the response functions de‐
scribe the structural response history of the loading process up to the maximal load intensity
without constraint violation.

In this study, a higher order path-following method [1] is embedded into a hybrid heuristic op‐
timization method in order to tackle the structural stability constraints within the truss optimi‐
zation. The proposed path-following method is based on the perturbation technique of the
stability theory and a non-linear modification of the classical linear homotopy method.

The nonlinear function of the total potential energy for conservative systems can be ex‐
pressed in terms of nodal displacements and the load parameter. The equilibrium equations
are given from the principle of stationary value of total potential energy. The stability inves‐
tigation is based on the eigenvalue computation of the Hessian matrix. In each step of the
path-following process, we get information about the displacement, stresses, local, and glob‐
al stability of the structure.

© 2013 Csébfalvi; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Csébfalvi; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

With the help of the higher-order predictor-corrector algorithm, we are able to follow the
load-response path and detect the hidden bifurcation points along the path in time. During
the optimization process, the optimal design is characterized by the maximal load intensity
factor along the equilibrium path. Consequently, all the structural constraints are controlled
by a fitness function in terms of the maximal feasible load intensity factor. Because the func‐
tion evaluation is very expensive (for example, we have to call a professional system like
ANSYS to carry out an "eigenvalue buckling analysis") we have to select the appropriate
population-based metaheuristic frame very carefully. In everyday language, a population-
based metaheuristic means a good tale usually inspired by the nature, a set of operators,
which describes the daily life of the population, and a set of rules which controls the life or
death of individuals. In the heuristic frame developing process we applied a "minimal art"
like approach to reach the "good quality solution within reasonable time" goal. According to
our approach, we decreased the number of operators and tunable-parameters, and simpli‐
fied the significant operators and rules coming from different tales as much as possible.

In this chapter we present the result, which is a simple but very efficient hybrid metaheuris‐
tic for truss weight minimization with continuous and discrete design variables, and global
and local stability constraints.

The presented "supernatural" ANGEL method [2-6] combines ant colony optimization (AN),
genetic algorithm (GE) and gradient-based local search (L) strategy. In the algorithm, AN
and GE search alternately and cooperatively in the design space. The powerful L algorithm,
which is based on the local linearization of the constraint set, is applied to yield a more feasi‐
ble or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and response curves show that ANGEL may
be more efficient and robust than the conventional gradient based deterministic or the tradi‐
tional population based heuristic (metaheuristic) methods in solving explicit (implicit) opti‐
mization problems. ANGEL produces highly competitive results [16-18] in significantly
shorter run-times than the previously described pure approaches.

The benefit of synergy can be demonstrated by standard statistical tests. To the best of our
knowledge, no such work has been done in the literature for truss weight minimization with
response curves. The reason is simple: the question of the global stability loss (the collapse
of the structure as a whole) was not investigated very carefully in the truss optimization lit‐
erature so far, according to a popular but totally misleading "assumption" of the truss opti‐
mization community that the local stability loss (local buckling) always precedes the global
stability loss (the collapse), therefore the time-consuming investigation of the global stability
is meaningless (see in Hanahara and Tada [20]).

2. Structural optimization

Generally, the traditional implicit “design variables → response variables” weight minimi‐
zation problem with continuous and discrete design variables can be written as follows:

Ant Colony Optimization - Techniques and Applications108

() minW Z ® (1)

() { } , , 1, 2ij iG Z G G j , ,Mé ùÎ Îë û K (2)

{ } , , 1, 2, ,ii iX X X i Né ùÎ Îë û K (3)

{ } { }1 2 , , , , 1, 2, ,g CY C C C g GÎ ÎK K (4)

whereW (X) is the weight of the structure, Gj, j ∈ { 1, 2, …, M }are the implicit response var‐

iables, andZ ={ X ={ X1, X2 …, XN } , Y ={ Y1, Y2 …, YG} }is the set of continuous and dis‐

crete design variable sets.

The investigated new "design variables → response functions" weight minimization ap‐

proach can be described as follows:

() minW Z ® (5)

() { }, , , 1, 2 ,0 1ij iG Z G G j , ,Ml lé ùÎ Î £ £ë û K (6)

{ } , , 1, 2, ,ii iX X X i Né ùÎ Îë û K (7)

{ } { }1 2 , , , , 1, 2, ,g CY C C C g GÎ ÎK K (8)

whereλ =λ(Z) the load intensity factor and constraint 0≤λ ≤1 means that loading process

reached the maximal load intensity level without constraint violation.

In the path-following algorithm (details of the nonlinear structural investigation see in [1]), a

design is represented by the set of{ W , λ, Z , Φ}, where W is the weight of the structure, λ

is the maximal load intensity factor without constraint violation, and Z ={ X , Y } is the set of

design variables. In our study, we used a problem-specific fitness function Φ =Φ (Z)

(0≤Φ ≤2) which is defined as following:

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

109

With the help of the higher-order predictor-corrector algorithm, we are able to follow the
load-response path and detect the hidden bifurcation points along the path in time. During
the optimization process, the optimal design is characterized by the maximal load intensity
factor along the equilibrium path. Consequently, all the structural constraints are controlled
by a fitness function in terms of the maximal feasible load intensity factor. Because the func‐
tion evaluation is very expensive (for example, we have to call a professional system like
ANSYS to carry out an "eigenvalue buckling analysis") we have to select the appropriate
population-based metaheuristic frame very carefully. In everyday language, a population-
based metaheuristic means a good tale usually inspired by the nature, a set of operators,
which describes the daily life of the population, and a set of rules which controls the life or
death of individuals. In the heuristic frame developing process we applied a "minimal art"
like approach to reach the "good quality solution within reasonable time" goal. According to
our approach, we decreased the number of operators and tunable-parameters, and simpli‐
fied the significant operators and rules coming from different tales as much as possible.

In this chapter we present the result, which is a simple but very efficient hybrid metaheuris‐
tic for truss weight minimization with continuous and discrete design variables, and global
and local stability constraints.

The presented "supernatural" ANGEL method [2-6] combines ant colony optimization (AN),
genetic algorithm (GE) and gradient-based local search (L) strategy. In the algorithm, AN
and GE search alternately and cooperatively in the design space. The powerful L algorithm,
which is based on the local linearization of the constraint set, is applied to yield a more feasi‐
ble or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and response curves show that ANGEL may
be more efficient and robust than the conventional gradient based deterministic or the tradi‐
tional population based heuristic (metaheuristic) methods in solving explicit (implicit) opti‐
mization problems. ANGEL produces highly competitive results [16-18] in significantly
shorter run-times than the previously described pure approaches.

The benefit of synergy can be demonstrated by standard statistical tests. To the best of our
knowledge, no such work has been done in the literature for truss weight minimization with
response curves. The reason is simple: the question of the global stability loss (the collapse
of the structure as a whole) was not investigated very carefully in the truss optimization lit‐
erature so far, according to a popular but totally misleading "assumption" of the truss opti‐
mization community that the local stability loss (local buckling) always precedes the global
stability loss (the collapse), therefore the time-consuming investigation of the global stability
is meaningless (see in Hanahara and Tada [20]).

2. Structural optimization

Generally, the traditional implicit “design variables → response variables” weight minimi‐
zation problem with continuous and discrete design variables can be written as follows:

Ant Colony Optimization - Techniques and Applications108

() minW Z ® (1)

() { } , , 1, 2ij iG Z G G j , ,Mé ùÎ Îë û K (2)

{ } , , 1, 2, ,ii iX X X i Né ùÎ Îë û K (3)

{ } { }1 2 , , , , 1, 2, ,g CY C C C g GÎ ÎK K (4)

whereW (X) is the weight of the structure, Gj, j ∈ { 1, 2, …, M }are the implicit response var‐

iables, andZ ={ X ={ X1, X2 …, XN } , Y ={ Y1, Y2 …, YG} }is the set of continuous and dis‐

crete design variable sets.

The investigated new "design variables → response functions" weight minimization ap‐

proach can be described as follows:

() minW Z ® (5)

() { }, , , 1, 2 ,0 1ij iG Z G G j , ,Ml lé ùÎ Î £ £ë û K (6)

{ } , , 1, 2, ,ii iX X X i Né ùÎ Îë û K (7)

{ } { }1 2 , , , , 1, 2, ,g CY C C C g GÎ ÎK K (8)

whereλ =λ(Z) the load intensity factor and constraint 0≤λ ≤1 means that loading process

reached the maximal load intensity level without constraint violation.

In the path-following algorithm (details of the nonlinear structural investigation see in [1]), a

design is represented by the set of{ W , λ, Z , Φ}, where W is the weight of the structure, λ

is the maximal load intensity factor without constraint violation, and Z ={ X , Y } is the set of

design variables. In our study, we used a problem-specific fitness function Φ =Φ (Z)

(0≤Φ ≤2) which is defined as following:

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

109

2 1

1

L

U L

W W
W W

if

l

l l

ì -
- =ï -ïïF = í

ï <ï
ïî

(9)

whereW L (W U) is the minimal (maximal) weight of the structure, according to the given
design space.

Our feasibility-oriented fitness function is based on the following set of criteria:

• Any feasible solution is preferred to any infeasible solution,

• Between two feasible solutions, the one having a smaller weight is preferred,

• Between two infeasible solutions, the one having a larger load intensity factor is prefer‐
red.

The minimal weight design problem can be formulated in terms of member cross-sections (a
member cross-section may be a continuous variable or discrete value taken from a given
catalogue) and nodal point shifts (to modify the shape), and may be constrained by the al‐
lowable nodal-point displacements, element stresses and the global stability requirement
which simple means a non-singular Hessian on the load-response path.

We have to mention, that in our study we investigated only truss structures therefore the
applied structural model was a large deflection truss model without simplifications. To
avoid any type of stability loss even a structural collapse, a path-following approach was
used to compute the structural response.

The applied measure of design infeasibility was defined as the maximal load intensity factor
subject to all of the structural constraints. Naturally, ANGEL which is presented in the next
section can be used in the traditional “design variables → response variables” approach and
may be easily adopted for other types of optimization problems including the traditional ex‐
plicit function minimization problems.

3. ANGEL

First, we have to note, that ANGEL as a name of a combined population-based metaheuris‐
tic for the resource-constrained project scheduling problem was introduced by Tseng and
Chen [15]. We use this name in a different context with a different content. Our ANGEL al‐
gorithm, according to the systematic simplification, is based only three operators: random
selection (RS), random perturbation (RP), and random combination (RC). In ANGEL the tra‐
ditional mutation operator was replaced by the local search procedure (L) as a "locally best"
form of mutation. That is, rather than introducing small random perturbations into the off‐

Ant Colony Optimization - Techniques and Applications110

spring solution, a gradient-based local search is applied to improve the solution until a local
optimum is reached. The first result of our systematic simplification work is trivial: hard to
imagine a population-based heuristic without an RS operator. The RS operator is in a special
position in the heuristic community therefore the population-based heuristic literature is full
with many general and problem-specific selection mechanisms (a good overview can be
found in the work of Sivaraj and Ravichandran [13]). When we imagine the population as a
matrix in which the rows are individuals and the columns are variables and the fitness func‐
tion values of the individuals form a corresponding column vector, then very easy to identi‐
fy the two basic selection possibilities: the column-wise (AN like) and the row-wise (GE like)
selection mechanisms (see Figure 1). In Figure 1 we used a grey-scale to show the fitness of
individuals (the lighter the grey color the better the individual) and we assumed that the in‐
dividuals are ordered according to their fitness values. To demonstrate the possibilities we
presented two similar cases (two parents (P2) → one child (C1)).

The AN mechanism selects at least one "more or less good parent" from each column step by
step and after that applies the RP or RC operator procedure for each selected variable or var‐
iable set independently to get a child, from which L try to make a "better child".

The GE mechanism selects at least one "more or less good parent" in exactly one step for
each case. In other words, GE selects at least one complete row. After that the algorithm re‐
peats the previous steps to generate the child by applying the RP or RC operator for each
variable or variable set of the selected parent or parents and after that L try to improve the
quality of the child to get a "locally best" child.

In AN approach, by definition, the RS means a set of randomly selected "more or less
good" element or elements according to the tale-dependent fitness function. This ap‐
proach always imitates a "route" independently from its reality. When we imagine a bee fly‐
ing from flower to flower or a salesperson travelling from city to city, the reality of the
abstraction is trivial. But when we have to solve an optimal truss design problem minimiz‐
ing its total weight on the set of element cross-sections as design variables, subject to the
displacement and stress constraints, the local and global stability requirements and load con‐
ditions and imagine the construction as a whole, then the "from cross-section to cross-sec‐
tion" route may be totally meaningless and misleading abstraction. We may become the
slave of the tale, which may yield a "brutal-force-search" like efficiency, because in our case
the function evaluation is very expensive and time-consuming according to the implicit de‐
pendency between the design variables (element cross-sections) and the response varia‐
bles (for example: global stability loss).

According to the optimal structural design problem, it is very easy to imagine the GE selec‐
tion strategy, in which we select randomly at least one "more or less good design" and after
that, according to the other operators of the tale, we try to make a better one (less unfeasible
or lighter feasible) by RP or RC.

Easy to imagine, that the combination of the two selection mechanisms may increase the
variability of the searching process as a synergism. The two selection mechanisms are very

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

111

2 1

1

L

U L

W W
W W

if

l

l l

ì -
- =ï -ïïF = í

ï <ï
ïî

(9)

whereW L (W U) is the minimal (maximal) weight of the structure, according to the given
design space.

Our feasibility-oriented fitness function is based on the following set of criteria:

• Any feasible solution is preferred to any infeasible solution,

• Between two feasible solutions, the one having a smaller weight is preferred,

• Between two infeasible solutions, the one having a larger load intensity factor is prefer‐
red.

The minimal weight design problem can be formulated in terms of member cross-sections (a
member cross-section may be a continuous variable or discrete value taken from a given
catalogue) and nodal point shifts (to modify the shape), and may be constrained by the al‐
lowable nodal-point displacements, element stresses and the global stability requirement
which simple means a non-singular Hessian on the load-response path.

We have to mention, that in our study we investigated only truss structures therefore the
applied structural model was a large deflection truss model without simplifications. To
avoid any type of stability loss even a structural collapse, a path-following approach was
used to compute the structural response.

The applied measure of design infeasibility was defined as the maximal load intensity factor
subject to all of the structural constraints. Naturally, ANGEL which is presented in the next
section can be used in the traditional “design variables → response variables” approach and
may be easily adopted for other types of optimization problems including the traditional ex‐
plicit function minimization problems.

3. ANGEL

First, we have to note, that ANGEL as a name of a combined population-based metaheuris‐
tic for the resource-constrained project scheduling problem was introduced by Tseng and
Chen [15]. We use this name in a different context with a different content. Our ANGEL al‐
gorithm, according to the systematic simplification, is based only three operators: random
selection (RS), random perturbation (RP), and random combination (RC). In ANGEL the tra‐
ditional mutation operator was replaced by the local search procedure (L) as a "locally best"
form of mutation. That is, rather than introducing small random perturbations into the off‐

Ant Colony Optimization - Techniques and Applications110

spring solution, a gradient-based local search is applied to improve the solution until a local
optimum is reached. The first result of our systematic simplification work is trivial: hard to
imagine a population-based heuristic without an RS operator. The RS operator is in a special
position in the heuristic community therefore the population-based heuristic literature is full
with many general and problem-specific selection mechanisms (a good overview can be
found in the work of Sivaraj and Ravichandran [13]). When we imagine the population as a
matrix in which the rows are individuals and the columns are variables and the fitness func‐
tion values of the individuals form a corresponding column vector, then very easy to identi‐
fy the two basic selection possibilities: the column-wise (AN like) and the row-wise (GE like)
selection mechanisms (see Figure 1). In Figure 1 we used a grey-scale to show the fitness of
individuals (the lighter the grey color the better the individual) and we assumed that the in‐
dividuals are ordered according to their fitness values. To demonstrate the possibilities we
presented two similar cases (two parents (P2) → one child (C1)).

The AN mechanism selects at least one "more or less good parent" from each column step by
step and after that applies the RP or RC operator procedure for each selected variable or var‐
iable set independently to get a child, from which L try to make a "better child".

The GE mechanism selects at least one "more or less good parent" in exactly one step for
each case. In other words, GE selects at least one complete row. After that the algorithm re‐
peats the previous steps to generate the child by applying the RP or RC operator for each
variable or variable set of the selected parent or parents and after that L try to improve the
quality of the child to get a "locally best" child.

In AN approach, by definition, the RS means a set of randomly selected "more or less
good" element or elements according to the tale-dependent fitness function. This ap‐
proach always imitates a "route" independently from its reality. When we imagine a bee fly‐
ing from flower to flower or a salesperson travelling from city to city, the reality of the
abstraction is trivial. But when we have to solve an optimal truss design problem minimiz‐
ing its total weight on the set of element cross-sections as design variables, subject to the
displacement and stress constraints, the local and global stability requirements and load con‐
ditions and imagine the construction as a whole, then the "from cross-section to cross-sec‐
tion" route may be totally meaningless and misleading abstraction. We may become the
slave of the tale, which may yield a "brutal-force-search" like efficiency, because in our case
the function evaluation is very expensive and time-consuming according to the implicit de‐
pendency between the design variables (element cross-sections) and the response varia‐
bles (for example: global stability loss).

According to the optimal structural design problem, it is very easy to imagine the GE selec‐
tion strategy, in which we select randomly at least one "more or less good design" and after
that, according to the other operators of the tale, we try to make a better one (less unfeasible
or lighter feasible) by RP or RC.

Easy to imagine, that the combination of the two selection mechanisms may increase the
variability of the searching process as a synergism. The two selection mechanisms are very

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

111

general: from single-parent to multi-parents they are able to manage every case using only
the RP and RC operators. In this study, "tradition is a tradition" we used the generally ac‐
cepted operator types. Namely we used the AN-P1-C1 and GE-P2-C1 operators alternately
and cooperatively using only the RP, RC, and L operators, which are invariant to the selec‐
tion direction.

? ?

Figure 1. AN-P2-C1 + L and GE-P2-C1 + L

In the ANGEL developing process, we tried to simplify the three operators (RS, RP, and RC)
and decrease the number of tunable-parameters, namely the size of the problem-specific
"golden-number" set, as much as possible, to minimize the time requirement of the so-called
"preliminary investigation". In our case, the preliminary investigation may be an "experi‐
mental design and analysis" like problem in the problem with terrible large computational
cost which yields only 'good" problem-specific golden-number-set after several "try-and-er‐
ror" iterations.

The flowchart of the proposed simplified heuristic ANGEL method is presented in Figure
2.The main procedure of the proposed hybrid metaheuristic follows the repetition of these
two steps:

1. AN with LS and

2. GE with LS.

According to the systematic simplification, the hybrid algorithm is based only three opera‐
tors:

1. random selection (AN+GE),

2. random perturbation (AN), and

3. random combination (GE).

Ant Colony Optimization - Techniques and Applications112

R
A

N
D

O
M

 P
O

PU
LA

TI
O

N
A

N
T

 C
O

LO
N

Y
 O

PT
IM

IS
A

TI
O

N
G

EN
ET

IC
 A

LG
O

R
IT

H
M

Next Generation

sGeneration1 Generation To For =For Generation = 1 To Generations

For Member = 1 To PopulationSize

X RandomPerturbation (Generation)
X LocalSearch (X) : W  Weight (X) : FFitness (X)

X (WM)  X
W (WM)  W
F (WM)  F

 X*  X : W*  W : F*  F

Next M

F (WM)<F

F* < F

For Member = 1 To PopulationSize

X RandomCombination (Generation)
X LocalSearch (X) : W  Weight (X) : FFitness (X)

X (WM)  X
W (WM)  W
F (WM)  F

 X*  X : W*  W : F*  F

Next M

F
(WM)<F

F* < F

F*  0

For M = 1 To PopulationSize

 X* X : W*  W : F*  F

Next M

F* < F

X  RandomReal (XL, XU) : X LocalSearch (X)
W  Weight (X) : FFitness (X)
X() X : W (M)  W : F (M)  F

YES

YES

YES

YES

YES

Figure 2. Flowchart of ANGEL

In the presented form, the population-based ANGEL has only three "tunable" parameters

{ PS , NG, MI }, where PS is the size of the population, NGis the number of generations,

MI is the maximal number of gradient-based local search iterations(0≤MI ≤100), and an ad‐

ditional parameter pair { S̄ , S
_} which defines a exponentially decreasing multiplier in the

function of generationgen,gen ∈ { 1, 2, …, NG}:

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

113

general: from single-parent to multi-parents they are able to manage every case using only
the RP and RC operators. In this study, "tradition is a tradition" we used the generally ac‐
cepted operator types. Namely we used the AN-P1-C1 and GE-P2-C1 operators alternately
and cooperatively using only the RP, RC, and L operators, which are invariant to the selec‐
tion direction.

? ?

Figure 1. AN-P2-C1 + L and GE-P2-C1 + L

In the ANGEL developing process, we tried to simplify the three operators (RS, RP, and RC)
and decrease the number of tunable-parameters, namely the size of the problem-specific
"golden-number" set, as much as possible, to minimize the time requirement of the so-called
"preliminary investigation". In our case, the preliminary investigation may be an "experi‐
mental design and analysis" like problem in the problem with terrible large computational
cost which yields only 'good" problem-specific golden-number-set after several "try-and-er‐
ror" iterations.

The flowchart of the proposed simplified heuristic ANGEL method is presented in Figure
2.The main procedure of the proposed hybrid metaheuristic follows the repetition of these
two steps:

1. AN with LS and

2. GE with LS.

According to the systematic simplification, the hybrid algorithm is based only three opera‐
tors:

1. random selection (AN+GE),

2. random perturbation (AN), and

3. random combination (GE).

Ant Colony Optimization - Techniques and Applications112

R
A

N
D

O
M

 P
O

PU
LA

TI
O

N
A

N
T

 C
O

LO
N

Y
 O

PT
IM

IS
A

TI
O

N
G

EN
ET

IC
 A

LG
O

R
IT

H
M

Next Generation

sGeneration1 Generation To For =For Generation = 1 To Generations

For Member = 1 To PopulationSize

X RandomPerturbation (Generation)
X LocalSearch (X) : W  Weight (X) : FFitness (X)

X (WM)  X
W (WM)  W
F (WM)  F

 X*  X : W*  W : F*  F

Next M

F (WM)<F

F* < F

For Member = 1 To PopulationSize

X RandomCombination (Generation)
X LocalSearch (X) : W  Weight (X) : FFitness (X)

X (WM)  X
W (WM)  W
F (WM)  F

 X*  X : W*  W : F*  F

Next M

F
(WM)<F

F* < F

F*  0

For M = 1 To PopulationSize

 X* X : W*  W : F*  F

Next M

F* < F

X  RandomReal (XL, XU) : X LocalSearch (X)
W  Weight (X) : FFitness (X)
X() X : W (M)  W : F (M)  F

YES

YES

YES

YES

YES

Figure 2. Flowchart of ANGEL

In the presented form, the population-based ANGEL has only three "tunable" parameters

{ PS , NG, MI }, where PS is the size of the population, NGis the number of generations,

MI is the maximal number of gradient-based local search iterations(0≤MI ≤100), and an ad‐

ditional parameter pair { S̄ , S
_} which defines a exponentially decreasing multiplier in the

function of generationgen,gen ∈ { 1, 2, …, NG}:

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

113

() 1S exp log
1

S gengen S
NGS

æ - öæ ö= * *ç ÷ç ÷-è øè ø
(10)

The parameter pair{ S̄ , S
_}, which controls the smooth transition from diversity to intensity,

can be kept “frozen” in the algorithm:

{ } { } , 1.0, 0.01S S = (11)

which means, that ANGEL is practically a “tuning-free” algorithm.

The monotonically decreasing standard deviation function for each continuous design varia‐
ble can be defined in the following way:

() () { } { }S , 1, 2, , , 1, 2, ,gen
ii iS gen X X gen NG i N= * - Î ÎK K (12)

In our approach, the case of the discrete design variables can be managed in a similar way.
The only difference is that we replace the value set with the equivalent index set and carry
out all the operations on the index set.

The main procedure of the proposed meta-heuristic method follows the repetition of these
two steps:

1. AN with L and

2. GE with L.

In other words, meta-heuristic ANGEL firstly generates an initial population, after that, in
an iterative process AN and GE search alternately and cooperatively on the current design
set. The initial population is a totally random set. The random perturbation and random
combination procedures which are based on the normal distribution, call therandom selec‐
tion function which uses the discrete inverse method, to select a “more or less good” design
(GE) or a set of "more or less good" design variable values from the current population. The
higher the fitness values of a design (a design variable value) the higher the chance is that it
will be selected by the function (see Figure 3).

The random perturbation procedure uses the continuous inverse method to generate a new
solution from the old one (see Figure 4). The random combination procedure generates an
offspring solution from the selected mother and father solutions (see Figure 5). The off‐
spring solution is generated from the combined distribution, where the combined distribu‐
tion is the weighted sum of the parent’s distributions. The two procedures are controlled by
the standard deviation, which is decreasing exponentially from generation to generation.

Ant Colony Optimization - Techniques and Applications114

In our algorithm an offspring will not necessarily be the member of the current population,
and a parent will not necessarily die after mating. The reason is straightforward, because
our algorithm uses very simple rule without explicit pheromone evaporation handling: If
the current design is better than the worst solution of the current population than the worst
one will be replaced by the better one.

31 2 P-1 P

()1 0,U

åå
==

P

i
i

i
i

1

2

1
FF /

åå
==

P

i
i

i
i

1

3

1
FF /

åå
==

P

i
i

i
i

1

1

1
FF /



  

åå
=

-

=

P

i
i

P

i
i

1

1

1
FF /

1

Figure 3. Random selection

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

p

p

iX iX

()g
i

old
i SX ,N

new
iX

()pp ,U

Figure 4. Random perturbation

In this work, without loss of generality, we only deal with the two fundamental cases when
the design variables are only element (element-group) cross-section areas. In the continuous

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

115

() 1S exp log
1

S gengen S
NGS

æ - öæ ö= * *ç ÷ç ÷-è øè ø
(10)

The parameter pair{ S̄ , S
_}, which controls the smooth transition from diversity to intensity,

can be kept “frozen” in the algorithm:

{ } { } , 1.0, 0.01S S = (11)

which means, that ANGEL is practically a “tuning-free” algorithm.

The monotonically decreasing standard deviation function for each continuous design varia‐
ble can be defined in the following way:

() () { } { }S , 1, 2, , , 1, 2, ,gen
ii iS gen X X gen NG i N= * - Î ÎK K (12)

In our approach, the case of the discrete design variables can be managed in a similar way.
The only difference is that we replace the value set with the equivalent index set and carry
out all the operations on the index set.

The main procedure of the proposed meta-heuristic method follows the repetition of these
two steps:

1. AN with L and

2. GE with L.

In other words, meta-heuristic ANGEL firstly generates an initial population, after that, in
an iterative process AN and GE search alternately and cooperatively on the current design
set. The initial population is a totally random set. The random perturbation and random
combination procedures which are based on the normal distribution, call therandom selec‐
tion function which uses the discrete inverse method, to select a “more or less good” design
(GE) or a set of "more or less good" design variable values from the current population. The
higher the fitness values of a design (a design variable value) the higher the chance is that it
will be selected by the function (see Figure 3).

The random perturbation procedure uses the continuous inverse method to generate a new
solution from the old one (see Figure 4). The random combination procedure generates an
offspring solution from the selected mother and father solutions (see Figure 5). The off‐
spring solution is generated from the combined distribution, where the combined distribu‐
tion is the weighted sum of the parent’s distributions. The two procedures are controlled by
the standard deviation, which is decreasing exponentially from generation to generation.

Ant Colony Optimization - Techniques and Applications114

In our algorithm an offspring will not necessarily be the member of the current population,
and a parent will not necessarily die after mating. The reason is straightforward, because
our algorithm uses very simple rule without explicit pheromone evaporation handling: If
the current design is better than the worst solution of the current population than the worst
one will be replaced by the better one.

31 2 P-1 P

()1 0,U

åå
==

P

i
i

i
i

1

2

1
FF /

åå
==

P

i
i

i
i

1

3

1
FF /

åå
==

P

i
i

i
i

1

1

1
FF /



  

åå
=

-

=

P

i
i

P

i
i

1

1

1
FF /

1

Figure 3. Random selection

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

p

p

iX iX

()g
i

old
i SX ,N

new
iX

()pp ,U

Figure 4. Random perturbation

In this work, without loss of generality, we only deal with the two fundamental cases when
the design variables are only element (element-group) cross-section areas. In the continuous

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

115

case a cross-section area may be any value from a given interval and in the discrete case a
cross-section area has to be taken from a discrete catalogue. Additionally, also without loss
of generality, it is assumed that we are interested only in the local and global stability inves‐
tigation without displacement constraints. We assume that the allowed maximal positive
(stretching) stress defined by a constant, and the allowed minimal negative (compressive)
stress is constrained by a local buckling function, which is a function of the material proper‐
ties, the element length, and the element cross-sectional area. The global stability investiga‐
tion is based on the load-eigenvalue curves. From the global stability point of view a truss
design is feasible, when during the loading process each load-eigenvalue curve remains in
the positive segments up to the end of the process.

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

()pp ,U

()g
i

mother
i S,X N

()g
i

father
i S,X N

child
iX

() ()g
i

father
i

fatherg
i

mother
i

mother , SX π , SXπ GG +

iXiX

p

p

fathermother

mother
motherπ

jj
j

+
= fathermother

father
fatherπ

jj
j

+
=

Figure 5. Random combination

In the pure continuous case (when only the cross-section range is fixed) the iterative lo‐
cal search procedure (L) alternates two approaches according to the current feasibility indi‐
cator value.

If the current design is feasible, namely:λ =1, then it solves the following linear program‐
ming problem to get a lighter but feasible design allowing only a limited weight decrement
in each iteration (see Lamberti and Pappalettere [11]):

()1, , ,..., maxi NW X X XD D D D ® (13)

() () { }
1

 , , 1, 2
N

j
jj i j

i i

G X
G X X G G j , ,M

X=

¶
é ù+ *D Î Îë û¶å K (14)

Ant Colony Optimization - Techniques and Applications116

{ }, , 1, 2, ,ii iX X X i Né ùD Î D D Îë û K (15)

0 W W£ D £ D (16)

If the current design is infeasible, namely:λ1, the local search procedure tries to get a less
infeasible solution allowing only a limited weight increment (decrement) in each iteration
(see Lamberti and Pappalettere [11]):

()i
1

G min
M

i
i

G
=

D + D ®å (17)

() () { }
1

 , , 1, 2
N

j
j jj i j j

i i

G X
G X X G G G G j , ,M

X=

¶
é ù+ *D Î -D + D Îë û¶å K (18)

{ }, , 1, 2, ,ii iX X X i Né ùD Î D D Îë û K (19)

,W W Wé ùD Î D Dë û (20)

In the pure discrete case (when the cross-sections are taken from a catalogue) we have two
possibilities to develop a local search procedure.

We can define a simple "thumb rule" used to improve the quality of the generated discrete
solutions. The starting base of the thumb rule is a discrete solution given by applying the
usual "rounding to the next catalogue value" rule. When the discrete solution is feasible (in‐
feasible) then, in a cyclically repairable process, we try to decrease the cross-sectional areas
step by step selecting always the "best" element (element group), where "best" means an ele‐
ment (element group) for which the element stress is minimal (maximal) in absolute value.

An improvement, namely a cross-sectional area decreasing (increasing) is accepted, when
the starting design feasibility level is not decreased by the current modification. The process
terminates, when no such an element exists. We have to emphasize that in the presented
path following approach the design feasibility is measured by the maximal load intensity
factor, and therefore, the designs satisfy the stress constraints up to the maximal load inten‐
sity factor computed by the applied path following method.

The other possibility would be a “locally exact” binary formulation.The proposed binary lin‐
ear (or quadratic) programming (BLP or BQP) approach exploits the fact, that using a "state-
of-the-art" solver the solution time of a local BLP (or BQP) problem is competitive with the
solution time of the "thumb rule" heuristic.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

117

case a cross-section area may be any value from a given interval and in the discrete case a
cross-section area has to be taken from a discrete catalogue. Additionally, also without loss
of generality, it is assumed that we are interested only in the local and global stability inves‐
tigation without displacement constraints. We assume that the allowed maximal positive
(stretching) stress defined by a constant, and the allowed minimal negative (compressive)
stress is constrained by a local buckling function, which is a function of the material proper‐
ties, the element length, and the element cross-sectional area. The global stability investiga‐
tion is based on the load-eigenvalue curves. From the global stability point of view a truss
design is feasible, when during the loading process each load-eigenvalue curve remains in
the positive segments up to the end of the process.

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

()pp ,U

()g
i

mother
i S,X N

()g
i

father
i S,X N

child
iX

() ()g
i

father
i

fatherg
i

mother
i

mother , SX π , SXπ GG +

iXiX

p

p

fathermother

mother
motherπ

jj
j

+
= fathermother

father
fatherπ

jj
j

+
=

Figure 5. Random combination

In the pure continuous case (when only the cross-section range is fixed) the iterative lo‐
cal search procedure (L) alternates two approaches according to the current feasibility indi‐
cator value.

If the current design is feasible, namely:λ =1, then it solves the following linear program‐
ming problem to get a lighter but feasible design allowing only a limited weight decrement
in each iteration (see Lamberti and Pappalettere [11]):

()1, , ,..., maxi NW X X XD D D D ® (13)

() () { }
1

 , , 1, 2
N

j
jj i j

i i

G X
G X X G G j , ,M

X=

¶
é ù+ *D Î Îë û¶å K (14)

Ant Colony Optimization - Techniques and Applications116

{ }, , 1, 2, ,ii iX X X i Né ùD Î D D Îë û K (15)

0 W W£ D £ D (16)

If the current design is infeasible, namely:λ1, the local search procedure tries to get a less
infeasible solution allowing only a limited weight increment (decrement) in each iteration
(see Lamberti and Pappalettere [11]):

()i
1

G min
M

i
i

G
=

D + D ®å (17)

() () { }
1

 , , 1, 2
N

j
j jj i j j

i i

G X
G X X G G G G j , ,M

X=

¶
é ù+ *D Î -D + D Îë û¶å K (18)

{ }, , 1, 2, ,ii iX X X i Né ùD Î D D Îë û K (19)

,W W Wé ùD Î D Dë û (20)

In the pure discrete case (when the cross-sections are taken from a catalogue) we have two
possibilities to develop a local search procedure.

We can define a simple "thumb rule" used to improve the quality of the generated discrete
solutions. The starting base of the thumb rule is a discrete solution given by applying the
usual "rounding to the next catalogue value" rule. When the discrete solution is feasible (in‐
feasible) then, in a cyclically repairable process, we try to decrease the cross-sectional areas
step by step selecting always the "best" element (element group), where "best" means an ele‐
ment (element group) for which the element stress is minimal (maximal) in absolute value.

An improvement, namely a cross-sectional area decreasing (increasing) is accepted, when
the starting design feasibility level is not decreased by the current modification. The process
terminates, when no such an element exists. We have to emphasize that in the presented
path following approach the design feasibility is measured by the maximal load intensity
factor, and therefore, the designs satisfy the stress constraints up to the maximal load inten‐
sity factor computed by the applied path following method.

The other possibility would be a “locally exact” binary formulation.The proposed binary lin‐
ear (or quadratic) programming (BLP or BQP) approach exploits the fact, that using a "state-
of-the-art" solver the solution time of a local BLP (or BQP) problem is competitive with the
solution time of the "thumb rule" heuristic.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

117

Naturally, a local BLP (BQP) formulation can give better results, as a pure heuristic ap‐
proach. Using a "dense" catalogue the problem can be managed as linear programming
problem, when the catalogue is "sparse", we have to use a quadratic formulation to describe
the possible stress changes accurately, in the function of the "local" catalogue values. The im‐
mediate predecessor (successor) of the current catalogue value defines the “local catalogue”,
for each element (element group), if such a value exists. According to the "local environ‐
ment", an element (element group) can be described by at least three binary variables.

Naturally, using the standard trick (special ordered set (SOS) constraint management) of the
operations research (OR), the formulation which has at least three binary variables, can be
replaced by an equivalent formulation which has only at least two binary variables. Let
g , g ∈ { 1, 2, …, G} the member-group index and c, c ∈ { 1, 2, …, C}the catalogue index,
where G is the number of elements (member-groups) and Cis the size of the discrete cata‐
logue of possible cross-sectional areas:{ C1, C2 …, CC}.

Let { Bg j
i | j ∈ J i}be the set of the binary variables needed to describe the possible movement

and Ag
i the cross-sectional area for element (member-group)g , g ∈ { 1, 2, …, G} in iteration

i, {i =1,2,…, MI }. The "local catalogue" and the constraints connected to the local binary varia‐
bles which describe the possible movements are presented in Figure 6-7. In iteration
i, { i =1,2,…, MI }the local environment is defined by the result of the previous iteration.

In the local model exact analytical derivatives were used. To generate the symbolic deriva‐
tives, optimized to speed, Wolfram Mathematica 8.0 was used. Naturally, a linearized mod‐
el can be replaced by a quadratic one, and the simplified assumption that the stress change
of member-group gcan be described by its cross-section change.

11
1 =-i

gB

11
C =-i

gB

11
k =-i

gB

1C 2C

kC 1+kC1-kC

CC1-CC







Ck <<1

Figure 6. Local binary variables

The local search algorithm, in an iterative process, minimizes the weight increment (maxi‐
mizes the weight decrement) needed to get a better (a lighter feasible or less unfeasible) sol‐
ution. The OR formulation follows the conception of the "thumb rule", the "at least as good"
quality requirement is managed by non-smoothed formulation, namely in the formulation
the maximal constraint violation is constrained.

Ant Colony Optimization - Techniques and Applications118

Naturally, the non-smooth max() function can be replaced by an equivalent smooth formula‐
tion, by omitting the function and introducing additional constraints. In other words, when
the starting base of an iteration is unfeasible (λ1), than the local search algorithm generates a
"mini-max" model, in which the maximal slack of the constraint set will be minimized ac‐
cording to the allowed maximal structural weight increase.

()

() ()

()
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

í

ì

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

+=
=+

=

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++÷

÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

++=
=++

=

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

+=
=+

=

--

-
--

--

-
-

++-

-
-

--

-
--

++--

+-
-

-

-
--

-

i
CgCCi

i
gi

g
i

Cg
i
g

i
g

i
CgC

i
CgC

i

i
Cg

i
Cg

i
Cg

i
kgkki

i
gi

g
i

kgkki

i
gi

g
i

kg
i
g

i
g

i
kgk

i
kgk

i
kgk

i

i
kg

i
kg

i
kg

i
kg

i
gi

i
gi

g
i
g

i
g

i
g

i
g

i
g

i

i
g

i
g

i
g

BCC
A
S

SBSS

BCBCA
BB

B

BCC
A
S

SBCC
A
S

SBSS

BCBCBCA
BBB

B

BCC
A
S

SBSS

BCBCA
BB

B

g

g

gg

g

g

g

1- 11

1
1

1

 1 1

 1
1

1 11

1
1

1- 11

1
1

1

1 1 1 1

1 1
1

2 121

1
1

1
1

2 21 1

2 1
1

1

1
1

1
1

1
1

 thenif

Figure 7. Local binary constraints

4. Numerical example

4.1. Sizing optimization with buckling constraints - 120-bar truss dome

In this paper, in order to demonstrate the proposed solution method a well-known space
dome structure is presented as a simple sizing problem, where two basic sub problems, con‐
tinuous and discrete optimization problems are distinguished.

Saka and Ülker [12], as a continuous optimization problem, have introduced first time the
120-bar example. The minimal weight design subjected to structural constraints imposed on
the member stress and nodal displacements based on linear and non-linear analysis. Subse‐
quently, Soh and Yang [14] have been analyzed the same structure to obtain the optimal de‐
sign related to sizing and configuration variables Kaveh and Talatahari [7] presented a
heuristic method where the particle swarm optimizer, ant colony strategy and harmony
search are hybridized.Therefore, several techniques have been incorporated to handle the
constraints. Similar to Lee and Geem [10], Kelesoglu and Ülker [9], only sizing variables are
considered to minimize the structural weight. According to the complexity of the concerned
problems, another method has been proposed by Kaveh and Talatahari [8], namely a hybrid
big bang–big brunch (HBB–BC) algorithm.The comparisons of numerical results using the
HBB–BC method with the results obtained by other heuristic approaches are performed to

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

119

Naturally, a local BLP (BQP) formulation can give better results, as a pure heuristic ap‐
proach. Using a "dense" catalogue the problem can be managed as linear programming
problem, when the catalogue is "sparse", we have to use a quadratic formulation to describe
the possible stress changes accurately, in the function of the "local" catalogue values. The im‐
mediate predecessor (successor) of the current catalogue value defines the “local catalogue”,
for each element (element group), if such a value exists. According to the "local environ‐
ment", an element (element group) can be described by at least three binary variables.

Naturally, using the standard trick (special ordered set (SOS) constraint management) of the
operations research (OR), the formulation which has at least three binary variables, can be
replaced by an equivalent formulation which has only at least two binary variables. Let
g , g ∈ { 1, 2, …, G} the member-group index and c, c ∈ { 1, 2, …, C}the catalogue index,
where G is the number of elements (member-groups) and Cis the size of the discrete cata‐
logue of possible cross-sectional areas:{ C1, C2 …, CC}.

Let { Bg j
i | j ∈ J i}be the set of the binary variables needed to describe the possible movement

and Ag
i the cross-sectional area for element (member-group)g , g ∈ { 1, 2, …, G} in iteration

i, {i =1,2,…, MI }. The "local catalogue" and the constraints connected to the local binary varia‐
bles which describe the possible movements are presented in Figure 6-7. In iteration
i, { i =1,2,…, MI }the local environment is defined by the result of the previous iteration.

In the local model exact analytical derivatives were used. To generate the symbolic deriva‐
tives, optimized to speed, Wolfram Mathematica 8.0 was used. Naturally, a linearized mod‐
el can be replaced by a quadratic one, and the simplified assumption that the stress change
of member-group gcan be described by its cross-section change.

11
1 =-i

gB

11
C =-i

gB

11
k =-i

gB

1C 2C

kC 1+kC1-kC

CC1-CC







Ck <<1

Figure 6. Local binary variables

The local search algorithm, in an iterative process, minimizes the weight increment (maxi‐
mizes the weight decrement) needed to get a better (a lighter feasible or less unfeasible) sol‐
ution. The OR formulation follows the conception of the "thumb rule", the "at least as good"
quality requirement is managed by non-smoothed formulation, namely in the formulation
the maximal constraint violation is constrained.

Ant Colony Optimization - Techniques and Applications118

Naturally, the non-smooth max() function can be replaced by an equivalent smooth formula‐
tion, by omitting the function and introducing additional constraints. In other words, when
the starting base of an iteration is unfeasible (λ1), than the local search algorithm generates a
"mini-max" model, in which the maximal slack of the constraint set will be minimized ac‐
cording to the allowed maximal structural weight increase.

()

() ()

()
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

í

ì

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

+=
=+

=

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++÷

÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

++=
=++

=

÷
÷

ø

ö

ç
ç

è

æ
-

¶

¶
++=

+=
=+

=

--

-
--

--

-
-

++-

-
-

--

-
--

++--

+-
-

-

-
--

-

i
CgCCi

i
gi

g
i

Cg
i
g

i
g

i
CgC

i
CgC

i

i
Cg

i
Cg

i
Cg

i
kgkki

i
gi

g
i

kgkki

i
gi

g
i

kg
i
g

i
g

i
kgk

i
kgk

i
kgk

i

i
kg

i
kg

i
kg

i
kg

i
gi

i
gi

g
i
g

i
g

i
g

i
g

i
g

i

i
g

i
g

i
g

BCC
A
S

SBSS

BCBCA
BB

B

BCC
A
S

SBCC
A
S

SBSS

BCBCBCA
BBB

B

BCC
A
S

SBSS

BCBCA
BB

B

g

g

gg

g

g

g

1- 11

1
1

1

 1 1

 1
1

1 11

1
1

1- 11

1
1

1

1 1 1 1

1 1
1

2 121

1
1

1
1

2 21 1

2 1
1

1

1
1

1
1

1
1

 thenif

Figure 7. Local binary constraints

4. Numerical example

4.1. Sizing optimization with buckling constraints - 120-bar truss dome

In this paper, in order to demonstrate the proposed solution method a well-known space
dome structure is presented as a simple sizing problem, where two basic sub problems, con‐
tinuous and discrete optimization problems are distinguished.

Saka and Ülker [12], as a continuous optimization problem, have introduced first time the
120-bar example. The minimal weight design subjected to structural constraints imposed on
the member stress and nodal displacements based on linear and non-linear analysis. Subse‐
quently, Soh and Yang [14] have been analyzed the same structure to obtain the optimal de‐
sign related to sizing and configuration variables Kaveh and Talatahari [7] presented a
heuristic method where the particle swarm optimizer, ant colony strategy and harmony
search are hybridized.Therefore, several techniques have been incorporated to handle the
constraints. Similar to Lee and Geem [10], Kelesoglu and Ülker [9], only sizing variables are
considered to minimize the structural weight. According to the complexity of the concerned
problems, another method has been proposed by Kaveh and Talatahari [8], namely a hybrid
big bang–big brunch (HBB–BC) algorithm.The comparisons of numerical results using the
HBB–BC method with the results obtained by other heuristic approaches are performed to

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

119

demonstrate the robustness of the present algorithm. With respect to the big bang–big
brunch (BB–BC) approach, HBB–BC has better solutions and standard deviations. In addi‐
tion, HBB–BC has low computational time and high convergence speed compared to BB–BC.
However, when the number of design variables increases the hybrid BB–BC shows better
performance. The effects of nonlinear behavior to the optimal results have been investigated
by Hadi and Alvani [19] and Lemonge and Barbosa [21].

The geometry and nodal coordinates are presented in Figure 8 and in Table 1. According to
the structural symmetry, truss members are grouped into seven member-groups (see in Ta‐
ble 2). The truss is subjected to the given applied external loads in Table 3. The truss mem‐
bers as design variables are grouped into seven group variables (Table 4).

1

2
3

4

5

6

7
8

9

10

11

12

13

14
15

16 17

18

19

20

21

22

2324

25
26

27

28
29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

Figure 8. The layout of the 120-bar shallow truss dome

Nodes X [m] Y [m] Z [m]

1 0. 0. 7.000

4 6.01108 3.4705 5.850

5 6.94100 0. 5.850

18 10.82532 6.2500 3.000

Ant Colony Optimization - Techniques and Applications120

Nodes X [m] Y [m] Z [m]

19 11.66266 3.1250 3.000

20 12.50000 0. 3.000

40 13.76114 7.9450 0.

41 15.89000 0. 0.

Table 1. The geometry of the 120-member truss dome

Node 1 2-13 14-37

Load [kN] 60 30 10

Table 2. The load condition of the 120-bar truss dome

Modulus of elasticity E =210000/ MPa

Material density ρ= 7850 / kg/m3

Stress constraints for tension σe
U = 140/ MPa

Stress constraints for compression σe
L = −140/ MPa

Table 3. Properties of the applied material

Groups Truss members

G 1 1-2 1-3 1-4 1-5 1-6 1-7

1-8 1-9 1-10 1-11 1-12 1-13

G 2 2-3 3-4 4-5 5-6 6-7 7-8

8-9 9-10 10-11 11-12 12-13 13-2

G 3 2-14 3-16 4-18 5-20 6-22 7-24

8-26 9-28 10-30 11-32 12-34 13-36

G4 2-15 3-17 4-19 5-21 6-23 7-25

3-15 4-17 5-19 6-21 7-23 8-25

8-27 9-29 10-31 11-33 12-35 13-37

9-27 10-29 11-31 12-33 13-35 2-37

G5 14-15 16-17 18-19 20-21 22-23 24-25

15-16 17-18 19-20 21-22 23-24 25-26

26-27 28-29 30-31 32-33 34-35 36-37

27-28 29-30 31-32 33-34 35-36 37-14

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

121

demonstrate the robustness of the present algorithm. With respect to the big bang–big
brunch (BB–BC) approach, HBB–BC has better solutions and standard deviations. In addi‐
tion, HBB–BC has low computational time and high convergence speed compared to BB–BC.
However, when the number of design variables increases the hybrid BB–BC shows better
performance. The effects of nonlinear behavior to the optimal results have been investigated
by Hadi and Alvani [19] and Lemonge and Barbosa [21].

The geometry and nodal coordinates are presented in Figure 8 and in Table 1. According to
the structural symmetry, truss members are grouped into seven member-groups (see in Ta‐
ble 2). The truss is subjected to the given applied external loads in Table 3. The truss mem‐
bers as design variables are grouped into seven group variables (Table 4).

1

2
3

4

5

6

7
8

9

10

11

12

13

14
15

16 17

18

19

20

21

22

2324

25
26

27

28
29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

Figure 8. The layout of the 120-bar shallow truss dome

Nodes X [m] Y [m] Z [m]

1 0. 0. 7.000

4 6.01108 3.4705 5.850

5 6.94100 0. 5.850

18 10.82532 6.2500 3.000

Ant Colony Optimization - Techniques and Applications120

Nodes X [m] Y [m] Z [m]

19 11.66266 3.1250 3.000

20 12.50000 0. 3.000

40 13.76114 7.9450 0.

41 15.89000 0. 0.

Table 1. The geometry of the 120-member truss dome

Node 1 2-13 14-37

Load [kN] 60 30 10

Table 2. The load condition of the 120-bar truss dome

Modulus of elasticity E =210000/ MPa

Material density ρ= 7850 / kg/m3

Stress constraints for tension σe
U = 140/ MPa

Stress constraints for compression σe
L = −140/ MPa

Table 3. Properties of the applied material

Groups Truss members

G 1 1-2 1-3 1-4 1-5 1-6 1-7

1-8 1-9 1-10 1-11 1-12 1-13

G 2 2-3 3-4 4-5 5-6 6-7 7-8

8-9 9-10 10-11 11-12 12-13 13-2

G 3 2-14 3-16 4-18 5-20 6-22 7-24

8-26 9-28 10-30 11-32 12-34 13-36

G4 2-15 3-17 4-19 5-21 6-23 7-25

3-15 4-17 5-19 6-21 7-23 8-25

8-27 9-29 10-31 11-33 12-35 13-37

9-27 10-29 11-31 12-33 13-35 2-37

G5 14-15 16-17 18-19 20-21 22-23 24-25

15-16 17-18 19-20 21-22 23-24 25-26

26-27 28-29 30-31 32-33 34-35 36-37

27-28 29-30 31-32 33-34 35-36 37-14

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

121

Groups Truss members

G 6 14-38 16-39 18-40 20-41 22-42 24-43

26-44 28-45 30-46 32-47 34-48 36-49

G7 15-38 17-39 19-40 21-41 23-42 25-43

15-39 17-40 19-41 21-42 23-43 25-44

27-44 29-45 31-46 33-47 35-48 37-49

27-45 29-46 31-47 33-48 35-49 37-38

Table 4. Groups of truss elements

Refer to the formerly presented papers (e.g. [16-18]), in this study, stainless steel tubular
cross-sections are considered as design variables.According to the thin-wall pipe structural
behavior, the following local stability constraints are proposed. The stress constraint for
against of Euler-buckling or peripheral shell-like buckling is given in terms of the thickness
ratio:

()
2

2

 0.5
4 L 1

E
e e

E Gp a as
a a
- +

= × ×
-

(21)

B
e KEs a= (22)

whereα =T / D is the ratio of the wall-thickness and diameter of the applied Ge group ele‐
ments.In the present study, since continuous and discrete design variables are considered as
well we applied tubular cross sections with given α =0.05 thickness ratio. Cross sectional
variables are changing from Gmin =5.0cm2 up to Gmax =50.0cm2. In this paper, only stress and
buckling constraints are considered.

The obtained results for continuous problem using linear and non-linear structural model
are compared are presented in Table 5 and in Table 6. Comparing with the results of contin‐
uous optimizations shows that GA based approach [19] gives a better minimum weight than
the optimality criteria approach [12]. It is observed that further reduction is possible in the
weight of the space truss considering the geometrically nonlinear analysis as compared to
linear one.

Worthy of note, that the optimal design obtained by the proposed hybrid ANGEL seems
much better than the results of previously presented compared methods. Remarkable in this
study - using the formula (9)- that the related fitness value is Φ= 1.928 i.e. very close to the
defined maximal fitness value. In the resulted optimal design only one buckling constraint is
active, namely in the member-group 6.

Ant Colony Optimization - Techniques and Applications122

In this paper for discrete optimization problem two types of catalogue values are distin‐
guished, a sparse (case 1) and a dense (case 2) with the following cross sections:

Case 1: {5.0; 10.0; 15.0; 20.0; 25.0;…; 50.0}

Case 2: {5.0; 7.5; 10.0; 12.5; 15.0; 17.5; 20.0; 22.5; 25.0;…; 50.0}

We have to note that the related fitness value is Φ= 1.889 (Case 1) and Φ = 1.922 (Case 2), i.e.
in case a sparse catalogue we obtained a bit worst fitness value than in case of dense cata‐
logue values, but the difference is natural and both adjacent to the continuous one Φ = 1.928.

Groups / cm2 Saka,Ulker* [12] Hadi, Alvani* [19] Proposed method

Linear Non-linear Non-linear Non-linear

G1 16.66 17.50 10.85 12.968

G2 44.89 45.56 38.70 8.282

G3 24.89 25.45 35.40 13.325

G4 9.66 8.44 5.23 7.964

G5 21.93 22.30 27.37 8.316

G6 16.59 15.96 15.30 7.776

G7 11.74 3.90 3.90 7.990

W / kg 8511 7587 7158.6 4650.659

Table 5. The best results of the continuous problem (*Note: section shape is not available)

Using a state-of-the-art callable BLP (BQP) solver, for example: CPLEX 12.0, the time re‐
quirement of the improved local search is compatible with the time requirement of the tradi‐
tional "thumb rule" like approach. However, the improved approach is more efficient,
because it is able to modify more than one cross-sectional area in one iteration.

In the presented computational test, ANGEL was run with the following parameters:

• the population size was 100,

• the number of generations was 10, and

• the maximal number of local search iterations was 10.

We note, that the maximal number of iterations does not necessarily mean that the number
of iterations always 10.

4.2. Sizing-shaping optimization with stability constraints -24-bar truss dome

This academic example has been analyzed by the author previously [17] to demonstrate the
difficulties of the stability investigation. The layout and the initial data are presented in Fig‐
ure 9 and Table 7-8. At the central node, the load is 0.5, while at nodes 2-7 it is 1.0 unit.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

123

Groups Truss members

G 6 14-38 16-39 18-40 20-41 22-42 24-43

26-44 28-45 30-46 32-47 34-48 36-49

G7 15-38 17-39 19-40 21-41 23-42 25-43

15-39 17-40 19-41 21-42 23-43 25-44

27-44 29-45 31-46 33-47 35-48 37-49

27-45 29-46 31-47 33-48 35-49 37-38

Table 4. Groups of truss elements

Refer to the formerly presented papers (e.g. [16-18]), in this study, stainless steel tubular
cross-sections are considered as design variables.According to the thin-wall pipe structural
behavior, the following local stability constraints are proposed. The stress constraint for
against of Euler-buckling or peripheral shell-like buckling is given in terms of the thickness
ratio:

()
2

2

 0.5
4 L 1

E
e e

E Gp a as
a a
- +

= × ×
-

(21)

B
e KEs a= (22)

whereα =T / D is the ratio of the wall-thickness and diameter of the applied Ge group ele‐
ments.In the present study, since continuous and discrete design variables are considered as
well we applied tubular cross sections with given α =0.05 thickness ratio. Cross sectional
variables are changing from Gmin =5.0cm2 up to Gmax =50.0cm2. In this paper, only stress and
buckling constraints are considered.

The obtained results for continuous problem using linear and non-linear structural model
are compared are presented in Table 5 and in Table 6. Comparing with the results of contin‐
uous optimizations shows that GA based approach [19] gives a better minimum weight than
the optimality criteria approach [12]. It is observed that further reduction is possible in the
weight of the space truss considering the geometrically nonlinear analysis as compared to
linear one.

Worthy of note, that the optimal design obtained by the proposed hybrid ANGEL seems
much better than the results of previously presented compared methods. Remarkable in this
study - using the formula (9)- that the related fitness value is Φ= 1.928 i.e. very close to the
defined maximal fitness value. In the resulted optimal design only one buckling constraint is
active, namely in the member-group 6.

Ant Colony Optimization - Techniques and Applications122

In this paper for discrete optimization problem two types of catalogue values are distin‐
guished, a sparse (case 1) and a dense (case 2) with the following cross sections:

Case 1: {5.0; 10.0; 15.0; 20.0; 25.0;…; 50.0}

Case 2: {5.0; 7.5; 10.0; 12.5; 15.0; 17.5; 20.0; 22.5; 25.0;…; 50.0}

We have to note that the related fitness value is Φ= 1.889 (Case 1) and Φ = 1.922 (Case 2), i.e.
in case a sparse catalogue we obtained a bit worst fitness value than in case of dense cata‐
logue values, but the difference is natural and both adjacent to the continuous one Φ = 1.928.

Groups / cm2 Saka,Ulker* [12] Hadi, Alvani* [19] Proposed method

Linear Non-linear Non-linear Non-linear

G1 16.66 17.50 10.85 12.968

G2 44.89 45.56 38.70 8.282

G3 24.89 25.45 35.40 13.325

G4 9.66 8.44 5.23 7.964

G5 21.93 22.30 27.37 8.316

G6 16.59 15.96 15.30 7.776

G7 11.74 3.90 3.90 7.990

W / kg 8511 7587 7158.6 4650.659

Table 5. The best results of the continuous problem (*Note: section shape is not available)

Using a state-of-the-art callable BLP (BQP) solver, for example: CPLEX 12.0, the time re‐
quirement of the improved local search is compatible with the time requirement of the tradi‐
tional "thumb rule" like approach. However, the improved approach is more efficient,
because it is able to modify more than one cross-sectional area in one iteration.

In the presented computational test, ANGEL was run with the following parameters:

• the population size was 100,

• the number of generations was 10, and

• the maximal number of local search iterations was 10.

We note, that the maximal number of iterations does not necessarily mean that the number
of iterations always 10.

4.2. Sizing-shaping optimization with stability constraints -24-bar truss dome

This academic example has been analyzed by the author previously [17] to demonstrate the
difficulties of the stability investigation. The layout and the initial data are presented in Fig‐
ure 9 and Table 7-8. At the central node, the load is 0.5, while at nodes 2-7 it is 1.0 unit.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

123

Groups / cm2 Hadi, Alvani* [19] Proposed method

(Case 1)

Proposed method

(Case 2)

Linear Non-linear Non-linear Non-linear

G1 15.00 12.30 10.0 10.0

G2 46.70 46.70 10.0 10.0

G3 27.00 27.00 15.0 12.5

G4 7.05 5.33 10.0 7.5

G5 27.60 24.70 5.0 5.0

G6 11.10 17.80 10.0 10.0

G7 1.82 1.53 10.0 7.5

W / kg 7264.6 7229.0 4979.681 4242.075

Table 6. The best results of the discrete problem(*Note: section shape is not available)The local search terminates
when, according to the given "play-field", in the current step no improvement can be reached without affecting the
maximal allowable weight increase or the maximal allowable constraint violation defined by the previous step.

Nodes X [cm] Y [cm] Z [cm]

1 0 0 8.216

2 12.50 21.65063509 6.2.16

3 25.00 0 6.216

8 0 50.00 0

9 43.330127019 25.00 0

Table 7. Initial coordinates of 24-bar shallow space truss

The equilibrium path that involves in this case four critical points has been determined in‐
side of the optimization process. First is a single bifurcation (λ1 =8.68), while the following
two are double bifurcation points (λ2 =10.26;λ3 =15.67). The fourth is a simple limit point
(λ4 =18.40).We have to note that only the fourth singular point is a simple limit point. With
the help of this simple example easy to confirm the hazardous of the theories and methods
which are able to tackle only snap-through phenomenon.

In this paper, a weight optimization is considered subjected to global stability constraints.
The cross-sections as design variables are involved into three groups (Figure 9). The load in‐
tensity factor is changing from zero to one.

Using the proposed hybrid metaheuristic method, where the number of generations is 10
and the population size is 100, two optimization problems are considered.

Case 1:

Ant Colony Optimization - Techniques and Applications124

In first case, a sizing optimization problem is solved for minimal volume optimization sub‐
jected to structural stability. The structure is loaded up to the maximal load intensity factor
while the smallest eigenvalue becomes zero. The obtained best solution for the grouped de‐
sign variables are the following:A1 =1.000;A2 =1.321;A1 =1.119. The optimal volume in this
case isVopt =773.127.

Case 2:

In the second case, a sizing-shaping optimization problem is presented. The three sizing var‐
iables are extended with three shift variables namely the vertical position of all free joints
(Zi; i =1, 2, ..., 7), and the horizontal position of the joints 2-7 (Rj; j =2, ..., 7). In this case, the
same proposed hybrid metaheuristic method has been applied, with the number of genera‐
tions 10 and the population size 100. The obtained best solution is the following:A1 =1.000;
A2 =1.378;A1 =1.084;Z1 =7.685;Z2−7 =6.121;R2−7 =24.665. The optimal volume is Vopt =765.699
and the lowest eigenvalue is zero for three digits in the best solution.

Design variables Ai∈ 1.00;2.00 (cm2); i∈ {1, 2, 3}

Load cases Nodes Z

1 1 −5.00 kN

2, 3, 4, 5, 6, 7 −10.00 kN

Material properties Modulus of elasticity E = 10000 kN / cm 2

Table 8. Initial data of 24-bar shallow space truss

1

45

7

7

10

11

12

13

8

9
2

3

1A

1A 1A

1A1A

1A

2A

2A2A

2A2A

2A

3A 3A

3A

3A
3A

3A

3A

3A

3A

3A

3A

3A

X

Y

Figure 9. The layout of the 24-bar truss dome

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

125

Groups / cm2 Hadi, Alvani* [19] Proposed method

(Case 1)

Proposed method

(Case 2)

Linear Non-linear Non-linear Non-linear

G1 15.00 12.30 10.0 10.0

G2 46.70 46.70 10.0 10.0

G3 27.00 27.00 15.0 12.5

G4 7.05 5.33 10.0 7.5

G5 27.60 24.70 5.0 5.0

G6 11.10 17.80 10.0 10.0

G7 1.82 1.53 10.0 7.5

W / kg 7264.6 7229.0 4979.681 4242.075

Table 6. The best results of the discrete problem(*Note: section shape is not available)The local search terminates
when, according to the given "play-field", in the current step no improvement can be reached without affecting the
maximal allowable weight increase or the maximal allowable constraint violation defined by the previous step.

Nodes X [cm] Y [cm] Z [cm]

1 0 0 8.216

2 12.50 21.65063509 6.2.16

3 25.00 0 6.216

8 0 50.00 0

9 43.330127019 25.00 0

Table 7. Initial coordinates of 24-bar shallow space truss

The equilibrium path that involves in this case four critical points has been determined in‐
side of the optimization process. First is a single bifurcation (λ1 =8.68), while the following
two are double bifurcation points (λ2 =10.26;λ3 =15.67). The fourth is a simple limit point
(λ4 =18.40).We have to note that only the fourth singular point is a simple limit point. With
the help of this simple example easy to confirm the hazardous of the theories and methods
which are able to tackle only snap-through phenomenon.

In this paper, a weight optimization is considered subjected to global stability constraints.
The cross-sections as design variables are involved into three groups (Figure 9). The load in‐
tensity factor is changing from zero to one.

Using the proposed hybrid metaheuristic method, where the number of generations is 10
and the population size is 100, two optimization problems are considered.

Case 1:

Ant Colony Optimization - Techniques and Applications124

In first case, a sizing optimization problem is solved for minimal volume optimization sub‐
jected to structural stability. The structure is loaded up to the maximal load intensity factor
while the smallest eigenvalue becomes zero. The obtained best solution for the grouped de‐
sign variables are the following:A1 =1.000;A2 =1.321;A1 =1.119. The optimal volume in this
case isVopt =773.127.

Case 2:

In the second case, a sizing-shaping optimization problem is presented. The three sizing var‐
iables are extended with three shift variables namely the vertical position of all free joints
(Zi; i =1, 2, ..., 7), and the horizontal position of the joints 2-7 (Rj; j =2, ..., 7). In this case, the
same proposed hybrid metaheuristic method has been applied, with the number of genera‐
tions 10 and the population size 100. The obtained best solution is the following:A1 =1.000;
A2 =1.378;A1 =1.084;Z1 =7.685;Z2−7 =6.121;R2−7 =24.665. The optimal volume is Vopt =765.699
and the lowest eigenvalue is zero for three digits in the best solution.

Design variables Ai∈ 1.00;2.00 (cm2); i∈ {1, 2, 3}

Load cases Nodes Z

1 1 −5.00 kN

2, 3, 4, 5, 6, 7 −10.00 kN

Material properties Modulus of elasticity E = 10000 kN / cm 2

Table 8. Initial data of 24-bar shallow space truss

1

45

7

7

10

11

12

13

8

9
2

3

1A

1A 1A

1A1A

1A

2A

2A2A

2A2A

2A

3A 3A

3A

3A
3A

3A

3A

3A

3A

3A

3A

3A

X

Y

Figure 9. The layout of the 24-bar truss dome

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

125

5. Conclusion

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might causes dif‐
ferent type of structural instability. According to the nonlinear behavior of the resulted
lightweight truss structures, a special treatment is required in order to tackle the “hidden”
global stability problems during the optimization process. Therefore, we have to replace the
traditional “design variables → response variables” like approach with a more time-con‐
suming "design variables → response functions" like approach, where the response func‐
tions describe the structural response history of the loading process up to the maximal load
intensity without constraint violation.

In this study, a higher order path-following method was embedded into a hybrid heuristic
optimization frame in order to tackle the global structural stability constraints within the
truss optimization. The proposed path-following method is based on the perturbation tech‐
nique of the stability theory and a non-linear modification of the classical linear homotopy
method.

In this chapter we presented a simple but very efficient hybrid metaheuristic for truss
weight minimization with continuous and discrete design variables, and local and global
stability constraints. The presented "supernatural" ANGEL method combines ant colony op‐
timization (AN), genetic algorithm (GE) and gradient-based local search (L) strategy. In the
algorithm, AN and GE search alternately and cooperatively in the design space. The power‐
ful L algorithm, which is based on the local linearization of the constraint set, is applied to
yield a more feasible or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and non-linear response curves show that
ANGEL may be more efficient and robust than the conventional gradient based determinis‐
tic or the traditional population based heuristic (metaheuristic) methods in solving explicit
(implicit) optimization problems. ANGEL produces highly competitive and from engineer‐
ing point of view safe and accurate results in significantly shorter run-times than the previ‐
ously described pure approaches. The benefit of synergy was demonstrated by standard
statistical tests. To the best of our knowledge, no such work has been done in the literature
for truss weight minimization with non-linear response curves so far.

Author details

Anikó Csébfalvi

Department of Structural Engineering, University of Pécs, Hungary

Ant Colony Optimization - Techniques and Applications126

References

[1] Csébfalvi, A. (1998). A nonlinear path-following method for computing the equilibri‐
um curve of structures. Annals of Operations Research, 15-23, 10.1023/A:1018944804979.

[2] Csébfalvi, A. (2007). Angel method for discrete optimization problems. Periodica Poly‐
technica Civil Eng, 51/2, 37-46, 10.3311/pp.ci.2007-2.06.

[3] Csébfalvi, A. (2007). Optimal design of frame structures with semi-rigid joints. Peri‐
odica Polytechnica Civil Eng, 51/1, 9-15, 10.3311/pp.ci.2007-1.02.

[4] Csébfalvi, A. (2009). A hybrid meta-heuristic method for continuous engineering op‐
timization. Periodica Polytechnica, Ser Civ Eng, 53(2), 93-100, 10.3311/pp.ci.2009-2.05.

[5] Csébfalvi, A. (2011). Multiple constrained sizing-shaping truss-optimization using
ANGEL method. Periodica Polytechnica Civil Engineering, 55/1, 81-6, 10.3311/pp.ci.
2011-1.10.

[6] Csébfalvi, A. (2012). Kolmogorov- Smirnov Test to Tackle Fair Comparison of Heu‐
ristic Approaches in Structural Optimization. Int. J. Optim. Civil Eng, 2(1), 135-150.

[7] Kaveh, A., & Talatahari, S. (2009). Particle swarm optimizer, ant colony strategy and
harmony search schemehybridized for optimization of truss structures. Computers
and Structures, 87, 267-283.

[8] Kaveh, A., & Talatahari, S. (2009). Size optimization of space trusses using Big Bang-
Big Crunch algorithm. Computers and Structures, 87, 1129-1140.

[9] Kelesoglu, O., & Ülker, M. (2005). Fuzzy optimization geometrical nonlinear space
truss design. Turkish Journal of Engineering &Environmental Sciences, 29, 321-329.

[10] Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the
harmony search algorithm. Computers and Structures, 82, 781-98.

[11] Lamberti, L., & Pappalettere, C. (2004). Improved sequential linear programming for‐
mulation for structural weight minimization. Comput. Methods in Appl. Mech. Engrg.,
193, 3493-3521.

[12] Saka, M. P., & Ülker, M. (1992). Optimum design of geometrically non-linear space
trusses. Computers and Structures, 42, 289-299.

[13] Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods in genetic algo‐
rithm. International Journal of Engineering Science and Technology (IJEST), 0975-5462,
3(5), May.

[14] Soh, C. K., & Yang, J. (1996). Fuzzy controlled genetic algorithm search for shape op‐
timization. Journal of Computing in Civil Engineering, ASCE, 10(2), 143-50.

[15] Tseng, L. Y., & Chen, S. C. (2006). A hybrid metaheuristic for the resource-constrain‐
ed project scheduling problem. European Journal of Operational Research, 175, 707-721.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

127

5. Conclusion

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might causes dif‐
ferent type of structural instability. According to the nonlinear behavior of the resulted
lightweight truss structures, a special treatment is required in order to tackle the “hidden”
global stability problems during the optimization process. Therefore, we have to replace the
traditional “design variables → response variables” like approach with a more time-con‐
suming "design variables → response functions" like approach, where the response func‐
tions describe the structural response history of the loading process up to the maximal load
intensity without constraint violation.

In this study, a higher order path-following method was embedded into a hybrid heuristic
optimization frame in order to tackle the global structural stability constraints within the
truss optimization. The proposed path-following method is based on the perturbation tech‐
nique of the stability theory and a non-linear modification of the classical linear homotopy
method.

In this chapter we presented a simple but very efficient hybrid metaheuristic for truss
weight minimization with continuous and discrete design variables, and local and global
stability constraints. The presented "supernatural" ANGEL method combines ant colony op‐
timization (AN), genetic algorithm (GE) and gradient-based local search (L) strategy. In the
algorithm, AN and GE search alternately and cooperatively in the design space. The power‐
ful L algorithm, which is based on the local linearization of the constraint set, is applied to
yield a more feasible or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and non-linear response curves show that
ANGEL may be more efficient and robust than the conventional gradient based determinis‐
tic or the traditional population based heuristic (metaheuristic) methods in solving explicit
(implicit) optimization problems. ANGEL produces highly competitive and from engineer‐
ing point of view safe and accurate results in significantly shorter run-times than the previ‐
ously described pure approaches. The benefit of synergy was demonstrated by standard
statistical tests. To the best of our knowledge, no such work has been done in the literature
for truss weight minimization with non-linear response curves so far.

Author details

Anikó Csébfalvi

Department of Structural Engineering, University of Pécs, Hungary

Ant Colony Optimization - Techniques and Applications126

References

[1] Csébfalvi, A. (1998). A nonlinear path-following method for computing the equilibri‐
um curve of structures. Annals of Operations Research, 15-23, 10.1023/A:1018944804979.

[2] Csébfalvi, A. (2007). Angel method for discrete optimization problems. Periodica Poly‐
technica Civil Eng, 51/2, 37-46, 10.3311/pp.ci.2007-2.06.

[3] Csébfalvi, A. (2007). Optimal design of frame structures with semi-rigid joints. Peri‐
odica Polytechnica Civil Eng, 51/1, 9-15, 10.3311/pp.ci.2007-1.02.

[4] Csébfalvi, A. (2009). A hybrid meta-heuristic method for continuous engineering op‐
timization. Periodica Polytechnica, Ser Civ Eng, 53(2), 93-100, 10.3311/pp.ci.2009-2.05.

[5] Csébfalvi, A. (2011). Multiple constrained sizing-shaping truss-optimization using
ANGEL method. Periodica Polytechnica Civil Engineering, 55/1, 81-6, 10.3311/pp.ci.
2011-1.10.

[6] Csébfalvi, A. (2012). Kolmogorov- Smirnov Test to Tackle Fair Comparison of Heu‐
ristic Approaches in Structural Optimization. Int. J. Optim. Civil Eng, 2(1), 135-150.

[7] Kaveh, A., & Talatahari, S. (2009). Particle swarm optimizer, ant colony strategy and
harmony search schemehybridized for optimization of truss structures. Computers
and Structures, 87, 267-283.

[8] Kaveh, A., & Talatahari, S. (2009). Size optimization of space trusses using Big Bang-
Big Crunch algorithm. Computers and Structures, 87, 1129-1140.

[9] Kelesoglu, O., & Ülker, M. (2005). Fuzzy optimization geometrical nonlinear space
truss design. Turkish Journal of Engineering &Environmental Sciences, 29, 321-329.

[10] Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the
harmony search algorithm. Computers and Structures, 82, 781-98.

[11] Lamberti, L., & Pappalettere, C. (2004). Improved sequential linear programming for‐
mulation for structural weight minimization. Comput. Methods in Appl. Mech. Engrg.,
193, 3493-3521.

[12] Saka, M. P., & Ülker, M. (1992). Optimum design of geometrically non-linear space
trusses. Computers and Structures, 42, 289-299.

[13] Sivaraj, R., & Ravichandran, T. (2011). A review of selection methods in genetic algo‐
rithm. International Journal of Engineering Science and Technology (IJEST), 0975-5462,
3(5), May.

[14] Soh, C. K., & Yang, J. (1996). Fuzzy controlled genetic algorithm search for shape op‐
timization. Journal of Computing in Civil Engineering, ASCE, 10(2), 143-50.

[15] Tseng, L. Y., & Chen, S. C. (2006). A hybrid metaheuristic for the resource-constrain‐
ed project scheduling problem. European Journal of Operational Research, 175, 707-721.

ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
http://dx.doi.org/10.5772/52188

127

[16] Csébfalvi, A. (2003). Optimal design of space structures with stability constraints.
Bontempi F (ed) System-Based Vision for Strategic and Creative Design, Vols 1-3: 2nd Inter‐
national Conference on Structural and Construction Engineering, September 23-26, Rome,
Italy, Leiden:Balkema Publishers, 493-497, 9-05809-599-1.

[17] Csébfalvi, A. (2010). A Higher-Order Path-Following Method for Stability-Constrain‐
ed Optimization of Geometrically Nonlinear Shallow Trusses. O Allix, P Wriggers
(ed) ECCM 2010, IV European Conference on Computational Mechanics, Palais des
Congrès, Paris, France, May 16-21,2010: European Committee on Computational Sol‐
ids, 2010.05.16-2010.05.21. , 1-7.

[18] Csébfalvi, A. An Improved ANGEL Algorithm for the Optimal Design of Shallow
Truss Structures with Discrete Size and Continuous Shape Variables and Stability
Constraints. Erik Lund (ed) 9th World Congress on Structural and Multidisciplinary Opti‐
mization: WCSMO-9. Shizuoka, Japan, Shizuoka:paper ID: 100_1, 1-8.

[19] Hadi, M. N. S., & Alvani, K. S. (2003). Discrete Optimum Design of Geometrically
Non-Linear Trusses using Genetic Algorithms, Seventh International Conference on
The Application of Artificial Intelligence toCivil and Structural Engineering. B.H.V.
Topping (Ed.), Civil-Comp Press, Stirling, Scotland, paper 37.

[20] Hanahara, K., & Tada, Y. Global Buckling Has to be Taken into Account for Optimal
Design of Large-Scale Truss Structure. Erik Lund (ed) 9th World Congress on Structural
and Multidisciplinary Optimization: WCSMO-9. Shizuoka, Japan, Shizuoka:paper ID:
142_1, 1-10.

[21] Lemonge, A. C. C., Barbosa, H. J. C., Fonseca, L. G., & Coutinho, A. L. G. A. (2010). A
genetic algorithm for topology optimization of dome structures. Helder C. Rodrigues
(ed)2nd International Conference on Engineering Optimization, September 6-9, Lisbon, Por‐
tugal, paper ID: 01284, 1-15.

Ant Colony Optimization - Techniques and Applications128

Chapter 6

Scheduling in Manufacturing Systems – Ant Colony
Approach

Mieczysław Drabowski and Edward Wantuch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51487

1. Introduction

Scheduling problems, also in manufacturing systems [4], are described by following param‐
eters: the processing – computing – environments comprising processor (machines) set, oth‐
er resources comprising transportations and executions devices, processes (tasks) set and
optimality criterion. We assume that processor set consists of m elements. Two classes of
processors can be distinguished: dedicated (specialized) processors and parallel processors.

In production systems machines are regarded as dedicated rather than as parallel. In such a
case we distinguish three types of dedicated processor systems: flow-shop, open-shop and
job-shop. In the flow-shop all tasks have the same number of operations which are per‐
formed sequentially and require the same sets of processors. In the open-shop the order
among the operations is immaterial. For the job-shop, the sequence of operations and the
sets of required processors are defined for each process separately.

In the case of parallel processors each processor can execute any task. Hence, a task requires
some number of arbitrary processors. As in deterministic scheduling theory [12] parallel
processors are divided into three classes: identical processors – provided that all tasks are
executed on all processors with that same productivity, uniform processors – if the produc‐
tivity depends on the processor and on the task, and unrelated processors – for which execu‐
tion speed depends on the processor and on the task. In each of the above cases productivity
of the processor can be determined.

Apart from the processors the can be also a set of additional resources, each available in
m i units.

The second parameter of the scheduling problem is the tasks system. The tasks correspond
to the applications for manufactured goods. We assume that the set of tasks consists of n

© 2013 Drabowski and Wantuch; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Drabowski and Wantuch; licensee InTech. This is a paper distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

[16] Csébfalvi, A. (2003). Optimal design of space structures with stability constraints.
Bontempi F (ed) System-Based Vision for Strategic and Creative Design, Vols 1-3: 2nd Inter‐
national Conference on Structural and Construction Engineering, September 23-26, Rome,
Italy, Leiden:Balkema Publishers, 493-497, 9-05809-599-1.

[17] Csébfalvi, A. (2010). A Higher-Order Path-Following Method for Stability-Constrain‐
ed Optimization of Geometrically Nonlinear Shallow Trusses. O Allix, P Wriggers
(ed) ECCM 2010, IV European Conference on Computational Mechanics, Palais des
Congrès, Paris, France, May 16-21,2010: European Committee on Computational Sol‐
ids, 2010.05.16-2010.05.21. , 1-7.

[18] Csébfalvi, A. An Improved ANGEL Algorithm for the Optimal Design of Shallow
Truss Structures with Discrete Size and Continuous Shape Variables and Stability
Constraints. Erik Lund (ed) 9th World Congress on Structural and Multidisciplinary Opti‐
mization: WCSMO-9. Shizuoka, Japan, Shizuoka:paper ID: 100_1, 1-8.

[19] Hadi, M. N. S., & Alvani, K. S. (2003). Discrete Optimum Design of Geometrically
Non-Linear Trusses using Genetic Algorithms, Seventh International Conference on
The Application of Artificial Intelligence toCivil and Structural Engineering. B.H.V.
Topping (Ed.), Civil-Comp Press, Stirling, Scotland, paper 37.

[20] Hanahara, K., & Tada, Y. Global Buckling Has to be Taken into Account for Optimal
Design of Large-Scale Truss Structure. Erik Lund (ed) 9th World Congress on Structural
and Multidisciplinary Optimization: WCSMO-9. Shizuoka, Japan, Shizuoka:paper ID:
142_1, 1-10.

[21] Lemonge, A. C. C., Barbosa, H. J. C., Fonseca, L. G., & Coutinho, A. L. G. A. (2010). A
genetic algorithm for topology optimization of dome structures. Helder C. Rodrigues
(ed)2nd International Conference on Engineering Optimization, September 6-9, Lisbon, Por‐
tugal, paper ID: 01284, 1-15.

Ant Colony Optimization - Techniques and Applications128

Chapter 6

Scheduling in Manufacturing Systems – Ant Colony
Approach

Mieczysław Drabowski and Edward Wantuch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51487

1. Introduction

Scheduling problems, also in manufacturing systems [4], are described by following param‐
eters: the processing – computing – environments comprising processor (machines) set, oth‐
er resources comprising transportations and executions devices, processes (tasks) set and
optimality criterion. We assume that processor set consists of m elements. Two classes of
processors can be distinguished: dedicated (specialized) processors and parallel processors.

In production systems machines are regarded as dedicated rather than as parallel. In such a
case we distinguish three types of dedicated processor systems: flow-shop, open-shop and
job-shop. In the flow-shop all tasks have the same number of operations which are per‐
formed sequentially and require the same sets of processors. In the open-shop the order
among the operations is immaterial. For the job-shop, the sequence of operations and the
sets of required processors are defined for each process separately.

In the case of parallel processors each processor can execute any task. Hence, a task requires
some number of arbitrary processors. As in deterministic scheduling theory [12] parallel
processors are divided into three classes: identical processors – provided that all tasks are
executed on all processors with that same productivity, uniform processors – if the produc‐
tivity depends on the processor and on the task, and unrelated processors – for which execu‐
tion speed depends on the processor and on the task. In each of the above cases productivity
of the processor can be determined.

Apart from the processors the can be also a set of additional resources, each available in
m i units.

The second parameter of the scheduling problem is the tasks system. The tasks correspond
to the applications for manufactured goods. We assume that the set of tasks consists of n

© 2013 Drabowski and Wantuch; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Drabowski and Wantuch; licensee InTech. This is a paper distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

tasks. For the whole tasks system it is possible to determine such feature as preemptability
(or nonpreemptability) and existence (or nonexistence) of precedence constraints.

Precedence constraints are represented as directed acyclic graphs (DAGs). Each task sepa‐
rately is described by a number of parameters. We enumerate tem in the following:

• Number of operations,

• Execution time,

• Ready time,

• Deadline,

• Resources requirements,

• Weight.

The optimality criteria constituting the third element of the scheduling problem are:

• Schedule length,

• Maximum lateness,

• Mean flow time,

• Mean tardiness.

Due to the fact that scheduling problems and their optimizations are general NP-com‐
plete [10,25] we suggest meta-heuristic approach: Ant Colony Optimization and its com‐
parison with neural method and with polynomial algorithms for certain exemplary problems
of task scheduling.

If a heuristic algorithm (such as ACO) finds an optimal solution to polynomial problems, it
is probable that solutions found for NP-complete problems will also be optimal or least ap‐
proximated to optimal. ACO algorithm was tested with known polynomial algorithms and
all of them achieved optimal solutions for those problems.

The comparisons utilized such polynomial algorithms as [3,5,12]:

• Coffman-Graham Algorithm,

• Hu Algorithm,

• Baer Algorithm,

For non-polynomial problems of tasks scheduling ACO algorithm was tested with list algo‐
rithms [12] (HLFET, HLFNET, SCFET, SCFNET), with PDF/HIS [18] for STG tasks and neu‐
ral approach [22].

Ant Colony Optimization - Techniques and Applications130

2. Adaptation of ACO to solve the problems of scheduling

The Ant Colony Optimization (ACO) algorithm [2] is a heuristics using the idea of agents
(here: ants) imitating their real behavior. Basing on specific information (distance, amount of
pheromone on the paths, etc.) ants evaluate the quality of paths and choose between them
with some random probability (the better path quality, the higher probability it represents).
Having walked the whole path from the source to destination, ants learn from each other by
leaving a layer of pheromone on the path. Its amount depends on the quality of solution
chosen by agent: the better solution, the bigger amount of pheromone is being left. The
pheromone is then “vapouring” to enable the change of path chosen by ants and let them
ignore the worse (more distant from targets) paths, which they were walking earlier.

The result of such algorithm functioning is not only finding the solution. Very often it is the
trace, which led us to this solution. It lets us analyze not only a single solution, but also per‐
mutations generating different solutions, but for our problems basing on the same division
(i.e. tasks are scheduled in different order, although they are still allocated to the same pro‐
cessors). This kind of approach is used for solving the problems of synthesis, where not only
the division of tasks is important, but also their sequence.

To adapt the ACO algorithm [24] to scheduling problems, the following parameters have
been defined:

• Number of agents (ants) in the colony;

• Vapouring factor of pheromone (from the range (0; 1));

The process of choosing these parameters is important and should consider that:

• For too big number of agents, the individual cycle of algorithm can last quite long, and
the values saved in the table (“levels of pheromone”) as a result of addition will deter‐
mine relatively weak solutions.

• On the other hand, when the number of agents is too small, most of paths will not be cov‐
ered and as a result, the best solution can long be uncovered.

The situation is similar for the vapouring factor:

• Too small value will cause that ants will quickly “forget” good solutions and as a result it
can quickly come to so called stagnation (the algorithm will stop at one solution, which
doesn’t have to be the best one).

• Too big value of this factor will make ants don’t stop analyze “weak” solutions; further‐
more, the new solutions may not be pushed, if time, which has passed since the last solu‐
tion found will be long enough (it is the values of pheromone saved in the table will be
too big).

The ACO algorithm defines two more parameters, which let you balance between:

• α – the amount of pheromone on the path;

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

131

tasks. For the whole tasks system it is possible to determine such feature as preemptability
(or nonpreemptability) and existence (or nonexistence) of precedence constraints.

Precedence constraints are represented as directed acyclic graphs (DAGs). Each task sepa‐
rately is described by a number of parameters. We enumerate tem in the following:

• Number of operations,

• Execution time,

• Ready time,

• Deadline,

• Resources requirements,

• Weight.

The optimality criteria constituting the third element of the scheduling problem are:

• Schedule length,

• Maximum lateness,

• Mean flow time,

• Mean tardiness.

Due to the fact that scheduling problems and their optimizations are general NP-com‐
plete [10,25] we suggest meta-heuristic approach: Ant Colony Optimization and its com‐
parison with neural method and with polynomial algorithms for certain exemplary problems
of task scheduling.

If a heuristic algorithm (such as ACO) finds an optimal solution to polynomial problems, it
is probable that solutions found for NP-complete problems will also be optimal or least ap‐
proximated to optimal. ACO algorithm was tested with known polynomial algorithms and
all of them achieved optimal solutions for those problems.

The comparisons utilized such polynomial algorithms as [3,5,12]:

• Coffman-Graham Algorithm,

• Hu Algorithm,

• Baer Algorithm,

For non-polynomial problems of tasks scheduling ACO algorithm was tested with list algo‐
rithms [12] (HLFET, HLFNET, SCFET, SCFNET), with PDF/HIS [18] for STG tasks and neu‐
ral approach [22].

Ant Colony Optimization - Techniques and Applications130

2. Adaptation of ACO to solve the problems of scheduling

The Ant Colony Optimization (ACO) algorithm [2] is a heuristics using the idea of agents
(here: ants) imitating their real behavior. Basing on specific information (distance, amount of
pheromone on the paths, etc.) ants evaluate the quality of paths and choose between them
with some random probability (the better path quality, the higher probability it represents).
Having walked the whole path from the source to destination, ants learn from each other by
leaving a layer of pheromone on the path. Its amount depends on the quality of solution
chosen by agent: the better solution, the bigger amount of pheromone is being left. The
pheromone is then “vapouring” to enable the change of path chosen by ants and let them
ignore the worse (more distant from targets) paths, which they were walking earlier.

The result of such algorithm functioning is not only finding the solution. Very often it is the
trace, which led us to this solution. It lets us analyze not only a single solution, but also per‐
mutations generating different solutions, but for our problems basing on the same division
(i.e. tasks are scheduled in different order, although they are still allocated to the same pro‐
cessors). This kind of approach is used for solving the problems of synthesis, where not only
the division of tasks is important, but also their sequence.

To adapt the ACO algorithm [24] to scheduling problems, the following parameters have
been defined:

• Number of agents (ants) in the colony;

• Vapouring factor of pheromone (from the range (0; 1));

The process of choosing these parameters is important and should consider that:

• For too big number of agents, the individual cycle of algorithm can last quite long, and
the values saved in the table (“levels of pheromone”) as a result of addition will deter‐
mine relatively weak solutions.

• On the other hand, when the number of agents is too small, most of paths will not be cov‐
ered and as a result, the best solution can long be uncovered.

The situation is similar for the vapouring factor:

• Too small value will cause that ants will quickly “forget” good solutions and as a result it
can quickly come to so called stagnation (the algorithm will stop at one solution, which
doesn’t have to be the best one).

• Too big value of this factor will make ants don’t stop analyze “weak” solutions; further‐
more, the new solutions may not be pushed, if time, which has passed since the last solu‐
tion found will be long enough (it is the values of pheromone saved in the table will be
too big).

The ACO algorithm defines two more parameters, which let you balance between:

• α – the amount of pheromone on the path;

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

131

• β – “quality” of the next step;

These parameters are chosen for specific task. This way, for parameters:

• α > β there is bigger influence on the choice of path, which is more often exploited,

• α < β there is bigger influence on the choice of path, which offers better solution,

• α = β there is balanced dependency between quality of the path and degree of its exploita‐
tion,

• α = 0 there is a heuristics based only on the quality of passage between consecutive points
(ignorance of the level of pheromone on the path),

• β = 0 there is a heuristics based only on the amount of pheromone (it is the factor of path
attendance),

• α = β = 0 we’ll get the algorithm making division evenly and independently of the amount
of pheromone or the quality of solution.

Having given the set of neighborhood N of the given point i, amount of pheromone on the
path τ and the quality of passage from point i to point j as an element of the table η you can
present the probability of passage from point i to j as [6,7]:

Formula 1. Evaluation of the quality of the next step in the ACO algorithm

In the approach presented here, the ACO algorithm uses agents to find three pieces of
information:

• the best / the most beneficial division of tasks between processors,

• the best sequence of tasks,

• searching for the best possible solution for the given distribution.

Agents (ants) are searching for the solutions which are the collection resulting from the first
two targets (they give the unique solution as a result). After scheduling, agents fill in two
tables:

• two-dimensional table representing allocation of task to the given processor,

• one-dimensional table representing the sequence of running the tasks.

Ant Colony Optimization - Techniques and Applications132

The process of agent involves:

1. collecting information (from the tables of allocation) concerning allocation of tasks to re‐
sources and running the tasks;

2. drawing the next available task with the probability specified in the table of task run‐
ning sequence;

3. drawing resources (processor) with the probability specified in the table of allocation
the tasks to resources;

4. is it the last task?

To evaluate the quality of allocation the task to processor, the following method is being
used:

1. evaluation of current (incomplete) scheduling;

2. allocation of task to the next of available resources;

3. evaluation of the sequence obtained;

4. release the task;

5. was it the last of available resources?

The calculative complexity of single agent is polynomial and depends on the number of
tasks, resources and times of tasks beginning.

Idea of algorithm:

Algorithm:

1. Construct G – structure of tasks non allocation and S – structure of tasks, which may be
allocation in next step (for ex ample: begin: G = {Z1, Z2,…, Z7} and S = {Z1, Z2, Z3}); up‐
date range of pheromone and consideration of vapouring factor;

2. With S select of tasks with the most strong of trace;

3. Allocate available of task as soon as possible and in accordance with precedence con‐
straints;

4. Remove selected of task with G and S and to add to list of tasks in memory of ant;

5. Update range of pheromone and remain of trace;

6. If G = Ø END of algorithm;

7. Go to 1;

Example:

Two identical processors, digraph of seven tasks Z i (t i), where t i = time execution.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

133

• β – “quality” of the next step;

These parameters are chosen for specific task. This way, for parameters:

• α > β there is bigger influence on the choice of path, which is more often exploited,

• α < β there is bigger influence on the choice of path, which offers better solution,

• α = β there is balanced dependency between quality of the path and degree of its exploita‐
tion,

• α = 0 there is a heuristics based only on the quality of passage between consecutive points
(ignorance of the level of pheromone on the path),

• β = 0 there is a heuristics based only on the amount of pheromone (it is the factor of path
attendance),

• α = β = 0 we’ll get the algorithm making division evenly and independently of the amount
of pheromone or the quality of solution.

Having given the set of neighborhood N of the given point i, amount of pheromone on the
path τ and the quality of passage from point i to point j as an element of the table η you can
present the probability of passage from point i to j as [6,7]:

Formula 1. Evaluation of the quality of the next step in the ACO algorithm

In the approach presented here, the ACO algorithm uses agents to find three pieces of
information:

• the best / the most beneficial division of tasks between processors,

• the best sequence of tasks,

• searching for the best possible solution for the given distribution.

Agents (ants) are searching for the solutions which are the collection resulting from the first
two targets (they give the unique solution as a result). After scheduling, agents fill in two
tables:

• two-dimensional table representing allocation of task to the given processor,

• one-dimensional table representing the sequence of running the tasks.

Ant Colony Optimization - Techniques and Applications132

The process of agent involves:

1. collecting information (from the tables of allocation) concerning allocation of tasks to re‐
sources and running the tasks;

2. drawing the next available task with the probability specified in the table of task run‐
ning sequence;

3. drawing resources (processor) with the probability specified in the table of allocation
the tasks to resources;

4. is it the last task?

To evaluate the quality of allocation the task to processor, the following method is being
used:

1. evaluation of current (incomplete) scheduling;

2. allocation of task to the next of available resources;

3. evaluation of the sequence obtained;

4. release the task;

5. was it the last of available resources?

The calculative complexity of single agent is polynomial and depends on the number of
tasks, resources and times of tasks beginning.

Idea of algorithm:

Algorithm:

1. Construct G – structure of tasks non allocation and S – structure of tasks, which may be
allocation in next step (for ex ample: begin: G = {Z1, Z2,…, Z7} and S = {Z1, Z2, Z3}); up‐
date range of pheromone and consideration of vapouring factor;

2. With S select of tasks with the most strong of trace;

3. Allocate available of task as soon as possible and in accordance with precedence con‐
straints;

4. Remove selected of task with G and S and to add to list of tasks in memory of ant;

5. Update range of pheromone and remain of trace;

6. If G = Ø END of algorithm;

7. Go to 1;

Example:

Two identical processors, digraph of seven tasks Z i (t i), where t i = time execution.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

133

Parameters of ants’ colony have been selected through experiments. Algorithm tuning is to
select possibly best parameter values. This process demands many experiments which are
conducted for different combinations of parameter values. For each combination of variable
values, computation process has been repeated many times, and then an average result has
been calculated. The same graphs type of STG, like at previous algorithms, have been ap‐
plied [18,20].

Selected algorithm parameters:

• a – number of ants; for number of tasks n < 50, a = 75 and for n>= 50, a = 1,5 x n

• γ – the pheromone evaporation coefficient = 0,08.

3. Adaptation of neural method to solve the problems of scheduling

3.1. Neural network model

The starting point for defining the neural network model for solving the problems of task
scheduling and resource allocation are the assumptions for the constraint satisfaction prob‐
lem (CSP) [36,37]. CSP is the optimization problem which contains a certain set of varia‐
bles, sets of their possible values and constraints forced on the values of these variables
[14,15]. On the basis of this problem assumption a network model of the following fea‐
tures is suggested:

• A neural network consists of components; each of them corresponds to another variable.

Ant Colony Optimization - Techniques and Applications134

• Each component contains such number of neurons which equals the number of possible
values of each variable.

• Assigning a specified value to a variable is the process of switching on a relevant neuron
(neurons) and switching off the remaining ones in the component corresponding to this
variable.

• Switching on a neuron means assigning the value “1” to its output.

• Switching off a neuron means assigning the “0” to its output.

• Constraints to the network are introduced by adding a negative weight connection be‐
tween neurons (‘-1’), symbolizing the variable values that cannot occur simultaneously.

• In the network there are additional neurons “the ones” that are switched on.

Each neuron has its own table of connections and each connection contains its weight and
the indicator for the connected neuron. A characteristic feature of the network is the diversi‐
ty of connections between neurons, but these never applied to all neurons [22,23]. It is a con‐
sequence of the fact that connections between neurons exist only when some constraints are
imposed. The constraints existing in the discussed network model may be of the following
types: resources, time, order.

The method of constraints implementation shall be discussed upon examples [22].

Example 1:

Such net (Fig. 1.) blocks solution, in which Z1 = 1 as well as Z2 = 2 or Z3 = 3 as well as Z4 = 2.

Example 2:

Let us have two operations with unit execution times. The operation Z1 arrives at the system
in time t = 1 and it is to be executed before the expiry of time t = 4. The operation Z2 arrives
in time t = 1 and may be executed after the completion of operation Z1. A fragment of the net
for his case including all the connections is shown by Fig. 2.

Neuron „one” (‘1’) – a special neuron switched on permanently – is responsible for time con‐
straints. Introducing connections between such neuron and the relevant network neurons
excludes a possibility of switching them on when searching for the solution. Task Z 1 cannot
be scheduled in moment 0 and moment 4, which corresponds to the assumption that this
task arrives at the system at moment 1 and must be performed before moment 4. Analogical
process applies to operation Z 2. The sequence constraints are executed by the connections
between the network neurons. The figure shows (with dotted line) all the connections mak‐
ing the performance of task Z 2 before task Z 1 impossible.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

135

Parameters of ants’ colony have been selected through experiments. Algorithm tuning is to
select possibly best parameter values. This process demands many experiments which are
conducted for different combinations of parameter values. For each combination of variable
values, computation process has been repeated many times, and then an average result has
been calculated. The same graphs type of STG, like at previous algorithms, have been ap‐
plied [18,20].

Selected algorithm parameters:

• a – number of ants; for number of tasks n < 50, a = 75 and for n>= 50, a = 1,5 x n

• γ – the pheromone evaporation coefficient = 0,08.

3. Adaptation of neural method to solve the problems of scheduling

3.1. Neural network model

The starting point for defining the neural network model for solving the problems of task
scheduling and resource allocation are the assumptions for the constraint satisfaction prob‐
lem (CSP) [36,37]. CSP is the optimization problem which contains a certain set of varia‐
bles, sets of their possible values and constraints forced on the values of these variables
[14,15]. On the basis of this problem assumption a network model of the following fea‐
tures is suggested:

• A neural network consists of components; each of them corresponds to another variable.

Ant Colony Optimization - Techniques and Applications134

• Each component contains such number of neurons which equals the number of possible
values of each variable.

• Assigning a specified value to a variable is the process of switching on a relevant neuron
(neurons) and switching off the remaining ones in the component corresponding to this
variable.

• Switching on a neuron means assigning the value “1” to its output.

• Switching off a neuron means assigning the “0” to its output.

• Constraints to the network are introduced by adding a negative weight connection be‐
tween neurons (‘-1’), symbolizing the variable values that cannot occur simultaneously.

• In the network there are additional neurons “the ones” that are switched on.

Each neuron has its own table of connections and each connection contains its weight and
the indicator for the connected neuron. A characteristic feature of the network is the diversi‐
ty of connections between neurons, but these never applied to all neurons [22,23]. It is a con‐
sequence of the fact that connections between neurons exist only when some constraints are
imposed. The constraints existing in the discussed network model may be of the following
types: resources, time, order.

The method of constraints implementation shall be discussed upon examples [22].

Example 1:

Such net (Fig. 1.) blocks solution, in which Z1 = 1 as well as Z2 = 2 or Z3 = 3 as well as Z4 = 2.

Example 2:

Let us have two operations with unit execution times. The operation Z1 arrives at the system
in time t = 1 and it is to be executed before the expiry of time t = 4. The operation Z2 arrives
in time t = 1 and may be executed after the completion of operation Z1. A fragment of the net
for his case including all the connections is shown by Fig. 2.

Neuron „one” (‘1’) – a special neuron switched on permanently – is responsible for time con‐
straints. Introducing connections between such neuron and the relevant network neurons
excludes a possibility of switching them on when searching for the solution. Task Z 1 cannot
be scheduled in moment 0 and moment 4, which corresponds to the assumption that this
task arrives at the system at moment 1 and must be performed before moment 4. Analogical
process applies to operation Z 2. The sequence constraints are executed by the connections
between the network neurons. The figure shows (with dotted line) all the connections mak‐
ing the performance of task Z 2 before task Z 1 impossible.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

135

Figure 1. The example 1 of constraints.

Figure 2. The example 2 of constraints.

3.2. The algorithm description

After entering the input data (the system specification), the algorithm constructs a neural
network, the structure of which and the number of neurons composing it, depend upon the
size and complexity of the instance of problem. We will name the part of the net allocated to
this task – an area.

Constraints are introduced to the network by the execution of connections, occurring on‐
ly between the neurons corresponding to the values of variables which cannot occur simul‐
taneously.

The operation of the algorithm is the process of switching on appropriate neurons in each
domain of network in order to satisfy the constraints imposed by the input data.

The algorithm course is as follows [36,38]:

1. Allocating random values to consecutive variables.

2. Network relaxation:

Ant Colony Optimization - Techniques and Applications136

3. Calculating the weighted sum of all neurons inputs.

4. Switching on the neuron with the highest input value.

5. Return to relaxation or – if there are no changes – exit from relaxation.

6. If there are connections (constraints) between the neurons that are switched on, each weight be‐
tween two switched on neurons is decreased by 1 and there is a return to relaxation.

The algorithm starts from allocating weight ‘-1’ to all connections and then the start solution
is generated. It is created by giving random values to the subsequent variables. This process
takes place in a certain way: for each task i.e. in each area of the net such number of neurons
is switched on as it is necessary for a certain task to be completed. The remaining, in the part
which is responsible for its performance, neurons are being switched off. In the obtained re‐
sult there are many contradictions, specified by switching on the neurons where the connec‐
tions exist.

Therefore, the next step of the algorithm is the relaxation process, the objective of which is to
“satisfy” the maximum numbers of limitations (backtracking). The objective is to obtain the
result where the number of situations, where two switched on neurons of negative weight
connection between them is the lowest. While switching on neurons with the biggest value
at the start, in each area three instances may happen:

• If there is one neuron of the biggest value in the area, it is switched on; the remaining ones
are switched off.

• If there are more neurons, among which there is a previously switched one, there is no
change and it remains switched on.

• If there are more neurons, but there is no-one previously switched on, one of them is
switched on randomly, the remaining ones are switched off.

A relaxation process finishes when the subsequent step does not bring any change and if all
the requirements are met – the neurons between which a connection exist are not switched
on – the right solution is found. If it is not still the case, it means that the algorithm found
the local minimum and then the weight of each connection between two switched on neu‐
rons is decreased by “1” while its absolute value is being increased. It causes an increase in
“interaction force’ of this constraint which decreases the chance of switching on the same
neurons in a relaxation process where we return in order to find the right solution.

After a certain number of iterations the network should consider all the constraints – provid‐
ing that there is the right solution, it should be found. Another factor is worth pointing out:
in a relaxation process such an instance may occur where changes always happen. Then, this
process might never be completed. Then a problem is solved in such a way that relaxation is
interrupted after a certain number of calls.

Search for a solution by algorithm consists of two stages. At the first one, which is described
by the above presented algorithm, some activities are performed which lead to finding the
right solution for the given specification. After finding such a solution, in consequence of

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

137

Figure 1. The example 1 of constraints.

Figure 2. The example 2 of constraints.

3.2. The algorithm description

After entering the input data (the system specification), the algorithm constructs a neural
network, the structure of which and the number of neurons composing it, depend upon the
size and complexity of the instance of problem. We will name the part of the net allocated to
this task – an area.

Constraints are introduced to the network by the execution of connections, occurring on‐
ly between the neurons corresponding to the values of variables which cannot occur simul‐
taneously.

The operation of the algorithm is the process of switching on appropriate neurons in each
domain of network in order to satisfy the constraints imposed by the input data.

The algorithm course is as follows [36,38]:

1. Allocating random values to consecutive variables.

2. Network relaxation:

Ant Colony Optimization - Techniques and Applications136

3. Calculating the weighted sum of all neurons inputs.

4. Switching on the neuron with the highest input value.

5. Return to relaxation or – if there are no changes – exit from relaxation.

6. If there are connections (constraints) between the neurons that are switched on, each weight be‐
tween two switched on neurons is decreased by 1 and there is a return to relaxation.

The algorithm starts from allocating weight ‘-1’ to all connections and then the start solution
is generated. It is created by giving random values to the subsequent variables. This process
takes place in a certain way: for each task i.e. in each area of the net such number of neurons
is switched on as it is necessary for a certain task to be completed. The remaining, in the part
which is responsible for its performance, neurons are being switched off. In the obtained re‐
sult there are many contradictions, specified by switching on the neurons where the connec‐
tions exist.

Therefore, the next step of the algorithm is the relaxation process, the objective of which is to
“satisfy” the maximum numbers of limitations (backtracking). The objective is to obtain the
result where the number of situations, where two switched on neurons of negative weight
connection between them is the lowest. While switching on neurons with the biggest value
at the start, in each area three instances may happen:

• If there is one neuron of the biggest value in the area, it is switched on; the remaining ones
are switched off.

• If there are more neurons, among which there is a previously switched one, there is no
change and it remains switched on.

• If there are more neurons, but there is no-one previously switched on, one of them is
switched on randomly, the remaining ones are switched off.

A relaxation process finishes when the subsequent step does not bring any change and if all
the requirements are met – the neurons between which a connection exist are not switched
on – the right solution is found. If it is not still the case, it means that the algorithm found
the local minimum and then the weight of each connection between two switched on neu‐
rons is decreased by “1” while its absolute value is being increased. It causes an increase in
“interaction force’ of this constraint which decreases the chance of switching on the same
neurons in a relaxation process where we return in order to find the right solution.

After a certain number of iterations the network should consider all the constraints – provid‐
ing that there is the right solution, it should be found. Another factor is worth pointing out:
in a relaxation process such an instance may occur where changes always happen. Then, this
process might never be completed. Then a problem is solved in such a way that relaxation is
interrupted after a certain number of calls.

Search for a solution by algorithm consists of two stages. At the first one, which is described
by the above presented algorithm, some activities are performed which lead to finding the
right solution for the given specification. After finding such a solution, in consequence of

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

137

purpose function optimization there is a change of values for a certain criterion – in this
case, decrease – then, the subsequent search for the right solution occur. In this case the
search aims at a solution which possesses bigger constraints as the criteria value is sharper.
Two criteria are taken into consideration for which a solution is being searched. It may be a
cost function – where at the given time criterion, we search for the cheapest solution, or time
function – where at the given cost criterion, we search for the quickest solution. Thus, the
run of the algorithm is to seek a solution for smaller and smaller value of a selected criterion.
However, if the algorithm cannot find the right solution for the recently modified criteria
value of the algorithm, it returns to the previous criteria value for which it has found the
right solution and modifies it by a smaller value.

For instance, if an algorithm has found the right solution for cost criterion which is e.g. 10,
and it cannot find it for cost criteria which are 9, it tries to find a solution for cost 9.5 etc. In
this way the program never finishes work, but all the time it tries to find a better solution in
sense of a certain criterion. The user/designer of the system can interrupt its work at any
moment if he/she considers the current solution given by an algorithm to be satisfying.

In case of time criterion minimization, optimization goes at two planes. At the first one, sub‐
sequent neurons of the right side in task part of the network are connected to the neurons
“one”, in this way fewer and fewer quanta is available for the algorithm of task scheduling
which causes moving a critical line to the left and at the same time its diminishing. Howev‐
er, at the second, an individual quantum of time is being diminished; at each step an indi‐
vidual neuron will mean a smaller and smaller time passage.

The task part:

Each area corresponds to one task (Fig. 3.). For further area, the best possible setting for the
task is selected. Which setting ‘wins’ at the given stage and in the given area – this shall be
determined by the sum of neuron outputs in the setting, i.e. the one that introduces the
smaller number of contradictions. Moreover, it is checked if among the found set of the best
solutions there is no previous one, then it is left.

A neuron at the [i, k] position corresponds to the presence of ‘i’ task on the processor at the
‘k’ moment. Between these neurons there are suitable inhibitory connections (-1.0).

If, for example, task 1 must be performed before task 2, for all the neuron pairs

[1, k], [2, m] there are inhibitory connections (denoting contradictions), if k >= m and if task 8
occurs in the system at moment 2, „one” neuron is permanently connected to neurons [8, 0]
and [8, 1] (neuron which has 1.0 at the start which is permanently contradictory) and guaran‐
tees that in the final solution there is no quantum at moment 0 or 1.

We also take critical lines into account, which stand for time constraints that cannot be ex‐
ceeded by any allocated tasks – connecting ‘one’ will apply to the neurons of the right side
of the network outside the critical line.

Ant Colony Optimization - Techniques and Applications138

Figure 3. The task part for scheduling problems.

Figure 4. The resource part for scheduling problems.

The resource part:

Before selecting the quanta positions in the areas, algorithm has to calculate inputs for all
the neurons. The neurons of the resource part are also connected to these inputs, as the
number and the remaining places in recources have an impact on the setting which is going
to “win” at a certain stage of computation. Thus, before an algorithm sets an exact task, it
calculates the value of neuron inputs in resource part. The [r, i, k] neuron is switched on if at
‘k’ moment the resource ‘r’ is overloaded (too many tasks are using t), or it is not overload‐

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

139

purpose function optimization there is a change of values for a certain criterion – in this
case, decrease – then, the subsequent search for the right solution occur. In this case the
search aims at a solution which possesses bigger constraints as the criteria value is sharper.
Two criteria are taken into consideration for which a solution is being searched. It may be a
cost function – where at the given time criterion, we search for the cheapest solution, or time
function – where at the given cost criterion, we search for the quickest solution. Thus, the
run of the algorithm is to seek a solution for smaller and smaller value of a selected criterion.
However, if the algorithm cannot find the right solution for the recently modified criteria
value of the algorithm, it returns to the previous criteria value for which it has found the
right solution and modifies it by a smaller value.

For instance, if an algorithm has found the right solution for cost criterion which is e.g. 10,
and it cannot find it for cost criteria which are 9, it tries to find a solution for cost 9.5 etc. In
this way the program never finishes work, but all the time it tries to find a better solution in
sense of a certain criterion. The user/designer of the system can interrupt its work at any
moment if he/she considers the current solution given by an algorithm to be satisfying.

In case of time criterion minimization, optimization goes at two planes. At the first one, sub‐
sequent neurons of the right side in task part of the network are connected to the neurons
“one”, in this way fewer and fewer quanta is available for the algorithm of task scheduling
which causes moving a critical line to the left and at the same time its diminishing. Howev‐
er, at the second, an individual quantum of time is being diminished; at each step an indi‐
vidual neuron will mean a smaller and smaller time passage.

The task part:

Each area corresponds to one task (Fig. 3.). For further area, the best possible setting for the
task is selected. Which setting ‘wins’ at the given stage and in the given area – this shall be
determined by the sum of neuron outputs in the setting, i.e. the one that introduces the
smaller number of contradictions. Moreover, it is checked if among the found set of the best
solutions there is no previous one, then it is left.

A neuron at the [i, k] position corresponds to the presence of ‘i’ task on the processor at the
‘k’ moment. Between these neurons there are suitable inhibitory connections (-1.0).

If, for example, task 1 must be performed before task 2, for all the neuron pairs

[1, k], [2, m] there are inhibitory connections (denoting contradictions), if k >= m and if task 8
occurs in the system at moment 2, „one” neuron is permanently connected to neurons [8, 0]
and [8, 1] (neuron which has 1.0 at the start which is permanently contradictory) and guaran‐
tees that in the final solution there is no quantum at moment 0 or 1.

We also take critical lines into account, which stand for time constraints that cannot be ex‐
ceeded by any allocated tasks – connecting ‘one’ will apply to the neurons of the right side
of the network outside the critical line.

Ant Colony Optimization - Techniques and Applications138

Figure 3. The task part for scheduling problems.

Figure 4. The resource part for scheduling problems.

The resource part:

Before selecting the quanta positions in the areas, algorithm has to calculate inputs for all
the neurons. The neurons of the resource part are also connected to these inputs, as the
number and the remaining places in recources have an impact on the setting which is going
to “win” at a certain stage of computation. Thus, before an algorithm sets an exact task, it
calculates the value of neuron inputs in resource part. The [r, i, k] neuron is switched on if at
‘k’ moment the resource ‘r’ is overloaded (too many tasks are using t), or it is not overload‐

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

139

ed, but setting the task of part ‘i’ at the moment defined by ‘k’ would result in overloading.
Neurons in resource part (Fig. 4.) respond by their possible connection, resource overload‐
ed, if part of the task were set and at moment ‘k’; therefore, neurons of resource part are con‐
nected to task inputs.

When in the resource part the neuron “ ’r’ resource overload’ is switched on, as task ‘i’ is set at
moment ‘k’ ”, its signal (1.0) is transferred by weight (-1.0) to the neuron existing in the task
part, which causes the negative input impulse (-1.0 * 1.0) at the input which results in a con‐
tradiction.

In other words – it “disturbs” function ‘compute_in’ to set the task and at moment “k”. Thus,
in the network there are subsequent illegal situations implemented (constraints).

Each neuron [r, i, k] of the resource part is connected with neuron [i, k] from the task part, so
a possibility of task existence at a given moment with concurrent resource overloading is ‘in‐
hibited’.

Example:

Let us assume that there are five operations A, B, C, D, E.

Task part works as follows (a letter means a neuron switched on, sign '-' means a switched
off neuron):

These operations should be allocated to a certain number of processors, so that one only op‐
eration would be performed on one processor at an exact moment:

1. Algorithm allocates (at moment 0) fragment DDDDDD, adds a new processor (the
first) and allocates on it:

DDDDDD-----------

2. Allocation -C: for this moment (1) there is no place on the first processor, so algorithm
adds the next processor and allocates an operation:

DDDDDD-----------

-C---------------

3. Allocation BBB: there is place on the second processor:

DDDDDD-----------

-C-BBB-----------

Ant Colony Optimization - Techniques and Applications140

4. Allocation AAAA: there is no place at quantum 4 –algorithm adds the third processor
and allocates:

DDDDDD-----------

-C-BBB-----------

----AAAA---------

5. Allocation EEEEE: there is place on the first processor :

DDDDDD---EEEEE---

-C-BBB-----------

----AAAA---------

6. Allocation AA there is place on the second processor

DDDDDD---EEEEE---

-C-BBB----AA------

----AAAA---------

7. Allocation BB: there is place on the second processor:

DDDDDD---EEEEE---

-C-BBB----AA-BB—

----AAAA---------

The result of the operations on the processors is as follows:

P1:DDDDDD---EEEEE---

P2:-C-BBB----AA-BB--

P3: ----AAAA---------

Computational complexity of neural algorithm for task scheduling

An algorithm gives the right solution for the problems of known multi-nominal algorithms
and also may be used for problems NP-complete. The complexity of one computation step
may be estimated as follows:

()()i * 1 p * k k * 1 k * p * m k * r * i * p p+ + + + + (2)

Where:

i – Number of tasks.

p – Number of processors.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

141

ed, but setting the task of part ‘i’ at the moment defined by ‘k’ would result in overloading.
Neurons in resource part (Fig. 4.) respond by their possible connection, resource overload‐
ed, if part of the task were set and at moment ‘k’; therefore, neurons of resource part are con‐
nected to task inputs.

When in the resource part the neuron “ ’r’ resource overload’ is switched on, as task ‘i’ is set at
moment ‘k’ ”, its signal (1.0) is transferred by weight (-1.0) to the neuron existing in the task
part, which causes the negative input impulse (-1.0 * 1.0) at the input which results in a con‐
tradiction.

In other words – it “disturbs” function ‘compute_in’ to set the task and at moment “k”. Thus,
in the network there are subsequent illegal situations implemented (constraints).

Each neuron [r, i, k] of the resource part is connected with neuron [i, k] from the task part, so
a possibility of task existence at a given moment with concurrent resource overloading is ‘in‐
hibited’.

Example:

Let us assume that there are five operations A, B, C, D, E.

Task part works as follows (a letter means a neuron switched on, sign '-' means a switched
off neuron):

These operations should be allocated to a certain number of processors, so that one only op‐
eration would be performed on one processor at an exact moment:

1. Algorithm allocates (at moment 0) fragment DDDDDD, adds a new processor (the
first) and allocates on it:

DDDDDD-----------

2. Allocation -C: for this moment (1) there is no place on the first processor, so algorithm
adds the next processor and allocates an operation:

DDDDDD-----------

-C---------------

3. Allocation BBB: there is place on the second processor:

DDDDDD-----------

-C-BBB-----------

Ant Colony Optimization - Techniques and Applications140

4. Allocation AAAA: there is no place at quantum 4 –algorithm adds the third processor
and allocates:

DDDDDD-----------

-C-BBB-----------

----AAAA---------

5. Allocation EEEEE: there is place on the first processor :

DDDDDD---EEEEE---

-C-BBB-----------

----AAAA---------

6. Allocation AA there is place on the second processor

DDDDDD---EEEEE---

-C-BBB----AA------

----AAAA---------

7. Allocation BB: there is place on the second processor:

DDDDDD---EEEEE---

-C-BBB----AA-BB—

----AAAA---------

The result of the operations on the processors is as follows:

P1:DDDDDD---EEEEE---

P2:-C-BBB----AA-BB--

P3: ----AAAA---------

Computational complexity of neural algorithm for task scheduling

An algorithm gives the right solution for the problems of known multi-nominal algorithms
and also may be used for problems NP-complete. The complexity of one computation step
may be estimated as follows:

()()i * 1 p * k k * 1 k * p * m k * r * i * p p+ + + + + (2)

Where:

i – Number of tasks.

p – Number of processors.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

141

k – Number of time quanta.

m – Number of all consecutive depend abilities between tasks.

r – Number of resources.

The largest complexity is generated by the process of increasing the number of tasks and an
increase in the number of time quanta. Also, maximum number of processors and number
of constitutive depend abilities in the introduced graph have a powerful effect on computa‐
tion. It is a pessimistic estimation; in practice, real complexity may be slightly smaller, but
proportional to that. An algorithm itself is convergent i.e. step by step generates better and
better solutions.

4. Tests of task scheduling algorithms

4.1. The comparison with polynomial algorithms

To show convergence of ACO algorithm towards optimum, one can compare their results
with optimal results of already existing, precise, polynomial algorithms for certain exempla‐
ry problems of task scheduling. If a heuristic algorithm finds an optimal solution to polyno‐
mial problems, it is probable that solutions found for NP-complete problems will also be
optimal or at least approximated to optimal. Heuristic algorithm described herein was test‐
ed with known polynomial algorithms and all of them achieved optimal solutions for those
problems. The comparisons utilized such polynomial algorithms as:

• Coffman – Graham Algorithm,

• Hu Algorithm,

• Baer Algorithm,

Comparisons of ACO solutions with selected precise polynomial algorithms will be present‐
ed as an example.

Coffman and Graham algorithm

Scheduling of tasks which constitute a discretionary graph with singular performance times
on two identical processors in order to minimize Cmax. Calculation complexity of the algo‐
rithm is O(n2).

Test problem no 1:

• 2 identical processors (a), 3 identical processors (b).

• 15 tasks with singular performance times.

• Graph with tasks:

Ant Colony Optimization - Techniques and Applications142

Figure 5. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 1).

• Optimal scheduling for two processors obtained as a result of Coffman and Graham algo‐

rithm use (1a).

Figure 6. Optimal scheduling for two processors - Coffman and Graham algorithm (1a).

• Optimal scheduling for two processors obtained as a result of ACO algorithm use (1a).

Figure 7. Optimal scheduling for two processors - ACO algorithm (1a).

• Scheduling for three processors obtained as a result of Coffman and Graham algorithm

use (1b).

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

143

k – Number of time quanta.

m – Number of all consecutive depend abilities between tasks.

r – Number of resources.

The largest complexity is generated by the process of increasing the number of tasks and an
increase in the number of time quanta. Also, maximum number of processors and number
of constitutive depend abilities in the introduced graph have a powerful effect on computa‐
tion. It is a pessimistic estimation; in practice, real complexity may be slightly smaller, but
proportional to that. An algorithm itself is convergent i.e. step by step generates better and
better solutions.

4. Tests of task scheduling algorithms

4.1. The comparison with polynomial algorithms

To show convergence of ACO algorithm towards optimum, one can compare their results
with optimal results of already existing, precise, polynomial algorithms for certain exempla‐
ry problems of task scheduling. If a heuristic algorithm finds an optimal solution to polyno‐
mial problems, it is probable that solutions found for NP-complete problems will also be
optimal or at least approximated to optimal. Heuristic algorithm described herein was test‐
ed with known polynomial algorithms and all of them achieved optimal solutions for those
problems. The comparisons utilized such polynomial algorithms as:

• Coffman – Graham Algorithm,

• Hu Algorithm,

• Baer Algorithm,

Comparisons of ACO solutions with selected precise polynomial algorithms will be present‐
ed as an example.

Coffman and Graham algorithm

Scheduling of tasks which constitute a discretionary graph with singular performance times
on two identical processors in order to minimize Cmax. Calculation complexity of the algo‐
rithm is O(n2).

Test problem no 1:

• 2 identical processors (a), 3 identical processors (b).

• 15 tasks with singular performance times.

• Graph with tasks:

Ant Colony Optimization - Techniques and Applications142

Figure 5. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 1).

• Optimal scheduling for two processors obtained as a result of Coffman and Graham algo‐

rithm use (1a).

Figure 6. Optimal scheduling for two processors - Coffman and Graham algorithm (1a).

• Optimal scheduling for two processors obtained as a result of ACO algorithm use (1a).

Figure 7. Optimal scheduling for two processors - ACO algorithm (1a).

• Scheduling for three processors obtained as a result of Coffman and Graham algorithm

use (1b).

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

143

Figure 8. Problem scheduling for 3 processors - Coffman and Graham algorithm use (1b).

• Scheduling for three processors obtained as a result of ACO algorithm use (1b).

Figure 9. Optimal problem scheduling for 3 processors – ACO algorithm (1b).

For two processors (1a) ACO algorithm identical to Coffman and Graham algorithm ob‐
tained optimal scheduling. It was the same in the case of three processors (1b) – both algo‐
rithms obtained the same scheduling. Coffman and Graham algorithm is optimal only for
two identical processors. For task graph under research it also found optimal scheduling for
3 identical processors.

Another test problem is shown by the non-optimality of Coffman and Graham algorithm for
processor number greater than 2.

Test problem no 2:

• 2 identical processors (a), 3 identical processors (b)

• 12 tasks with singular performance times.

• Graph of tasks:

Figure 10. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 2).

Ant Colony Optimization - Techniques and Applications144

• Optimal scheduling for two processors obtained as a result of Coffman and Graham algo‐
rithm use (2a).

Figure 11. Optimal scheduling for 2 processors - Coffman and Graham algorithm (2a).

• Optimal scheduling for two processors obtained as a result of ACO algorithm use (2a).

Figure 12. Optimal scheduling for 2 processors - ACO algorithm (2a).

• Non-optimal scheduling for three processors obtained as a result of Coffman and Graham
algorithm use (2b).

Figure 13. Non-optimal scheduling for 3 processors – Coffman and Graham algorithm (2b).

• Optimal scheduling for three processors obtained as a result of ACO algorithm use (2b).

Figure 14. Optimal scheduling for 3 processors - ACO algorithm (2b).

For the problem of two processors (2a) both algorithms obtained optimal scheduling. In the
case of three processors (2b) the Coffman and Graham algorithm did not find optimal sched‐
uling, whereas the ACO algorithm did find it without any difficulty.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

145

Figure 8. Problem scheduling for 3 processors - Coffman and Graham algorithm use (1b).

• Scheduling for three processors obtained as a result of ACO algorithm use (1b).

Figure 9. Optimal problem scheduling for 3 processors – ACO algorithm (1b).

For two processors (1a) ACO algorithm identical to Coffman and Graham algorithm ob‐
tained optimal scheduling. It was the same in the case of three processors (1b) – both algo‐
rithms obtained the same scheduling. Coffman and Graham algorithm is optimal only for
two identical processors. For task graph under research it also found optimal scheduling for
3 identical processors.

Another test problem is shown by the non-optimality of Coffman and Graham algorithm for
processor number greater than 2.

Test problem no 2:

• 2 identical processors (a), 3 identical processors (b)

• 12 tasks with singular performance times.

• Graph of tasks:

Figure 10. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 2).

Ant Colony Optimization - Techniques and Applications144

• Optimal scheduling for two processors obtained as a result of Coffman and Graham algo‐
rithm use (2a).

Figure 11. Optimal scheduling for 2 processors - Coffman and Graham algorithm (2a).

• Optimal scheduling for two processors obtained as a result of ACO algorithm use (2a).

Figure 12. Optimal scheduling for 2 processors - ACO algorithm (2a).

• Non-optimal scheduling for three processors obtained as a result of Coffman and Graham
algorithm use (2b).

Figure 13. Non-optimal scheduling for 3 processors – Coffman and Graham algorithm (2b).

• Optimal scheduling for three processors obtained as a result of ACO algorithm use (2b).

Figure 14. Optimal scheduling for 3 processors - ACO algorithm (2b).

For the problem of two processors (2a) both algorithms obtained optimal scheduling. In the
case of three processors (2b) the Coffman and Graham algorithm did not find optimal sched‐
uling, whereas the ACO algorithm did find it without any difficulty.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

145

In another test example both algorithms were compared for the problem of task scheduling
on two identical processors with singular and different performance times.

Test problem no 3:

• 2 identical processors.

• 5 tasks with singular performance times (a), 5 tasks with different performance times (b)

• Graph of tasks:

Figure 15. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 3)

• Optimal scheduling for singular task performance times obtained as a result of Coffman
and Graham algorithm use (3a).

Figure 16. Optimal problem scheduling for singular task performance times – Coffman and Graham algorithm (3a)

• Optimal scheduling for singular task performance times obtained as a result of ACO algo‐
rithm use (3a).

Figure 17. Optimal problem scheduling for singular task performance times – ACO algorithm (3a)

• Non-optimal scheduling for irregular task performance times obtained as a result of Coff‐
man and Graham algorithm use (3b).

Ant Colony Optimization - Techniques and Applications146

Figure 18. Non-optimal problem scheduling for irregular task performance times – Coffman and Graham algorithm
(2b)

• Optimal scheduling for irregular task performance times obtained as a result of ACO al‐
gorithm use (3b):

Figure 19. Optimal problem scheduling for irregular task performance times – ACO algorithm (3b)

Both compared algorithms obtain optimal scheduling for the problem with regular (singu‐
lar) task performance times (3a). For different task performance times (3b) the Coffman
and Graham algorithm does not obtain optimal scheduling, whereas the ACO algorithm
does obtain.

Hu algorithm

Scheduling of tasks with singular performance times which create a digraph of anti-tree
type on identical processors in order to minimize Cmax. Algorithm complexity is O(n).

Figure 20. Graph of tasks used for the comparison of ACO and Hu algorithms.

Test problem no 1:

• 3 identical processors,

• 11 tasks with singular performance times,

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

147

In another test example both algorithms were compared for the problem of task scheduling
on two identical processors with singular and different performance times.

Test problem no 3:

• 2 identical processors.

• 5 tasks with singular performance times (a), 5 tasks with different performance times (b)

• Graph of tasks:

Figure 15. Graph of tasks used for the comparison of ACO algorithm with Coffman and Graham algorithm (test prob‐
lem no 3)

• Optimal scheduling for singular task performance times obtained as a result of Coffman
and Graham algorithm use (3a).

Figure 16. Optimal problem scheduling for singular task performance times – Coffman and Graham algorithm (3a)

• Optimal scheduling for singular task performance times obtained as a result of ACO algo‐
rithm use (3a).

Figure 17. Optimal problem scheduling for singular task performance times – ACO algorithm (3a)

• Non-optimal scheduling for irregular task performance times obtained as a result of Coff‐
man and Graham algorithm use (3b).

Ant Colony Optimization - Techniques and Applications146

Figure 18. Non-optimal problem scheduling for irregular task performance times – Coffman and Graham algorithm
(2b)

• Optimal scheduling for irregular task performance times obtained as a result of ACO al‐
gorithm use (3b):

Figure 19. Optimal problem scheduling for irregular task performance times – ACO algorithm (3b)

Both compared algorithms obtain optimal scheduling for the problem with regular (singu‐
lar) task performance times (3a). For different task performance times (3b) the Coffman
and Graham algorithm does not obtain optimal scheduling, whereas the ACO algorithm
does obtain.

Hu algorithm

Scheduling of tasks with singular performance times which create a digraph of anti-tree
type on identical processors in order to minimize Cmax. Algorithm complexity is O(n).

Figure 20. Graph of tasks used for the comparison of ACO and Hu algorithms.

Test problem no 1:

• 3 identical processors,

• 11 tasks with singular performance times,

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

147

• Graph of tasks (anti-tree):

• Optimal scheduling for problem 1 obtained as a result of Hu algorithm use:

Figure 21. Optimal scheduling for problem 1 solved with Hu algorithm.

• Optimal scheduling for problem 1 obtained as a result of ACO algorithm use.

Figure 22. Optimal scheduling for problem 1 solved with ACO algorithm.

Test problem no 2:

• 3 identical processors,

• 12 tasks with singular performance times,

• Graph of tasks (anti-tree):

Figure 23. Graph of tasks used for the comparison of ACO and Hu algorithms (test problem no 2)

• Optimal scheduling for problem 2 obtained as a result of Hu algorithm use.

Ant Colony Optimization - Techniques and Applications148

Figure 24. Optimal scheduling for problem 2 solved with Hu algorithm

• Optimal scheduling for problem 2 obtained as a result of ACO algorithm use.

Figure 25. Optimal scheduling for problem 2 solved with ACO algorithm

Both problems solved with Hu algorithm were also solved easily by ACO algorithm. Sched‐
uling obtained is optimal.

Baer algorithm

Scheduling of indivisible tasks, with singular performance times, which create a graph of
anti-tree type on two uniform processors in order to minimize Cmax.

Test problem:

• 2 uniform processors with speed coefficients b1 = 2, b2 =1.

• 11 tasks with singular performance times.

• Graph of tasks (anti-tree):

Figure 26. Graph of tasks used for the comparison of ACO and Baer algorithms.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

149

• Graph of tasks (anti-tree):

• Optimal scheduling for problem 1 obtained as a result of Hu algorithm use:

Figure 21. Optimal scheduling for problem 1 solved with Hu algorithm.

• Optimal scheduling for problem 1 obtained as a result of ACO algorithm use.

Figure 22. Optimal scheduling for problem 1 solved with ACO algorithm.

Test problem no 2:

• 3 identical processors,

• 12 tasks with singular performance times,

• Graph of tasks (anti-tree):

Figure 23. Graph of tasks used for the comparison of ACO and Hu algorithms (test problem no 2)

• Optimal scheduling for problem 2 obtained as a result of Hu algorithm use.

Ant Colony Optimization - Techniques and Applications148

Figure 24. Optimal scheduling for problem 2 solved with Hu algorithm

• Optimal scheduling for problem 2 obtained as a result of ACO algorithm use.

Figure 25. Optimal scheduling for problem 2 solved with ACO algorithm

Both problems solved with Hu algorithm were also solved easily by ACO algorithm. Sched‐
uling obtained is optimal.

Baer algorithm

Scheduling of indivisible tasks, with singular performance times, which create a graph of
anti-tree type on two uniform processors in order to minimize Cmax.

Test problem:

• 2 uniform processors with speed coefficients b1 = 2, b2 =1.

• 11 tasks with singular performance times.

• Graph of tasks (anti-tree):

Figure 26. Graph of tasks used for the comparison of ACO and Baer algorithms.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

149

• Optimal scheduling for the problem solved with Baer algorithm, obtained as a result of
ACO algorithm use.

Figure 27. Optimal scheduling for the problem solved with Baer algorithm, obtained as a result of ACO algorithm use

For the problem optimized with Baer algorithm, the ACO algorithm also obtains optimal
solution.

4.2. Comparison of algorithms for non-polynomial problems of task scheduling

4.2.1. NP- complete problem no 1:

Scheduling nonpreemptive, independent tasks on identical processors for Cmax minimization.

Number

of tasks

Number

of processors

Cmax

Neural

Algorithm

Cmax

ACO

Algorithm

5 3 4 4

10 3 9 8

10 6 4 4

20 3 15 16

20 6 9 8

20 8 7 6

Table 1. Scheduling nonpreemptive, independent tasks on identical processors.

For all problems under research algorithms found similar solutions. Only neural algorithm
did worse – for the problem of scheduling 10 tasks on 3 identical processors, 20 tasks on 6
processors and 20 tasks on 8 processors as well ACO algorithm for the problem of schedul‐
ing 20 tasks on 3 identical processors.

4.2.2. NP-complete problem no 2:

List scheduling with various methods of priority allocation

Because in general case the problem of scheduling dependent, nonpreemptable tasks is
highly NP-complete, in some applications one can use polynomial approximate algorithms.
Such algorithms are list algorithms.

Ant Colony Optimization - Techniques and Applications150

In the chapter five types of list scheduling rules were compared: HLFET (Highest Levels
First with Estimated Times), HLFNET (Highest Levels First with No Estimated Times),
RANDOM, SCFET (Smallest Co-levels First with Estimated Times), SCFNET (Smallest Co-
levels First with No Estimated Times) [12].

The number of cases, in which the solution differs less than 5% from optimal solution, is ac‐
cepted as an evaluation criterion for the priority allocation rule. If for 90% of examined ex‐
amples the sub-optimal solution fit in the above range, the rule would be described as
“almost optimal”. This requirement is met only by HLFET rule, which gives results varying
from optimum by 4,4% on average.

Example:

• 2 identical processors.

• 12 tasks with different performance times: (Z0,1), (Z1,1), (Z2,7), (Z3,3), (Z4,1), (Z5,1),
(Z6,3), (Z7,2), (Z8,2), (Z9,1), (Z10,3), (Z11,1).

• Graph of tasks:

Figure 28. The graph of tasks used for the comparison of ACO and list algorithms

Scheduling obtained as a result of ACO algorithm operation.

Figure 29. Scheduling obtained with ACO algorithm.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

151

• Optimal scheduling for the problem solved with Baer algorithm, obtained as a result of
ACO algorithm use.

Figure 27. Optimal scheduling for the problem solved with Baer algorithm, obtained as a result of ACO algorithm use

For the problem optimized with Baer algorithm, the ACO algorithm also obtains optimal
solution.

4.2. Comparison of algorithms for non-polynomial problems of task scheduling

4.2.1. NP- complete problem no 1:

Scheduling nonpreemptive, independent tasks on identical processors for Cmax minimization.

Number

of tasks

Number

of processors

Cmax

Neural

Algorithm

Cmax

ACO

Algorithm

5 3 4 4

10 3 9 8

10 6 4 4

20 3 15 16

20 6 9 8

20 8 7 6

Table 1. Scheduling nonpreemptive, independent tasks on identical processors.

For all problems under research algorithms found similar solutions. Only neural algorithm
did worse – for the problem of scheduling 10 tasks on 3 identical processors, 20 tasks on 6
processors and 20 tasks on 8 processors as well ACO algorithm for the problem of schedul‐
ing 20 tasks on 3 identical processors.

4.2.2. NP-complete problem no 2:

List scheduling with various methods of priority allocation

Because in general case the problem of scheduling dependent, nonpreemptable tasks is
highly NP-complete, in some applications one can use polynomial approximate algorithms.
Such algorithms are list algorithms.

Ant Colony Optimization - Techniques and Applications150

In the chapter five types of list scheduling rules were compared: HLFET (Highest Levels
First with Estimated Times), HLFNET (Highest Levels First with No Estimated Times),
RANDOM, SCFET (Smallest Co-levels First with Estimated Times), SCFNET (Smallest Co-
levels First with No Estimated Times) [12].

The number of cases, in which the solution differs less than 5% from optimal solution, is ac‐
cepted as an evaluation criterion for the priority allocation rule. If for 90% of examined ex‐
amples the sub-optimal solution fit in the above range, the rule would be described as
“almost optimal”. This requirement is met only by HLFET rule, which gives results varying
from optimum by 4,4% on average.

Example:

• 2 identical processors.

• 12 tasks with different performance times: (Z0,1), (Z1,1), (Z2,7), (Z3,3), (Z4,1), (Z5,1),
(Z6,3), (Z7,2), (Z8,2), (Z9,1), (Z10,3), (Z11,1).

• Graph of tasks:

Figure 28. The graph of tasks used for the comparison of ACO and list algorithms

Scheduling obtained as a result of ACO algorithm operation.

Figure 29. Scheduling obtained with ACO algorithm.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

151

The length of obtained scheduling is compliant with the scheduling which was obtained
by means of the best list scheduling available for this case and which is HLFET (”al‐
most optimal”).

4.2.3. Comparison with PDF/HIS algorithm

For research purposes a set of graphs was utilized from the website below: http://
www.kasahara.elec.waseda.ac.jp/schedule/index.html. Task graphs made available therein
were divided into groups because of the number of tasks. Minimum scheduling length was
calculated by means of PDF/HIS algorithm (Parallelized Depth First/ Implicit Heuristic
Search) for every tasks graph. STG graphs are vectored, a-cyclic tasks graphs. Different task
performance times, discretionary sequence constraints as well as random number of pro‐
cessors cause STG tasks scheduling problems to be NP-complete problems. Out of all solved
problems heuristic algorithms under research did not find an optimal solution (assuming
this is the solution obtained with PDF/IHS algorithm) only for three of them. However, re‐
sults obtained are satisfactory, because the deviation from optimum varies from 0,36% to
4,63% (table Tab 2).

STG Num-ber

of

tasks

Number of

processors

PDF/

IHS

Ant colony Neural

Cmax Cmax Number of

iterations

Diffe-

rence

[%]

Cmax Number of

itera-tons

Diffe-

rence

[%]

rand0008 50 2 281 281 117 0 281 80 0

rand0038 50 4 114 114 1401 0 114 818 0

rand0107 50 8 155 155 389 0 155 411 0

rand0174 50 16 131 131 180 0 131 190 0

rand0017 100 2 569 569 171 0 569 92 0

rand0066 100 4 253 253 4736 0 257 3644 1,58

rand0106 100 8 205 205 861 0 205 927 0

rand0174 100 16 162 162 265 0 162 216 0

rand0020 300 2 827 846 5130 2,30 830 4840 0,36

rand0095 300 8 382 394 5787 3,14 384 5253 0,52

rand0136 300 16 324 339 2620 4,63 324 3067 0

Table 2. Comparison with PDF/IHS algorithm – the influence of tasks number

Ant Colony Optimization - Techniques and Applications152

Algorithms were investigated by scheduling tasks represented with the same graph (50 STG
tasks) on a different number of processors.

Number

of tasks

Number

of processors

PDF/IHS Ant colony Neural

Cmax Cmax Number

of iterations

Cmax Number

of iterations

50 2 228 228 132 228 92

50 4 114 114 1401 114 925

50 8 57 61 4318 58 4442

50 16 48 48 58 48 33

Table 3. Minimization of Cmax of dependent tasks (STG rand0008.stg)

Number

of tasks

Number

of processors

PDF/IHS Ant colony Neural

Cmax Cmax Number

of iterations

Cmax Number

of iterations

50 2 267 267 388 267 412

50 4 155 157 4487 160 3339

50 8 155 154 89 155 112

50 16 155 155 10 155 8

Table 4. Minimization of Cmax of dependent tasks (STG rand0107.stg)

In all researched problems algorithms under comparison found optimal solution. The only
difference can be observed in the number of iterations needed to find an optimal solution.
ACO algorithm needed less iterations than neural one to find the solution.

5. Comparing ACO algorithm and neural algorithm

For multiple criteria optimization in the following tests comparisons were made of compro‐
mise solutions for ACO algorithm with the results of neural algorithm. Optimization criteria
were: time, cost and power consumption. Additional requirements and constraints were
adopted: maximum number of processors – 5, maximal cost – 3, maximal time – 25.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

153

The length of obtained scheduling is compliant with the scheduling which was obtained
by means of the best list scheduling available for this case and which is HLFET (”al‐
most optimal”).

4.2.3. Comparison with PDF/HIS algorithm

For research purposes a set of graphs was utilized from the website below: http://
www.kasahara.elec.waseda.ac.jp/schedule/index.html. Task graphs made available therein
were divided into groups because of the number of tasks. Minimum scheduling length was
calculated by means of PDF/HIS algorithm (Parallelized Depth First/ Implicit Heuristic
Search) for every tasks graph. STG graphs are vectored, a-cyclic tasks graphs. Different task
performance times, discretionary sequence constraints as well as random number of pro‐
cessors cause STG tasks scheduling problems to be NP-complete problems. Out of all solved
problems heuristic algorithms under research did not find an optimal solution (assuming
this is the solution obtained with PDF/IHS algorithm) only for three of them. However, re‐
sults obtained are satisfactory, because the deviation from optimum varies from 0,36% to
4,63% (table Tab 2).

STG Num-ber

of

tasks

Number of

processors

PDF/

IHS

Ant colony Neural

Cmax Cmax Number of

iterations

Diffe-

rence

[%]

Cmax Number of

itera-tons

Diffe-

rence

[%]

rand0008 50 2 281 281 117 0 281 80 0

rand0038 50 4 114 114 1401 0 114 818 0

rand0107 50 8 155 155 389 0 155 411 0

rand0174 50 16 131 131 180 0 131 190 0

rand0017 100 2 569 569 171 0 569 92 0

rand0066 100 4 253 253 4736 0 257 3644 1,58

rand0106 100 8 205 205 861 0 205 927 0

rand0174 100 16 162 162 265 0 162 216 0

rand0020 300 2 827 846 5130 2,30 830 4840 0,36

rand0095 300 8 382 394 5787 3,14 384 5253 0,52

rand0136 300 16 324 339 2620 4,63 324 3067 0

Table 2. Comparison with PDF/IHS algorithm – the influence of tasks number

Ant Colony Optimization - Techniques and Applications152

Algorithms were investigated by scheduling tasks represented with the same graph (50 STG
tasks) on a different number of processors.

Number

of tasks

Number

of processors

PDF/IHS Ant colony Neural

Cmax Cmax Number

of iterations

Cmax Number

of iterations

50 2 228 228 132 228 92

50 4 114 114 1401 114 925

50 8 57 61 4318 58 4442

50 16 48 48 58 48 33

Table 3. Minimization of Cmax of dependent tasks (STG rand0008.stg)

Number

of tasks

Number

of processors

PDF/IHS Ant colony Neural

Cmax Cmax Number

of iterations

Cmax Number

of iterations

50 2 267 267 388 267 412

50 4 155 157 4487 160 3339

50 8 155 154 89 155 112

50 16 155 155 10 155 8

Table 4. Minimization of Cmax of dependent tasks (STG rand0107.stg)

In all researched problems algorithms under comparison found optimal solution. The only
difference can be observed in the number of iterations needed to find an optimal solution.
ACO algorithm needed less iterations than neural one to find the solution.

5. Comparing ACO algorithm and neural algorithm

For multiple criteria optimization in the following tests comparisons were made of compro‐
mise solutions for ACO algorithm with the results of neural algorithm. Optimization criteria
were: time, cost and power consumption. Additional requirements and constraints were
adopted: maximum number of processors – 5, maximal cost – 3, maximal time – 25.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

153

Number

of tasks

Ant colony Neural

Cost Time Power consumption Cost Time Power consumption

5 1,75 6,75 9,26 1,00 3,90 4,39

10 1,50 6,20 35,47 1,50 8,50 11,61

15 2,75 18,00 22,96 2,00 16,00 17,85

20 1,75 12,83 35,45 2,00 22,50 20,31

25 2,00 14,50 51,25 2,00 22,00 28,93

30 2,75 16,90 63,58 2,50 23,00 35,01

35 2,00 18,00 78,30 2,50 24,67 36,12

40 2,75 17,75 104,68 2,50 17,00 72,52

45 2,25 21,75 99,50 2,50 18,67 79,02

50 2,25 23,88 113,26 2,50 21,00 88,57

55 2,50 25,00 164,58 2,50 22,50 95,33

Table 5. Comparison of Ant Colony and neural for minimization of time, cost and power consumption.

Results were illustrated on the following charts – Chart: 30, 31, and 32.

When comparing solutions obtained by the algorithms one cannot provide an unequivocal
answer which of the optimization methods is better. Greater influence on the quality of of‐
fered solutions has the algorithm itself, especially its exploration capacity of admissible solu‐
tions space. When analyzing the graphs of interdependence between cost and task number,
it appears that neural algorithm is more stable i.e. attempts to maintain low cost, despite an
increase in the number of tasks. This results in worse task performance time what is very
visible on the graph where time is contingent on the number of tasks. From power con‐
sumption analysis it is evident that ACO algorithm solutions are more beneficial.

Chart 30. Influence of number tasks on cost – minimization of time, cost and power consumption .

Ant Colony Optimization - Techniques and Applications154

Chart 31. Influence of number of tasks on time – minimization of time, cost and power consumption.

Chart 32. Influence of number of tasks on power consumption – minimization of time, cost and power consumption.

Additional requirements and constraints were adopted: maximum number of processors: 5,
maximal cost: 8, maximal time: 50.

Results were illustrated in the following charts - Chart: 33, 34, and 35.

Chart 33. Influence of number of tasks on cost – minimization of time, cost and power consumption with of cost
of memory.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

155

Number

of tasks

Ant colony Neural

Cost Time Power consumption Cost Time Power consumption

5 1,75 6,75 9,26 1,00 3,90 4,39

10 1,50 6,20 35,47 1,50 8,50 11,61

15 2,75 18,00 22,96 2,00 16,00 17,85

20 1,75 12,83 35,45 2,00 22,50 20,31

25 2,00 14,50 51,25 2,00 22,00 28,93

30 2,75 16,90 63,58 2,50 23,00 35,01

35 2,00 18,00 78,30 2,50 24,67 36,12

40 2,75 17,75 104,68 2,50 17,00 72,52

45 2,25 21,75 99,50 2,50 18,67 79,02

50 2,25 23,88 113,26 2,50 21,00 88,57

55 2,50 25,00 164,58 2,50 22,50 95,33

Table 5. Comparison of Ant Colony and neural for minimization of time, cost and power consumption.

Results were illustrated on the following charts – Chart: 30, 31, and 32.

When comparing solutions obtained by the algorithms one cannot provide an unequivocal
answer which of the optimization methods is better. Greater influence on the quality of of‐
fered solutions has the algorithm itself, especially its exploration capacity of admissible solu‐
tions space. When analyzing the graphs of interdependence between cost and task number,
it appears that neural algorithm is more stable i.e. attempts to maintain low cost, despite an
increase in the number of tasks. This results in worse task performance time what is very
visible on the graph where time is contingent on the number of tasks. From power con‐
sumption analysis it is evident that ACO algorithm solutions are more beneficial.

Chart 30. Influence of number tasks on cost – minimization of time, cost and power consumption .

Ant Colony Optimization - Techniques and Applications154

Chart 31. Influence of number of tasks on time – minimization of time, cost and power consumption.

Chart 32. Influence of number of tasks on power consumption – minimization of time, cost and power consumption.

Additional requirements and constraints were adopted: maximum number of processors: 5,
maximal cost: 8, maximal time: 50.

Results were illustrated in the following charts - Chart: 33, 34, and 35.

Chart 33. Influence of number of tasks on cost – minimization of time, cost and power consumption with of cost
of memory.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

155

Chart 34. Influence of number of tasks on time – minimization of time, cost and power consumption with of cost
of memory.

Number

of tasks

Ant colony Neural

Cost Time Power consumption Cost Time Power consumption

10 6,50 2,00 37,99 4,50 6,00 7,52

20 1,50 18,50 33,15 4,00 11,00 19,07

30 5,90 23,00 82,41 5,00 14,00 30,98

40 7,00 23,00 121,56 5,00 18,00 37,33

50 4,25 16,20 186,05 5,00 21,00 49,99

60 2,50 32,00 175,24 5,00 25,00 60,20

70 2,50 38,00 167,59 5,00 29,00 69,35

80 3,25 37,00 183,67 5,00 32,00 79,19

90 4,25 28,60 328,73 5,00 36,00 98,39

100 6,75 30,33 336,36 5,50 39,00 101,62

110 4,25 41,80 435,77 5,00 43,00 115,53

Table 6. Comparison of Ant colony and neural for minimization of time, cost and power consumption.

Chart 35. Influence of number of tasks on power consumption – minimization of time, cost and power consumption
with memory cost

Ant Colony Optimization - Techniques and Applications156

6. Conclusions

Conducted research shows that presented algorithms for task scheduling obtain good solu‐
tions - irrespectively of investigated problem complexity. These solutions are considered op‐
timal or sub-optimal whose deviation from optimum does not exceed 5%. Heuristic
algorithms proposed for task scheduling problems, especially ACO, should be a good tool
for supporting planning process.

One should indicate a possible and significant impact of anomalies in task scheduling on the
quality of the obtained results. The following examples [12] show a possibility of appearing
such anomalies. Take an example of this digraph of tasks:

•

• Diminishing of performance time for all the tasks ti’ = ti – 1 and the scheduling is longer
than optimum scheduling (independently from choice list!):

For different problem instances, particular algorithms may achieve different successes; oth‐
ers may achieve worse results at different numbers of tasks. The best option is to obtain re‐
sults of different algorithms and of different runs.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

157

Chart 34. Influence of number of tasks on time – minimization of time, cost and power consumption with of cost
of memory.

Number

of tasks

Ant colony Neural

Cost Time Power consumption Cost Time Power consumption

10 6,50 2,00 37,99 4,50 6,00 7,52

20 1,50 18,50 33,15 4,00 11,00 19,07

30 5,90 23,00 82,41 5,00 14,00 30,98

40 7,00 23,00 121,56 5,00 18,00 37,33

50 4,25 16,20 186,05 5,00 21,00 49,99

60 2,50 32,00 175,24 5,00 25,00 60,20

70 2,50 38,00 167,59 5,00 29,00 69,35

80 3,25 37,00 183,67 5,00 32,00 79,19

90 4,25 28,60 328,73 5,00 36,00 98,39

100 6,75 30,33 336,36 5,50 39,00 101,62

110 4,25 41,80 435,77 5,00 43,00 115,53

Table 6. Comparison of Ant colony and neural for minimization of time, cost and power consumption.

Chart 35. Influence of number of tasks on power consumption – minimization of time, cost and power consumption
with memory cost

Ant Colony Optimization - Techniques and Applications156

6. Conclusions

Conducted research shows that presented algorithms for task scheduling obtain good solu‐
tions - irrespectively of investigated problem complexity. These solutions are considered op‐
timal or sub-optimal whose deviation from optimum does not exceed 5%. Heuristic
algorithms proposed for task scheduling problems, especially ACO, should be a good tool
for supporting planning process.

One should indicate a possible and significant impact of anomalies in task scheduling on the
quality of the obtained results. The following examples [12] show a possibility of appearing
such anomalies. Take an example of this digraph of tasks:

•

• Diminishing of performance time for all the tasks ti’ = ti – 1 and the scheduling is longer
than optimum scheduling (independently from choice list!):

For different problem instances, particular algorithms may achieve different successes; oth‐
ers may achieve worse results at different numbers of tasks. The best option is to obtain re‐
sults of different algorithms and of different runs.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

157

The goal of this scheduling is to find an optimum solution satisfying the requirements and
constraints enforced by the given specification of the tasks and resources as well as criteria.

As for the optimality criteria for the manufacturing system for better control, we shall as‐
sume its minimum cost, maximum operating speed and minimum power consumption.

We will apply multi-criteria optimization in sense of Pareto. The solution is optimized in
sense of Pareto if it is not possible to find a better solution, regarding at least one criterion
without deterioration in accordance to other criteria. The solution dominates other ones if all
its features are better. Pareto ranking of the solution is the number of solutions in a pool
which do not dominate it. The process of synthesis will produce a certain number of non-
dominated solutions. Although non-dominated solutions do not guarantee that they are an
optimal Pareto set of solutions; nevertheless, in case of a set of suboptimal solutions, they
constitute one form of higher order optimal set in sense of Pareto and they give, by the way,
access to the problem shape of Pareto optimal set of solutions.

Let’s assume that we want to optimize a solution of two contradictory requirements: the cost
and power consumption Fig. 36.

While using a traditional way with one optimization function, it is necessary to contain two
optimal criteria in one value. To do that, it is advisable to select properly the scales for the
criteria; if the scales are selected wrongly, the obtained solution will not be optimal. The
chart in the illustration shows where, using linearly weighed sum of costs, we will receive
the solution which may be optimizes in terms of costs.

Figure 36. Set of optimal solutions in sense of Pareto.

Cost optimization, power and time consumption in the problem of scheduling is, undoubt‐
edly, the problem where the potential number of solutions in sense of Pareto is enormous.

Future research: others of instances of scheduling problems, and additional criteria, espe‐
cially in sense of Pareto and for dependable systems, are still open and this issue is now
studied.

Ant Colony Optimization - Techniques and Applications158

Author details

Mieczysław Drabowski1* and Edward Wantuch1,2

*Address all correspondence to: drabowski@pk.edu.pl

1 Cracow University of Technology, Poland

2 AGH University of Science and Technology, Poland

References

[1] Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem
with availability constraints. Eur. J. Oper., Res., 153, 534-543.

[2] Ostfeld, Avi. (2011). Any Colony Optimization. Rijeka, Croatia, InTech.

[3] Błażewicz, J., Drabowski, M., & Węglarz, J. (1984). Scheduling independent 2-pro‐
cessor tasks to minimize schedule length. Inform. Proce. Lett., 18, 267-273.

[4] Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Węglarz, J. (1996). Scheduling Com‐
puter and Manufacturing Processes. Springer.

[5] Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Węglarz, J. (2007). Handbook on
Scheduling, From Theory to Applications. Springer-Verlag Berlin Heidelberg.

[6] Blum, C. (2005). Beam-ACO- Hybridizing ant colony optimization with bean search:
An application to open shop schedling. Comput. Oper. Res., 32, 1565-1591.

[7] Blum, C., & Sampels, M. (2004). An ant colony optimization algorithm for shop
scheduling problems. Journal of Mathematical Modeling and Algorithm, 3, 285-308.

[8] Breit, J., Schmidt, G., & Strusevich, V. A. (2003). Non-preemptive two-machine open
shop scheduling with non-availability constraints. Math. Method Opr. Res., 57(2),
217-234.

[9] Brucker, P. (2004). Scheduling Algorithms. Springer.

[10] Brucker, P., & Knust, S. (2006). Complex Scheduling. Springer.

[11] Cheng, T. C. E., & Liu, Z. (2003). Approximability of two-machine no-wait flowshop
scheduling with availability constraints. Opr. Res. Lett., 31, 319-322.

[12] Coffman, E. G. Jr. (1976). Computer and Job-shop scheduling theory. John Wi‐
ley&Sons, Inc. New York.

[13] Colak, S., & Agarwal, A. (2005). Non-greedy heuristiad augmented neural networks
for the open-shop scheduling problem. Naval Res. Logist., 52, 631-644.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

159

The goal of this scheduling is to find an optimum solution satisfying the requirements and
constraints enforced by the given specification of the tasks and resources as well as criteria.

As for the optimality criteria for the manufacturing system for better control, we shall as‐
sume its minimum cost, maximum operating speed and minimum power consumption.

We will apply multi-criteria optimization in sense of Pareto. The solution is optimized in
sense of Pareto if it is not possible to find a better solution, regarding at least one criterion
without deterioration in accordance to other criteria. The solution dominates other ones if all
its features are better. Pareto ranking of the solution is the number of solutions in a pool
which do not dominate it. The process of synthesis will produce a certain number of non-
dominated solutions. Although non-dominated solutions do not guarantee that they are an
optimal Pareto set of solutions; nevertheless, in case of a set of suboptimal solutions, they
constitute one form of higher order optimal set in sense of Pareto and they give, by the way,
access to the problem shape of Pareto optimal set of solutions.

Let’s assume that we want to optimize a solution of two contradictory requirements: the cost
and power consumption Fig. 36.

While using a traditional way with one optimization function, it is necessary to contain two
optimal criteria in one value. To do that, it is advisable to select properly the scales for the
criteria; if the scales are selected wrongly, the obtained solution will not be optimal. The
chart in the illustration shows where, using linearly weighed sum of costs, we will receive
the solution which may be optimizes in terms of costs.

Figure 36. Set of optimal solutions in sense of Pareto.

Cost optimization, power and time consumption in the problem of scheduling is, undoubt‐
edly, the problem where the potential number of solutions in sense of Pareto is enormous.

Future research: others of instances of scheduling problems, and additional criteria, espe‐
cially in sense of Pareto and for dependable systems, are still open and this issue is now
studied.

Ant Colony Optimization - Techniques and Applications158

Author details

Mieczysław Drabowski1* and Edward Wantuch1,2

*Address all correspondence to: drabowski@pk.edu.pl

1 Cracow University of Technology, Poland

2 AGH University of Science and Technology, Poland

References

[1] Aggoune, R. (2004). Minimizing the makespan for the flow shop scheduling problem
with availability constraints. Eur. J. Oper., Res., 153, 534-543.

[2] Ostfeld, Avi. (2011). Any Colony Optimization. Rijeka, Croatia, InTech.

[3] Błażewicz, J., Drabowski, M., & Węglarz, J. (1984). Scheduling independent 2-pro‐
cessor tasks to minimize schedule length. Inform. Proce. Lett., 18, 267-273.

[4] Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Węglarz, J. (1996). Scheduling Com‐
puter and Manufacturing Processes. Springer.

[5] Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Węglarz, J. (2007). Handbook on
Scheduling, From Theory to Applications. Springer-Verlag Berlin Heidelberg.

[6] Blum, C. (2005). Beam-ACO- Hybridizing ant colony optimization with bean search:
An application to open shop schedling. Comput. Oper. Res., 32, 1565-1591.

[7] Blum, C., & Sampels, M. (2004). An ant colony optimization algorithm for shop
scheduling problems. Journal of Mathematical Modeling and Algorithm, 3, 285-308.

[8] Breit, J., Schmidt, G., & Strusevich, V. A. (2003). Non-preemptive two-machine open
shop scheduling with non-availability constraints. Math. Method Opr. Res., 57(2),
217-234.

[9] Brucker, P. (2004). Scheduling Algorithms. Springer.

[10] Brucker, P., & Knust, S. (2006). Complex Scheduling. Springer.

[11] Cheng, T. C. E., & Liu, Z. (2003). Approximability of two-machine no-wait flowshop
scheduling with availability constraints. Opr. Res. Lett., 31, 319-322.

[12] Coffman, E. G. Jr. (1976). Computer and Job-shop scheduling theory. John Wi‐
ley&Sons, Inc. New York.

[13] Colak, S., & Agarwal, A. (2005). Non-greedy heuristiad augmented neural networks
for the open-shop scheduling problem. Naval Res. Logist., 52, 631-644.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

159

[14] Dechter, R., & Pearl, J. (1988). Network-based heuristic for constraint satisfaction
problems. Artificial Intelligence, 34, 1-38.

[15] Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000). Constraint propagation techniques
for disjunctive scheduling problems. Artificial Intelligence, 122, 189-240.

[16] Drabowski, M., & Wantuch, E. (2006). Coherent Concurrent Task Scheduling and Re‐
source Assignment in Dependable Computer Systems Design,. International Journal of
Reliability Quality and Safety Engineering, World Scientific Publishing,, 13(1), 15-24.

[17] Drabowski, M. (2007). Coherent synthesis of heterogeneous system- an ant colony
optimization approach. Proceedings of Artificial Intelligence Studies, Vol.4 (89)/2007, sup‐
ported by IEEE, Siedlce, 65-74.

[18] Drabowski, M. (2007). The ant colony in par-synthesis of computer system. Proceed‐
ings of the 11th IASTED International Conference on Artificial Intelligence and Soft Com‐
puting, Palma de Mallorca, ACTA Press, Anaheim, USA, 244-249.

[19] Drabowski, M. (2007). Coherent synthesis of heterogeneous system- an ant colony
optimization approach. Studia Informatica, 2.

[20] Drabowski, M. (2007). An Ant Colony Optimization to scheduling tasks on a grid.
Polish Journal of Environmental Studies, 16(5B).

[21] Drabowski, M. (2008). Solving Resources Assignment and Tasks Scheduling Prob‐
lems using Neural Networks. Artificial Intelligence Studies, 2.

[22] Drabowski, M. (2008). Neural networks in optimization scheduling resources and
processes for management on a grid. Polish Journal of Environmental Studies, 17(4C).

[23] Drabowski, M. (2009). Ant Colony and Neural method for scheduling of complex of
operations and resources frameworks- comparative remarks. Proceedings of the IAST‐
ED International Conference on Computational Intelligence, Honolulu, USA, ACTA Press,
Anaheim, USA, 91-97.

[24] Drabowski, M. (2011). Ant Colony Optimization for coherent synthesis of computer
system. Ostfeld A., (ed.) Ant Colony Optimization, InTech, Croatia, Austria, India,
179-204.

[25] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness,. San Francisco, Freeman.

[26] Ha, S., & Lee, E. A. (1997). Compile-Time Scheduling of Dynamic Constructs in Data‐
flow Program Graphs,. IEEE Trans. On Computers, 46(7).

[27] Leung, J. Y. T. (2004). Handbook on Scheduling: Algorithms, Models and Perform‐
ance Analysis,. Chapman&Hall, Boca Raton.

[28] Lee, C. Y. (1996). Machine scheduling with an availably constraint. J. Global Optim., 9,
363-384.

Ant Colony Optimization - Techniques and Applications160

[29] Lee, C. Y. (2004). Machine scheduling with availably constraints. Leung J.Y.T. Hand‐

book of Scheduling, CRC Press, 22, 1-22.

[30] Meseguer, P. (1989). Constraint satisfaction problems: An overview. AICOM, 2, 3-17.

[31] Montgomery, J., Fayad, C., & Petrovic, S. (2006). Solution representation for job shop

scheduling problems in ant colony optimization. LNCS, 4150, 484-491.

[32] Morton, T. E., & Pentico, D. W. (1993). Heuristic Scheduling System. Wiley, New York.

[33] Nuijten, W. P. M., & Aarts, E. H. L. (1996). A computational study of constraint satis‐

faction for multiple capacitated job shop scheduling. European J. Oper. Res., 90,

269-284.

[34] Pinedo, M. (2001). Scheduling Theory, Algorithms, and Systems,. Prentice Hall, Engle‐

wood Cliffs, N.J.

[35] Taillard, E. (1993). Benchmarks for basic scheduling problems. European J. Oper. Res.,

64, 278-285.

[36] Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, Essex.

[37] Wang, C. J., & Tsang, E. P. K. (1991). Solving constraint satisfaction problems using

neural-networks,. IEEE Second International Conference on Artificial Neural Networks.

[38] Xu, J., & Parnas, D. L. (1993). On Satisfying Timing Constraints in Hard-Real-Time

Systems. IEEE Trans. on Software Engineering, 19(1), 70-84.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

161

[14] Dechter, R., & Pearl, J. (1988). Network-based heuristic for constraint satisfaction
problems. Artificial Intelligence, 34, 1-38.

[15] Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000). Constraint propagation techniques
for disjunctive scheduling problems. Artificial Intelligence, 122, 189-240.

[16] Drabowski, M., & Wantuch, E. (2006). Coherent Concurrent Task Scheduling and Re‐
source Assignment in Dependable Computer Systems Design,. International Journal of
Reliability Quality and Safety Engineering, World Scientific Publishing,, 13(1), 15-24.

[17] Drabowski, M. (2007). Coherent synthesis of heterogeneous system- an ant colony
optimization approach. Proceedings of Artificial Intelligence Studies, Vol.4 (89)/2007, sup‐
ported by IEEE, Siedlce, 65-74.

[18] Drabowski, M. (2007). The ant colony in par-synthesis of computer system. Proceed‐
ings of the 11th IASTED International Conference on Artificial Intelligence and Soft Com‐
puting, Palma de Mallorca, ACTA Press, Anaheim, USA, 244-249.

[19] Drabowski, M. (2007). Coherent synthesis of heterogeneous system- an ant colony
optimization approach. Studia Informatica, 2.

[20] Drabowski, M. (2007). An Ant Colony Optimization to scheduling tasks on a grid.
Polish Journal of Environmental Studies, 16(5B).

[21] Drabowski, M. (2008). Solving Resources Assignment and Tasks Scheduling Prob‐
lems using Neural Networks. Artificial Intelligence Studies, 2.

[22] Drabowski, M. (2008). Neural networks in optimization scheduling resources and
processes for management on a grid. Polish Journal of Environmental Studies, 17(4C).

[23] Drabowski, M. (2009). Ant Colony and Neural method for scheduling of complex of
operations and resources frameworks- comparative remarks. Proceedings of the IAST‐
ED International Conference on Computational Intelligence, Honolulu, USA, ACTA Press,
Anaheim, USA, 91-97.

[24] Drabowski, M. (2011). Ant Colony Optimization for coherent synthesis of computer
system. Ostfeld A., (ed.) Ant Colony Optimization, InTech, Croatia, Austria, India,
179-204.

[25] Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness,. San Francisco, Freeman.

[26] Ha, S., & Lee, E. A. (1997). Compile-Time Scheduling of Dynamic Constructs in Data‐
flow Program Graphs,. IEEE Trans. On Computers, 46(7).

[27] Leung, J. Y. T. (2004). Handbook on Scheduling: Algorithms, Models and Perform‐
ance Analysis,. Chapman&Hall, Boca Raton.

[28] Lee, C. Y. (1996). Machine scheduling with an availably constraint. J. Global Optim., 9,
363-384.

Ant Colony Optimization - Techniques and Applications160

[29] Lee, C. Y. (2004). Machine scheduling with availably constraints. Leung J.Y.T. Hand‐

book of Scheduling, CRC Press, 22, 1-22.

[30] Meseguer, P. (1989). Constraint satisfaction problems: An overview. AICOM, 2, 3-17.

[31] Montgomery, J., Fayad, C., & Petrovic, S. (2006). Solution representation for job shop

scheduling problems in ant colony optimization. LNCS, 4150, 484-491.

[32] Morton, T. E., & Pentico, D. W. (1993). Heuristic Scheduling System. Wiley, New York.

[33] Nuijten, W. P. M., & Aarts, E. H. L. (1996). A computational study of constraint satis‐

faction for multiple capacitated job shop scheduling. European J. Oper. Res., 90,

269-284.

[34] Pinedo, M. (2001). Scheduling Theory, Algorithms, and Systems,. Prentice Hall, Engle‐

wood Cliffs, N.J.

[35] Taillard, E. (1993). Benchmarks for basic scheduling problems. European J. Oper. Res.,

64, 278-285.

[36] Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, Essex.

[37] Wang, C. J., & Tsang, E. P. K. (1991). Solving constraint satisfaction problems using

neural-networks,. IEEE Second International Conference on Artificial Neural Networks.

[38] Xu, J., & Parnas, D. L. (1993). On Satisfying Timing Constraints in Hard-Real-Time

Systems. IEEE Trans. on Software Engineering, 19(1), 70-84.

Scheduling in Manufacturing Systems – Ant Colony Approach
http://dx.doi.org/10.5772/51487

161

Chapter 7

Traffic-Congestion Forecasting Algorithm Based on

Pheromone Communication Model

Satoshi Kurihara

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52563

Provisional chapter

Traffic-Congestion Forecasting Algorithm Based on

Pheromone Communication Model

Satoshi Kurihara

Additional information is available at the end of the chapter

1. Introduction

The growth of intelligent transport systems (ITS) has recently been quite fast and impressive,
and various kinds of studies on ITS from the viewpoint of artificial intelligence have also
been done [1][2][3][4][5]. However, there are still many problems that need to be solved and
alleviating traffic congestion is one of the main issues. Reducing traffic congestion is quite
urgent because the amount of money lost due to congestion within only 1 km in Tokyo has
reached as much as 400 million yen per year. To alleviate this situation, two traffic-control
systems called the “Vehicle Information and Communication System (VICS)” and “the probe
car system (PCS)” are currently in operation in Japan.

VICS is a telecommunication system that transmits information such as that on traffic
congestion and the regulation of traffic by detecting car movements with sensors installed
on the road [6]. Information on car movements and that on forecasting traffic congestion are
analyzed at the VICS center in real time and then the information from the center is displayed
on equipment, such as car-navigation systems installed in individual cars (see Fig. 1).

Figure 1. VICS

©2012 Kurihara, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Kurihara; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Kurihara, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 7

Traffic-Congestion Forecasting Algorithm Based on

Pheromone Communication Model

Satoshi Kurihara

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52563

Provisional chapter

Traffic-Congestion Forecasting Algorithm Based on

Pheromone Communication Model

Satoshi Kurihara

Additional information is available at the end of the chapter

1. Introduction

The growth of intelligent transport systems (ITS) has recently been quite fast and impressive,
and various kinds of studies on ITS from the viewpoint of artificial intelligence have also
been done [1][2][3][4][5]. However, there are still many problems that need to be solved and
alleviating traffic congestion is one of the main issues. Reducing traffic congestion is quite
urgent because the amount of money lost due to congestion within only 1 km in Tokyo has
reached as much as 400 million yen per year. To alleviate this situation, two traffic-control
systems called the “Vehicle Information and Communication System (VICS)” and “the probe
car system (PCS)” are currently in operation in Japan.

VICS is a telecommunication system that transmits information such as that on traffic
congestion and the regulation of traffic by detecting car movements with sensors installed
on the road [6]. Information on car movements and that on forecasting traffic congestion are
analyzed at the VICS center in real time and then the information from the center is displayed
on equipment, such as car-navigation systems installed in individual cars (see Fig. 1).

Figure 1. VICS

©2012 Kurihara, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Kurihara; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Kurihara, licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

2 Steroids

PCS also provides information on car movements and that on forecasting traffic congestion
to individual drivers the same as VICS does. Different from VICS, this system collects traffic
information from all cars, which are considered to be movable sensor units. Each car has a
telecommunication unit and transmits several kinds of information such as position, velocity,
and the status of the car to the central server. Then, the calculated car-movement and
traffic-congestion-forecasting information are analyzed and the information from the center
is displayed on equipment, such as car-navigation systems.

Though these two systems are currently operated in Japan, the system structure of both
systems is top down and centralized, so the reaction to dynamic changes in traffic congestion
and occurrence of accidents is usually delayed and serious problems can occur when the
central server is down. In other words, there is a lack of real-time features and of robustness
in these systems.

On the other hand, traffic-control systems like ITS and PCS essentially have interesting
features for the coordination mechanisms of multi-agent systems (MASs). The coordination
mechanisms of MAS can generally be divided into two types: direct and indirect. In the
former, precise coordination can be achieved, but when the number of agents becomes
excessive the load of coordination becomes extreme. The coordination for the latter is usually
called ”stigmergy”. Stigmergy is a generic name for mechanisms that provide spontaneous,
indirect coordination between agents, where the influence in the environment left by the
behavior of one agent stimulates the performance of a subsequent action of this agent or a
different agent [7]. Since direct coordination is unnecessary in stigmergy, this mechanism
can work in situations with massive numbers of agents. However, there is no guarantee that
optimal coordination can be achieved. Therefore, how to create optimal coordination using
stigmergy is an ambitious topic for research.

Moreover, traffic-control systems essentially have an interesting feature for the system
architecture of MASs. Each agent in a MAS usually behaves to achieve a MAS goal regardless
of its local or global views, and no agent behaves selfishly for its own gain. Of course, the
goal of agents in a market-based environment is their own gain and basically they do behave
selfishly. However, in the MAS for traffic-control systems, two competitive goals need to be
achieved: the ”goal of each agent” and the ”goal of the MAS”.

In the MAS for a traffic-control system each agent, which controls each car1, wants to behave
selfishly to achieve its goal, e.g., optimal-route navigation by considering the shortest route
and the avoidance of congestion. Therefore, each agent in the ITS is in a competitive situation
similar to the conventional game environment in a MAS. However, the goal for the MAS itself
is stability and optimizing the traffic-control system. That is, eliminating traffic congestion
and minimizing the average travel time of all cars to attain a smooth traffic flow. To achieve
these goals, it may be necessary to restrict the behavior of each agent. Consequently, the
goal of each agent and the goal of the MAS have a competitive relation, and ITS is a very
interesting application for the MAS.

In the VICS and PCS currently operated in Japan, congestion information and
congestion-forecasting information are updated every 5 min. In other words, VISC or PCS
cannot forecast less than five minutes ahead. Since traffic data from sensors and cars are
collected at the central server and calculations are done by using all the data, this process

1 A system that interacts with a human driver to lead him to a destination as in a car-navigation system.

Ant Colony Optimization - Techniques and Applications164
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 3

needs a certain amount of time. Therefore, we propose a new congestion-forecasting system
that can react to dynamically changing traffic conditions based on a coordination mechanism
using the pheromone-communication model. Its main feature is to be able to forecast
short-term congestion one or two minutes ahead. There have been many studies on ITS
[8][9][10], but there have been few on the forecasting of short-term congestion.

Section 2 discusses traffic-congestion information for car agents and proposes a method
of forecasting congestion that uses a multi-agent coordination mechanism for road agents
set up at intersections based on a pheromone-communications model, which adaptively
responds to increasing amounts of congestion. Section 3 discusses our tests to verify the
basic effectiveness of this method. Finally, we conclude this paper in Section 4.

2. Method of forecasting congestion based on pheromone-

communications model

Congestion-forecasting technology is one of the main elements of ITS. Up to now, several
methods have been proposed, two of which are classified below.

• Long-term forecasting of congestion: A method of statistically analyzing past traffic data,
and discovering a pattern where congestion has occurred [13].

• Short-term forecasting of congestion: A method of forecasting congestion a few minutes
ahead by using real-time information.

Although it can effectively make forecasts under regular-congestion conditions that have
originated from car and road situations, a large amount of past data is necessary for analysis.
Moreover, it has weaknesses in forecasting under irregular-congestion conditions, such as
those experienced during the Golden-week holidays in Japan and the Christmas-holiday
season in the U.S.

VICS and PCS essentially belong to the second classification, and is excellent at short-term
forecasting of congestion. Yet, in the current VICS and PCS that is operating in Japan,
data from each car is collected at the central server and all calculations are done there.
Consequently, it is difficult to supply real-time information due to bottlenecks and time
lags in communicating information and the centralized calculations.

For solving these problems, a short-term system of forecasting congestion based on
distributed processing is adequate. This paper focuses on ”roads”, and we propose a MAS
consisting of many road agents. These road agents are set up at every intersection, and they
coordinate locally with one another to forecast congestion. In this research, we adopted the
pheromone-communications model as the mechanism for coordination.

Pheromone communications are based on the behavior of social insects like ants and bees
and are applied as a model that is used to adaptively respond to dynamic changes in the
environment in various applications [12] (see Fig. 2). Our method is an effective way of
forecasting congestion in which each road agent generates pheromone information on its
own road unit and exchanges this information with its neighboring agents. In a related
study, Ando et al. investigated the forecasting of congestion in a local area a short time after
pheromones had evaporated and diffused [11]. However, all drivers need to have the same
probe-car system installed in their vehicles. Even though there has been some discussion on

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

165

2 Steroids

PCS also provides information on car movements and that on forecasting traffic congestion
to individual drivers the same as VICS does. Different from VICS, this system collects traffic
information from all cars, which are considered to be movable sensor units. Each car has a
telecommunication unit and transmits several kinds of information such as position, velocity,
and the status of the car to the central server. Then, the calculated car-movement and
traffic-congestion-forecasting information are analyzed and the information from the center
is displayed on equipment, such as car-navigation systems.

Though these two systems are currently operated in Japan, the system structure of both
systems is top down and centralized, so the reaction to dynamic changes in traffic congestion
and occurrence of accidents is usually delayed and serious problems can occur when the
central server is down. In other words, there is a lack of real-time features and of robustness
in these systems.

On the other hand, traffic-control systems like ITS and PCS essentially have interesting
features for the coordination mechanisms of multi-agent systems (MASs). The coordination
mechanisms of MAS can generally be divided into two types: direct and indirect. In the
former, precise coordination can be achieved, but when the number of agents becomes
excessive the load of coordination becomes extreme. The coordination for the latter is usually
called ”stigmergy”. Stigmergy is a generic name for mechanisms that provide spontaneous,
indirect coordination between agents, where the influence in the environment left by the
behavior of one agent stimulates the performance of a subsequent action of this agent or a
different agent [7]. Since direct coordination is unnecessary in stigmergy, this mechanism
can work in situations with massive numbers of agents. However, there is no guarantee that
optimal coordination can be achieved. Therefore, how to create optimal coordination using
stigmergy is an ambitious topic for research.

Moreover, traffic-control systems essentially have an interesting feature for the system
architecture of MASs. Each agent in a MAS usually behaves to achieve a MAS goal regardless
of its local or global views, and no agent behaves selfishly for its own gain. Of course, the
goal of agents in a market-based environment is their own gain and basically they do behave
selfishly. However, in the MAS for traffic-control systems, two competitive goals need to be
achieved: the ”goal of each agent” and the ”goal of the MAS”.

In the MAS for a traffic-control system each agent, which controls each car1, wants to behave
selfishly to achieve its goal, e.g., optimal-route navigation by considering the shortest route
and the avoidance of congestion. Therefore, each agent in the ITS is in a competitive situation
similar to the conventional game environment in a MAS. However, the goal for the MAS itself
is stability and optimizing the traffic-control system. That is, eliminating traffic congestion
and minimizing the average travel time of all cars to attain a smooth traffic flow. To achieve
these goals, it may be necessary to restrict the behavior of each agent. Consequently, the
goal of each agent and the goal of the MAS have a competitive relation, and ITS is a very
interesting application for the MAS.

In the VICS and PCS currently operated in Japan, congestion information and
congestion-forecasting information are updated every 5 min. In other words, VISC or PCS
cannot forecast less than five minutes ahead. Since traffic data from sensors and cars are
collected at the central server and calculations are done by using all the data, this process

1 A system that interacts with a human driver to lead him to a destination as in a car-navigation system.

Ant Colony Optimization - Techniques and Applications164
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 3

needs a certain amount of time. Therefore, we propose a new congestion-forecasting system
that can react to dynamically changing traffic conditions based on a coordination mechanism
using the pheromone-communication model. Its main feature is to be able to forecast
short-term congestion one or two minutes ahead. There have been many studies on ITS
[8][9][10], but there have been few on the forecasting of short-term congestion.

Section 2 discusses traffic-congestion information for car agents and proposes a method
of forecasting congestion that uses a multi-agent coordination mechanism for road agents
set up at intersections based on a pheromone-communications model, which adaptively
responds to increasing amounts of congestion. Section 3 discusses our tests to verify the
basic effectiveness of this method. Finally, we conclude this paper in Section 4.

2. Method of forecasting congestion based on pheromone-

communications model

Congestion-forecasting technology is one of the main elements of ITS. Up to now, several
methods have been proposed, two of which are classified below.

• Long-term forecasting of congestion: A method of statistically analyzing past traffic data,
and discovering a pattern where congestion has occurred [13].

• Short-term forecasting of congestion: A method of forecasting congestion a few minutes
ahead by using real-time information.

Although it can effectively make forecasts under regular-congestion conditions that have
originated from car and road situations, a large amount of past data is necessary for analysis.
Moreover, it has weaknesses in forecasting under irregular-congestion conditions, such as
those experienced during the Golden-week holidays in Japan and the Christmas-holiday
season in the U.S.

VICS and PCS essentially belong to the second classification, and is excellent at short-term
forecasting of congestion. Yet, in the current VICS and PCS that is operating in Japan,
data from each car is collected at the central server and all calculations are done there.
Consequently, it is difficult to supply real-time information due to bottlenecks and time
lags in communicating information and the centralized calculations.

For solving these problems, a short-term system of forecasting congestion based on
distributed processing is adequate. This paper focuses on ”roads”, and we propose a MAS
consisting of many road agents. These road agents are set up at every intersection, and they
coordinate locally with one another to forecast congestion. In this research, we adopted the
pheromone-communications model as the mechanism for coordination.

Pheromone communications are based on the behavior of social insects like ants and bees
and are applied as a model that is used to adaptively respond to dynamic changes in the
environment in various applications [12] (see Fig. 2). Our method is an effective way of
forecasting congestion in which each road agent generates pheromone information on its
own road unit and exchanges this information with its neighboring agents. In a related
study, Ando et al. investigated the forecasting of congestion in a local area a short time after
pheromones had evaporated and diffused [11]. However, all drivers need to have the same
probe-car system installed in their vehicles. Even though there has been some discussion on

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

165

4 Steroids

When one ant finds an advantageous path from the colony to food, others are
more likely to follow that path, and positive feedback eventually leads all the
ants to follow a single path.

Figure 2. Ant-colony optimization

information being shared, individual automobile manufacturers are currently developing
their own probe-car systems and consequently the rate of diffusion of these probe-car
systems is quite low. Therefore, we decided to develop a more realistic and universal system
by focusing on the road and not the cars.

Figure 3. Structure of road environment

Figure 4. Two important flows in congestion dynamics

Ant Colony Optimization - Techniques and Applications166
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 5

,

,

Figure 5. Flow chart for forecasting congestion

2.1. Congestion-forecasting algorithm

First, we will define the road environment as follows (see Fig. 3):

• A road unit is a section between two connected intersections. Each road unit consists of
several lanes, usually in both directions, with no branching.

• The number of cars going through an intersection is counted by a sensor installed at
each intersection, and this number is sent to each road agent installed on roadside server
computers at regular intervals.

• The road agent installed in each roadside server computer calculates and forecasts the
traffic congestion.

Therefore, central servers and probe-car systems are not necessary with our method.

A road unit on which a car is currently traveling is called “upstream”, and a road unit
that will be reached in the future is called “downstream”. We focused on two important
car-flow dynamics to investigate traffic congestion (see Fig. 4). The first was the flow in
traffic density, which spreads from upstream to downstream, corresponding to the movement
of cars. The second was the flow in traffic congestion, which spreads from downstream to
upstream. At this point, the traffic congestion is defined as follows: a certain road unit
becomes bottle-necked blocking the flow of cars. This blocking generates a queue of cars
from downstream to upstream.

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

167

4 Steroids

When one ant finds an advantageous path from the colony to food, others are
more likely to follow that path, and positive feedback eventually leads all the
ants to follow a single path.

Figure 2. Ant-colony optimization

information being shared, individual automobile manufacturers are currently developing
their own probe-car systems and consequently the rate of diffusion of these probe-car
systems is quite low. Therefore, we decided to develop a more realistic and universal system
by focusing on the road and not the cars.

Figure 3. Structure of road environment

Figure 4. Two important flows in congestion dynamics

Ant Colony Optimization - Techniques and Applications166
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 5

,

,

Figure 5. Flow chart for forecasting congestion

2.1. Congestion-forecasting algorithm

First, we will define the road environment as follows (see Fig. 3):

• A road unit is a section between two connected intersections. Each road unit consists of
several lanes, usually in both directions, with no branching.

• The number of cars going through an intersection is counted by a sensor installed at
each intersection, and this number is sent to each road agent installed on roadside server
computers at regular intervals.

• The road agent installed in each roadside server computer calculates and forecasts the
traffic congestion.

Therefore, central servers and probe-car systems are not necessary with our method.

A road unit on which a car is currently traveling is called “upstream”, and a road unit
that will be reached in the future is called “downstream”. We focused on two important
car-flow dynamics to investigate traffic congestion (see Fig. 4). The first was the flow in
traffic density, which spreads from upstream to downstream, corresponding to the movement
of cars. The second was the flow in traffic congestion, which spreads from downstream to
upstream. At this point, the traffic congestion is defined as follows: a certain road unit
becomes bottle-necked blocking the flow of cars. This blocking generates a queue of cars
from downstream to upstream.

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

167

6 Steroids

Figure 6. Calculation of current traffic situation

In this paper, we formulate the flow of traffic density using “traffic-density pheromones ∆τ”
and formulate the growth of the queue using “congestion-diffusion pheromones q”. To make
forecasts more accurate, we introduce the “evaporation rate e”, which indicates the change
in congestion density from generation to dissolution.

Each road agent in our algorithm forecasts traffic congestion at one minute intervals, as
shown in Fig. 5, where τ(p, t, x) is the forecasted traffic density of a road unit s at time t
and ∆τ(p, t, x) is the forecasted transition in traffic congestion of road unit s at time t. Even
though the calculation interval for forecasting can be shortened further, this increases the
load of communication between the sensor and road agent. The one-minute intervals are
much shorter than the five minutes of VICS.

Forecasting one minute ahead is calculated through coordination between each agent
and their adjacent neighbouring agents. And forecasting two or more minutes ahead is
calculated through coordination between each agent and more dispersed neighbouring
agents.

2.2. Calculation of the current traffic situation

The inflowing amount, I(p, t), and outflowing number, O(p, t), of cars at regular intervals
t are measured with a sensor and are sent to road agents. I(p, t) indicates how many cars
flowed into a road unit, p, and O(p, t) indicates how many flowed out of it. First, the road
agent that receives this information calculates the traffic density as

N(p, t) = N(p, t − 1) + I(p, t)− O(p, t) (1)

d(p, t) =
N(p, t)× lcar

lp × Lp
(2)

where N(p, t) is the number of cars, d(p, t) is the traffic density at intervals t of a road unit,
p, lcar is the length of a car2, lp is the length of the road unit, p, and Lp is the number of
lanes of p (see Fig. 6).

2 More precisely, the length of a car + the distance between two cars.

Ant Colony Optimization - Techniques and Applications168
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 7

Figure 7. Traffic simulator

2.3. Calculation of congestion forecasting pheromone

Each road agent calculates the congestion forecasting pheromone, τ, which indicates the
forecasted congestion density that will occur a few minutes ahead the current situation.
τ(p, t, 0) = d(p, t) and ∆τ(p, t, 0) = I(p, t)− O(p, t) are the initial values for this calculation.
As Fig. 5 shows, the traffic-density pheromones ∆τ(p, t, x), congestion-diffusion pheromones
q(p, t, x), and evaporation rate e(p, t, x) are calculated using τ(p, t, x − 1), ∆τ(p, t, x − 1),
τ(p′, t, x − 1), and ∆τ(p′, t, x − 1). At this point, τ(p′, t, x − 1) and ∆τ(p′, t, x − 1) are given
from the neighbouring road unit. Then, τ(p, t, x) is calculated.

(a) Calculation of traffic-density pheromones

As previously mentioned, the traffic density spreads from upstream to downstream,
corresponding to the movement of cars. What is important is how fast this flow is
transmitted, and we define the transmitting velocity of traffic density as S(p, t, x).

S(p, t, x) = sp × bsp × j f (p, t, x) (3)

Here, sp is the distance that a car moves during a certain time span and this is calculated
from the maximum legal speed limit of road unit p. bsp is the proportion of time green lights
are displayed in a signal cycle in the traveling direction of the car on this road. Moreover,
j f (p, t, x) is a congestion factor that shows the decreasing ratio of the transmitting velocity
of traffic density due to the congestion.

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

169

6 Steroids

Figure 6. Calculation of current traffic situation

In this paper, we formulate the flow of traffic density using “traffic-density pheromones ∆τ”
and formulate the growth of the queue using “congestion-diffusion pheromones q”. To make
forecasts more accurate, we introduce the “evaporation rate e”, which indicates the change
in congestion density from generation to dissolution.

Each road agent in our algorithm forecasts traffic congestion at one minute intervals, as
shown in Fig. 5, where τ(p, t, x) is the forecasted traffic density of a road unit s at time t
and ∆τ(p, t, x) is the forecasted transition in traffic congestion of road unit s at time t. Even
though the calculation interval for forecasting can be shortened further, this increases the
load of communication between the sensor and road agent. The one-minute intervals are
much shorter than the five minutes of VICS.

Forecasting one minute ahead is calculated through coordination between each agent
and their adjacent neighbouring agents. And forecasting two or more minutes ahead is
calculated through coordination between each agent and more dispersed neighbouring
agents.

2.2. Calculation of the current traffic situation

The inflowing amount, I(p, t), and outflowing number, O(p, t), of cars at regular intervals
t are measured with a sensor and are sent to road agents. I(p, t) indicates how many cars
flowed into a road unit, p, and O(p, t) indicates how many flowed out of it. First, the road
agent that receives this information calculates the traffic density as

N(p, t) = N(p, t − 1) + I(p, t)− O(p, t) (1)

d(p, t) =
N(p, t)× lcar

lp × Lp
(2)

where N(p, t) is the number of cars, d(p, t) is the traffic density at intervals t of a road unit,
p, lcar is the length of a car2, lp is the length of the road unit, p, and Lp is the number of
lanes of p (see Fig. 6).

2 More precisely, the length of a car + the distance between two cars.

Ant Colony Optimization - Techniques and Applications168
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 7

Figure 7. Traffic simulator

2.3. Calculation of congestion forecasting pheromone

Each road agent calculates the congestion forecasting pheromone, τ, which indicates the
forecasted congestion density that will occur a few minutes ahead the current situation.
τ(p, t, 0) = d(p, t) and ∆τ(p, t, 0) = I(p, t)− O(p, t) are the initial values for this calculation.
As Fig. 5 shows, the traffic-density pheromones ∆τ(p, t, x), congestion-diffusion pheromones
q(p, t, x), and evaporation rate e(p, t, x) are calculated using τ(p, t, x − 1), ∆τ(p, t, x − 1),
τ(p′, t, x − 1), and ∆τ(p′, t, x − 1). At this point, τ(p′, t, x − 1) and ∆τ(p′, t, x − 1) are given
from the neighbouring road unit. Then, τ(p, t, x) is calculated.

(a) Calculation of traffic-density pheromones

As previously mentioned, the traffic density spreads from upstream to downstream,
corresponding to the movement of cars. What is important is how fast this flow is
transmitted, and we define the transmitting velocity of traffic density as S(p, t, x).

S(p, t, x) = sp × bsp × j f (p, t, x) (3)

Here, sp is the distance that a car moves during a certain time span and this is calculated
from the maximum legal speed limit of road unit p. bsp is the proportion of time green lights
are displayed in a signal cycle in the traveling direction of the car on this road. Moreover,
j f (p, t, x) is a congestion factor that shows the decreasing ratio of the transmitting velocity
of traffic density due to the congestion.

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

169

8 Steroids

j f (p, t, x) =

{

1.0 (τ(p, t, x − 1) < α)
1.0 − τ(p, t, x − 1) (τ(p, t, x − 1) ≥ α)

(4)

α is a threshold where the congestion factor demonstrates the effect, and α = 0.5 is used
here. S(p, t, x) indicates the transmission distance of the traffic density in the one time span,
so the ratio of S(p, t, x) and lp is important.

∆τ(p, t, x) = ∑
p′⊂Nb

f (p, p′)× ∆τ
′(p′, p, t, x) (5)

∆τ
′(p, t, x) =

{

∆τ(p, t, x − 1)&(S(p, t, x) > lp)
S(p,t,x)

lp
× ∆τ(p, t, x − 1)&(S(p, t, x) ≤ lp)

(6)

where Nb indicates the set of upstream road units p and f (p, p′) is a parameter that changes
based on the relation between p and p′. In this study, f (p, p′) was 0.7 when the road unit,
p′ → p, was straight, 0.2 when it turned left, and 0.1 when it turned right.

(b) Calculation of congestion diffusion pheromones

As previously mentioned, traffic congestion spreads from downstream to upstream.
Therefore, the congestion diffusion pheromones are defined based on the difference between
the congestion level of the current road unit and the congestion level of the next road unit.

q(p, t, x) = ∑
p”⊂Nf

g(p, p”)× q′(p”, p, t, x) (7)

q′(p”, p, t, x) = {τ(p”, t, x − 1)− τ(p, t, x − 1)} (8)

where Nf indicates the set of downstream road unit p, and g(p, p”) is a parameter that

changes based on the relation between p and p′′, which is the same as f (p, p′).

1 min ahead 3 min ahead 5 min ahead

Forecasting with pheromone method 0.98 0.94 0.91

Conventional forecasting 0.95 0.88 0.79

Table 1. Comparison of correlation coefficient between forecast and actual values due to changes in traffic density

(forecasting 1 min ahead).

(c) Calculation of evaporation rate

As previously mentioned, the evaporation rate indicates the change in congestion density
due to its generation and dissolution. That is, by referring to the degree of traffic change,

Ant Colony Optimization - Techniques and Applications170
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 9

Figure 8. Forecasting scenario in simulator

Figure 9. Comparison of congestion forecasting due to changes in traffic density (forecasting 1 min ahead).

∆τ(p, t, 0) = I(p, t)− O(p, t), ∆τ becoming larger than normal means that traffic congestion
will occur. However, ∆τ becoming smaller than normal means that traffic congestion is
“evaporating”. To determine the amount of normal traffic change on the road unit p, the
decentralization, vp, of this change is calculated using the data from a previous day.

e(p, t, x) =











β1&(v(p, t, 0) > x × vp)

1.0&(−x × vp < v(p, t, 0) < x × vp)

β2&(v(p, t, 0) < −x × vp)

(9)

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

171

8 Steroids

j f (p, t, x) =

{

1.0 (τ(p, t, x − 1) < α)
1.0 − τ(p, t, x − 1) (τ(p, t, x − 1) ≥ α)

(4)

α is a threshold where the congestion factor demonstrates the effect, and α = 0.5 is used
here. S(p, t, x) indicates the transmission distance of the traffic density in the one time span,
so the ratio of S(p, t, x) and lp is important.

∆τ(p, t, x) = ∑
p′⊂Nb

f (p, p′)× ∆τ
′(p′, p, t, x) (5)

∆τ
′(p, t, x) =

{

∆τ(p, t, x − 1)&(S(p, t, x) > lp)
S(p,t,x)

lp
× ∆τ(p, t, x − 1)&(S(p, t, x) ≤ lp)

(6)

where Nb indicates the set of upstream road units p and f (p, p′) is a parameter that changes
based on the relation between p and p′. In this study, f (p, p′) was 0.7 when the road unit,
p′ → p, was straight, 0.2 when it turned left, and 0.1 when it turned right.

(b) Calculation of congestion diffusion pheromones

As previously mentioned, traffic congestion spreads from downstream to upstream.
Therefore, the congestion diffusion pheromones are defined based on the difference between
the congestion level of the current road unit and the congestion level of the next road unit.

q(p, t, x) = ∑
p”⊂Nf

g(p, p”)× q′(p”, p, t, x) (7)

q′(p”, p, t, x) = {τ(p”, t, x − 1)− τ(p, t, x − 1)} (8)

where Nf indicates the set of downstream road unit p, and g(p, p”) is a parameter that

changes based on the relation between p and p′′, which is the same as f (p, p′).

1 min ahead 3 min ahead 5 min ahead

Forecasting with pheromone method 0.98 0.94 0.91

Conventional forecasting 0.95 0.88 0.79

Table 1. Comparison of correlation coefficient between forecast and actual values due to changes in traffic density

(forecasting 1 min ahead).

(c) Calculation of evaporation rate

As previously mentioned, the evaporation rate indicates the change in congestion density
due to its generation and dissolution. That is, by referring to the degree of traffic change,

Ant Colony Optimization - Techniques and Applications170
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 9

Figure 8. Forecasting scenario in simulator

Figure 9. Comparison of congestion forecasting due to changes in traffic density (forecasting 1 min ahead).

∆τ(p, t, 0) = I(p, t)− O(p, t), ∆τ becoming larger than normal means that traffic congestion
will occur. However, ∆τ becoming smaller than normal means that traffic congestion is
“evaporating”. To determine the amount of normal traffic change on the road unit p, the
decentralization, vp, of this change is calculated using the data from a previous day.

e(p, t, x) =











β1&(v(p, t, 0) > x × vp)

1.0&(−x × vp < v(p, t, 0) < x × vp)

β2&(v(p, t, 0) < −x × vp)

(9)

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

171

10 Steroids

The above expression shows that when the difference between the observed amount of
traffic and the amount of traffic in normal conditions increases, the degree of congestion
generation and congestion evaporation becomes big. β1 and β2 are parameters that indicate
the degree of evaporation and in this study, β1 is 1.1 and β2 is 0.9.

(d) Calculating congestion-forecasting pheromones

The forecasting of congestion pheromones after x minutes is calculated from the above value
as follows.

τ(p, t, x) = e(p, t, x)× τ(p, t, x − 1) + ∆τ(p, t, x) + q(p, t, x) (10)

Each road agent forecasts short-term traffic congestion by sequentially and repeatedly
calculating (a) to (d) from the above.

2.4. Simulations

To experimentally verify the basic effectiveness of our proposed forecasting model, we
implemented a simple simulation environment and compared the accuracy of forecasting a
few minutes ahead (i.e., one, three, and five minutes) with the proposed and a conventional
method. We especially verified the effectiveness of our methodology in two respects, i.e.,

1. The forecasting accuracy of generation/dis-
solution of congestion due to changes in traffic density and

2. The forecasting accuracy of generation/dis-
solution of congestion due to sudden accidents.

The correlation coefficient of the actual measurements and the forecasting values was used
for the evaluation, and the simulation environment shown in Fig. 7 was used for the
experiment. This simple simulator had a 5 x 5 lattice structure with single-lane roads. There
was one traffic signal at each intersection. The length of one road unit, i.e., the distance
between two consecutive intersections, was 400 m.

In this experiment, we set 1time − step to 1sec and 1time − span to 60time − steps. Each road
agent calculated the traffic density on its own road unit every minute, and forecasted until 5
minutes ahead. To evaluate the effectiveness of the proposed method, we used a conventional
method of short-term forecasting based on a statistical approach [8] and made forecasts 1, 3,
and 5 min ahead.

This conventional forecasting approach was based on the assumption that the current
congestion situation would generally continue for a few minutes. The current VICS and
PCS update their congestion information every five minutes, so if we used this conventional
method to forecast five minutes ahead, it could basically be thought of as using the same
approach as VICS and PCS.

Fig. 8 is an expansion of part of the simulator used in executing the forecasts. We can see
that one road agent forecasts congestion of its road unit that will not occur within 5 min but

Ant Colony Optimization - Techniques and Applications172
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 11

Figure 10. Comparison of congestion forecasts due to sudden accidents (forecasting 1 min ahead)

occur after this. On the other hand, we can also see that one agent forecasts congestion of its
road unit that will continue for longer than 5 min.

1 min ahead 3 min ahead 5 min ahead

Forecasting with pheromone method 0.98 0.94 0.86

Conventional forecasting 0.86 0.66 0.45

Table 2. Comparison of correlation coefficient between forecast and actual values due to sudden accidents

2.4.1. Congestion due to changes in traffic density

Traffic congestion is usually generated when more than the acceptable number of cars moves
into a road unit. We carried out the simulation for about 2 hours and generated and
evaporated congestion several times by changing the traffic density. We then compared our
proposed method with the conventional approach by forecasting 1, 3, and 5 min ahead.

As a result, our proposed approach had a higher accuracy than the conventional method
(Table 1). Fig. 9 shows the change in the actual traffic-congestion level (blue line) and
the forecast congestion level 1 min ahead by using the conventional (yellow line) and our
approach (red line). The change in the red line is similar to that in the blue line. The change
in the yellow line, on the other hand, is delayed. Therefore, our proposed method can forecast
congestion more accurately than the conventional approach.

2.4.2. Congestion due to sudden accidents

Next, we evaluated how accurately congestion could be forecast when sudden accidents
occurred. This type of congestion does not happen based on changes in traffic density, but
it occurs due to the decreased capacity of the roads to accommodate cars traveling along
them. Since this decrease in capacity happens suddenly, the speed at which congestion is
diffused is very rapid. In our simulation, we compared the effectiveness of our proposed
method with that of the conventional approach by quickly changing the traffic density of a

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

173

10 Steroids

The above expression shows that when the difference between the observed amount of
traffic and the amount of traffic in normal conditions increases, the degree of congestion
generation and congestion evaporation becomes big. β1 and β2 are parameters that indicate
the degree of evaporation and in this study, β1 is 1.1 and β2 is 0.9.

(d) Calculating congestion-forecasting pheromones

The forecasting of congestion pheromones after x minutes is calculated from the above value
as follows.

τ(p, t, x) = e(p, t, x)× τ(p, t, x − 1) + ∆τ(p, t, x) + q(p, t, x) (10)

Each road agent forecasts short-term traffic congestion by sequentially and repeatedly
calculating (a) to (d) from the above.

2.4. Simulations

To experimentally verify the basic effectiveness of our proposed forecasting model, we
implemented a simple simulation environment and compared the accuracy of forecasting a
few minutes ahead (i.e., one, three, and five minutes) with the proposed and a conventional
method. We especially verified the effectiveness of our methodology in two respects, i.e.,

1. The forecasting accuracy of generation/dis-
solution of congestion due to changes in traffic density and

2. The forecasting accuracy of generation/dis-
solution of congestion due to sudden accidents.

The correlation coefficient of the actual measurements and the forecasting values was used
for the evaluation, and the simulation environment shown in Fig. 7 was used for the
experiment. This simple simulator had a 5 x 5 lattice structure with single-lane roads. There
was one traffic signal at each intersection. The length of one road unit, i.e., the distance
between two consecutive intersections, was 400 m.

In this experiment, we set 1time − step to 1sec and 1time − span to 60time − steps. Each road
agent calculated the traffic density on its own road unit every minute, and forecasted until 5
minutes ahead. To evaluate the effectiveness of the proposed method, we used a conventional
method of short-term forecasting based on a statistical approach [8] and made forecasts 1, 3,
and 5 min ahead.

This conventional forecasting approach was based on the assumption that the current
congestion situation would generally continue for a few minutes. The current VICS and
PCS update their congestion information every five minutes, so if we used this conventional
method to forecast five minutes ahead, it could basically be thought of as using the same
approach as VICS and PCS.

Fig. 8 is an expansion of part of the simulator used in executing the forecasts. We can see
that one road agent forecasts congestion of its road unit that will not occur within 5 min but

Ant Colony Optimization - Techniques and Applications172
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 11

Figure 10. Comparison of congestion forecasts due to sudden accidents (forecasting 1 min ahead)

occur after this. On the other hand, we can also see that one agent forecasts congestion of its
road unit that will continue for longer than 5 min.

1 min ahead 3 min ahead 5 min ahead

Forecasting with pheromone method 0.98 0.94 0.86

Conventional forecasting 0.86 0.66 0.45

Table 2. Comparison of correlation coefficient between forecast and actual values due to sudden accidents

2.4.1. Congestion due to changes in traffic density

Traffic congestion is usually generated when more than the acceptable number of cars moves
into a road unit. We carried out the simulation for about 2 hours and generated and
evaporated congestion several times by changing the traffic density. We then compared our
proposed method with the conventional approach by forecasting 1, 3, and 5 min ahead.

As a result, our proposed approach had a higher accuracy than the conventional method
(Table 1). Fig. 9 shows the change in the actual traffic-congestion level (blue line) and
the forecast congestion level 1 min ahead by using the conventional (yellow line) and our
approach (red line). The change in the red line is similar to that in the blue line. The change
in the yellow line, on the other hand, is delayed. Therefore, our proposed method can forecast
congestion more accurately than the conventional approach.

2.4.2. Congestion due to sudden accidents

Next, we evaluated how accurately congestion could be forecast when sudden accidents
occurred. This type of congestion does not happen based on changes in traffic density, but
it occurs due to the decreased capacity of the roads to accommodate cars traveling along
them. Since this decrease in capacity happens suddenly, the speed at which congestion is
diffused is very rapid. In our simulation, we compared the effectiveness of our proposed
method with that of the conventional approach by quickly changing the traffic density of a

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

173

12 Steroids

certain road unit. As Table 2 and Fig. 10 show, our proposed method is more accurate than
the conventional scheme. Forecasting accuracy particularly worsened with the conventional
method during long-term forecasts. However, we were able to maintain accurate forecasts
with our method.

3. Conclusion

We proposed a method of forecasting congestion using a multi-agent coordination
mechanism. A road agent installed at each intersection coordinates with its neighboring
road agents based on the pheromone-communications model to adaptively respond to
dynamically arising congestion and forecasts congestion a few minutes ahead. Here, we
tested and verified the basic effectiveness of this method using simple simulation.

It is unnecessary in our approach to utilize a sufficient number of cars with the same
probe system [8], or to upgrade the central server. At the very least, it needs to have
simple sensors installed to count the number of cars moving through intersections, and
small computers for road agents at these intersections. However, we have assumed that
various kinds of computers, servers, and sensors will be installed in various locations to
gather large amounts of information from the real world in about 5-10 years as part of
urban scanning. Actually, small-scale real-world experiments are now being conducted
in several locations throughout Japan [17]. These are based on the development of
ubiquitous-information-communication technologies such as sensor-networks and wireless
communication devices. In such situations, our method is expected to be quite practical.
This evaluation was only done through simulation, and the road map used had a simple
lattice structure. However, as we have already obtained detailed road data and VICS/PCS
data throughout the entire country of Japan, we can shortly begin to evaluate our method
using these real-world data.

As for traffic light control, all traffic lights need to react to dynamic changes in traffic in
real time [14][15][16] in traffic-light-control systems, which are also the primary systems for
controlling traffic. However, the current system cannot respond to dynamic changes in road
conditions in real time even though some automatic control occurs according to the traffic
flow. We also plan to develop a new traffic-light-control algorithm based on a MAS.

Author details

Satoshi Kurihara

Osaka University, Japan

References

[1] V. R. Tomás and L. A. Garcia: A Cooperative Multiagent System for Traffic Management
and Control, The Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-06), 2006.

[2] T. Nakata and J. Takeuchi: Mining Traffic Data from Probe-Car System for Travel Time
Prediction, KDD’04, pp. 22-25, 2004.

Ant Colony Optimization - Techniques and Applications174
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 13

[3] X.-H. Yu and W. W. Recker: Stochastic adaptive control model for traffic signal systems,
Transportation Research Part C 14, pp. 263-282, Elsevier, 2006.

[4] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L. Bertini, and J. Rucker: Travel Time
Estimation Using NiagaraST and latte, SIGMOD’07, pp. 1091-1093, 2007.

[5] J.-D. Schmocker, S. Ahuja, and M. G. H. Bell: Multi-objective signal control of urban
junctions - Framework and a London case study, Transportation Research Part C 16, pp.
454-470, 2008.

[6] http://www.vics.or.jp/english/index.html

[7] "Definitions of stigmergy." From a special Issue of Artificial Life on Stigmergy. Volume
5, Issue 2 / Spring 1999.

[8] P. G. Balaji, G. Sachdeva, D. Srinivasan, Multi-agent System based Urban Traffic
Management, IEEE Congress on Evolutionary Computation 2007, pp. 1740–1747, 2007.

[9] Ana L. C. Bazzan, Opportunities for multiagent systems and multiagent reinforcement
learning in traffic control, Autonomous Agents and Multi-Agent Systems, Vol. 18, No.
3, pp. 313–341, 2009.

[10] J. J. Sánchez-Medina and M. J. Gálan-Moreno and E. Rubio-Royo", Traffic Signal
Optimization in La Almozara District in Saragossa Under Congestion Conditions, Using
Genetic Algorithms, Traffic Microsimulation, and Cluster Computing, IEEE Transaction
on Intelligent Transportation Systems, Vol. 11, No. 1. pp. 132–141, 2010.

[11] Y. Ando, Y. Fukazawa, O. Masutani, H. Iwasaki, and S. Honiden: Performance of
Pheromone Model for Predicting Traffic Congestion, The Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-06), 2006.

[12] M. Dorigo and G. di Caro: The ant colony optimization meta-heuristic, New ideas in
optimization, McGrawHill, pp. 11-32, 1999.

[13] E. Chung: Classification of traffic pattern. Proceedings of the 11th World Congress on
ITS, 2003.

[14] M. Wiering: Multi-Agent Reinforcement Learning for Traffic Light Control, Machine
Learning, Proceedings of the Seventeenth International Conference (ICML’2000), pp.
1151-1158, 2000.

[15] D. Oliveira, A. L. C. Bazzan, B. C. Silva, E. W. Basso, L. Nunes, and R. J. F. Rossetti, E.
C. Oliveira, R. Silva, and L. C. Lamb: Reinforcement learning based control of traffic
lights in non-stationary environments: A case study in a microscopic simulator, Proc. of
EUMAS06, pp. 31-42, 2006.

[16] D. Oliveira, P. Ferreira, and A. L. C. Bazzan: Reducing traffic jams with a swarm-based
approach for selection of signal plans, Proc. ANTS 2004, Vol. 3172 of LNCS, pp. 416-417,
Berlin, Germany, 2004.

[17] http://uscan.osoite.jp/

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

175

12 Steroids

certain road unit. As Table 2 and Fig. 10 show, our proposed method is more accurate than
the conventional scheme. Forecasting accuracy particularly worsened with the conventional
method during long-term forecasts. However, we were able to maintain accurate forecasts
with our method.

3. Conclusion

We proposed a method of forecasting congestion using a multi-agent coordination
mechanism. A road agent installed at each intersection coordinates with its neighboring
road agents based on the pheromone-communications model to adaptively respond to
dynamically arising congestion and forecasts congestion a few minutes ahead. Here, we
tested and verified the basic effectiveness of this method using simple simulation.

It is unnecessary in our approach to utilize a sufficient number of cars with the same
probe system [8], or to upgrade the central server. At the very least, it needs to have
simple sensors installed to count the number of cars moving through intersections, and
small computers for road agents at these intersections. However, we have assumed that
various kinds of computers, servers, and sensors will be installed in various locations to
gather large amounts of information from the real world in about 5-10 years as part of
urban scanning. Actually, small-scale real-world experiments are now being conducted
in several locations throughout Japan [17]. These are based on the development of
ubiquitous-information-communication technologies such as sensor-networks and wireless
communication devices. In such situations, our method is expected to be quite practical.
This evaluation was only done through simulation, and the road map used had a simple
lattice structure. However, as we have already obtained detailed road data and VICS/PCS
data throughout the entire country of Japan, we can shortly begin to evaluate our method
using these real-world data.

As for traffic light control, all traffic lights need to react to dynamic changes in traffic in
real time [14][15][16] in traffic-light-control systems, which are also the primary systems for
controlling traffic. However, the current system cannot respond to dynamic changes in road
conditions in real time even though some automatic control occurs according to the traffic
flow. We also plan to develop a new traffic-light-control algorithm based on a MAS.

Author details

Satoshi Kurihara

Osaka University, Japan

References

[1] V. R. Tomás and L. A. Garcia: A Cooperative Multiagent System for Traffic Management
and Control, The Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-06), 2006.

[2] T. Nakata and J. Takeuchi: Mining Traffic Data from Probe-Car System for Travel Time
Prediction, KDD’04, pp. 22-25, 2004.

Ant Colony Optimization - Techniques and Applications174
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model 13

[3] X.-H. Yu and W. W. Recker: Stochastic adaptive control model for traffic signal systems,
Transportation Research Part C 14, pp. 263-282, Elsevier, 2006.

[4] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L. Bertini, and J. Rucker: Travel Time
Estimation Using NiagaraST and latte, SIGMOD’07, pp. 1091-1093, 2007.

[5] J.-D. Schmocker, S. Ahuja, and M. G. H. Bell: Multi-objective signal control of urban
junctions - Framework and a London case study, Transportation Research Part C 16, pp.
454-470, 2008.

[6] http://www.vics.or.jp/english/index.html

[7] "Definitions of stigmergy." From a special Issue of Artificial Life on Stigmergy. Volume
5, Issue 2 / Spring 1999.

[8] P. G. Balaji, G. Sachdeva, D. Srinivasan, Multi-agent System based Urban Traffic
Management, IEEE Congress on Evolutionary Computation 2007, pp. 1740–1747, 2007.

[9] Ana L. C. Bazzan, Opportunities for multiagent systems and multiagent reinforcement
learning in traffic control, Autonomous Agents and Multi-Agent Systems, Vol. 18, No.
3, pp. 313–341, 2009.

[10] J. J. Sánchez-Medina and M. J. Gálan-Moreno and E. Rubio-Royo", Traffic Signal
Optimization in La Almozara District in Saragossa Under Congestion Conditions, Using
Genetic Algorithms, Traffic Microsimulation, and Cluster Computing, IEEE Transaction
on Intelligent Transportation Systems, Vol. 11, No. 1. pp. 132–141, 2010.

[11] Y. Ando, Y. Fukazawa, O. Masutani, H. Iwasaki, and S. Honiden: Performance of
Pheromone Model for Predicting Traffic Congestion, The Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-06), 2006.

[12] M. Dorigo and G. di Caro: The ant colony optimization meta-heuristic, New ideas in
optimization, McGrawHill, pp. 11-32, 1999.

[13] E. Chung: Classification of traffic pattern. Proceedings of the 11th World Congress on
ITS, 2003.

[14] M. Wiering: Multi-Agent Reinforcement Learning for Traffic Light Control, Machine
Learning, Proceedings of the Seventeenth International Conference (ICML’2000), pp.
1151-1158, 2000.

[15] D. Oliveira, A. L. C. Bazzan, B. C. Silva, E. W. Basso, L. Nunes, and R. J. F. Rossetti, E.
C. Oliveira, R. Silva, and L. C. Lamb: Reinforcement learning based control of traffic
lights in non-stationary environments: A case study in a microscopic simulator, Proc. of
EUMAS06, pp. 31-42, 2006.

[16] D. Oliveira, P. Ferreira, and A. L. C. Bazzan: Reducing traffic jams with a swarm-based
approach for selection of signal plans, Proc. ANTS 2004, Vol. 3172 of LNCS, pp. 416-417,
Berlin, Germany, 2004.

[17] http://uscan.osoite.jp/

Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
http://dx.doi.org/10.5772/52563

175

Chapter 8

Ant Colony Algorithm with
Applications in the Field of Genomics

R. Rekaya, K. Robbins, M. Spangler, S. Smith,
E. H. Hay and K. Bertrand

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52051

1. Introduction

Ant colony algorithms (ACA) were first proposed by Dorigo et al. (1999) to solve difficult
optimization problems, such as the traveling salesman, and have since been extended to
solve many discrete optimization problems. As the name would imply, ACA are derived
from the process by which ant colonies find the shortest route to a food source. Real ant col‐
onies communicate through the use of chemicals called pheromones which are deposited
along the path an ant travels. Ants that choose a shorter path will transverse the distance at
a faster rate, thus depositing more pheromone. Subsequent ants will then choose the path
with more pheromone creating a positive feedback system. Artificial ants work as parallel
units that communicate through a cumulative distribution function (CDF) that is updated
by weights, determined by the “distance” traveled on a selected “path”, which are analo‐
gous to the pheromones deposited by real ants (Dorigo et al. 1999, Ressom et al. 2006). As the
CDF is updated, “paths” that perform better will be sampled at higher likelihoods by subse‐
quent artificial ants which, in turn, deposit more “pheromone”, thus leading to a positive
feedback system similar to the method of communication observed in real ant colonies. In
the specific application of feature selection, the “path” chosen by an artificial ant is a subset
of features selected from a larger sample space, and the “distance” traveled is some measure
of the features performance.

The idea of selecting a sub-set of features capable of best classifying a group of samples
can be, and has been, viewed as an optimization problem. The genetic algorithm (GA),
simulated annealing (SA), and other optimization and machine learning algorithms have
been applied to the problem of feature selection (Lin et al., 2006; Ooi and Tan, 2003;
Peng et al., 2003; Albrecht et al., 2003). Though these methods are powerful, when deal‐

© 2013 Rekaya et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Rekaya et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 8

Ant Colony Algorithm with
Applications in the Field of Genomics

R. Rekaya, K. Robbins, M. Spangler, S. Smith,
E. H. Hay and K. Bertrand

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52051

1. Introduction

Ant colony algorithms (ACA) were first proposed by Dorigo et al. (1999) to solve difficult
optimization problems, such as the traveling salesman, and have since been extended to
solve many discrete optimization problems. As the name would imply, ACA are derived
from the process by which ant colonies find the shortest route to a food source. Real ant col‐
onies communicate through the use of chemicals called pheromones which are deposited
along the path an ant travels. Ants that choose a shorter path will transverse the distance at
a faster rate, thus depositing more pheromone. Subsequent ants will then choose the path
with more pheromone creating a positive feedback system. Artificial ants work as parallel
units that communicate through a cumulative distribution function (CDF) that is updated
by weights, determined by the “distance” traveled on a selected “path”, which are analo‐
gous to the pheromones deposited by real ants (Dorigo et al. 1999, Ressom et al. 2006). As the
CDF is updated, “paths” that perform better will be sampled at higher likelihoods by subse‐
quent artificial ants which, in turn, deposit more “pheromone”, thus leading to a positive
feedback system similar to the method of communication observed in real ant colonies. In
the specific application of feature selection, the “path” chosen by an artificial ant is a subset
of features selected from a larger sample space, and the “distance” traveled is some measure
of the features performance.

The idea of selecting a sub-set of features capable of best classifying a group of samples
can be, and has been, viewed as an optimization problem. The genetic algorithm (GA),
simulated annealing (SA), and other optimization and machine learning algorithms have
been applied to the problem of feature selection (Lin et al., 2006; Ooi and Tan, 2003;
Peng et al., 2003; Albrecht et al., 2003). Though these methods are powerful, when deal‐

© 2013 Rekaya et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Rekaya et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

ing with thousands of features across multiple classes, the computational cost of these
methods can be prohibitive. Previous results obtained with these methods when dealing
with large numbers of features, utilized filters to reduce the dimension of the datasets
prior to implementation (Lin et al., 2006; Peng et al., 2006), or have produced relatively
low prediction accuracies (Hong and Cho, 2006). For ACA, the communication of the
ants through a common memory has a synergistic effect that, when coupled with more
efficient searching of the sample space though the use of prior information, results in op‐
timal solutions being reached in far fewer iterations than required for GA or SA (Dorigo
and Gambardella, 1997). The algorithm also lends itself to parallelization, with ants be‐
ing run on multiple processors, which can further reduce computation time, making its
use more feasible with high dimension data sets.

2. General presentation of ant colony algorithm

The ACA employs artificial ants that communicate through a probability density function
(PDF) that is updated at-each iteration with weights or “pheromone levels”, which are anal‐
ogous to the chemical pheromones used by real ants. The weights can be determined by the
strength of the association between selected feature and the response of interest. Using the
notation in [Dorigo and Gambardella, 1997; Ressom et al., 2006], the probability of sampling
feature m at time t is defined as:

1

(())
()

(())
m m

m nf
m mm

t
P t

t

a b

a b

t h

t h
=

=
å

(1)

where τm(t) is the amount of pheromone for feature m at time t; ηmis some form of prior
information on the expected performance of feature,α and β are parameters determining
the weight given to pheromone deposited by ants and a priori information on the fea‐
tures, respectively.

Using the PDF as defined in equation (1), each of j artificial ants will select a subset Sk of n
features from the sample spaceS containing all features. The pheromone level of each fea‐
ture m in Sk is then updated according to the performance of Skas:

(1) (1) * () ()m m mt t tt r t t+ = - + D (2)

where ρ is a constant between 0 and 1 representing the rate at which the pheromone trail
evaporates; Δτm(t)is the change in pheromone level for feature m based on the sum of accu‐
racy of all Sk containing SNP m, and is set to zero if feature m was not selected by any of the
artificial ants.

Ant Colony Optimization - Techniques and Applications178

Although the general idea of the ACA is simple and intuitive, its application to solve re‐
al world applications requires some good heuristics in defining the pheromone functions
and their updating. In this chapter, we are presenting three applications of the ACA in
the field of genetics and genomics based on previously published research by our group
[Robbins et al., 2007, Robbins et al., 2008; Spangler et al., 2008; Rekaya and Robbins,
2009; Robbins et al., 2011]. Specific implementation details for each application are added
in the appropriate sections of the chapter.

2.1. Ant colony algorithm for feature selection in high dimension gene expression data for
disease classification

The idea of using gene expression data for diagnosis and personalized treatment
presents a promising area of medicine and, as such, has been the focus of much research
(Bagirov et al., 2003; Golub et al., 1999, Ramaswamy et al., 2001). Many algorithms have
been developed to classify disease types based on the expression of selected genes, and
significant gains have been made in the accuracy of disease classification (Antonov et al.,
2004; Bagirov et al., 2003). In addition to the development of classification algorithms,
many studies have shown that improved performance can be achieved when using a se‐
lected subset of features, as opposed to using all available data (Peng et al., 2003; Shen
et al., 2006; Subramani et al., 2006). Increases in accuracy achieved through the selection
of predictive features can complement and enhance the performance of classification al‐
gorithms, as well as improve the understanding of disease classes by identifying a small
set of biologically relevant features (Golub et al., 1999).

In this section the ACA was implemented using the high-dimensional GCM data-set (Ram‐
aswamy et al., 2001), containing 16,063 genes and 14 tumor classes, with very limited pre-
filtering, and compared to several other rank based feature selection methods, as well as
previously published results to determine its efficacy as a feature selection method.

A.1 Latent variable model: A Bayesian regression model was used to predict tumor type in the
form of a probability pic(yic=1), with yic = 1 indicating that sample i is from tumor class c. The
regression on the vector of binary responses yc was done using a latent variable model
(LVM), with lic being an unobserved, continuous latent variable relating to binary response
yic such that:

yic ={1 if lic ≥0

0 if lic <0

The liability lic was modeled using a linear regression model as:

lic = X icβc + eic E (lic)= X icβc eic ~ N (0, 1)

where Xic corresponds to row i of the design matrix Xc for tumor class c. The link function of
the expectation of the liability X icβcwith the binary response yic was constructed via a probit
model (West, 2003) yielding the following equations:

pic(yic =1)=Φ(Xicβc) and pic(yic =1)=1−Φ(Xicβc)

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

179

ing with thousands of features across multiple classes, the computational cost of these
methods can be prohibitive. Previous results obtained with these methods when dealing
with large numbers of features, utilized filters to reduce the dimension of the datasets
prior to implementation (Lin et al., 2006; Peng et al., 2006), or have produced relatively
low prediction accuracies (Hong and Cho, 2006). For ACA, the communication of the
ants through a common memory has a synergistic effect that, when coupled with more
efficient searching of the sample space though the use of prior information, results in op‐
timal solutions being reached in far fewer iterations than required for GA or SA (Dorigo
and Gambardella, 1997). The algorithm also lends itself to parallelization, with ants be‐
ing run on multiple processors, which can further reduce computation time, making its
use more feasible with high dimension data sets.

2. General presentation of ant colony algorithm

The ACA employs artificial ants that communicate through a probability density function
(PDF) that is updated at-each iteration with weights or “pheromone levels”, which are anal‐
ogous to the chemical pheromones used by real ants. The weights can be determined by the
strength of the association between selected feature and the response of interest. Using the
notation in [Dorigo and Gambardella, 1997; Ressom et al., 2006], the probability of sampling
feature m at time t is defined as:

1

(())
()

(())
m m

m nf
m mm

t
P t

t

a b

a b

t h

t h
=

=
å

(1)

where τm(t) is the amount of pheromone for feature m at time t; ηmis some form of prior
information on the expected performance of feature,α and β are parameters determining
the weight given to pheromone deposited by ants and a priori information on the fea‐
tures, respectively.

Using the PDF as defined in equation (1), each of j artificial ants will select a subset Sk of n
features from the sample spaceS containing all features. The pheromone level of each fea‐
ture m in Sk is then updated according to the performance of Skas:

(1) (1) * () ()m m mt t tt r t t+ = - + D (2)

where ρ is a constant between 0 and 1 representing the rate at which the pheromone trail
evaporates; Δτm(t)is the change in pheromone level for feature m based on the sum of accu‐
racy of all Sk containing SNP m, and is set to zero if feature m was not selected by any of the
artificial ants.

Ant Colony Optimization - Techniques and Applications178

Although the general idea of the ACA is simple and intuitive, its application to solve re‐
al world applications requires some good heuristics in defining the pheromone functions
and their updating. In this chapter, we are presenting three applications of the ACA in
the field of genetics and genomics based on previously published research by our group
[Robbins et al., 2007, Robbins et al., 2008; Spangler et al., 2008; Rekaya and Robbins,
2009; Robbins et al., 2011]. Specific implementation details for each application are added
in the appropriate sections of the chapter.

2.1. Ant colony algorithm for feature selection in high dimension gene expression data for
disease classification

The idea of using gene expression data for diagnosis and personalized treatment
presents a promising area of medicine and, as such, has been the focus of much research
(Bagirov et al., 2003; Golub et al., 1999, Ramaswamy et al., 2001). Many algorithms have
been developed to classify disease types based on the expression of selected genes, and
significant gains have been made in the accuracy of disease classification (Antonov et al.,
2004; Bagirov et al., 2003). In addition to the development of classification algorithms,
many studies have shown that improved performance can be achieved when using a se‐
lected subset of features, as opposed to using all available data (Peng et al., 2003; Shen
et al., 2006; Subramani et al., 2006). Increases in accuracy achieved through the selection
of predictive features can complement and enhance the performance of classification al‐
gorithms, as well as improve the understanding of disease classes by identifying a small
set of biologically relevant features (Golub et al., 1999).

In this section the ACA was implemented using the high-dimensional GCM data-set (Ram‐
aswamy et al., 2001), containing 16,063 genes and 14 tumor classes, with very limited pre-
filtering, and compared to several other rank based feature selection methods, as well as
previously published results to determine its efficacy as a feature selection method.

A.1 Latent variable model: A Bayesian regression model was used to predict tumor type in the
form of a probability pic(yic=1), with yic = 1 indicating that sample i is from tumor class c. The
regression on the vector of binary responses yc was done using a latent variable model
(LVM), with lic being an unobserved, continuous latent variable relating to binary response
yic such that:

yic ={1 if lic ≥0

0 if lic <0

The liability lic was modeled using a linear regression model as:

lic = X icβc + eic E (lic)= X icβc eic ~ N (0, 1)

where Xic corresponds to row i of the design matrix Xc for tumor class c. The link function of
the expectation of the liability X icβcwith the binary response yic was constructed via a probit
model (West, 2003) yielding the following equations:

pic(yic =1)=Φ(Xicβc) and pic(yic =1)=1−Φ(Xicβc)

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

179

where Φ is the standard normal distribution function. Subject i was classified as having tu‐
mor class c if pic(yic =1) was the maximum of the vector pi, containing all pic(yic =1) c=1,…, nc,
where nc is the number of tumor classes in the data set.

A.2 Gene Selection: Filter and wrapper based methods were used to select features to form
classifiers for each tumor class. Filter methods selected genes based on ranks determined by
the sorted absolute values of fold changes (FC), t-statistics (T), and penalized t-statistics (PT)
calculated for each gene for each tumor class. The wrapper method coupled the ACA with
LVM (ACA/LVM) such that groups of genes were selected using the ACA and evaluated for
performance using LVM.

A.3 Ant colony optimization: The general ACA presented in the previous section was used.
The prior information,ηmc , was assumed as:

ηmc =

f mc −min(f c)
max(f c)−min(f c)

+
tmc −min(tc)

max(tc)−min(tc)
+

ptmc −min(ptc)
max(ptc)−min(ptc)

3

where f cis a vector of all fold change values for tumor class c; tcis a vector of all t-
statistic values for tumor class c; and ptc is a vector of all penalized t-statistic values
for tumor class c. After several trail runs the parameters α and β were set to 1 and.3
respectively.

The ACA was initialized with all features having an equal baseline level of pheromone used
to compute Pm(0) for all features. Using the PDF as defined in equation (1), each of j artificial
ants will select a subset Sk of n features from the sample space S containing all features. The
pheromone level of each feature m in Sk is then updated according to the performance of Sk

following equation (2).

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of genes.

2. Training data is randomly split into two subsets for training (TDS) and validation
(VDS) containing ¾ and ¼ of the data, respectively (none of the original validation data
(VD) is used at any point in the ACA).

3. Using the spectral decomposition of TDS, principle components are computed to allevi‐
ate effects of collinearity and selected for TDS and VDS by removing components with
corresponding eigenvalues close to zero.

4. Using TDS, a latent variable model is trained for each tumor class, and pic(yic=1) is pre‐
dicted for every tumor class c for each sample i in VDS.

5. The accuracy for each tumor class c is calculated as:

Ant Colony Optimization - Techniques and Applications180

1 1) / 1) /
2

nc nr
i i

c
nc nr

acc = =
+ -

= å åic c ic cΦ(P β Φ(P β (3)

where Piccontains principle component values for sample i for tumor class c; βcis a vector of
coefficients estimated using TDS; nc is the number of samples in VDS having tumor class c;
and nr is the remaining number of samples in VDS.

6. The change in pheromone for each tumor class is calculated as:

Δτmc(t)=accc
(1−accc)

where accc is the accuracy for tumor type c as calculated using equation (3).

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
As the PDF is updated, the selected features that perform better will be sampled at higher
likelihoods by subsequent artificial ants which, in turn, deposit more “pheromone”, thus
leading to a positive feedback system similar to the method of communication observed in
real ant colonies. Upon convergence the optimal subset of features is select based on the lev‐
el of pheromone trail deposited on each feature.

A.4 GCM data set: The data set contained 198 samples collected from 14 tumor types: BR
(breast adenocarcinoma), Pr (prostate adenocarcinoma), LU (lung adenocarcinoma), CO
(colorectal adenocarcinoma), LY (lymphoma), BL (bladder transitional cell carcinoma), ML
(melanoma), UT (uterine adenocarcinoma), LU (leukemia), RE (renal cell carcinoma), PA
(pancreatic adenocarcinoma), OV (ovarian adenocarcinoma), ME (pleural mesothelioma),
and CNS (central nervous system). The unedited data set contained the intensity values of
16063 probes generate using Affymetrix high density oligonucleotide microarrays, and cal‐
culated using Affymetrix GENECHIP software (Ramaswamy et al, 2001). Following the
thresholding of intensity values to a minimum value of 20 and a maximum value of 16000, a
log base 2 transformation was applied to the data set. Genes with the highest expression val‐
ues being less than two times the smallest were removed, leaving 14525 probes for analysis.

A.5 Results and discussions: The GCM data set has been a benchmark to compare the perform‐
ance of classification and feature selection algorithms. Table 1 shows the best prediction ac‐
curacies obtained by methods used in this study and several previous studies (GASS (Lin et
al., 2006), GA/MLHD (Ooi and Tan, 2003), MAMA (Antonov et al., 2004), and GA/SVM (Liu
et al., 2005)) using independent test, performed on the same training and validation data
sets originally formed by Ramaswamy et al., 2001 (GCM split), and leave one out cross vali‐
dation (LOOCV). The proposed ACA/LVM yielded substantial increases in accuracies over
all other methods, with a 6.5% increase in accuracy over the next best results obtained using
the GCM split (Antonov et al., 2004). Furthermore, the ACA/LVM achieved increases of
13.9%, 40%, and 16.6% in accuracy over the FC/LVM, T/LVM, and PT/LVM methods of fea‐
ture selection, respectively.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

181

where Φ is the standard normal distribution function. Subject i was classified as having tu‐
mor class c if pic(yic =1) was the maximum of the vector pi, containing all pic(yic =1) c=1,…, nc,
where nc is the number of tumor classes in the data set.

A.2 Gene Selection: Filter and wrapper based methods were used to select features to form
classifiers for each tumor class. Filter methods selected genes based on ranks determined by
the sorted absolute values of fold changes (FC), t-statistics (T), and penalized t-statistics (PT)
calculated for each gene for each tumor class. The wrapper method coupled the ACA with
LVM (ACA/LVM) such that groups of genes were selected using the ACA and evaluated for
performance using LVM.

A.3 Ant colony optimization: The general ACA presented in the previous section was used.
The prior information,ηmc , was assumed as:

ηmc =

f mc −min(f c)
max(f c)−min(f c)

+
tmc −min(tc)

max(tc)−min(tc)
+

ptmc −min(ptc)
max(ptc)−min(ptc)

3

where f cis a vector of all fold change values for tumor class c; tcis a vector of all t-
statistic values for tumor class c; and ptc is a vector of all penalized t-statistic values
for tumor class c. After several trail runs the parameters α and β were set to 1 and.3
respectively.

The ACA was initialized with all features having an equal baseline level of pheromone used
to compute Pm(0) for all features. Using the PDF as defined in equation (1), each of j artificial
ants will select a subset Sk of n features from the sample space S containing all features. The
pheromone level of each feature m in Sk is then updated according to the performance of Sk

following equation (2).

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of genes.

2. Training data is randomly split into two subsets for training (TDS) and validation
(VDS) containing ¾ and ¼ of the data, respectively (none of the original validation data
(VD) is used at any point in the ACA).

3. Using the spectral decomposition of TDS, principle components are computed to allevi‐
ate effects of collinearity and selected for TDS and VDS by removing components with
corresponding eigenvalues close to zero.

4. Using TDS, a latent variable model is trained for each tumor class, and pic(yic=1) is pre‐
dicted for every tumor class c for each sample i in VDS.

5. The accuracy for each tumor class c is calculated as:

Ant Colony Optimization - Techniques and Applications180

1 1) / 1) /
2

nc nr
i i

c
nc nr

acc = =
+ -

= å åic c ic cΦ(P β Φ(P β (3)

where Piccontains principle component values for sample i for tumor class c; βcis a vector of
coefficients estimated using TDS; nc is the number of samples in VDS having tumor class c;
and nr is the remaining number of samples in VDS.

6. The change in pheromone for each tumor class is calculated as:

Δτmc(t)=accc
(1−accc)

where accc is the accuracy for tumor type c as calculated using equation (3).

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
As the PDF is updated, the selected features that perform better will be sampled at higher
likelihoods by subsequent artificial ants which, in turn, deposit more “pheromone”, thus
leading to a positive feedback system similar to the method of communication observed in
real ant colonies. Upon convergence the optimal subset of features is select based on the lev‐
el of pheromone trail deposited on each feature.

A.4 GCM data set: The data set contained 198 samples collected from 14 tumor types: BR
(breast adenocarcinoma), Pr (prostate adenocarcinoma), LU (lung adenocarcinoma), CO
(colorectal adenocarcinoma), LY (lymphoma), BL (bladder transitional cell carcinoma), ML
(melanoma), UT (uterine adenocarcinoma), LU (leukemia), RE (renal cell carcinoma), PA
(pancreatic adenocarcinoma), OV (ovarian adenocarcinoma), ME (pleural mesothelioma),
and CNS (central nervous system). The unedited data set contained the intensity values of
16063 probes generate using Affymetrix high density oligonucleotide microarrays, and cal‐
culated using Affymetrix GENECHIP software (Ramaswamy et al, 2001). Following the
thresholding of intensity values to a minimum value of 20 and a maximum value of 16000, a
log base 2 transformation was applied to the data set. Genes with the highest expression val‐
ues being less than two times the smallest were removed, leaving 14525 probes for analysis.

A.5 Results and discussions: The GCM data set has been a benchmark to compare the perform‐
ance of classification and feature selection algorithms. Table 1 shows the best prediction ac‐
curacies obtained by methods used in this study and several previous studies (GASS (Lin et
al., 2006), GA/MLHD (Ooi and Tan, 2003), MAMA (Antonov et al., 2004), and GA/SVM (Liu
et al., 2005)) using independent test, performed on the same training and validation data
sets originally formed by Ramaswamy et al., 2001 (GCM split), and leave one out cross vali‐
dation (LOOCV). The proposed ACA/LVM yielded substantial increases in accuracies over
all other methods, with a 6.5% increase in accuracy over the next best results obtained using
the GCM split (Antonov et al., 2004). Furthermore, the ACA/LVM achieved increases of
13.9%, 40%, and 16.6% in accuracy over the FC/LVM, T/LVM, and PT/LVM methods of fea‐
ture selection, respectively.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

181

GCM data set

GCM splita Replicated splits LOOCVb

ACA/LVM(14525c) 90.7 84.8 ____
FC/LVM(14525) 79.6 74.8 ____
T/LVM(14525) 64.8 ____ ____
PT/LVM(14525) 77.8 74.4 ____
AVGd/LVM(14525) 79.6 74.8 ____
GASS(1000) 81.5 ____ 81.3
GA/MLHD(1000) 76 ____ 79.8
MAMA 85.2 ____ _____
GA/SVM(1000) ___ ____ 81

aSplit used by Ramaswamy et al 2001; bLeave one out cross validation; cNumber of genes selected prior to the imple‐
mentation of feature selection algorithm; dWeighted average of scaled fold change, t-test, and penalized t-test values.

Table 1. Accuracy (%) of tumor class predictions using ant colony algorithm (ACA) and several previously published
methods.

Due to its poor performance, the confusion matrix of predictions using T/LVM is not includ‐
ed, but matrices for the predictions obtained by the ACA/LVM, FC/LVM, and PT/LVM us‐
ing the GCM split can be found in Tables 2-4. These tables show that the ACA/LVM
performs as good or better than the rank based methods for every tumor type. Additionally
the ACA/LVM correctly predicted 50% of the BR samples, a tumor class that has traditional‐
ly yielded very poor results (Bagirov et al., 2003; Ramaswamy et al., 2001). The ACA/LVM
also achieved 100% prediction accuracy for 10 of the 14 tumor classes, as compared to only 7
and 8 when using FC/LVM or PT/LVM, respectively.

True\
Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 2 1 1 4
PR 1 5 6
LU 4 4
CO 4 4
LY 6 6
BL 1 2 3
ML 2 2
UT 2 2
LE 6 6
RE 3 3
PA 1 2 3
OV 4 4
ME 3 3
CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 49/54

Table 2. Confusion matrix for predictions obtained for the GCM data set using genes selected by the ant colony algorithm.

Ant Colony Optimization - Techniques and Applications182

True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 3 1 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 1 1 1 3

OV 1 3 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 43/54

Table 3. Confusion matrix for best predictions obtained for the GCM data set using genes selected by the fold change
(50 genes)

True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 4 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 2 1 0 3

OV 1 2 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 42/54

Table 4. Confusion matrix for best predictions obtained for GCM data set using genes selected by the penalized t-test
(10 genes)

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

183

GCM data set

GCM splita Replicated splits LOOCVb

ACA/LVM(14525c) 90.7 84.8 ____
FC/LVM(14525) 79.6 74.8 ____
T/LVM(14525) 64.8 ____ ____
PT/LVM(14525) 77.8 74.4 ____
AVGd/LVM(14525) 79.6 74.8 ____
GASS(1000) 81.5 ____ 81.3
GA/MLHD(1000) 76 ____ 79.8
MAMA 85.2 ____ _____
GA/SVM(1000) ___ ____ 81

aSplit used by Ramaswamy et al 2001; bLeave one out cross validation; cNumber of genes selected prior to the imple‐
mentation of feature selection algorithm; dWeighted average of scaled fold change, t-test, and penalized t-test values.

Table 1. Accuracy (%) of tumor class predictions using ant colony algorithm (ACA) and several previously published
methods.

Due to its poor performance, the confusion matrix of predictions using T/LVM is not includ‐
ed, but matrices for the predictions obtained by the ACA/LVM, FC/LVM, and PT/LVM us‐
ing the GCM split can be found in Tables 2-4. These tables show that the ACA/LVM
performs as good or better than the rank based methods for every tumor type. Additionally
the ACA/LVM correctly predicted 50% of the BR samples, a tumor class that has traditional‐
ly yielded very poor results (Bagirov et al., 2003; Ramaswamy et al., 2001). The ACA/LVM
also achieved 100% prediction accuracy for 10 of the 14 tumor classes, as compared to only 7
and 8 when using FC/LVM or PT/LVM, respectively.

True\
Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 2 1 1 4
PR 1 5 6
LU 4 4
CO 4 4
LY 6 6
BL 1 2 3
ML 2 2
UT 2 2
LE 6 6
RE 3 3
PA 1 2 3
OV 4 4
ME 3 3
CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 49/54

Table 2. Confusion matrix for predictions obtained for the GCM data set using genes selected by the ant colony algorithm.

Ant Colony Optimization - Techniques and Applications182

True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 3 1 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 1 1 1 3

OV 1 3 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 43/54

Table 3. Confusion matrix for best predictions obtained for the GCM data set using genes selected by the fold change
(50 genes)

True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 4 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 2 1 0 3

OV 1 2 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 42/54

Table 4. Confusion matrix for best predictions obtained for GCM data set using genes selected by the penalized t-test
(10 genes)

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

183

To further evaluate performance, each of the feature selection algorithms was tested using
four additional random splits of the data. The best classification accuracies obtained for each
algorithm can be found in Table 5. The ACA/LVM algorithm yielded the best prediction ac‐
curacies for all replicates, with increases in accuracies ranging from 6.7% to 14% over the
best accuracies obtained by filter methods. When looking at the three filter methods it can be
seen that the best method varied depending on the replication. These findings are in agree‐
ment with Jefferey et al. (2006).

Replication 1 2 3 4 5

ACA/LVM 90.7 83.3 79.6 81.5 88.9

FC/LVM 79.6 77.8 68.5 72.2 75.9

PT/LVM 77.8 77.8 66.7 68.5 81.5

AVGb/LVM 79.6 70.4 70.4 70.4 83.3

a Split used by Ramaswamy et al 2001; bWeighted average of scaled fold change (FC),

t-test (PT), and penalized t-test values (PT).

Table 5. Classification accuracies using several feature selection methods

Due to a lack of any good criterion for determining an objective cut-off value for the
rank based methods, several values were used and evaluated. Since the use of fewer fea‐
tures is desirable from a biological standpoint, an upper limit of 50 genes per tumor
class was imposed on all methods. Table 6 shows the number of genes needed for each
tumor type to achieve the best results, averaged across all replicates. It can be seen that,
for 10 of the 14 tumor classes, the ACA/LVM selects fewer genes than the rank based
methods.

The performance of the ACA/LVM model was superior, not only to the filter based methods
used in this study, but also several reported results using the GCM data set. The ACA/LVM
consistently yielded superior accuracies using fewer genes than the filter based methods, for
which ranks varied with each replication. The breaks in pheromone levels observed with the
most predictive genes also provided more objective selection criteria for identifying top fea‐
tures, unlike the filter methods in which truncation points were somewhat arbitrary. The ob‐
jective selection criteria and robustness of the ACA, within the confines of the GCM data set,
make it a superior method for clinical applications, as it could enable a single procedure to
be effectively applied to varied applications. The use of filter based methods in such scenar‐
ios would require different combinations of truncation points and scoring methods for each
data set, a highly impractical endeavor.

Ant Colony Optimization - Techniques and Applications184

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

ACA 3.4 4.8 2 7.8 6.6 19.6 4.6 7.6 3.2 16 14.6 17.2 5 5.6

FC 18 18 18 18 18 18 18 18 18 18 18 18 18 18

PT 14 14 14 14 14 14 14 14 14 14 14 14 14 14

Averagea 18 18 18 18 18 18 18 18 18 18 18 18 18 18

a Weighted average of scaled fold change (FC), t-test, and penalized t-test (PT) values

Table 6. Number of genes selected for each tumor type using ACA and other feature selection methods.

The superiority of the ACA/LVM when compared to models using GA indicates the ACA’s
utility, as compared to other optimization methods, when working with high dimension da‐
ta sets. The ACA’s ability to incorporate prior information in the optimization process pro‐
vides several advantages over other optimization algorithms when dealing with large
numbers of features. The inclusion of prior information in the pheromone function focuses
the selection process on genes that should yield better results without the need for an explic‐
it truncation of the data, which was needed to achieve good results with the GA (Hong and
Cho, 2006; Lin et al., 2006; Liu et al., 2005; Ooi and Tan et al., 2003; Peng et al., 2003). Trunca‐
tion of large numbers of genes could a priori eliminate genes from consideration that,
though they may not have high predictive ability alone, could contribute to the predictive
power of an ensemble of genes. Additionally, depending on the method of truncation, the
reduced gene list could be highly redundant (Lin et al., 2006; Shen et al., 2006), further re‐
ducing the informativeness of pre-selected genes. Conversely, when removing a small num‐
ber of features in a large data set, the truncated data set may be too large for efficient
convergence of the algorithm (Lin et al., 2006). Additionally, the inclusion of prior informa‐
tion allows the ACA to be coupled with many other types of feature selection methods,
making the ACA a versatile feature selection tool.

For LU tumors, the ACA identified two genes capable of classifying LU tumor samples with
100%, in each of the five replicates. The selected genes, SP-B and SP-A, both encode pulmo‐
nary surfactant proteins which are necessary for lung function. Another tumor class, with
which the ACA was able to select a small number of highly predictive genes, was CNS. As
with the LU tumor type, the genes selected by the ACA were very consistent from replica‐
tion to replication. The gene encoding for APCL protein had the highest pheromone levels
in all five replicates and was the only gene required to achieve 100% accuracy in replicate
five. APCL protein is a homologue of APC, a known tumor suppressor that interacts with
microtubules during mitosis (Akiyama and Kawasaki, 2006). The gene encoding MAP1B, a
protein found to be important in synaptic function of cortical neurons, was also identified as
being highly predictive of CNS tumor types. Several other genes selected by the ACA, found
in supplemental materials, were identified in a previous study (Antonov et al., 2004).

In contrast to the LU and CNS tumor types, BR samples were consistently predicted with
low accuracies. These findings are in agreement with previous results (Bagirov et al., 2003;
Ramaswamy et al., 2001). Unlike the gene list obtained for BR and CNS tumor types, the

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

185

To further evaluate performance, each of the feature selection algorithms was tested using
four additional random splits of the data. The best classification accuracies obtained for each
algorithm can be found in Table 5. The ACA/LVM algorithm yielded the best prediction ac‐
curacies for all replicates, with increases in accuracies ranging from 6.7% to 14% over the
best accuracies obtained by filter methods. When looking at the three filter methods it can be
seen that the best method varied depending on the replication. These findings are in agree‐
ment with Jefferey et al. (2006).

Replication 1 2 3 4 5

ACA/LVM 90.7 83.3 79.6 81.5 88.9

FC/LVM 79.6 77.8 68.5 72.2 75.9

PT/LVM 77.8 77.8 66.7 68.5 81.5

AVGb/LVM 79.6 70.4 70.4 70.4 83.3

a Split used by Ramaswamy et al 2001; bWeighted average of scaled fold change (FC),

t-test (PT), and penalized t-test values (PT).

Table 5. Classification accuracies using several feature selection methods

Due to a lack of any good criterion for determining an objective cut-off value for the
rank based methods, several values were used and evaluated. Since the use of fewer fea‐
tures is desirable from a biological standpoint, an upper limit of 50 genes per tumor
class was imposed on all methods. Table 6 shows the number of genes needed for each
tumor type to achieve the best results, averaged across all replicates. It can be seen that,
for 10 of the 14 tumor classes, the ACA/LVM selects fewer genes than the rank based
methods.

The performance of the ACA/LVM model was superior, not only to the filter based methods
used in this study, but also several reported results using the GCM data set. The ACA/LVM
consistently yielded superior accuracies using fewer genes than the filter based methods, for
which ranks varied with each replication. The breaks in pheromone levels observed with the
most predictive genes also provided more objective selection criteria for identifying top fea‐
tures, unlike the filter methods in which truncation points were somewhat arbitrary. The ob‐
jective selection criteria and robustness of the ACA, within the confines of the GCM data set,
make it a superior method for clinical applications, as it could enable a single procedure to
be effectively applied to varied applications. The use of filter based methods in such scenar‐
ios would require different combinations of truncation points and scoring methods for each
data set, a highly impractical endeavor.

Ant Colony Optimization - Techniques and Applications184

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

ACA 3.4 4.8 2 7.8 6.6 19.6 4.6 7.6 3.2 16 14.6 17.2 5 5.6

FC 18 18 18 18 18 18 18 18 18 18 18 18 18 18

PT 14 14 14 14 14 14 14 14 14 14 14 14 14 14

Averagea 18 18 18 18 18 18 18 18 18 18 18 18 18 18

a Weighted average of scaled fold change (FC), t-test, and penalized t-test (PT) values

Table 6. Number of genes selected for each tumor type using ACA and other feature selection methods.

The superiority of the ACA/LVM when compared to models using GA indicates the ACA’s
utility, as compared to other optimization methods, when working with high dimension da‐
ta sets. The ACA’s ability to incorporate prior information in the optimization process pro‐
vides several advantages over other optimization algorithms when dealing with large
numbers of features. The inclusion of prior information in the pheromone function focuses
the selection process on genes that should yield better results without the need for an explic‐
it truncation of the data, which was needed to achieve good results with the GA (Hong and
Cho, 2006; Lin et al., 2006; Liu et al., 2005; Ooi and Tan et al., 2003; Peng et al., 2003). Trunca‐
tion of large numbers of genes could a priori eliminate genes from consideration that,
though they may not have high predictive ability alone, could contribute to the predictive
power of an ensemble of genes. Additionally, depending on the method of truncation, the
reduced gene list could be highly redundant (Lin et al., 2006; Shen et al., 2006), further re‐
ducing the informativeness of pre-selected genes. Conversely, when removing a small num‐
ber of features in a large data set, the truncated data set may be too large for efficient
convergence of the algorithm (Lin et al., 2006). Additionally, the inclusion of prior informa‐
tion allows the ACA to be coupled with many other types of feature selection methods,
making the ACA a versatile feature selection tool.

For LU tumors, the ACA identified two genes capable of classifying LU tumor samples with
100%, in each of the five replicates. The selected genes, SP-B and SP-A, both encode pulmo‐
nary surfactant proteins which are necessary for lung function. Another tumor class, with
which the ACA was able to select a small number of highly predictive genes, was CNS. As
with the LU tumor type, the genes selected by the ACA were very consistent from replica‐
tion to replication. The gene encoding for APCL protein had the highest pheromone levels
in all five replicates and was the only gene required to achieve 100% accuracy in replicate
five. APCL protein is a homologue of APC, a known tumor suppressor that interacts with
microtubules during mitosis (Akiyama and Kawasaki, 2006). The gene encoding MAP1B, a
protein found to be important in synaptic function of cortical neurons, was also identified as
being highly predictive of CNS tumor types. Several other genes selected by the ACA, found
in supplemental materials, were identified in a previous study (Antonov et al., 2004).

In contrast to the LU and CNS tumor types, BR samples were consistently predicted with
low accuracies. These findings are in agreement with previous results (Bagirov et al., 2003;
Ramaswamy et al., 2001). Unlike the gene list obtained for BR and CNS tumor types, the

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

185

gene lists for BR tumors were highly variable, suggesting potentially high heterogeneity in
these tumor samples. Despite dissimilarities between the genes selected across replications,
the ACA did identify SEPT9 as being highly predictive in four of the five replicates. The pro‐
tein encoded by this gene has been shown to be involved in mitosis of mammary epithelial
cells (Nagata et al., 2003) and has been associated with both ovarian and breast neoplasia
(Scott et al., 2006). The identification of this gene by the ACA demonstrates its ability to
identify biologically relevant features in challenging data sets.

2.2. The use of the ant colony algorithm for the detection of marker associations in the
presence of gene interactions

With the advent of high-throughput, cost effective genotyping platforms, there has been
much focus on the use of high-density single nucleotide polymorphism (SNP) genotyp‐
ing to identify causative mutations for traits of interest, and while putative mutations
have been identified for several traits, these studies tend to focus on SNP with large
marginal effects [Hugot et al., 2001; Woon et al., 2007]. However, several studies have
found that gene interactions may play important roles in many complex traits [Coutinho
et al., 2007; Barendse et al., 2007]. Given the high density of SNP maker maps, examin‐
ing all possible interactions is seldom possible computationally. As a result, studies ex‐
amining gene interactions tend to focus on a small number of SNP, previously identified
as having strong marginal associations. Using an exhaustive search of all two-way inter‐
actions, Marchini et al. achieved greater power to detect causative mutations than when
estimating only marginal effects. Due to the high computational cost of this approach, a
two-stage model was proposed, in which SNP were selected in the first stage based on
marginal effects and then tested for interactions in the subsequent stage [Marchini et al.,
2005]. This approach could, however, result in the failure to detect important regions of
the genome in the first stage of the model. As such, there is a need for methodologies
capable of identifying important genomic regions in the presence of potential gene inter‐
actions when large numbers of markers are genotyped.

One approach would be to view the identification of groups of interacting SNP as an optimi‐
zation problem, for which several algorithms have been developed. These algorithms are
designed to search large sample spaces for globally optimal solutions and have been applied
to a wide range of problems [Shymygelska and Hoos, 2005; Ding et al., 2005]. Through the
evaluation of groups of loci efficiently selected from different regions of the genome, optimi‐
zation algorithms should be able to account for potential interactions.

In this section, a modified ACA, enabling the use of permutation testing for global signifi‐
cance, was combined with logistic regression and implemented on a simulated binary trait
under the influence of interacting genes. The performance of the ACA was evaluated and
compared to models accounting for only marginal effects.

B.1 Logistic regression: Groups of SNP markers were evaluated based in haplotype genotype
effects estimated as log odds ratios (lor) using logistic regression (LR). The relationship be‐
tween the lor and the binary response can be expressed as:

Ant Colony Optimization - Techniques and Applications186

yi ={1 if lori ≥0

0 if lori <0

The log odds ratio lori is modeled as:

lori = ln(
pi

1− pi
)= X iβ + ei (4)

where Pi = probability (yi = 1) and X is a matrix containing indicator variables for the haplo‐
types formed from the selected SNP. Groups of SNP markers with less than two correspond‐
ing observations were discarded, and analysis was conducted on all remaining marker
groups.

The link function of the log odds ratio X iβwith the binary response yi gives the following
equations:

pi(yi =0)=
1

1 + exp(X iβ) and pi(yi =1)=
exp(X iβ)

1 + exp(X iβ) (5)

yielding the following relationships:

yi = {1 if
exp(X iβ)

1 + exp(X iβ) ≥0.5

0 if
exp(X iβ)

1 + exp(X iβ) <0.5

B.2 Marginal effects model: The genotype and haplotype association methods were imple‐
mented using R functions developed by [Gonzalez et al., 2007; Sinnwell and Schaid, 2005].
The haplotype analysis was implemented using a sliding window approach which utilizes a
window of k SNP in width sliding across the genome h SNP at a time. Individual SNP scores
were determined as the maximum average of all haplotypes containing a given SNP.

B.3 Ant colony algorithm: While the algorithm, in the aforementioned form can be used to
subjectively identify markers, it is not well suited for the calculation of permutation p-val‐
ues. When updating the pheromone function, as previously described in equation (2), the fi‐
nal pheromone levels are relative not only to prediction accuracy, but the number of times a
SNP marker is selected. As a result, the amount of pheromone deposited on a feature de‐
pends greatly on the amount of pheromone deposited on all other SNP markers and can
vary wildly from permutation to permutation. One obvious solution to this problem is to
use the average accuracy of all Sk containing genotypes for SNP m; however, this approach
substantially reduces the ACA’s ability to efficiently burn in on good solutions, an attribute
needed to detect unknown gene interactions in high-dimension data sets.

To overcome these limitations, a two-layer pheromone function was developed:

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

187

gene lists for BR tumors were highly variable, suggesting potentially high heterogeneity in
these tumor samples. Despite dissimilarities between the genes selected across replications,
the ACA did identify SEPT9 as being highly predictive in four of the five replicates. The pro‐
tein encoded by this gene has been shown to be involved in mitosis of mammary epithelial
cells (Nagata et al., 2003) and has been associated with both ovarian and breast neoplasia
(Scott et al., 2006). The identification of this gene by the ACA demonstrates its ability to
identify biologically relevant features in challenging data sets.

2.2. The use of the ant colony algorithm for the detection of marker associations in the
presence of gene interactions

With the advent of high-throughput, cost effective genotyping platforms, there has been
much focus on the use of high-density single nucleotide polymorphism (SNP) genotyp‐
ing to identify causative mutations for traits of interest, and while putative mutations
have been identified for several traits, these studies tend to focus on SNP with large
marginal effects [Hugot et al., 2001; Woon et al., 2007]. However, several studies have
found that gene interactions may play important roles in many complex traits [Coutinho
et al., 2007; Barendse et al., 2007]. Given the high density of SNP maker maps, examin‐
ing all possible interactions is seldom possible computationally. As a result, studies ex‐
amining gene interactions tend to focus on a small number of SNP, previously identified
as having strong marginal associations. Using an exhaustive search of all two-way inter‐
actions, Marchini et al. achieved greater power to detect causative mutations than when
estimating only marginal effects. Due to the high computational cost of this approach, a
two-stage model was proposed, in which SNP were selected in the first stage based on
marginal effects and then tested for interactions in the subsequent stage [Marchini et al.,
2005]. This approach could, however, result in the failure to detect important regions of
the genome in the first stage of the model. As such, there is a need for methodologies
capable of identifying important genomic regions in the presence of potential gene inter‐
actions when large numbers of markers are genotyped.

One approach would be to view the identification of groups of interacting SNP as an optimi‐
zation problem, for which several algorithms have been developed. These algorithms are
designed to search large sample spaces for globally optimal solutions and have been applied
to a wide range of problems [Shymygelska and Hoos, 2005; Ding et al., 2005]. Through the
evaluation of groups of loci efficiently selected from different regions of the genome, optimi‐
zation algorithms should be able to account for potential interactions.

In this section, a modified ACA, enabling the use of permutation testing for global signifi‐
cance, was combined with logistic regression and implemented on a simulated binary trait
under the influence of interacting genes. The performance of the ACA was evaluated and
compared to models accounting for only marginal effects.

B.1 Logistic regression: Groups of SNP markers were evaluated based in haplotype genotype
effects estimated as log odds ratios (lor) using logistic regression (LR). The relationship be‐
tween the lor and the binary response can be expressed as:

Ant Colony Optimization - Techniques and Applications186

yi ={1 if lori ≥0

0 if lori <0

The log odds ratio lori is modeled as:

lori = ln(
pi

1− pi
)= X iβ + ei (4)

where Pi = probability (yi = 1) and X is a matrix containing indicator variables for the haplo‐
types formed from the selected SNP. Groups of SNP markers with less than two correspond‐
ing observations were discarded, and analysis was conducted on all remaining marker
groups.

The link function of the log odds ratio X iβwith the binary response yi gives the following
equations:

pi(yi =0)=
1

1 + exp(X iβ) and pi(yi =1)=
exp(X iβ)

1 + exp(X iβ) (5)

yielding the following relationships:

yi = {1 if
exp(X iβ)

1 + exp(X iβ) ≥0.5

0 if
exp(X iβ)

1 + exp(X iβ) <0.5

B.2 Marginal effects model: The genotype and haplotype association methods were imple‐
mented using R functions developed by [Gonzalez et al., 2007; Sinnwell and Schaid, 2005].
The haplotype analysis was implemented using a sliding window approach which utilizes a
window of k SNP in width sliding across the genome h SNP at a time. Individual SNP scores
were determined as the maximum average of all haplotypes containing a given SNP.

B.3 Ant colony algorithm: While the algorithm, in the aforementioned form can be used to
subjectively identify markers, it is not well suited for the calculation of permutation p-val‐
ues. When updating the pheromone function, as previously described in equation (2), the fi‐
nal pheromone levels are relative not only to prediction accuracy, but the number of times a
SNP marker is selected. As a result, the amount of pheromone deposited on a feature de‐
pends greatly on the amount of pheromone deposited on all other SNP markers and can
vary wildly from permutation to permutation. One obvious solution to this problem is to
use the average accuracy of all Sk containing genotypes for SNP m; however, this approach
substantially reduces the ACA’s ability to efficiently burn in on good solutions, an attribute
needed to detect unknown gene interactions in high-dimension data sets.

To overcome these limitations, a two-layer pheromone function was developed:

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

187

2

2
1

() 2 ()
()

() 2 ()
m m m

m nf
m m mm

t t
P t

t t

a a b

a a b

t t h

t t h
=

=
å

(6)

where τm(t) is the first pheromone layer updated using the sum of accuracies for all Sk con‐
taining SNP m; τ2m(t)is the second pheromone layer updated using the average accuracy of
all Sk containing genotypes for SNP m; andηm, α, βare as previously described. For the cur‐
rent study, αand α2 were set to 1, βwas set to.3 and the prior information (ηm) was the pre‐
diction the accuracy of SNP marker m, obtained using logistic regression on genotypes.

The pheromone for τm(t) was updated using equation (2) and τ2m(t) was updated using the
following equation:

2 (1) [* 2() 2()] / ()m m mt t t t t nst t t+ = + D + (7)

where t is the iteration number; Δτm2(t)is the change in pheromone level for feature m based
on the sum of accuracy of all Sk containing genotypes for SNP m, and is set to zero if feature
m was not selected by any of the artificial ants; and ns is the number of times SNP m was
selected at iteration t. Permutation p-values were calculated using τ2m(t) only.

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of SNP markers.

2. Using the selected SNP markers, accuracies are computed using logistic regression on
haplotypes or genotypes.

3. The pheromone for each selected group of SNP, Sk , is calculated as:

(1)acc
kpheromone acc -= (8)

1. The change in pheromone at time t is then calculated using equations (2) and (7).

2. Following the update of pheromone levels according to equations (2) and (7), the PDF is
updated according to equation (6) and the process is repeated until pheromone levels
have converged.

B.4 Data simulation: Genotype data on 90 unrelated individuals from the Japanese and
Han Chinese populations were downloaded from the HapMap ECODE project website.
Each simulation scenario was replicated five times using two 500 Kbp regions on chro‐
mosome 2, comprising 2047 polymorphic SNP. All SNP haplotypes were assumed to be
known without error. The binary disease trait was simulated under a two locus epistatic
model as seen in Table 7.

Ant Colony Optimization - Techniques and Applications188

Scenario 1 Scenario 2

AB aB Ab ab AB aB Ab ab

AB 1 1 1 1 1 1 1 1

aB 1 1 1 1 1 1 1 1

Ab 1 1 1 1 1 1 1 1

Ab 1 1 1 15 1 1 1 10

Table 7. Relative risk for simulated trait (relative to the aa/bb genotype)

The loci of the causative mutations were selected at random; with the frequencies of the causa‐
tive mutations being.58 and.6. Although these frequencies might be considered high, it was
necessary to restrict selection to SNP with mutant allele frequencies greater than.5. This was
done to insure a reasonable simulated disease incidence of 15%. A plot illustrating the LD of all
SNP with the two causative mutations is shown in Fig (1). The plot shows a large peak of high
LD with rs2049736 (SNP 409), while the peak of high LD with rs28953468 (SNP 2041) is substan‐
tially narrower, and is preceded by a plateau of SNP in moderate LD with rs28953468.

Figure 1. Plots of each marker’s linkage disequilibrium (LD) with the two causative mutations. The light grey line rep‐
resents LD with the causative mutation located at position 409. The black line represents LD with the causative muta‐
tion located at position 2041.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

189

2

2
1

() 2 ()
()

() 2 ()
m m m

m nf
m m mm

t t
P t

t t

a a b

a a b

t t h

t t h
=

=
å

(6)

where τm(t) is the first pheromone layer updated using the sum of accuracies for all Sk con‐
taining SNP m; τ2m(t)is the second pheromone layer updated using the average accuracy of
all Sk containing genotypes for SNP m; andηm, α, βare as previously described. For the cur‐
rent study, αand α2 were set to 1, βwas set to.3 and the prior information (ηm) was the pre‐
diction the accuracy of SNP marker m, obtained using logistic regression on genotypes.

The pheromone for τm(t) was updated using equation (2) and τ2m(t) was updated using the
following equation:

2 (1) [* 2() 2()] / ()m m mt t t t t nst t t+ = + D + (7)

where t is the iteration number; Δτm2(t)is the change in pheromone level for feature m based
on the sum of accuracy of all Sk containing genotypes for SNP m, and is set to zero if feature
m was not selected by any of the artificial ants; and ns is the number of times SNP m was
selected at iteration t. Permutation p-values were calculated using τ2m(t) only.

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of SNP markers.

2. Using the selected SNP markers, accuracies are computed using logistic regression on
haplotypes or genotypes.

3. The pheromone for each selected group of SNP, Sk , is calculated as:

(1)acc
kpheromone acc -= (8)

1. The change in pheromone at time t is then calculated using equations (2) and (7).

2. Following the update of pheromone levels according to equations (2) and (7), the PDF is
updated according to equation (6) and the process is repeated until pheromone levels
have converged.

B.4 Data simulation: Genotype data on 90 unrelated individuals from the Japanese and
Han Chinese populations were downloaded from the HapMap ECODE project website.
Each simulation scenario was replicated five times using two 500 Kbp regions on chro‐
mosome 2, comprising 2047 polymorphic SNP. All SNP haplotypes were assumed to be
known without error. The binary disease trait was simulated under a two locus epistatic
model as seen in Table 7.

Ant Colony Optimization - Techniques and Applications188

Scenario 1 Scenario 2

AB aB Ab ab AB aB Ab ab

AB 1 1 1 1 1 1 1 1

aB 1 1 1 1 1 1 1 1

Ab 1 1 1 1 1 1 1 1

Ab 1 1 1 15 1 1 1 10

Table 7. Relative risk for simulated trait (relative to the aa/bb genotype)

The loci of the causative mutations were selected at random; with the frequencies of the causa‐
tive mutations being.58 and.6. Although these frequencies might be considered high, it was
necessary to restrict selection to SNP with mutant allele frequencies greater than.5. This was
done to insure a reasonable simulated disease incidence of 15%. A plot illustrating the LD of all
SNP with the two causative mutations is shown in Fig (1). The plot shows a large peak of high
LD with rs2049736 (SNP 409), while the peak of high LD with rs28953468 (SNP 2041) is substan‐
tially narrower, and is preceded by a plateau of SNP in moderate LD with rs28953468.

Figure 1. Plots of each marker’s linkage disequilibrium (LD) with the two causative mutations. The light grey line rep‐
resents LD with the causative mutation located at position 409. The black line represents LD with the causative muta‐
tion located at position 2041.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

189

Permutation testing was used to access global significance for all models used in the study.
Statuses were randomly shuffled amongst subjects, with haplotype effects, genotype effects
and association p-values re-estimated for each new configuration of the response variables.
The largest estimated haplotype/genotype effect or the smallest haplotype/genotype associa‐
tion p-value from each permutation was saved to form an empirical distribution used for
calculation of p-values. One hundred permutations were performed, yielding p-values accu‐
rate to 1%. Power was calculated as the proportion of times a given method identified at
least one SNP marker in high LD (r2 ≥.80) with a causative mutation.

B.5 Results and discussions: Estimates of power for the three methods can be found in Table 8.
Methods employing the ACA showed substantial increases in power when compared to the
methods accounting for only marginal effects. Due to the fact that the trait was simulated
under a dominance model, analysis of genotypes yielded superior results when compared to
haplotype analysis. Despite the inherent advantage of genotype analysis using a dominance
model, the ACA using haplotypes (ACA/H) still showed greater power than RG/D in both
scenarios. For scenario 2, all models showed a reduction in power; however, the superiority
of the ACA methodologies remained constant, with the ACA using LG on genotypes assum‐
ing a dominance model (ACA/G/D) yielding 66.7% increase in power for both scenarios
when compared to the next best method, RG/D.

Scenario 1 Scenario 2

1 locus 2 locus 3 locus 1 locus 2 locus 3 locus

ACA/G/D ___ 1.00 0.90 ___ 0.50 0.40

ACA/G/C ___ 0.70 0.80 ___ 0.40 0.40

ACA/HAP ___ 0.60 0.70 ___ 0.50 0.40

RG/D 0.60 ___ ___ 0.30 ___ ___

RG/C 0.30 ___ ___ 0.30 ___ ___

SW/HAP ___ 0.10 0.20 ___ 0.00 0.00

a Power was calculated as the proportion of times at least one SNP in high linkage disequilibrium (>.8) with a causative
mutations was detected by the model at α=.05 for genome-wide significance

Table 8. Power calculationsa.

Plots of the associative effects, obtained using SW/H, ACA/G/D, and RG/D, are shown in
Fig. (2) and (3). When compared to the LD plot (Fig. (1)) all methods show good correspond‐
ence for scenario 1, though only the ACA/G/D was able to identify markers for both causa‐
tive mutations in all replicates. In scenario 2, where the genetic effect was greatly reduced,
plots of associative effects tended to be noisier for all models, with the ACA/G/D again
showing superior performance, identifying several SNP markers having only moderate LD
with causative mutation rs28953468.

Ant Colony Optimization - Techniques and Applications190

(a) (b)

(c)

Figure 2. Association plots of SNP markers for the simulated trait under scenario 1. Plots were obtained using 2 SNP
haplotypes analyzed by a. SW/LR and b. ACA/LR. Vertical lines represent the position of the two causative mutations,
and horizontal lines represent the threshold at which associations are significant at α=. 05

(a) (b)

(c)

Figure 3. Association plots of SNP markers for the simulated trait under scenario 2. Plots were obtained using 3 SNP
haplotypes analyzed by a. SW/LR, b. ACA/LR, and c. RG. Vertical lines represent the position of the two causative mu‐
tations, and horizontal lines represent the threshold at which associations are significant at α=.05.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

191

Permutation testing was used to access global significance for all models used in the study.
Statuses were randomly shuffled amongst subjects, with haplotype effects, genotype effects
and association p-values re-estimated for each new configuration of the response variables.
The largest estimated haplotype/genotype effect or the smallest haplotype/genotype associa‐
tion p-value from each permutation was saved to form an empirical distribution used for
calculation of p-values. One hundred permutations were performed, yielding p-values accu‐
rate to 1%. Power was calculated as the proportion of times a given method identified at
least one SNP marker in high LD (r2 ≥.80) with a causative mutation.

B.5 Results and discussions: Estimates of power for the three methods can be found in Table 8.
Methods employing the ACA showed substantial increases in power when compared to the
methods accounting for only marginal effects. Due to the fact that the trait was simulated
under a dominance model, analysis of genotypes yielded superior results when compared to
haplotype analysis. Despite the inherent advantage of genotype analysis using a dominance
model, the ACA using haplotypes (ACA/H) still showed greater power than RG/D in both
scenarios. For scenario 2, all models showed a reduction in power; however, the superiority
of the ACA methodologies remained constant, with the ACA using LG on genotypes assum‐
ing a dominance model (ACA/G/D) yielding 66.7% increase in power for both scenarios
when compared to the next best method, RG/D.

Scenario 1 Scenario 2

1 locus 2 locus 3 locus 1 locus 2 locus 3 locus

ACA/G/D ___ 1.00 0.90 ___ 0.50 0.40

ACA/G/C ___ 0.70 0.80 ___ 0.40 0.40

ACA/HAP ___ 0.60 0.70 ___ 0.50 0.40

RG/D 0.60 ___ ___ 0.30 ___ ___

RG/C 0.30 ___ ___ 0.30 ___ ___

SW/HAP ___ 0.10 0.20 ___ 0.00 0.00

a Power was calculated as the proportion of times at least one SNP in high linkage disequilibrium (>.8) with a causative
mutations was detected by the model at α=.05 for genome-wide significance

Table 8. Power calculationsa.

Plots of the associative effects, obtained using SW/H, ACA/G/D, and RG/D, are shown in
Fig. (2) and (3). When compared to the LD plot (Fig. (1)) all methods show good correspond‐
ence for scenario 1, though only the ACA/G/D was able to identify markers for both causa‐
tive mutations in all replicates. In scenario 2, where the genetic effect was greatly reduced,
plots of associative effects tended to be noisier for all models, with the ACA/G/D again
showing superior performance, identifying several SNP markers having only moderate LD
with causative mutation rs28953468.

Ant Colony Optimization - Techniques and Applications190

(a) (b)

(c)

Figure 2. Association plots of SNP markers for the simulated trait under scenario 1. Plots were obtained using 2 SNP
haplotypes analyzed by a. SW/LR and b. ACA/LR. Vertical lines represent the position of the two causative mutations,
and horizontal lines represent the threshold at which associations are significant at α=. 05

(a) (b)

(c)

Figure 3. Association plots of SNP markers for the simulated trait under scenario 2. Plots were obtained using 3 SNP
haplotypes analyzed by a. SW/LR, b. ACA/LR, and c. RG. Vertical lines represent the position of the two causative mu‐
tations, and horizontal lines represent the threshold at which associations are significant at α=.05.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

191

To determine the effectiveness of the permutation on pheromone levels, the cumulative dis‐
tribution, based on LD with causative mutations, of SNP identified as being significantly as‐
sociated with simulated trait by ACA/G/D and RG/D were plotted and can be found in Fig.
(4). Despite similarities in the average number of SNP identified by ACA/G/D (15.4) and
RG/D (22), the distributions of these SNP, differed substantially. In contrast to RG/D, the
ACA/G/D identified a large number of SNP having LD between.35-.45. These SNP corre‐
sponded to the broad plateau of SNP in LD with SNP 2041. Unlike RG/D, the ACA/G/D also
identified several SNP (5.19%) having less than.10 LD with either of the causative mutations,
an unexpected result given the strict family-wise significance thresholds (α=0.05) imposed
on all models. Surprisingly, both methodologies identified a large number of SNP having
LD of approximately ~.2. Upon closer examination it was found that these SNP had LD of ~.
2 with both causative mutations, likely artifacts of the data resulting from the relatively
small sample size. The LD with both causative mutations imparted a portion of the epistatic
effect on these SNP, resulting in significant associations with the simulated traits.

(a) (b)

Figure 4. Plot of the cumulative distribution of SNP, identified as have significant associations when using a) ACA/G/D
using 2 loci model (5.19%) b) RG/D, based on linkage disequilibrium with the causative mutations

2.3. Ant colony optimization as a method for strategic genotype sampling

Interest in identifying QTL of economic importance for marker-assisted selection (MAS)
in livestock populations has increased greatly in the past decade. Yet, it may not be via‐
ble to genotype each animal due to cost, time or lack of availability of DNA. A method
that would allow for a selected sample (e.g. 5%) of the population to be genotyped and
at the same time inferring with high probability genotypes for the remaining animals in
the population could be beneficial. By using such a method, fewer animals in a popula‐
tion would be needed for genotyping which would decrease the time and cost of geno‐
typing. Theoretically the problem at hand is simple to solve. If it were possible to
evaluate every possible subset of animals equal to the desired size (e.g. 5%) then the op‐
timal solution could be found. However, this is computationally impossible at the cur‐
rent time. Consequently a more feasible solution is needed. An intuitive solution would
be one that selects animals based on their relationship with other animals in the pedi‐
gree. However, the heterozygosity and the structure of the pedigree play important roles
as well. Consequently, the problem is one of optimization.

Ant Colony Optimization - Techniques and Applications192

In the case of genotyping, the ACA should select a subset of animals that, when genotyped,
should give an optimal performance in terms of extrapolating the alleles of non-genotyped
animals. Therefore, the objectives were to investigate the usefulness of a search algorithm as
implemented by Ressom et al. (2006) to optimize the amount of information that can be ex‐
tracted from a pedigree while only genotyping a small portion. The results of the proposed
method are compared to other viable methods to ascertain any potential gain. The proce‐
dures were tested using simulated pedigrees and actual beef cattle pedigrees of varying
sizes and structures.

C.1 Ant colony optimization: The ACA is initialized with all features having an equal baseline
level of pheromone which is used to compute Pm(0) for all features. Using the PDF as de‐
fined in equation (1), each of j artificial ants will select a subset Sk of n features from the
sample space S containing all features.

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
Upon convergence the optimal subset of features is select based in the level of pheromone
trail deposited on each feature.

In the specific case of selecting individuals for genotyping, the features are candidate ani‐
mals for genotyping from a full or partial pedigree. The pheromone of some feature, m, in
the current study was proportional to the sum of an animal’s number of mates and number
of offspring

() m mm t numoff nummatet = + (9)

where numoffm and nummatem were the number of offspring and number of mates for animal
m at time t, respectively. Consequently, the performance of a particular subset, Sk, is deter‐
mined the by the cumulative sum as described above for each of n animals in the subset.

1
()

n
m mm

m
t numoff nummatet

=
= +å (10)

Outside of actual ant colonies, and with regard in particular to the current study, it is diffi‐
cult to assign a biological explanation to the evaporation rate orρ. Consequently, a relatively
small value of 0.01 was chosen in an attempt to reach convergence faster. For each of j artifi‐
cial ants, a subset of animals was chosen equal to approximately 5% of the pedigree size.

For the five replicates of simulated pedigrees, 100 ants were used for each of 30,000 iter‐
ations. The evaporation rate was set equal to 0.01. The criterion used for evaluating can‐
didates was a function of their number of mates and number of offspring. Each animal
in the pedigree was randomly assigned to be either homozygous or heterozygous. The
probability of an animal being assigned to one of these two groups was dependent on

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

193

To determine the effectiveness of the permutation on pheromone levels, the cumulative dis‐
tribution, based on LD with causative mutations, of SNP identified as being significantly as‐
sociated with simulated trait by ACA/G/D and RG/D were plotted and can be found in Fig.
(4). Despite similarities in the average number of SNP identified by ACA/G/D (15.4) and
RG/D (22), the distributions of these SNP, differed substantially. In contrast to RG/D, the
ACA/G/D identified a large number of SNP having LD between.35-.45. These SNP corre‐
sponded to the broad plateau of SNP in LD with SNP 2041. Unlike RG/D, the ACA/G/D also
identified several SNP (5.19%) having less than.10 LD with either of the causative mutations,
an unexpected result given the strict family-wise significance thresholds (α=0.05) imposed
on all models. Surprisingly, both methodologies identified a large number of SNP having
LD of approximately ~.2. Upon closer examination it was found that these SNP had LD of ~.
2 with both causative mutations, likely artifacts of the data resulting from the relatively
small sample size. The LD with both causative mutations imparted a portion of the epistatic
effect on these SNP, resulting in significant associations with the simulated traits.

(a) (b)

Figure 4. Plot of the cumulative distribution of SNP, identified as have significant associations when using a) ACA/G/D
using 2 loci model (5.19%) b) RG/D, based on linkage disequilibrium with the causative mutations

2.3. Ant colony optimization as a method for strategic genotype sampling

Interest in identifying QTL of economic importance for marker-assisted selection (MAS)
in livestock populations has increased greatly in the past decade. Yet, it may not be via‐
ble to genotype each animal due to cost, time or lack of availability of DNA. A method
that would allow for a selected sample (e.g. 5%) of the population to be genotyped and
at the same time inferring with high probability genotypes for the remaining animals in
the population could be beneficial. By using such a method, fewer animals in a popula‐
tion would be needed for genotyping which would decrease the time and cost of geno‐
typing. Theoretically the problem at hand is simple to solve. If it were possible to
evaluate every possible subset of animals equal to the desired size (e.g. 5%) then the op‐
timal solution could be found. However, this is computationally impossible at the cur‐
rent time. Consequently a more feasible solution is needed. An intuitive solution would
be one that selects animals based on their relationship with other animals in the pedi‐
gree. However, the heterozygosity and the structure of the pedigree play important roles
as well. Consequently, the problem is one of optimization.

Ant Colony Optimization - Techniques and Applications192

In the case of genotyping, the ACA should select a subset of animals that, when genotyped,
should give an optimal performance in terms of extrapolating the alleles of non-genotyped
animals. Therefore, the objectives were to investigate the usefulness of a search algorithm as
implemented by Ressom et al. (2006) to optimize the amount of information that can be ex‐
tracted from a pedigree while only genotyping a small portion. The results of the proposed
method are compared to other viable methods to ascertain any potential gain. The proce‐
dures were tested using simulated pedigrees and actual beef cattle pedigrees of varying
sizes and structures.

C.1 Ant colony optimization: The ACA is initialized with all features having an equal baseline
level of pheromone which is used to compute Pm(0) for all features. Using the PDF as de‐
fined in equation (1), each of j artificial ants will select a subset Sk of n features from the
sample space S containing all features.

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
Upon convergence the optimal subset of features is select based in the level of pheromone
trail deposited on each feature.

In the specific case of selecting individuals for genotyping, the features are candidate ani‐
mals for genotyping from a full or partial pedigree. The pheromone of some feature, m, in
the current study was proportional to the sum of an animal’s number of mates and number
of offspring

() m mm t numoff nummatet = + (9)

where numoffm and nummatem were the number of offspring and number of mates for animal
m at time t, respectively. Consequently, the performance of a particular subset, Sk, is deter‐
mined the by the cumulative sum as described above for each of n animals in the subset.

1
()

n
m mm

m
t numoff nummatet

=
= +å (10)

Outside of actual ant colonies, and with regard in particular to the current study, it is diffi‐
cult to assign a biological explanation to the evaporation rate orρ. Consequently, a relatively
small value of 0.01 was chosen in an attempt to reach convergence faster. For each of j artifi‐
cial ants, a subset of animals was chosen equal to approximately 5% of the pedigree size.

For the five replicates of simulated pedigrees, 100 ants were used for each of 30,000 iter‐
ations. The evaporation rate was set equal to 0.01. The criterion used for evaluating can‐
didates was a function of their number of mates and number of offspring. Each animal
in the pedigree was randomly assigned to be either homozygous or heterozygous. The
probability of an animal being assigned to one of these two groups was dependent on

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

193

the allelic frequencies such that if the allele frequencies were assumed to be 0.7/0.3 then
approximately 58% of the animals would be categorized as homozygous based off of
Hardy-Weinberg Laws of equilibrium. The assignment of homozygous/heterozygous sta‐
tus was performed each iteration. If a selected animal 2was homozygous then his/her
number of mates and number of offspring were corrected such that for every homozy‐
gous offspring he/she had the number of offspring was corrected accordingly so that the
number of offspring only reflected the number of heterozygous offspring. The same cor‐
rection was done for the number of mates. Similarly, if a selected animal was heterozy‐
gous, the number of offspring and the number of mates reflected a count of only
homozygous individuals. An animal’s probability of being selected was based off of
maximizing the corrected sum of the animal’s number of offspring and number of mates.
The accuracy for evaluating a selected group of animals was proportional to this correct‐
ed sum. The uncorrected or original sum of each animal was used as prior information.
Selected animals were chosen based off of their cumulative probability were assumed to
have known genotypes for the peeling procedure. Simulated allele frequencies of 0.7/0.3
and 0.5/0.5 were used to assign genotypes to the animals in the pedigree.

In the case of the real pedigree the same parameters were used as in the simulated pedigrees
with the following exceptions; 100 ants were used for each of 5,000 iterations. The top 1,455
animals out of 29,101 were selected (5% of the total pedigree) based off of their cumulative
probability were assumed to have known genotypes for the peeling procedure. In the case of
the research beef cattle pedigree, 100 ants were used for each of 20,000 iterations. The top
434 out of 8,688 animals were selected (5% of the total pedigree) based on the same criteria.

C.2 Peeling: Given that genotypes in this study were assigned at random in the population, it
is possible to extract additional genotypic information from the pedigree. Animals with
missing genotypic information can be assigned one or both alleles given parental, progeny,
or mate information. Given this trio of information sources and following an algorithm simi‐
lar to Qian and Beckmann (2002) and Tapadar et al. (2000), imputation on missing geno‐
types were made and additional genotypic information was garnered. For the current study
it was assumed that there were no errors in the recorded pedigree resulting in all animals
having known paternity and maternity. Whenever possible, maternal and paternal alleles
were identified based on the inheritance. For the purpose of this study, the first allele was
inherited from the sire and the second allele was inherited from the dam. If the parental ori‐
gin of an allele was unclear, then allele was arbitrarily assigned as either the paternal or ma‐
ternal allele.

After the peeling process, the number of animals with one or two alleles known was com‐
puted. This was done by simply counting the number of animals that were assigned either
one or two alleles based on the peeling procedure described above. The percentage of alleles
known based on the peeling procedure (AKP) was then computed as follows:

1 2
P

(2)
AK 100,

2a

n n
n

æ ö´ +
= ´ç ÷ç ÷´è ø

(11)

Ant Colony Optimization - Techniques and Applications194

where n1 and n2 were the number of animals with 2 and 1 allele(s) known and na was the
total number of animals in the population. Furthermore, n1and na were multiplied by two
since each animal has two alleles.

At the end of the peeling process those animals that had either one or two alleles known
were retained for further analysis to determine the remaining unknown alleles in the popu‐
lation. In other words, those animals having one or two known alleles were used as prior
information in the Gibbs sampling procedure for determining the remaining unknown al‐
leles in the population.

C.3 Gibbs sampling: After the known alleles were determined by the peeling process descri‐
bed above, these alleles were used as prior information in the Gibbs Sampler to assign geno‐
types to the remaining animals in the population. For the base population animals, the
unknown allele(s) were randomly sampled given the frequency of alleles in the population
and the assumption of Hardy-Weinberg equilibrium. Unknown alleles for non-base popula‐
tion animals were randomly sampled from the parent’s genotypes according to Mendelian
rules. An equal weight was assumed for inheriting either the first or second allele from a
parent. For a non-base population animal that had only one unknown allele, the unknown
allele was sampled approximately half of the time from the sire’s genotype and the remain‐
ing time from the dam’s genotype. This was to compensate for incorrect assignment of the
known allele as illustrated in the above example.

At the end of the sampling process, a benefit function that described the total number of al‐
leles known in the population was computed. This function was computed from a combina‐
tion of known alleles and the probability of unknown alleles assigned during the sampling
process. In order to be included in the benefit function, an allele in a particular position had
to be equal to the true allele of the same position (i.e., Bb and bB were not equal). The proba‐
bility of alleleai , j, (j = 1 or 2) being assigned as the true allele j for animal i was calculated as:

number of times ,
,

 was assigned
() .

number of iterations
i j

i j

a
p a = (12)

Using p(ai , j) and the number of known alleles, the benefit function was then computed as

32

1 , ,1 ,2
1 1

2 [1 ()] [() ()],
nn

i j i i
i i

Benefit n p a p a p a
= =

= ´ + + + +å å (13)

wheren1, n2, and n3 were the number of animals with 2, 1 or 0 alleles known, respectively,
and p(ai , j) as previously defined. The percentage of alleles known after the Gibbs sampling
process, AKG, was such that

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

195

the allelic frequencies such that if the allele frequencies were assumed to be 0.7/0.3 then
approximately 58% of the animals would be categorized as homozygous based off of
Hardy-Weinberg Laws of equilibrium. The assignment of homozygous/heterozygous sta‐
tus was performed each iteration. If a selected animal 2was homozygous then his/her
number of mates and number of offspring were corrected such that for every homozy‐
gous offspring he/she had the number of offspring was corrected accordingly so that the
number of offspring only reflected the number of heterozygous offspring. The same cor‐
rection was done for the number of mates. Similarly, if a selected animal was heterozy‐
gous, the number of offspring and the number of mates reflected a count of only
homozygous individuals. An animal’s probability of being selected was based off of
maximizing the corrected sum of the animal’s number of offspring and number of mates.
The accuracy for evaluating a selected group of animals was proportional to this correct‐
ed sum. The uncorrected or original sum of each animal was used as prior information.
Selected animals were chosen based off of their cumulative probability were assumed to
have known genotypes for the peeling procedure. Simulated allele frequencies of 0.7/0.3
and 0.5/0.5 were used to assign genotypes to the animals in the pedigree.

In the case of the real pedigree the same parameters were used as in the simulated pedigrees
with the following exceptions; 100 ants were used for each of 5,000 iterations. The top 1,455
animals out of 29,101 were selected (5% of the total pedigree) based off of their cumulative
probability were assumed to have known genotypes for the peeling procedure. In the case of
the research beef cattle pedigree, 100 ants were used for each of 20,000 iterations. The top
434 out of 8,688 animals were selected (5% of the total pedigree) based on the same criteria.

C.2 Peeling: Given that genotypes in this study were assigned at random in the population, it
is possible to extract additional genotypic information from the pedigree. Animals with
missing genotypic information can be assigned one or both alleles given parental, progeny,
or mate information. Given this trio of information sources and following an algorithm simi‐
lar to Qian and Beckmann (2002) and Tapadar et al. (2000), imputation on missing geno‐
types were made and additional genotypic information was garnered. For the current study
it was assumed that there were no errors in the recorded pedigree resulting in all animals
having known paternity and maternity. Whenever possible, maternal and paternal alleles
were identified based on the inheritance. For the purpose of this study, the first allele was
inherited from the sire and the second allele was inherited from the dam. If the parental ori‐
gin of an allele was unclear, then allele was arbitrarily assigned as either the paternal or ma‐
ternal allele.

After the peeling process, the number of animals with one or two alleles known was com‐
puted. This was done by simply counting the number of animals that were assigned either
one or two alleles based on the peeling procedure described above. The percentage of alleles
known based on the peeling procedure (AKP) was then computed as follows:

1 2
P

(2)
AK 100,

2a

n n
n

æ ö´ +
= ´ç ÷ç ÷´è ø

(11)

Ant Colony Optimization - Techniques and Applications194

where n1 and n2 were the number of animals with 2 and 1 allele(s) known and na was the
total number of animals in the population. Furthermore, n1and na were multiplied by two
since each animal has two alleles.

At the end of the peeling process those animals that had either one or two alleles known
were retained for further analysis to determine the remaining unknown alleles in the popu‐
lation. In other words, those animals having one or two known alleles were used as prior
information in the Gibbs sampling procedure for determining the remaining unknown al‐
leles in the population.

C.3 Gibbs sampling: After the known alleles were determined by the peeling process descri‐
bed above, these alleles were used as prior information in the Gibbs Sampler to assign geno‐
types to the remaining animals in the population. For the base population animals, the
unknown allele(s) were randomly sampled given the frequency of alleles in the population
and the assumption of Hardy-Weinberg equilibrium. Unknown alleles for non-base popula‐
tion animals were randomly sampled from the parent’s genotypes according to Mendelian
rules. An equal weight was assumed for inheriting either the first or second allele from a
parent. For a non-base population animal that had only one unknown allele, the unknown
allele was sampled approximately half of the time from the sire’s genotype and the remain‐
ing time from the dam’s genotype. This was to compensate for incorrect assignment of the
known allele as illustrated in the above example.

At the end of the sampling process, a benefit function that described the total number of al‐
leles known in the population was computed. This function was computed from a combina‐
tion of known alleles and the probability of unknown alleles assigned during the sampling
process. In order to be included in the benefit function, an allele in a particular position had
to be equal to the true allele of the same position (i.e., Bb and bB were not equal). The proba‐
bility of alleleai , j, (j = 1 or 2) being assigned as the true allele j for animal i was calculated as:

number of times ,
,

 was assigned
() .

number of iterations
i j

i j

a
p a = (12)

Using p(ai , j) and the number of known alleles, the benefit function was then computed as

32

1 , ,1 ,2
1 1

2 [1 ()] [() ()],
nn

i j i i
i i

Benefit n p a p a p a
= =

= ´ + + + +å å (13)

wheren1, n2, and n3 were the number of animals with 2, 1 or 0 alleles known, respectively,
and p(ai , j) as previously defined. The percentage of alleles known after the Gibbs sampling
process, AKG, was such that

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

195

GAK 100,
2a

benefit
n

æ ö
= ´ç ÷ç ÷´è ø

(14)

where benefit was the benefit function computed above and na was the total number of ani‐
mals in the population.

During each round of the sampling process only one genotype of a given animal was as‐
signed as the true genotype. Thus, at the end of the sampling process every animal had a
probability of having the true genotype,PTGig , assigned as

number of times genotype was assignedPTG ,
total number of samplesig

g
= (15)

where genotype g was the true genotype for animali. The average probability of the true
genotype being identified for every animal in the population (APTG) was computed using
the following:

1
PTG

APTG ,

an

ig
i

an
==
å (16)

where PTGig was defined as above and na was the total number of animals in the popula‐
tion. In contrast to the benefit function, APTG only required that the animal have the correct
genotype—Bb was considered the same genotype as bB—and therefore was able to compen‐
sate for the incorrect allele position and sampling the correct unknown allele.

C.4 Simulation: A simulation using an animal model was carried out to investigate two meth‐
ods of selecting animals for genotyping and two methods of maximizing the genetic infor‐
mation of the population. A pedigree with four over-lapping generations was simulated.
The base population included 500 unrelated animals and subsequent generations consisted
of 1,500 animals with a total of 5,000 animals generated. For the simulated pedigrees as well
as the real pedigrees, one gene with two alleles was simulated for every animal in the pedi‐
gree file. Genotypes of the base population animals were assigned based on allele frequen‐
cies. For the subsequent generations, genotypes were randomly assigned using the parent’s
genotype, where an equal chance of passing either the first or second allele was assumed.
Five replicates of the simulated data were generated.

Two different frequencies for the favorable allele were used in the simulation and analyses.
The frequencies were 0.30, and 0.50. For the analyses using Gibbs sampling, a total chain
length of 25,000 iterations of the Gibbs sampler was run, where the first 5,000 iterations were
discarded as burn-in.

Ant Colony Optimization - Techniques and Applications196

C.5 Results of simulated pedigrees: Table 9 presents results of the ACO and alternative meth‐
ods for analysis of the simulated pedigrees (Spangler 2008). The ant colony optimization
method (ACO) appeared to be the most desirable method of those discussed in the current
study. Compared to selecting 5% of the animals at random, ACO showed gains in AKP,
AKG, and APTG ranging from 261.09 to 262.93%, 19.97 to 26.04%, and 23.5 to 29.6%, respec‐
tively. As compared to the favorable method of the alternative approaches, selecting males
and females based of off the diagonal element of the inverse of the relationship matrix, the
increase in AKP ranged from 4.98 to 5.16%. This gain is due to the amount of animals with
both alleles known after the peeling process which was between 20.74 and 21.07% larger in
favor of ACO. Admittedly, the gains in AKG were slight as compared to selecting males and
females based of off the diagonal element of A-1, yet ACO still performed better. The in‐
crease in APTG ranged from 1.6 to 1.8% in favor of ACO over selecting males and females
from their diagonal element.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 811.20 787.20 258.20 259.60 250.00 250.60 670.00 652.00

1 allele known 2,166.80 2,063.00 527.80 485.60 2,939.80 2,793.00 2,262.60 2,152.80

Benefit function 8,055.01 7,550.36 6,713.56 6,007.02 7,943.67 7,401.57 8,019.88 7,497.70

AKP 37.89 36.29 10.44 10.05 34.40 32.94 36.03 34.57

AKG 80.55 75.71 67.14 60.07 79.44 74.02 80.20 74.98

APTG 0.63 0.57 0.51 0.44 0.59 0.52 0.62 0.56

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10

Table 9. Number of animals with one or two alleles known, percentage of alleles known, and probability of assigning
the true genotype using other approachess

C.6 Real beef cattle pedigree: Results from the ACO analysis can be found in Table 10
along with results from alternative approaches. The largest gains were seen in AKP

which ranged from 150.00 to 171.62%, 2.95 to 3.04%, and from 1.80 to 1.94% as com‐
pared to random selection, selection of males and females from A-1, and selection of
males from A-1, respectively. ACO also showed gains in AKG and APTG over random
selection between 70.06 and 74.91% and between 14.3 and 15.4%, respectively. Table 3
shows advantages, although slight, of ACO over the methods using the diagonal element
of A-1 for the parameters of AKG and APTG.

C.7 Research beef cattle pedigree: Results from the ACO analysis and other approaches us‐
ing the same pedigree can be found in Table 11. As compared to randomly selecting 5%

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

197

GAK 100,
2a

benefit
n

æ ö
= ´ç ÷ç ÷´è ø

(14)

where benefit was the benefit function computed above and na was the total number of ani‐
mals in the population.

During each round of the sampling process only one genotype of a given animal was as‐
signed as the true genotype. Thus, at the end of the sampling process every animal had a
probability of having the true genotype,PTGig , assigned as

number of times genotype was assignedPTG ,
total number of samplesig

g
= (15)

where genotype g was the true genotype for animali. The average probability of the true
genotype being identified for every animal in the population (APTG) was computed using
the following:

1
PTG

APTG ,

an

ig
i

an
==
å (16)

where PTGig was defined as above and na was the total number of animals in the popula‐
tion. In contrast to the benefit function, APTG only required that the animal have the correct
genotype—Bb was considered the same genotype as bB—and therefore was able to compen‐
sate for the incorrect allele position and sampling the correct unknown allele.

C.4 Simulation: A simulation using an animal model was carried out to investigate two meth‐
ods of selecting animals for genotyping and two methods of maximizing the genetic infor‐
mation of the population. A pedigree with four over-lapping generations was simulated.
The base population included 500 unrelated animals and subsequent generations consisted
of 1,500 animals with a total of 5,000 animals generated. For the simulated pedigrees as well
as the real pedigrees, one gene with two alleles was simulated for every animal in the pedi‐
gree file. Genotypes of the base population animals were assigned based on allele frequen‐
cies. For the subsequent generations, genotypes were randomly assigned using the parent’s
genotype, where an equal chance of passing either the first or second allele was assumed.
Five replicates of the simulated data were generated.

Two different frequencies for the favorable allele were used in the simulation and analyses.
The frequencies were 0.30, and 0.50. For the analyses using Gibbs sampling, a total chain
length of 25,000 iterations of the Gibbs sampler was run, where the first 5,000 iterations were
discarded as burn-in.

Ant Colony Optimization - Techniques and Applications196

C.5 Results of simulated pedigrees: Table 9 presents results of the ACO and alternative meth‐
ods for analysis of the simulated pedigrees (Spangler 2008). The ant colony optimization
method (ACO) appeared to be the most desirable method of those discussed in the current
study. Compared to selecting 5% of the animals at random, ACO showed gains in AKP,
AKG, and APTG ranging from 261.09 to 262.93%, 19.97 to 26.04%, and 23.5 to 29.6%, respec‐
tively. As compared to the favorable method of the alternative approaches, selecting males
and females based of off the diagonal element of the inverse of the relationship matrix, the
increase in AKP ranged from 4.98 to 5.16%. This gain is due to the amount of animals with
both alleles known after the peeling process which was between 20.74 and 21.07% larger in
favor of ACO. Admittedly, the gains in AKG were slight as compared to selecting males and
females based of off the diagonal element of A-1, yet ACO still performed better. The in‐
crease in APTG ranged from 1.6 to 1.8% in favor of ACO over selecting males and females
from their diagonal element.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 811.20 787.20 258.20 259.60 250.00 250.60 670.00 652.00

1 allele known 2,166.80 2,063.00 527.80 485.60 2,939.80 2,793.00 2,262.60 2,152.80

Benefit function 8,055.01 7,550.36 6,713.56 6,007.02 7,943.67 7,401.57 8,019.88 7,497.70

AKP 37.89 36.29 10.44 10.05 34.40 32.94 36.03 34.57

AKG 80.55 75.71 67.14 60.07 79.44 74.02 80.20 74.98

APTG 0.63 0.57 0.51 0.44 0.59 0.52 0.62 0.56

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10

Table 9. Number of animals with one or two alleles known, percentage of alleles known, and probability of assigning
the true genotype using other approachess

C.6 Real beef cattle pedigree: Results from the ACO analysis can be found in Table 10
along with results from alternative approaches. The largest gains were seen in AKP

which ranged from 150.00 to 171.62%, 2.95 to 3.04%, and from 1.80 to 1.94% as com‐
pared to random selection, selection of males and females from A-1, and selection of
males from A-1, respectively. ACO also showed gains in AKG and APTG over random
selection between 70.06 and 74.91% and between 14.3 and 15.4%, respectively. Table 3
shows advantages, although slight, of ACO over the methods using the diagonal element
of A-1 for the parameters of AKG and APTG.

C.7 Research beef cattle pedigree: Results from the ACO analysis and other approaches us‐
ing the same pedigree can be found in Table 11. As compared to randomly selecting 5%

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

197

of the animals, ACO showed increases in AKP, AKG, and APTG ranging from 241.24 to
302.58%, 42.93 to 43.17%, and 20.9 to 38.0%, respectively. Realized gains in AKP of ACO
over selecting males from A-1 or males and females from A-1 ranged from 8.78 to 10.15%,
and 2.04 to 3.40%, respectfully.

The results suggest that ACO is the most desirable method of selecting candidates for
genotyping, particularly after peeling (AKP). From these results it appears that the num‐
ber of offspring and the number of mates along with the homozygosity of the genotyped
animals is critical in the selection process. Consequently, in application it will be critical
to have good estimates of allele frequencies prior to implementing the genotype sam‐
pling strategy proposed in the current study. Differences in performance of ACO do ex‐
ist between the pedigrees explored in the current study. This is due to the proportion of
sires and dams that have large numbers of offspring and/or mates. In the dairy industry,
for example, there may be only a small number of sires in a pedigree but they may all
be used heavily as in the case of the simulated pedigrees in the current study. In con‐
trast, a pedigree from the beef industry may have a larger proportion of sires but a large
number of them may be used less frequently.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 1,767.00 1,706.00 1,505.00 1,501.00 1,473.00 1,470.00 2,086.00 1,999.00

1 allele known 11,451.00 10,382.00 2,508.00 2,144.00 11,756.00 10,607.00 10,376.00 9,398.00

Benefit function 34,977.61 32,547.06 20,569.53 18,609.00 34,876.62 32,282.40 34,005.21 31,456.36

AKP 25.75 23.70 9.48 8.84 25.26 23.28 24.99 23.02

AKG 60.10 55.92 35.34 31.97 59.92 55.47 58.43 54.05

APTG 0.45 0.40 0.39 0.35 0.44 0.39 0.44 0.40

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 10. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle pedigree a

Ant Colony Optimization - Techniques and Applications198

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 975.00 720.00 452.00 458.00 438.00 439.00 1,082.00 751.00

1 allele known 5,101.00 4,009.00 847.00 682.00 5,525.00 4,132.00 4,747.00 3,768.00

Benefit function 13,916.18 11,990.71 9,719.53 8,284.42 14,113.18 12,017.80 13,743.44 11,848.01

AKP 40.58 31.36 10.08 9.19 36.84 28.83 39.77 30.33

AKG 80.09 68.15 55.94 47.68 81.22 69.16 79.09 68.19

APTG 0.69 0.52 0.50 0.43 0.69 0.51 0.68 0.52

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 11. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle research pedigreea

Furthermore, pedigrees from field data or from research projects will also have innate struc‐
tural differences. Research projects may be limited by the size of the population and thus
only use a small number of sires. In this scenario it would also be possible for higher rates of
inbreeding and larger numbers of loops in a pedigree due to a large number of full sibs.

In the current study, the simulated pedigrees are composed of approximately 10% sires,
while the large beef cattle pedigree and the small research beef cattle pedigree contain ap‐
proximately 16 and 7% sires, respectively. Intuitively, as the proportion of sires goes up, the
number of offspring per sire goes down. This explains the similarity of the results between
the simulated pedigrees and the small research pedigree. Thus, it is expected that the ACO
algorithm will be far superior to other alternatives when very small (few hundred animals)
pedigrees are considered or in situations where more than 5% of animals are genotyped due
to reduction in animal with large diagonal elements in A-1.

Ant colony optimization offers a new and unique solution to the optimization problem of
selecting individuals for genotyping. The heuristics used in the current study such as the
number of ants, number of iterations, and the evaporation rate are unique only to the pedi‐
grees used in the current study. Each pedigree will offer a different structure and thus re‐
quire a different set of parameters.

3. Conclusions

When applied to the high-dimensional data sets, the ant colony algorithm achieved higher
prediction accuracies than all other feature selection methods examined. In contrast to previ‐
ous applications of optimization algorithms, the ant colony algorithm yielded high accura‐

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

199

of the animals, ACO showed increases in AKP, AKG, and APTG ranging from 241.24 to
302.58%, 42.93 to 43.17%, and 20.9 to 38.0%, respectively. Realized gains in AKP of ACO
over selecting males from A-1 or males and females from A-1 ranged from 8.78 to 10.15%,
and 2.04 to 3.40%, respectfully.

The results suggest that ACO is the most desirable method of selecting candidates for
genotyping, particularly after peeling (AKP). From these results it appears that the num‐
ber of offspring and the number of mates along with the homozygosity of the genotyped
animals is critical in the selection process. Consequently, in application it will be critical
to have good estimates of allele frequencies prior to implementing the genotype sam‐
pling strategy proposed in the current study. Differences in performance of ACO do ex‐
ist between the pedigrees explored in the current study. This is due to the proportion of
sires and dams that have large numbers of offspring and/or mates. In the dairy industry,
for example, there may be only a small number of sires in a pedigree but they may all
be used heavily as in the case of the simulated pedigrees in the current study. In con‐
trast, a pedigree from the beef industry may have a larger proportion of sires but a large
number of them may be used less frequently.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 1,767.00 1,706.00 1,505.00 1,501.00 1,473.00 1,470.00 2,086.00 1,999.00

1 allele known 11,451.00 10,382.00 2,508.00 2,144.00 11,756.00 10,607.00 10,376.00 9,398.00

Benefit function 34,977.61 32,547.06 20,569.53 18,609.00 34,876.62 32,282.40 34,005.21 31,456.36

AKP 25.75 23.70 9.48 8.84 25.26 23.28 24.99 23.02

AKG 60.10 55.92 35.34 31.97 59.92 55.47 58.43 54.05

APTG 0.45 0.40 0.39 0.35 0.44 0.39 0.44 0.40

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 10. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle pedigree a

Ant Colony Optimization - Techniques and Applications198

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) (0.50)

No. of animals with

2 alleles known 975.00 720.00 452.00 458.00 438.00 439.00 1,082.00 751.00

1 allele known 5,101.00 4,009.00 847.00 682.00 5,525.00 4,132.00 4,747.00 3,768.00

Benefit function 13,916.18 11,990.71 9,719.53 8,284.42 14,113.18 12,017.80 13,743.44 11,848.01

AKP 40.58 31.36 10.08 9.19 36.84 28.83 39.77 30.33

AKG 80.09 68.15 55.94 47.68 81.22 69.16 79.09 68.19

APTG 0.69 0.52 0.50 0.43 0.69 0.51 0.68 0.52

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 11. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle research pedigreea

Furthermore, pedigrees from field data or from research projects will also have innate struc‐
tural differences. Research projects may be limited by the size of the population and thus
only use a small number of sires. In this scenario it would also be possible for higher rates of
inbreeding and larger numbers of loops in a pedigree due to a large number of full sibs.

In the current study, the simulated pedigrees are composed of approximately 10% sires,
while the large beef cattle pedigree and the small research beef cattle pedigree contain ap‐
proximately 16 and 7% sires, respectively. Intuitively, as the proportion of sires goes up, the
number of offspring per sire goes down. This explains the similarity of the results between
the simulated pedigrees and the small research pedigree. Thus, it is expected that the ACO
algorithm will be far superior to other alternatives when very small (few hundred animals)
pedigrees are considered or in situations where more than 5% of animals are genotyped due
to reduction in animal with large diagonal elements in A-1.

Ant colony optimization offers a new and unique solution to the optimization problem of
selecting individuals for genotyping. The heuristics used in the current study such as the
number of ants, number of iterations, and the evaporation rate are unique only to the pedi‐
grees used in the current study. Each pedigree will offer a different structure and thus re‐
quire a different set of parameters.

3. Conclusions

When applied to the high-dimensional data sets, the ant colony algorithm achieved higher
prediction accuracies than all other feature selection methods examined. In contrast to previ‐
ous applications of optimization algorithms, the ant colony algorithm yielded high accura‐

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

199

cies without the need to pre-select a small percentage of genes. Furthermore, the ant colony
algorithm was able to identify small subsets of features with high predictive abilities and bi‐
ological relevance. In the presence of simulated epistasis, the proposed optimization meth‐
odology obtained substantial increases in power, demonstrating the effectiveness of
machine learning approaches for the analysis of marker association studies in which gene
interactions may be present. Although the ACA methods identified more SNP markers that
could be construed as false positives, the use of a more stringent threshold eliminated the
problem without greatly reducing the advantage of the ACA, in terms of power, when com‐
pared to other methods. The results of this study provide compelling evidence that the ACA
is capable of efficiently modeling complex biological problems, such as the model proposed
in this study.

Author details

R. Rekaya1,2,3*, K. Robbins4, M. Spangler5, S. Smith1, E. H. Hay1 and K. Bertrand1

*Address all correspondence to: rrekaya@uga.edu

1 Department of Animal and Dairy Science, The University of Georgia, Athens, Greece

2 Department of Statistics, The University of Georgia, Athens, Greece

3 Institute of Bioinformatics, The University of Georgia, Athens, Greece

4 Dow AgroSciences, Indianapolis, IN, USA

5 Animal Science Department, University of Nebraska, Lincoln, NE, USA

References

[1] Akiyama,T. and Y Kawasaki (2006) Wnt signaling and the actin cytoskeleton Onco‐
gene, 25, 7538-7544.

[2] Albrecht, A., Vinterbo,S.A. and L. O. Machado 2003, ‘An epicurean learning ap‐
proach to gene-expression data classification’, Artif. Intell in Medicine, 28, 75-87.

[3] Antonov,A.V., Tetko,I.V., Mader,M.T., Budczies,J. and H. W. Mewes (2004) Optimi‐
zation models for cancer classification: extracting gene interaction information from
microarray expression data Bioinformatics, 20, 644-652.

[4] Bagirov,A.M., Ferguson,B., Ivkovic,S., Saunders,G. and J. Yearwood (2003) New al‐
gorithms for multi-class cancer diagnosis using tumor gene expression signatures Bi‐
oinformatics, 19, 1800-1807.

Ant Colony Optimization - Techniques and Applications200

[5] Barendse, W., Harrison, B. E., Hawken, R. J., Ferguson, D. M., Thompson, J. M., Tho‐
mas, M. B., and R. J. Bunch. 2007. Epistasis between Calpain 1 and its inhibitor Cal‐
pastatin within breeds of cattle. Genetics 176:2601-2610.

[6] Coutinho, A. M., Sousa, I., Martins, M. et al. 2007. Evidence for epistasis between
SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin
levels. Hum. Genet. 121:243-256.

[7] Ding, Y. P., Wu, Q. S., and Q. D. Su. 2005. Multivariate Calibration Analysis for metal
porphyrin mixtures by an ant colony algorithm. Analytical Sciences. 21:327-330.

[8] Dorigo M., Di Caro G. & Gambardella L.M. (1999) Ant algorithms for discrete opti‐
mization. Artificial Life 5, 137–72.

[9] Dorigo, M. and L. M. Gambardella. 1997. Ant colonies for the travailing salesman
problem. BioSystems. 43:73-81.

[10] Golub,T.R., Slonim,D.K., Tomayo,P., Huard,C., Gaasenbeek,M., Mesirov,J.P., Col‐
ler,H., Loh,M.L., Downing,J.R., Caligiuri,M.A., Bloomfield,C.D. and E. S. Lander
(1999) Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring Science, 286, 531-537.

[11] Gonzalez, J. R., Armengol, L., Sole, X., Guino, E., Mercader, J. M., Estivill, X., and V.
Moreno. 2007. SNPassoc: an R package to perform whole genome association studies.
Bioinformatics. 23(5):644-645

[12] Hong,J. and S. Cho (2006) Efficient huge-scale feature with speciated genetic algo‐
rithm Pattern Recognition Lett., 27, 143-150.

[13] Hugot, J. P., Chamaillard, M., Zouali, H. et al. 2001. Association of NOD2 leucine-
rich repeat variants with susceptibility to Crohn’s disease. Nature. 411:599-603.

[14] Jefferey,I.B., Higgins,D.G. and A. Culhane (2006) Comparison and evaluation of
methods for generating differentially expressed gene lists from microarray data,
BMC Bioinformatics, 7.

[15] Lin,T., Liu,R., Chen,C., Choa,Y. and S. Chen (2006) Pattern classificationin DNA mi‐
croarray data of multiple tumor types Pattern Recognition, 39, 2426-2438.

[16] Liu,J.J., Cutler,G., Li,W., Pan,Z., Peng,S., Hoey,T., Chen,L. and X. B. Ling (2005) Mul‐
ticlass cancer classification and biomarker discover using GA-based algorithms Bioin‐
formatics, 21, 2691-2697.

[17] Marchini, J., Donnelly, P., and L. R. Cardon. 2005. Genome-wide stregies for detect‐
ing multiple loci that influence complex diseases. Nat. Genetics. 37:413-417.

[18] Nagata,K., Kawajiri,A., Matsui,S., Takagishi,M., Shiromizu,T., Saitoh,N., Izawa,I.
Kiyono,T., Itoh,T.J., Hotani,H. and M. Inagaki (2003) Filament formation of MSF-A, a
mammalan Septin, in human mammary epithelial cells depends on interactions with
microtubules J. of Biol. Chem., 278, 18538-18543

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

201

cies without the need to pre-select a small percentage of genes. Furthermore, the ant colony
algorithm was able to identify small subsets of features with high predictive abilities and bi‐
ological relevance. In the presence of simulated epistasis, the proposed optimization meth‐
odology obtained substantial increases in power, demonstrating the effectiveness of
machine learning approaches for the analysis of marker association studies in which gene
interactions may be present. Although the ACA methods identified more SNP markers that
could be construed as false positives, the use of a more stringent threshold eliminated the
problem without greatly reducing the advantage of the ACA, in terms of power, when com‐
pared to other methods. The results of this study provide compelling evidence that the ACA
is capable of efficiently modeling complex biological problems, such as the model proposed
in this study.

Author details

R. Rekaya1,2,3*, K. Robbins4, M. Spangler5, S. Smith1, E. H. Hay1 and K. Bertrand1

*Address all correspondence to: rrekaya@uga.edu

1 Department of Animal and Dairy Science, The University of Georgia, Athens, Greece

2 Department of Statistics, The University of Georgia, Athens, Greece

3 Institute of Bioinformatics, The University of Georgia, Athens, Greece

4 Dow AgroSciences, Indianapolis, IN, USA

5 Animal Science Department, University of Nebraska, Lincoln, NE, USA

References

[1] Akiyama,T. and Y Kawasaki (2006) Wnt signaling and the actin cytoskeleton Onco‐
gene, 25, 7538-7544.

[2] Albrecht, A., Vinterbo,S.A. and L. O. Machado 2003, ‘An epicurean learning ap‐
proach to gene-expression data classification’, Artif. Intell in Medicine, 28, 75-87.

[3] Antonov,A.V., Tetko,I.V., Mader,M.T., Budczies,J. and H. W. Mewes (2004) Optimi‐
zation models for cancer classification: extracting gene interaction information from
microarray expression data Bioinformatics, 20, 644-652.

[4] Bagirov,A.M., Ferguson,B., Ivkovic,S., Saunders,G. and J. Yearwood (2003) New al‐
gorithms for multi-class cancer diagnosis using tumor gene expression signatures Bi‐
oinformatics, 19, 1800-1807.

Ant Colony Optimization - Techniques and Applications200

[5] Barendse, W., Harrison, B. E., Hawken, R. J., Ferguson, D. M., Thompson, J. M., Tho‐
mas, M. B., and R. J. Bunch. 2007. Epistasis between Calpain 1 and its inhibitor Cal‐
pastatin within breeds of cattle. Genetics 176:2601-2610.

[6] Coutinho, A. M., Sousa, I., Martins, M. et al. 2007. Evidence for epistasis between
SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin
levels. Hum. Genet. 121:243-256.

[7] Ding, Y. P., Wu, Q. S., and Q. D. Su. 2005. Multivariate Calibration Analysis for metal
porphyrin mixtures by an ant colony algorithm. Analytical Sciences. 21:327-330.

[8] Dorigo M., Di Caro G. & Gambardella L.M. (1999) Ant algorithms for discrete opti‐
mization. Artificial Life 5, 137–72.

[9] Dorigo, M. and L. M. Gambardella. 1997. Ant colonies for the travailing salesman
problem. BioSystems. 43:73-81.

[10] Golub,T.R., Slonim,D.K., Tomayo,P., Huard,C., Gaasenbeek,M., Mesirov,J.P., Col‐
ler,H., Loh,M.L., Downing,J.R., Caligiuri,M.A., Bloomfield,C.D. and E. S. Lander
(1999) Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring Science, 286, 531-537.

[11] Gonzalez, J. R., Armengol, L., Sole, X., Guino, E., Mercader, J. M., Estivill, X., and V.
Moreno. 2007. SNPassoc: an R package to perform whole genome association studies.
Bioinformatics. 23(5):644-645

[12] Hong,J. and S. Cho (2006) Efficient huge-scale feature with speciated genetic algo‐
rithm Pattern Recognition Lett., 27, 143-150.

[13] Hugot, J. P., Chamaillard, M., Zouali, H. et al. 2001. Association of NOD2 leucine-
rich repeat variants with susceptibility to Crohn’s disease. Nature. 411:599-603.

[14] Jefferey,I.B., Higgins,D.G. and A. Culhane (2006) Comparison and evaluation of
methods for generating differentially expressed gene lists from microarray data,
BMC Bioinformatics, 7.

[15] Lin,T., Liu,R., Chen,C., Choa,Y. and S. Chen (2006) Pattern classificationin DNA mi‐
croarray data of multiple tumor types Pattern Recognition, 39, 2426-2438.

[16] Liu,J.J., Cutler,G., Li,W., Pan,Z., Peng,S., Hoey,T., Chen,L. and X. B. Ling (2005) Mul‐
ticlass cancer classification and biomarker discover using GA-based algorithms Bioin‐
formatics, 21, 2691-2697.

[17] Marchini, J., Donnelly, P., and L. R. Cardon. 2005. Genome-wide stregies for detect‐
ing multiple loci that influence complex diseases. Nat. Genetics. 37:413-417.

[18] Nagata,K., Kawajiri,A., Matsui,S., Takagishi,M., Shiromizu,T., Saitoh,N., Izawa,I.
Kiyono,T., Itoh,T.J., Hotani,H. and M. Inagaki (2003) Filament formation of MSF-A, a
mammalan Septin, in human mammary epithelial cells depends on interactions with
microtubules J. of Biol. Chem., 278, 18538-18543

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

201

[19] Ooi,C.H. and P. Tan (2003) Genetic algorithms applied to multi-class prediction for
the analysis of gene expression data Bioinformatics, 19, 37-44.

[20] Peng,S., Xu,Q., Ling,X.B., Peng,X., Du,W. and L. Chen Molecular classification of can‐
cer types from microarray data using the combination of genetic algorithms and sup‐
port vector machines FEBS Letters, 555, 358-362.

[21] Qian D. & Beckmann L. (2002) Minimum-recombinant haplotyping in pedigrees.
American Journal of Human Genetics 70, 1434–45.

[22] Ramaswamy,S., Tamayo,P., Rifkin,R., Mukherjee,S., Yeang,C., Angelo,M., Ladd,C.,
Reich,M., Latulippe,E., Mesirov,J.P., Poggio,T., Gerald,W., Loda,M., Lander,E.S. and
T. R. Golub (2001) Multiclass cancer diagnosis using tumor gene expression signa‐
tures PNAS, 98, 15149-15154.

[23] Rekaya, R, K. Robbins. (2009). Ant colony algorithm for analysis of gene interaction
in high-dimensional association data. Revista Brasileira de Zootecnia. doi: 10.1590/
S1516-35982009001300011.

[24] Ressom,H.W., Varghese,R.S., Orvisky,E., Drake,S.K., Hortin,G.L., Abdel-Hamid,M.
Loffredo,C.A. and R. Goldman (2006) Ant colony optimization for biomarker identi‐
fication from MALDI-TOF mass spectra Proc. of the 28th EMBS Annual Inter. Conf.,
4560-4563.

[25] Robbins, K. R., Zhang, W., R. Rekaya, and J. K. Bertrand. 2007. The use of the ant col‐
ony algorithm for analysis of high-dimension gene expression data sets. 58th Annual
Meeting of the European Association for Animal Production (EAAP):167.

[26] Robbins, K. R., Zhang, W., J. K. Bertrand, R. Rekaya. 2008. Ant colony optimization
for feature selection in high dimensionality data sets. Math Med Biol. 24(4):413-426.

[27] Robbins K, K. Bertrand, and R. Rekaya. 2011. The use of the ant colony algorithm for
the detection of marker associations in the presence of gene interactions. Internation‐
al Journal of Bioinformatics Research, 2:227-235.

[28] Scott,M., McCluggage,W.G., Hillan,K.J., Hall,P.A. and S. E. H. Russell (2006) Altered
patterns of transcription of th septin gene, SEPT9, in ovarian tumorgenesis Int. J. Can‐
cer, 118, 1325-1329.

[29] Shen,R., Ghosh,D., Chinnaiyan,A. and Z. Meng Eigengene-based linear discriminant
model for tumor classification using gene expression microarray data Bioinformatics,
22, 2635-2642.

[30] Shymygelska, A. and H. H. Hoos. 2005. An ant colony optimization algorithm for the
2D and 3D hydrocarbon polar protein folding program. BMC Bioinformatics. 6:30.

[31] Sinnwell, J. P. and D. J. Schaid. 2005. haplo.stats: Statistical Analysis of Haplotypes
with Traits and Covariates when Linkage Phase is Ambiguous. R package version
1.2.2.

Ant Colony Optimization - Techniques and Applications202

[32] Spangler, M. L., K. R. Robbins, J. K. Bertrand, M. MacNeil, and R. Rekaya. 2008. Ant
colony optimization as a method for strategic genotype sampling. Animal Genetics
40: 308 – 314.

[33] Subramani,P., Sahu,R. and S. Verma, Feature selection using Haar wavelet power
spectrum BMC Bioinformatics, 7:432.

[34] Tapadar P., Ghosh S. & Majumder P.P. (2000) Haplotyping in pedigrees via a genetic
algorithm. Human Heredity 50, 43–56.

[35] West M. (2003) Bayesian factor regression models in the "Large p, Small n" paradigm,
Bayesian Statistics, 7, 723-732.

[36] Woon , P. Y., Kaisaki, P. J., Braganca, J., Bihoreau, M. T., Levy, J. C., Farrall, M., and
D. Gauguir. 2007. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is as‐
sociated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad.
Sci. 104(36):14412-14417.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

203

[19] Ooi,C.H. and P. Tan (2003) Genetic algorithms applied to multi-class prediction for
the analysis of gene expression data Bioinformatics, 19, 37-44.

[20] Peng,S., Xu,Q., Ling,X.B., Peng,X., Du,W. and L. Chen Molecular classification of can‐
cer types from microarray data using the combination of genetic algorithms and sup‐
port vector machines FEBS Letters, 555, 358-362.

[21] Qian D. & Beckmann L. (2002) Minimum-recombinant haplotyping in pedigrees.
American Journal of Human Genetics 70, 1434–45.

[22] Ramaswamy,S., Tamayo,P., Rifkin,R., Mukherjee,S., Yeang,C., Angelo,M., Ladd,C.,
Reich,M., Latulippe,E., Mesirov,J.P., Poggio,T., Gerald,W., Loda,M., Lander,E.S. and
T. R. Golub (2001) Multiclass cancer diagnosis using tumor gene expression signa‐
tures PNAS, 98, 15149-15154.

[23] Rekaya, R, K. Robbins. (2009). Ant colony algorithm for analysis of gene interaction
in high-dimensional association data. Revista Brasileira de Zootecnia. doi: 10.1590/
S1516-35982009001300011.

[24] Ressom,H.W., Varghese,R.S., Orvisky,E., Drake,S.K., Hortin,G.L., Abdel-Hamid,M.
Loffredo,C.A. and R. Goldman (2006) Ant colony optimization for biomarker identi‐
fication from MALDI-TOF mass spectra Proc. of the 28th EMBS Annual Inter. Conf.,
4560-4563.

[25] Robbins, K. R., Zhang, W., R. Rekaya, and J. K. Bertrand. 2007. The use of the ant col‐
ony algorithm for analysis of high-dimension gene expression data sets. 58th Annual
Meeting of the European Association for Animal Production (EAAP):167.

[26] Robbins, K. R., Zhang, W., J. K. Bertrand, R. Rekaya. 2008. Ant colony optimization
for feature selection in high dimensionality data sets. Math Med Biol. 24(4):413-426.

[27] Robbins K, K. Bertrand, and R. Rekaya. 2011. The use of the ant colony algorithm for
the detection of marker associations in the presence of gene interactions. Internation‐
al Journal of Bioinformatics Research, 2:227-235.

[28] Scott,M., McCluggage,W.G., Hillan,K.J., Hall,P.A. and S. E. H. Russell (2006) Altered
patterns of transcription of th septin gene, SEPT9, in ovarian tumorgenesis Int. J. Can‐
cer, 118, 1325-1329.

[29] Shen,R., Ghosh,D., Chinnaiyan,A. and Z. Meng Eigengene-based linear discriminant
model for tumor classification using gene expression microarray data Bioinformatics,
22, 2635-2642.

[30] Shymygelska, A. and H. H. Hoos. 2005. An ant colony optimization algorithm for the
2D and 3D hydrocarbon polar protein folding program. BMC Bioinformatics. 6:30.

[31] Sinnwell, J. P. and D. J. Schaid. 2005. haplo.stats: Statistical Analysis of Haplotypes
with Traits and Covariates when Linkage Phase is Ambiguous. R package version
1.2.2.

Ant Colony Optimization - Techniques and Applications202

[32] Spangler, M. L., K. R. Robbins, J. K. Bertrand, M. MacNeil, and R. Rekaya. 2008. Ant
colony optimization as a method for strategic genotype sampling. Animal Genetics
40: 308 – 314.

[33] Subramani,P., Sahu,R. and S. Verma, Feature selection using Haar wavelet power
spectrum BMC Bioinformatics, 7:432.

[34] Tapadar P., Ghosh S. & Majumder P.P. (2000) Haplotyping in pedigrees via a genetic
algorithm. Human Heredity 50, 43–56.

[35] West M. (2003) Bayesian factor regression models in the "Large p, Small n" paradigm,
Bayesian Statistics, 7, 723-732.

[36] Woon , P. Y., Kaisaki, P. J., Braganca, J., Bihoreau, M. T., Levy, J. C., Farrall, M., and
D. Gauguir. 2007. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is as‐
sociated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad.
Sci. 104(36):14412-14417.

Ant Colony Algorithm with Applications in the Field of Genomics
http://dx.doi.org/10.5772/52051

203

Ant Colony Optimization
Techniques and Applications

Edited by Helio J.C. Barbosa

Edited by Helio J.C. Barbosa

Photo by Mirexon / iStock

Ant Colony Optimization (ACO) is the best example of how studies aimed at
understanding and modeling the behavior of ants and other social insects can provide

inspiration for the development of computational algorithms for the solution of
difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992)
and initially applied to the travelling salesman problem, the ACO field has experienced

a tremendous growth, standing today as an important nature-inspired stochastic
metaheuristic for hard optimization problems.

This book presents state-of-the-art ACO methods and is divided into two parts: (I)
Techniques, which includes parallel implementations, and (II) Applications, where
recent contributions of ACO to diverse fields, such as traffic congestion and control,

structural optimization, manufacturing, and genomics are presented.

ISBN 978-953-51-1001-9

A
nt C

olony O
ptim

ization - Techniques and A
pplications

ISBN 978-953-51-5717-5

	Ant Colony Optimization - Techniques and Applications
	Contents
	Preface
	Section 1
Techniques
	Chapter 1
Ant Colony Optimization Toward Feature Selection
	Chapter 2
Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations
	Chapter 3
Strategies for Parallel Ant Colony Optimization on Graphics Processing Units

	Section 2
Applications
	Chapter 4
An Ant Colony Optimization Algorithm for Area Traffic Control
	Chapter 5
ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization
	Chapter 6
Scheduling in Manufacturing Systems – Ant Colony Approach
	Chapter 7
Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model
	Chapter 8
Ant Colony Algorithm with Applications in the Field of Genomics

