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Resumen

Algoritmo bioinspirado para redes de robots en la asistencia en operaciones de

busqueda y rescate

Esta tesis propone un algoritmo bioinspirado para redes de robots que asisten en las ope-

raciones de escenarios de búsqueda y rescate. Consideramos a las hormigas como animales

sociales para estudiar y abstraer comportamientos que pueden ser útiles en el marco de

la búsqueda y rescate mediante robots. Consideramos tres temas principales para abordar

cuando se utilizan robots para ayudar a los rescatistas.

Primero, la exploración y mapeo de las zonas de desastre. Para esto, consideramos los me-

canismos e interacciones de las hormigas para explorar su entorno, buscar comida, evitar

depredadores y explorar mejores lugares para establecer un nido. Luego, desplegamos robots

para explorar el entorno y disuadimos a los robots de ingresar a regiones que otros robots

han explorado usando feromonas como marcadores para los robots. También abstraemos la

aleatoriedad que usan las hormigas para explorar e implementar un algoritmo Q-learning

que permite a los robots explorar regiones no visitadas.

En segundo lugar, la navegación y detección de v́ıctimas. Una vez que se ha explorado el

entorno, usamos las reglas de Reynolds para permitir que la navegación de los robots cree

cohesión, atracción hacia los objetivos y repulsión hacia los obstáculos y las colisiones entre

agentes. Luego, usamos una red neuronal para determinar si lo que detectan los robots es

una v́ıctima. Por último, utilizamos un enfoque de consenso para clasificar a las v́ıctimas o

no v́ıctimas en función de la información distribuida.

Por último, las hormigas han sido famosas por llevar cargas que superan su tamaño y ca-

pacidad de carga al cooperar. Consideramos quadrotors para transportar cargas de manera

cooperativa que pueden ser suministros médicos o v́ıctimas en búsqueda y rescate.

Palabras clave: 1) Robots heterogéneos, 2) redes de robots, 3) Control en tiempo real,

4) Búsqueda y rescate.

Abstract

Bioinspired Algorithm of Robot Network for Assistance in Search and Rescue

Operations

This thesis proposes a bio-inspired algorithm for robot networks assisting in the operations

of search and rescue scenarios. We consider ants as social animals to study and abstract

behaviors that can be useful in the framework of search and rescue using robots. We consider

three main topics to address when using robots to assist rescuers.

First, the exploration and mapping of the disaster zones. For this, we consider the mecha-

nisms and interactions of ants to explore their environment, look for food, avoid predators,
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and explore better places to establish a nest. Then, we deploy robots to explore the en-

vironment and discourage robots from entering regions other robots have explored using

pheromones as markers for the robots. We also abstract the randomness ants use to explore

and implement a Q-learning algorithm that allows robots to explore unvisited regions.

Second, the navigation and victim detection. Once the environment has been explored, we

use Reynolds rules to allow the navigation of robots to create cohesion, attraction to target

goals, and repulsion to obstacles and inter-agent collisions. Then, we use a neural network

to determine whether what robots are detecting is a victim. Lastly, we use a consensus-like

approach to classify victims or no victims based on distributed information.

Lastly, ants have been famous for carrying loads that surpass their size and payload capacity

by cooperating. We consider quadrotors to carry loads cooperatively that can be medical

supplies or victims in search and rescue.

Keywords: 1) Heterogeneous Robots, 2)Robots Networks, 3) Real Time Control, 4)

Search and Rescue.
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1 Introduction

1.1. Motivation

In recent years, search and rescue operations have become increasingly critical in response

to natural disasters, accidents, and other emergencies. Efficiently exploring and navigating

complex environments while effectively coordinating tasks is critical for successful rescue

missions [65]. To address these challenges, researchers have turned to nature for inspira-

tion, seeking innovative solutions that can enhance the capabilities of robotic systems [30].

One intriguing source of inspiration lies within the remarkable behavior exhibited by ants,

particularly in their exploration and navigation strategies [79]. Ant colonies demonstrate

unparalleled efficiency in foraging and transporting food resources, overcoming obstacles,

and adapting to changing environments [39]. These tiny creatures achieve remarkable feats

through the collective actions of many individuals, working in unison to achieve a common

goal [41].

This thesis aims to develop a bioinspired algorithm that harnesses the principles observed

in ant colonies to design a network of robotic agents capable of assisting search and rescue

operations. By studying the decentralized decision-making processes, division of labor, and

coordination mechanisms observed in ant behavior, we aim to create a sophisticated sys-

tem that emulates their efficient exploration, navigation, and load-carrying capabilities. One

particularly intriguing aspect of ants’ behavior is their ability to surpass their individual ca-

pacity when faced with large or heavy objects. Through collective transport, ants effectively

distribute the load across multiple individuals, enabling them to overcome obstacles that

would otherwise be insurmountable for a single ant. This adaptive and resilient approach

to problem-solving holds great potential for enhancing the capabilities of robotic networks

operating in challenging and unpredictable environments.

The proposed bioinspired algorithm will draw upon the principles of swarm intelligence,

where individual robots communicate, cooperate, and coordinate their actions to achieve

collective goals. By emulating the decentralized decision-making processes observed in ant

colonies, our algorithm will enable the robotic network to dynamically adapt its behavior

to changing conditions, optimize resource allocation, and efficiently explore the search area.

Through this research, we aim to advance search and rescue operations robotic systems by

integrating the natural intelligence observed in ants’ behavior with state-of-the-art robotics

technology.



1.1 Motivation 3

1.1.1. Exploration and Mapping

In recent years, using multirobot systems has emerged as a promising approach to tackle the

challenges associated with exploration and navigation in search and rescue missions. Deplo-

ying a network of autonomous robots that can work collaboratively and adaptively in com-

plex and hazardous environments offers significant advantages over traditional single-robot

approaches [58]. One notable area of research focuses on decentralized coordination algo-

rithms for multirobot systems. Traditional centralized approaches, where a central controller

directs the actions of all robots, often suffer from scalability issues and vulnerability to single

points of failure. Decentralized coordination algorithms aim to distribute decision-making

among individual robots, enabling them to work autonomously while achieving coordinated

behavior. Various techniques, such as consensus algorithms, task allocation mechanisms, and

swarm intelligence-inspired approaches, have been explored to enable effective coordination

and collaboration among the robots [64].

Furthermore, localization and mapping are critical for exploration and navigation in search

and rescue missions. The ability of robots to accurately perceive and map their environment

in real time is essential for efficient exploration and effective decision-making. Simultaneous

Localization and Mapping (SLAM) techniques [2], which involve constructing a map of the

environment while simultaneously estimating the robot’s position within that map, have

been widely investigated for multirobot systems. Collaborative SLAM algorithms that enable

robots to share information, fuse sensor data, and build a consistent global map have shown

promising results in enhancing exploration capabilities [75]. In this thesis, we consider a

decentralized algorithm that uses Voronoi tessellation to assign regions of exploration to

robots, and we consider the use of markers to indicate regions that have already been explored

and discourage robots from revisiting the region.

Moreover, advancements in machine learning and artificial intelligence have significantly im-

proved the performance and capabilities of multirobot systems in search and rescue opera-

tion [8]. For example, reinforcement learning techniques have enabled robots to learn optimal

exploration and navigation policies through interaction with the environment. In addition,

deep learning approaches have been leveraged for perception tasks such as object recognition

and semantic mapping, enabling robots to interpret and understand the environment more

effectively. In this thesis, we also explore this type of tool for exploration by adapting a

Q-learning approach to allow exploration of the environment while also learning to avoid

collisions with obstacles.

1.1.2. Navigation and Victim Detection

Robot swarms, consisting of many autonomous robots collaborating and coordinating their

actions, have shown great potential in search and rescue scenarios [76]. The ability of robot

swarms to efficiently explore and navigate complex environments and detect and locate

victims has garnered significant attention from researchers.



4 1 Introduction

Navigation is critical to robot swarm operations in search and rescue missions. Swarm naviga-

tion algorithms aim to enable the robots to efficiently explore the environment while avoiding

obstacles and ensuring adequate coverage [34]. Various approaches have been studied, inclu-

ding potential fields, artificial potential-based methods, and behavior-based techniques [9].

In this thesis, we have developed an algorithm that allows a swarm of robots to navigate a

previously explored environment while avoiding obstacles. Furthermore, we use the poten-

tial function to generate repulsion behaviors towards obstacles and attraction to detected

victims.

Victim detection and localization are fundamental tasks in search and rescue scenarios. Robot

swarms offer advantages, as they can cover larger areas and search in parallel, increasing the

likelihood of locating victims quickly [74]. Vision-based techniques, such as object recognition

and tracking algorithms, have been employed to detect and identify victims in the swarm’s

surroundings. Thermal and infrared sensors also detect body heat signatures, enabling the

swarm to locate victims in low-visibility conditions. In this thesis, we consider cameras on

quadrotors to perform the detection of victims in the environment. Machine learning and

artificial intelligence techniques have enhanced victim detection and localization. We use a

neuronal network to perform the classification and detection of victims [69].

Communication and coordination within the swarm are crucial for efficient victim detection

and navigation. Swarm robots typically communicate with each other through local inter-

actions and exchange information about the environment, victim detections, and navigation

plans. Communication protocols and algorithms, such as consensus and distributed control

mechanisms, have been developed to facilitate information sharing and coordination among

the swarm robots.

1.1.3. Cooperative Load Transportation

Quadrotors, with their maneuverability, stability, and ability to hover, are well-suited for

carrying and transporting payloads. In cooperative load transportation, multiple quadrotors

lift and transport objects too heavy or oversized for a single quadrotor. This approach enables

the transportation of heavier payloads, enhances robustness, and provides redundancy in case

of failures [78].

Flight control algorithms play a crucial role in cooperative load transportation. These al-

gorithms coordinate the quadrotors’ motions and ensure stability while carrying the load.

Control strategies, such as PID (Proportional-Integral-Derivative) controllers, model predic-

tive control, and optimal control, have precisely controlled the quadrotors’ positions and

orientations during load transportation [77]. In addition, adaptive control techniques have

also been investigated to handle uncertainties and changes in the payload characteristics. In

this thesis, we develop two approaches: one that uses geometric control to allow quadrotors

to follow a trajectory while carrying a load. Then, we consider that the object’s mass can

be unknown and that unknown forces come from the interaction of quadrotors pulling the
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load. To overcome this, we propose adaptive controllers that adapt the inputs to account for

uncertainties and disturbances.
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6 1 Introduction

1.2.1. Organization

The remainder of this thesis is organized as follows.

Chapter 2 tackles the problem of exploration and mapping using multi-robot systems. First,

using the Voronoi tessellation approach and potential functions presented in [80] and [23].

Then, we consider a Q-learning algorithm for exploring unknown environments while avoi-

ding obstacles presented in [11].

Chapter 3 deals with the problem of navigation and victim detection of a previously explored

environment. We consider potential functions for generating attractive and repulsive forces

for objectives and avoiding collisions. This section was presented in [56] and [13]. Then, for

doing a distributed victim detection, we use neuronal networks and a consensus approach to

determine whether what robots detect are victims, presented in [18].

Chapter 4 Considers the problem of cooperative load transportation using quadrotors atta-

ched through cables to a load. We consider geometric controller to track a reference trajectory

and also adaptive control to overcome uncertainties and external disturbances presented in

the following papers [12], [1], and [20].

Chapter 5 presents the conclusions and future research directions.



2 Exploration and Mapping of Unknown

Non-Convex Spaces.

Exploration and navigation tasks are the first assignments a robot assisting in SAR opera-

tions can improve, like reducing the time required to cover a huge space while identifying

desired targets in a terrain. Exploration, as its name suggests, implies acquiring new infor-

mation about the environment, allowing an agent to move within the space as needed.

2.1. Ant Exploration and Navigation Behaviors

Social foraging behaviors have been described in many species, including birds, fish, mam-

mals, and insects, as reviewed in [42]. In such species, the information communicated between

agents and the information obtained by the group can modify the predictable behavior of

each individual. In the same way, collective behavior results from the accumulation of local

interactions and constraints from the environment. Although several species behave collec-

tively, ants present one of the most interesting and well-studied approaches that have been

replicated and emulated in many applications in today’s world, such as manufacturing, pro-

cess optimization, networks routing, ant colony optimization [5], and robotics among others.

It is worth mentioning that although the ants’ behavior has been widely studied, there are

still many types of ants whose behaviors have not been researched yet or several behaviors

that have not been emulated to any application. Many researchers want to collect more infor-

mation and gather more scientists to collect more information on different colonies and kinds

of ants that might inspire the scientific community to solve or tackle today’s challenges.

Despite the existence of many ant species, almost all of them agree on nests in cavities

abandoned made by insects, in dead wood, or in broken, either live or dead trees. Trees used

for nests include Ficus, Acacia, Ipomoea wolcottiana, Guapira macrocarpa, and Guazuma

ulmifolia. However, it is important to notice that there are differences depending on the type

of ants, causing how they navigate, explore and behave in the environment to vary accor-

ding to their resources. Collective search, as explained in [26], is a task that involves both

exploitation and exploration, which can be interpreted as a negotiation between searching

thoroughly and covering as much area as possible, which depends on the number of scouters.

As is known, ant colonies operate without central control or communication. Consequently,

they can only acquire local information, mostly chemical and tactile, so they work collecti-

vely to find resources and monitor the nest environment. The goal of the collective search
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is to find resources by the movement around of independent individuals and then adjust

using local information and interactions to guarantee the area has been covered by at least

one agent so that there is something to find one agent will encounter it. For instance, C.

gonoiodontus species tend to travel just for one trail and are not likely to switch to another

because this species usually lives in dry environments. In contrast, harvesters’ ants always

switch trails and create new paths because their source food is dynamic; the seeds can be

moved by the wind or by the movement of other animals. To start differentiating among ant

species the Cephalotes goniodontus live in the dry forests like the ones located in western

Mexico, where ants collect plant-derived food and insect exudates. In [45] is shown how each

path made by ants is traveled by different groups of ants. This makes foraging activity resi-

lient. When a path turns impassable, a group of ants can create a new different path. This

particular species is also categorized as Polydomous, a colony with at least two spatially

separated but socially connected nests. At least 166 species of ants in 49 genera have colo-

nies that are Polydomous [32]. According to [25], information sharing can be communicated

between individuals increasing the exploitation of known resource locations in socially fo-

raging Polydomous species ants. Nonetheless, exploitation alone does not guarantee success

unless balanced with exploring new locations with resources. Studies in exploration versus

exploitation predict that the time spend in the exploration process seeking new resources

directly depends on the quality of actual food and quantity of food in known locations [73].

On the other hand, arboreal ants travel only through trees and create links between the nest

and a possible food source. The usual habitat of this type of ant lies in the tangled canopy,

where the trails can be easily destroyed by rain, other animal movements, or wind. In [24],

is shown an algorithm capable of, in a distributed way, reconstructing or finding alternative

paths when the links have broken for any reason. To succeed in finding the best path to food

resources and avoiding dead-ends, they must generate as many paths as possible and then,

through pheromones, converge to one or a few of them over time. The authors call this process

”pruning,”preventing the colony from getting lost or separated from the rest. The collective

behavior in harvester ants is regulated through interactions between outgoing foragers and

returning foragers ants using brief antennal contacts. In [31], ants wait in the entrance

chamber inside the nest, using its interactions to decide whether to stay or leave the nest to

forage. Demonstrating that the time necessary to send more ants to forage depends directly

on the rate at which successful foragers return with the food. The work was extracted by field

experiments monitoring 300 colonies where the age of each colony is known in Rodeo, NM,

USA with the red harvester ant Pogonomyrmex barbatus. Finally, It is important to define

that environment does not exist independently of organisms. What environment means is

the way or how organisms interact with it, as shown in [46]. The more food is available in the

space surrounding the nest, the more quickly foragers find it and return to the nest. So, the

contact rate between returning foragers and potential foragers depends on food availability.

The algorithm that harvesters’ ants use to regulate foraging activity relies on the rate of

successful foragers returning with food, then the potential forager leaves the nest to collect
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more food following the trails left by scouters. However, if all scouts remain on the same

path, they cannot find something off it. Here, random movement increases the probability

that a scout encounters novel resources and creates new paths to this place, as shown in [68].

2.2. Exploration Using Reinforcement Learning

This sub-section explains how to use reinforcement learning to explore and navigate an

unknown environment. First, the robot model used is shown, followed by the reinforcement

learning algorithm.

2.2.1. Agent Model

The agent type considered in this section for exploring unknown environments using rein-

forcement learning is robots with differential traction, which are widely used in the industry

and academy. The kinematic model for this kind of robot based on [71] is explained in this

section. As shown in Figure. 2.1 the robot can move in a two-dimension space taking YW ,

XW as the inertial reference frame and YR, XR as the robot reference frame.

Figure 2.1: Robot axis versus inertial reference frame.

These robots use wheels, as shown in Figure. 2.2, which are standard wheels directionless.

Where r is the radio of the wheel, l is the distance from the Center of Mass (CoM) of the

robot to the wheel, α is the angle between the local robot axis XR and the line that goes

from the CoM to the wheel, β is the angle formed by the line that goes from the CoM to the

wheel and the tangent line from the wheel axis, v is the linear velocity, and φ̇ is the angular

variation of the wheel.

The kinematic model can be expressed in compact form as,
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Figure 2.2: Parameter definition of standard wheel directionless in differential robots.

ξ̇W = R(θ)−1J−1
1 J2φ̇ (2.1)

where ξ̇W is the vector that contains ẋR, ẏR, and θ̇R the linear velocity in the axis x, y,

and angular velocity of the robot in the robot reference frame, R(θ) is the rotation matrix

to translate the robot reference to the inertial reference frame, J2 ∈ Rnw×nw is a diagonal

matrix that contains the radios of the number of wheels nw, and J1 ∈ Rnw×nw captures the

other parameters of the wheel.

When considering the rolling restrictions on the wheel we can say it is as follows,

[sin(α + β),−cos(α + β), (−l)cos(β)]R(θ)ξ̇W − rφ̇ = 0 (2.2)

while the sliding restrictions do not have movement as expected due to the standard wheel

can not move freely on that axis, so the equation is,

[cos(α + β), sin(α + β), (l)sin(β)]R(θ)ξ̇W = 0 (2.3)

So when matching (2.2) and (2.3) the matrix form of (2.1) can be found as

sin(α1 + β1) −cos(α1 + β1) (−l1)cos(β1)
sin(α2 + β2) −cos(α2 + β2) (−l2)cos(β2)
cos(α + β) sin(α + β) lsin(β)

R(θ)ξ̇W =

[
J2φ̇

0

]
(2.4)

where just one sliding restriction is considered since the robot used has differential traction.

This means both wheels are aligned by the same axis, so one restriction is linearly dependent

on the other, so it does not contribute new information to the matrix. To know the direct
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kinematic, it is necessary to isolate ξ̇W from (2.4), and considering there are parameters that

already have values due to corresponding to the inherent robot model such as α1 = −π/2,
β1 = π,α2 = π/2, β2 = 0. By doing so the direct kinematic is,

ξ̇W = R(θ)−1

1 0 l1
1 0 −l2
0 1 0

−1 r1 0 0

0 r2 0

0 0 0

φ̇1

φ̇2

0


finally, doing the operations, the direct kinematic model of a differential robot is the following,

ξ̇W = R(θ)−1

 1
2
r1φ̇1 +

1
2
r2φ̇2

0
1
2l
r1φ̇1 − 1

2l
r2φ̇2

 . (2.5)

2.2.2. Reinforcement Learning Algorithm

Reinforcement learning appears in the literature [40] as an algorithm that implements Q-

Learning, here, a mobile robot can find the optimized paths in an unknown and non-convex

space. Humanoid robots can reduce energy consumption in several movements, as shown in

[38],[37]. It is worth mentioning that there are many applications in robotics where Reinfor-

cement learning can be applied and, in many cases, improve performance. The use of learning

systems by reinforcement and Cerebellar model articulation controllers (CMACs) allows for

reducing learning time by making it faster. Nevertheless, this approach still works with the

maze challenge. In [57], the use of an artificial neural network and Q-Learning is proposed

to optimize the path planning of a mobile robot. Where reinforcement learning allows the

environment sampling to be used by the neural network to achieve path planning in the

unknown environment. This sub-section is part of the work [11], which makes an agent learn

more efficiently while navigating in a non-convex and unknown space avoiding collisions.

The main purpose of this algorithm is based on some behaviors that ants use when exploring

near areas to the nest. As explained before, some present random behaviors when exploring,

guaranteeing to know new places to exploit. This is the principle of reinforcement learning,

a set combination between exploration or exploitation, in ants these behaviors meaning

searching randomness for a food source, and at the moment, at least one ant found the nest

and will make sure to exploit it as much as possible while maintaining few ants still exploring

for more locations [68].

The reinforcement learning system implemented here allows a robot to learn to navigate

despite ignoring the information about the objects which surround it. Since the navigation

system does not depend on the robot’s spatial location, the robot can learn to navigate

in an unknown space facilitating the process of exploration and adaptation to time-varying

environments by using the Q-Learning algorithm. The learning process is based on switching

the robot through a state space s by selecting actions. The action selection can be done

randomly or deterministically according to the behavior wanted in the robot. Once the
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action is taken and the robot updates its current state, the new state is evaluated, then a

value of reward and punishment is generated according to the convenience of the new state.

The reward generates changes in the Q ∈ Rs×s matrix, which determines the quality of the

action taken in a previous state. This Q matrix is the basis of the acquired knowledge and

will determine the robot’s behavior in the long term.

For this algorithm is important to define some basic concepts such as the states, actions,

learning rules, and exploration policy, which are defined below.

States

The states of the algorithm are defined by the sensors’ measurement and the number of

sensors in the robot. Due to the states must be discrete, the information coming from the

sensors is discretized. The dimensionality of the system states is depicted by (2.6),

SD = (Dm)
ns , (2.6)

where Dm is the quantity generated by the discretization of the distance measurement by

the sensor, and ns is the number of sensors in the robot. Here, the state dimensionality refers

to the state quantity of the system. Therefore, it indicates the complexity of the system. It

is worth considering that the state’s quantity grows exponentially according to the number

either the sensor and the discretization of the measurements.

Actions

The actions are all the possible movements that can be performed by the robot, such as

forward, backward, rotate either left or right. In the particular case of omnidirectional robots,

the actions are the discretized version of all the possible directions in which the robot can

move. The system states, and actions define the size of the Q matrix. As a result, it is

necessary to keep the dimension of system states and actions as small as possible to simplify

the learning process and reduce the computation cost.

Reinforcement Learning

This sub-section uses the classic Q-learning equation based on the Belman-Equation. Ho-

wever, the way Q values are updated is modified. Since the states are defined by the mea-

surement of the distances of the sensors. It is not possible to know what will be the new

state of the robot before executing the action. As a consequence, the update of the Q values

is updated after the action is executed. Taking this into account, the value to be updated

is the value of the previous state Q(st−1, at−1) based on the new state Q(st, a), and reward

policy as shown by (2.7),

Q(st−1, at−1)← (1− α)Q(st−1, at−1) + α(R + γmaxQ(st, a)), (2.7)
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where Q(st−1, at−1) is the value of the previous state in the chosen action, α is the learning

rate, R is the reward policy, γ is the discount factor, and Q(st, a) are the Q values for all

actions in the current state. Equation (2.7) depicts that the update is performed backward

in time. This is a very similar way to learn in real life. ”We only know the efficiency of our

actions after having executed it and evaluated the new state to which that action has led

us”We call this experience. The parameters involved in the update of the Q values are going

to be explained below.

Reward Policy

The classic version of reinforcement learning uses a reward associated with each state. The

objective is to reach the state where the maximum reward is acquired. The proposed al-

gorithm does not have the states associated with the robot location. Therefore, no exact

procedure leads the robot to reach the optimal state. The goal in navigation is to keep the

robot as far away as possible from obstacles while it is freely navigating, avoiding obstacles.

Since the states are determined by the sensors’ measured distance and the state transition

is based on the change of measured distance, the reward policy is based on maximizing the

distance to the obstacles. The reward policy is based on the time derived from the sensor

measurements and the transition of states as shown by (2.8),

R(t−1) =
n∑

i=1

ai
dmi

dt︸ ︷︷ ︸
Dynamic

+ bimi(t)︸ ︷︷ ︸
Static

. (2.8)

The reward equation (2.8) is represented by the sum of the dynamic and static factors of the

robot sensors measurements, where n is the number of distance sensors used by the robot.

The dynamic section of the reward equation refers to a dynamic reward that depends on the

time derivative of the sensor measurement. The time factor is given by the state transition

time as shown by dmi/dt wheremi is the measurement of the ith sensor. The dynamic reward

is multiplied by a factor ai, which can vary according to the sensor position (e.g., a front

sensor could have larger values than side sensors). The value of the derivative will be positive

when the robot moves away from the obstacles. In this case, the value becomes a reward.

Otherwise, when the robot approaches the obstacles the value of the derivative is negative.

It can be translated as a punishment for the learning system, which will affect the future

behavior of the robot. To simplify the calculations of the dynamic reward, it is assumed

that the state transition is carried out at a constant time rate. This leads to converting the

calculation of the derivative into a simple difference of values between the state measures,

as shown by the (2.9),

dmi

dt
= mi(t) −mi(t−1), (2.9)

where mi(t) is the ith sensor measurement in the current state and mi(t−1) is the ith sensor

measurement in the previous state. The static part of the reward equation refers to the
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sensor’s measurement in the robot’s current state mi(t). This value is a reward for positions

away from obstacles, and if it is close to an obstacle, the result obtained is a punishment.

The static part is multiplied by the bi value, which varies according to the sensor that is

evaluated by giving again greater values to the front sensors.

α-Learning Rate

The learning rate (α) indicates the changing rate for updating the Q values in the learning

process. Ideally, alpha is expected to start with values close to 1, but it will decrease as time

passes to values close to 0 but never reach it. The α decrements are related to the number

of times that the value of Q(st−1, at−1) has been updated. The α variable should have the

form as shown by (2.10),

α =
1− α∞

1− e(αsn(s,a)α50)
+ α∞, (2.10)

where α∞ is the expected value of α when time tends to infinite (α(t→∞)), αs indicates

the expected decrease rate of α, α50 is the number of updates of Q(st−1, at−1) required by

α to reach 50% of its initial value, and finally n(s,a) is the number of times the value of

Q(st−1, at−1) has been updated.

Figure. 2.3 shows the value of α over time with parameters of α∞ = 0,1, α50 = 5, and

different values of αs = 0,5, 0,8, 1,5.

Figure 2.3: Decrease in the learning factor over time.

γ-Discount Factor

The discount factor (γ) determines the impact of the reward of the current state for the

proposed approach. A constant value of 0,8 is assigned for the present case, allowing the

robot to update the learning values in a small proportion.
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Exploration Policy

This policy allows the agent to choose between the best action found so far or try another

action, these selections are called exploitation and exploration, respectively. The objective

of this policy is to provide the agent possibility to explore when the learning process begins,

but as the agent evolves, it will end up choosing the action with the best Q (exploitation),

(2.11) describes the exploration policy.

at = max

(
Q(s(t), a) +

ka
n(q) + 1

)
, (2.11)

where at is the action to be chosen, Q(s(t), a) is the Q value of all the possible actions of the

current state, n(q) is the vector with the number of times that each possible action of the

current state has been historically chosen, and Ka is a factor that helps to alternate between

the action with the best Q value and the other actions. Usually, Ka has to be greater than

Q. However, for the present proposal, Ka → max(R). The maximum reward is obtained by

evaluating the rewards (2.8). The objective of (2.11) is to switch the action selection between

the best action and the other possible actions of the current state. Initially, the values of Q

are zero, and Ka starts divided by 1, given that n(q) is also zero for all actions. This initial

parameter causes any of the possible actions to be chosen. However, as time passes, n(q)

grows according to the number of times a particular action has been selected. When n(q)

grows the Ka factor tends to zero, and the policy will begin to choose the optimal action

more frequently.

2.3. Exploration Using Voronoi Tessellation

In this section, the exploration of an unknown space using multi-robot systems is achieved

by applying Voronoi Tessellation and some concepts from Graph Theory. Because of this,

the system modeling and some fundamental concepts in graph theory are developed below

just before showing the main algorithm.

2.3.1. Fundamental Concepts on Graph Theory

Graph theory has been widely studied recently because it helps to model the interaction in

multi-agent systems, which can be either in communication or control. When graph theory

is used for both characteristics, the word used to relate is multi-agent coordination, a term

used in this work. Through the development of this work, many terms from graph theory

are needed, which is why in this section, basic concepts are shown based on [63]. Let’s begin

by explaining what a graph is. In a dynamic world where agents (robots, humans, animals,

devices, etc.) constantly interact with their environment and other agents, the interaction

dynamic can be captured by the representation of it in a graph. The interaction can be
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communication or other parameters that help each agent take action or update control laws

that interact with their environment. Here each agent, let’s say the robot is an element of

the set of nodes V = {v1, v2...vn} ∈ Rn, where n is the number of robots interacting in the

workspace. Knowing which robots interact with which robot is really important, so these

variables are encapsulated in the links set E = {v1v1, v1v2...v1vj, v2vj...vivj}, where vi is the
ith agent and vj is the jth neighbor. Each component in the matrix indicates if there is

any interaction between agents. Finally, a graph is formed by nodes and links G = (V , E).
Both relations allow us to model and know how a multi-agent system works. Although the

definition of a graph is important, it is not enough to know what is happening, so it is

necessary to show this information in another way that can be used for further analysis.

First, the adjacency matrix A(G) ∈ Rn×n, this matrix contains the information of how the

graph is connected and is filled as follows,

[A(G)]ij =
{
1 if ViVj ∈ E
0 Otherwise

, (2.12)

the degree matrix D(G) ∈ Rn×n that represents the number of agents that have a link

connection with each robot in the main diagonal as shown bellow,

D(G) =

d(1) . . .

d(n)

 . (2.13)

Finally, there is one matrix that contains the entire information about the graph and is made

from the subtraction of (2.12), and (2.13), called the Laplacian matrix L(G) = D(G)−A(G) ∈
Rn×n

L(G) = D(G)−A(G), (2.14)

For instance, if we consider the graph formed by the five quadrotors shown in Figure 2.4

where lines that connect the circles enclosing the drones represent those quadrotors that

have communication. The matrix (2.12), (2.13), and (2.14) are equal to

A(G) =


0 1 1 0 0

1 0 0 0 0

1 0 0 1 1

0 0 1 0 0

0 0 1 0 0

 , D(G) =

2 0 0 0 0

0 1 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 1

 , L(G) =


2 −1 −1 0 0

−1 1 0 0 0

−1 0 3 −1 −1
0 0 −1 1 0

0 0 −1 0 1

 .

It is worth mentioning that up to this point, everything that has been mentioned about the

graph considers homogeneous agents, which means that all of them have the same dynamics
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Figure 2.4: Example of how to model multi-agent systems using Graph Theory.

and capabilities. Moreover, all of the links were bidirectional, which means both of the agents’

sharing a link have access to the information of the other. On the other hand, when more than

one kind of robot is used, the multi-robot system can be considered heterogeneous because

it might have different dynamics or capabilities. Furthermore, when two robots share a link

but just one of these can access the information of the other, it is considered a Digraph D,

which means now the links can have directions and are represented by arrows. Figure 2.5

shows an example of how a heterogeneous directed graph looks. Here there are two different

kinds of robots. First are the quadrotors, which can move in three dimensions through the

air. Second, the Turtlebots are terrestrial robots that can only move on a surface using their

wheels. The degree matrix of a Digraph is different due to the links that relate to who shares

information with who differs from the graph when both robots can obtain information. Here,

it is assumed that the agent with the tail shares information with the agent where the head

of the arrow reaches. Then (2.13) is replaced by the in-degree matrix D(D)in which is filled

as [D(D)]ii = din(vi)for all i, where din(vi) is the grade of the node vi considering the

in-degree case which means the number of agents where the ith agent receives information

from. The Laplacian matrix and the Adjacency matrix remain the same as a graph.

2.3.2. System Modeling

Environment

The exploration task involves using a team of n robots with ideal radial sensing to explore,

map, and navigate an unknown, non-convex, and bounded space M ∈ R2. Where is possible

to differentiate between already explored areas S ⊂M , areas clear to move SF ⊂ S, obstacles

SO ⊂ S, and which areas are still unexplored SC , noting that Sf ∪SO = S and S ∪SC =M .

Taking into account that the space where the robot is navigating is non-convex, the distances

from one position to another position in the space are not always Euclidean. This concept is
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Figure 2.5: Heterogeneous multi-robot system, modeled as a Digraph.

illustrated in Figure 2.6, just supposed the quadrotor wants to approach the terrestrial robot

position. Knowing the distance between robots is not as easy as calculating the Euclidean

distance. As a consequence, robots simply cannot move through obstacles. Because of this,

the way to calculate the geodesic distance between two points is by using the so-called

Flooding Distance, which is based on the breadth-first search algorithm. In Figure 2.6 there

are shown all the distances. The dashed green line is the Euclidean Distance for the 2-

dimensional case. The solid blue line is the four-neighbor flooding distance (4NFD), also

known as (Manhattan Distance) due to only permits movements up-down and right-left like

moving into the blocks in Manhattan, New York City. The solid orange line is the Eight

Neighbor Flooding Distance (8NFD) that, in addition to the movement that 4NFD allows,

the main diagonals are added. It is worth mentioning that the 4NFD and 8NFD shown

in the image are not the optimal ones, they are just one example to illustrate how each

method allows the robot to move. Even though they are not optimal it is noticeable that

8NFD is shorter than 4NFD, reducing the error in relation to the optimal distance in a

two-dimensional non-convex space.

Dynamic Robot Model

The dynamic of the robots considered for this algorithm is a simple integrator, considering

in robotics, most of the robot platforms can be transformed into this dynamic without the

loosing of generality as shown in [10]. It is possible from the integrator dynamics in (2.15)

employing a kinematic control to most robots.

ẋi = u, (2.15)
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Figure 2.6: Four Neighbor Flooding Distance (Blue Line), Eight Neighbor Flooding Distan-

ce (Orange Line), and Euclidean Distance (Green Dashed Line)

where ẋi ∈ R2 is the linear velocity of the ith robot and u ∈ R2 is the signal control to be

designed to reach the desired behavior. Considering that the environment is a non-convex

space which means there are obstacles in it, the sensing of the robot has some considerations

that are worth stating, such as the effective area sensed by one robot Asi . As can be seen

in Figure 2.7, the area sensed Asi not only does depend on the sensing radius but also the

line of sight Lsi of the robot. Where Lsi = {q ∈ SF |∀p ∈ {αxi + (1 − α)q}, p /∈ SO} where
α ∈ [0, 1] is a scalar allowing parametrizes the straight line between the points xi and q that

might be obstructed by an obstacle in the space.

In Figure 2.7, the yellow area represents the ideal radius sensed area that the robot has, blue

area represents the line of sight of the robot, considering that all the black lines are objects

SO where the robot cannot see through it, and the white area is the space clear to move

SF . The effective area sensed by the robot is then determined as the intersection of the two

subsets and can be described as follows,

Asi = {q| |xi − q| < rsi} ∩ Lsi . (2.16)

As expected, when space where the robot is convex, the effective sensed area will be equal

to the sensing radius. On the other hand, when the robot navigates in a non-convex space,

every time the robot has an obstacle in its radius of sense, the effective area sensed will be

reduced and affected by the changes in the line of sight.

2.3.3. Exploration Algorithm

The exploration task purpose is to allow robots to navigate through a known environment to

achieve any other task that might emerge in the rescue mission. The algorithm developed here
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Figure 2.7: Radius sensed, Line of sight, and are sensed by a single robot in a non-convex

space.

is based on the work presented by [47] with some modifications due to the original algorithm

contemplating the homogeneous agent case, a convex space, and connection restriction. In

contrast, in [23], which is the work where this section is based, it indicates how to relax these

conditions while exploring the area shown below.

The algorithm works by robots tracking their exploration frontier δS all the time. Where

this frontier is the limit that separates the known and the unknown spaces in each robot

in the environment. The selection of the interesting point to be followed by robots in the

exploration task is made in several steps. Through the use of the well-known Voronoi Tes-

sellation technique, where each robot determines which points in the space can be reached

fastest than others as follows,

Vi = {q|dist(xi, q)/v̄i < dist(xj, q)/v̄j, ∀j ∈ Ni}, (2.17)

where Vi is the Voronoi cell of the i
th robot, dist(p1, p2) is the geodesic distance between the

points p1 and p2 estimated employing the Flooding algorithm, and v̄i is the average speed

of the ith robot. It is important to notice that (2.17) is different from the original Voronoi

Tessellation equation in the sense that here it allows the robot to have different capabilities

in terms of velocities and that the distance measure is using Flooding Distance instead of

Euclidean. After the Voronoi Tessellation is reached, each robot determines the frontier δSi

that belongs to it, so now they can determine a weight function ϕi(q, δS) over its own cell

as ϕi(q, δSi) = exp
(
− 1

2σ2dist(q, δSi)
)
, then used to determine each Voronoi cell centroid as,

Vci =

∫
Vi∩Cir

ϕ(q, δSi)q dA∫
Vi∩Cir

ϕ(q, δSi) dA
, (2.18)
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where q is the interesting point within the space, σ is a constant that determines how fast the

weight function decreases with the distance, Vci denotes the centroid of the ith robot Voronoi

cell, dA is the area differential and Cir denotes a circle of center xi with radius r. Once the

centroid is found, the task becomes to track it, so the first component of the controller ui is

designed as a simple proportional controller uexpi ∈ R2 that leads to the target point as the

iteration increases, uexpi = Kexp(Vci−xi) where kexp is a proportional constant guaranteeing

stability.

To navigate safely in space, it is necessary to give some rules that will make robots avoid

collisions with either other robots or obstacles in the environment. These rules are based on

the Reynolds rules, which are in charge of keeping a minimum distance to prevent animals

in a pack, swarm, or school of fish from colliding with another member while keeping a

maximum distance allowance to avoid a member getting lost. Artificial Potential functions

have the equivalent behavior as the Reynolds rules for ants that can be applied to robots.

Which can either maintain the maximum communication distance among robots by using

xi ∈ {q||q − xj|2 < ρ2, ∀j ∈ Ni} where xi denotes the position of the ith robot, ρ2 denotes

the communication range, and Ni denotes the neighborhood of the ith robot. Even though

this behavior is not interesting in this application because it will require the robots to keep

communicating with at least one other robot, so they can receive information from all the

robots directly or indirectly. And in this way, the communication graph can be formed

as explained in Figure 2.8 where every time each communication radio (blue radius on

each robot) intersects with another robot communication radio (darkest blue areas), then a

communication link between these robots is established as shown in the graph on the right.

Figure 2.8: Example of how the communication graph is formed.

In contrast, what is expected for the exploration behavior is to break and create commu-
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nication as needed to share information but allow robots to go in different directions and

explore wider areas as fast as possible. So, what is required here is a rule that establishes

collision avoidance with other robots or obstacles as,

xi ∈ {q||q − xj|2 > ρ1, ∀j ̸= i} ∩ {q||q − xo|2 > ρ1, ∀o ∈ SO}, (2.19)

where ρ1 denotes the security radius of the robots and SO denotes the obstacles in the

environment. The control signal that guarantees those conditions is the following,

uac =
∑
j∈Ni

− x̂io
(|xi − xo|2 − ρ1)2

− x̂ij
(|xi − xj|2 − ρ1)2

where x̂ij corresponds to the unitary vector that points from xi to xj, uo corresponds to the

control signal component responsible for the static obstacle avoidance, xo corresponds to the

closest point of any obstacle to the robot, x̂io corresponds to the unitary vector that points

from xi to xo, and uac corresponds to the artificial potential component of the control signal.

In the previous Section, some behaviors regarding ant exploration showed how using some

communication channels, either mechanical or chemical, can help ants explore an area in an

optimized way. Some of them are brief antennal contacts that proportionate local informa-

tion and pheromones secretions which can give ants a piece of global information about what

other ants suggest to do. These mechanisms allow ants to indicate where the resources are for

the colony to exploit or which areas to avoid due to some predators in it. The accumulation

of pheromones permits the creation of paths to be followed or avoided. This approach can

inspire search and rescue operations using mobile robots to solve simple problems like cove-

rage algorithms. So, here robots deploy markers periodically in the environment, emulating

pheromones’ responses in ants. But to indicate if any robot has already explored the area.

If a robot detects a marker, it will provoke the robot to lose interest in the zone around

it, generating the robot to give more importance to other unexplored areas. This will redu-

ce the probability of repeatedly overlapping and exploring the same area due to a lack of

communication. This concept modifies the Voronoi cell of each robot as follows,

Vai = Vi − Pj ∩ Vi, (2.20)

where Vai corresponds to the new Voronoi cell of each robot, Vi is the Voronoi cell used in

(2.17) and Pj ∈ R2 which represents the area cover by the markers deployed from other

robots. When a robot reaches the position of a marker that does not correspond to itself,

it unassigned the area within a radius rs of the marker from the Voronoi cell. On the other

hand, the local information that ants share when they cross their antennas is emulated by

creating temporal communication links. Allowing robots to share their map with neighbors,

receive the known map from others, and build a map that could be closer to the global one

any time another robot is in range of communication.
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Algorithm 1 presents the main loop employed for the environment exploration mission.

Here, it is presented as part of the original Heterogeneous Discoverage presented in [80]

with the difference that in this case, artificial potentials do not consider the connectivity

maintenance, and also, it incorporates the detection and deployment of markers on the

mission area. As mentioned earlier, each robot can realize the exploration task without agent

communication. Therefore, it is not necessary to set robots initially connected to guarantee

the mission success; considering that each robot has a determined sensing and communication

range, it is clear that the larger the robot number, the faster the exploration process will

be cleared. It is worth mentioning that the main purpose of this work is to introduce the

bio-inspired complement of the pheromones trace (markers) and the information-sharing

methodology.

Algorithm 1 Main Loop

1: function Main Loop(Robots, scene) ▷ Where Robots - Robots Set, scene - matrix

2: for r ∈ robots do

3: if mod(t, Tm) = 0 then

4: Deploy marker

5: end if

6: Sense surroundings

7: Update Map

8: Update Flooding

9: Update Line of Sight

10: for rn ∈ robots - {r} do
11: Drn =

√
(prx − prnx)2 + (pry − prny)2

12: if Drn ≤ rC then

13: Share information between r and rn
14: end if

15: end for

16: Update Artificial Potentials

17: Evaluate Voronoi Cell(s)

18: Unassign areas covered by other robots’ markers

19: Determine the Voronoi Centroid

20: Track the Voronoi Centroid

21: end for

22: end function
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2.4. Fundamental Concepts on Hybrid Systems

It is worth mentioning that the whole theory regarding Hybrid Systems in this thesis is

based on [43]. Here Hybrid Systems are defined as a combination of continuous-time and

discrete-time dynamical systems. There are a lot of examples where the merge of these

two dynamical system modeling can describe in a better way the physical phenomena. For

instance, as we all know, a body that experiments with changes in velocities and momentum

due to collisions or juggling dynamics the system moves continuously. Still, all of the sudden

changes can be described as a discrete event. In biology, we can see hybrid systems in the

way an organism behaves smoothly or continuously doing a specific task, which could be

modeled as a continuous-time dynamic, but at the moment when something generates a

stimulus or disturbance, changing the behavior is where discrete-time dynamical modeling

takes place. So every organism that leads to switching behaviors when a motivation appears

can be modeled as a Hybrid System. The mutual interaction in modeling the continuous-

time and discrete-time dynamics leads to rich modeling of any cyber-physical system not

found that working purely with just one of the dynamics. Consequently, many challenges

appear while doing so, such as instability cases, propagation of mistakes, and robustness of

the controllers, among others. To start analyzing how the Hybrid Systems work, clarifying

some concepts as definitions explained below is essential.

A comprehensive notation used to model a continuous-time dynamical system for a first

differential equation is ẋ = f(x), where x ∈ Rn for a physical interpretation ẋ is a velocity of

a rigid body and f(x) the changing of positions while varying time. Although this differential

equation can have a different interpretation as ẋ = f(x) and x ∈ C, where C ⊂ Rn, this

is the case where there exist state constraints. For instance, a location that a ball can not

go due to there being another object there or the presence of perturbations. On the other

hand, the notation widely known for the discrete-time dynamical system is the first order

equation x+ = g(x), where x ∈ Rn, meaning that the updating law of the state depends on

the current value of the state. In the same way, as differential equations have constraints

is extendable to think in constrained difference equations and difference inclusions, which

leads to x+ ∈ G(x), where G(x) ⊂ Rn. Since a Hybrid System is composed of both the

continuous-time and discrete-time dynamics, additionally with the set where these dynamic

works in the Hybrid Systems are included, both the differential equation and the difference

equations are constrained, leading to the following form to describe it,

ẋ = F (x) x ∈ C,
x+ ∈ G(x) x ∈ D, (2.21)

where C is called the flow set, F is the flow map, D is the jump set, and G is the jump map.

Considering that the switching dynamics or controllers can be modeled as a hybrid system

and a Finite State Machine (FSM). As is well known, an FSM is a system that might go

through different states or behaviors and is a method in which a system changes its behavior
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when a stimulus occurs. For instance, car transmission allows the car to experiment with

different velocities and torque capacities depending on what the car needs when the user

is in charge of the transition states in the standard case or to the car in the automatic

transmission system. An FSM might contain the following elements:

A set of inputs v ∈ Σ where Σ is an input alphabet, and v takes the input values.

A finite set of states Q, such that q ∈ Q.

An output set of values ∆, such that ϱ ∈ ∆.

A transition function δ : Q× Σ→ Q.

An output function k : Q→ ∆.

Whenever a transition function is needed, it takes an input v and current state q and maps

it to the next state q+. For example, Figure 2.9 shows how the transition system in an FSM

works, where k(q) is the output function that chooses which state will be the next one. It

is essential to clarify that the transition function δ is expressed for deterministic mapping

in the case of a non-deterministic model. The transition function becomes δ : Q × Σ ⇒ Q,

meaning that the transition function takes a current state and an input mapping to any

of a set of possible states. To guarantee the well functioning of the FSM is necessary to

Figure 2.9: Finite State Machine Diagram

complement it with guards function l(q, v, ϱ), which contains the laws in which one state,

input, and transition function will lead to the next state, avoiding to fall into mistakes of

transitioning or Zeno behavior.

Figure 2.10 is shown how the FSM is modeled using Hybrid Systems where the blue block

contains the continuous dynamic of the system, which in most cases corresponds to the phy-

sics that govern the system. On the other hand, the green block shows how the transitioning

of the states works, which is considered a discrete dynamic system. Considering the entire

system is appreciable how the continuous and discrete dynamics combine to increase the

approximation modeling of the system.
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Figure 2.10: Finite State Machine Diagram with guards
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3.1. Ant Colony Searching for a New Nest Behavior

Japanese ant, Myrmecina nipponica, is a small colony in wet temperature forests consisting

of approximately 40 ants with one winged queen. Quorum threshold is the technique ants

use to perform a consensus on decision-making that affects the entire colony as a house-

hunting process that decides the new place where to live. In [28] is shown how the colony’s

size directly affects the mean of the threshold needed to reach a quorum consensus and take

a decision. The house-hunting process begins with scouts traveling repeatedly from the nest

to the new sites and backward. Deploying pheromones while moving, they try to recruit ants

to the place that some scouts want, and the transportation of the brood does not begin until

a consensus has been reached, which occurs when a quorum of ants is present at the new

site. Once the consensus has been reached, scouts change their task to transport the brood

to the new site, and when they finish, it is assumed that the relocation has ended.

Social insects may change the nest when the present site becomes unsuitable. In [27], the

relation between private and social (pre-established pheromone trails) information is ad-

dressed when ants try to perform house-hunting. Being well-informed matters while making

decisions. It can go from good to bad. Animals usually base their decisions on information

acquired in previous experiences, which can be considered as private information, and cues

from other animals, which are considered social information. On the one hand, private infor-

mation seems to be costly or difficult to obtain but, in some cases, more reliable on the other

hand, social information may be cheap to acquire but, in some cases, unreliable and outda-

ted. Opening the possibility of obtaining negative outcomes via information cascades means

that individuals copy the behavior of other animals without considering the environmental

cues or private information that lead to that behavior, provoking sub-optimal outcomes.

Considering the importance of weight private and social information this work presents how

ants balance social and private information when the social information conflict at different

levels. Since private information sometimes may help colonies avoid making costly wrong

decisions. For instance, when they are house-hunting, if during the process of relocation,

they agree that the new site does not satisfy the requirements and scouts found a suitable

place, the cost could be high due to the brood and the queen being exposed to predators

hunting, desiccation and getting lost.
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3.2. Navigation in known non-convex spaces

3.2.1. Swarm Navigation

We consider a set of quadrotors N = {1, 2, ...n} whose interaction are modeled via graph

G = (N , E), where E represents the communication between quadrotors. Each quadrotor

i ∈ N has a corresponding state variable xi ∈ R3, which is the location of the quadrotor

regarding each axis of the space S ∈ R3. It is necessary to state that S is a non-convex space

which means that it is composed of either area clear to move by the quadrotors Sf ∈ R3 and

areas with obstacles So ∈ R3 that disallow quadrotors to go thru, noting that S = Sf ∪ So.
The quadrotor dynamics considered here are determined by a single integrator dynamic

ẋi = ui, where ẋi are the linear target velocities of each quadrotor and ui is the signal

control to be designed. The approach used to give the desired target position to quadrotors is

artificial potential functions, which emulates the attraction and repulsion behaviors presented

in nature as in Reynolds rules. Allowing quadrotor i ∈ N to maintain a comfortable distance

to obstacles and neighbor quadrotors j ∈ Ni, where Ni is the neighborhood of quadrotor ith.

The control signal is a summation of both attraction and repulsive forces as,

ui = uai + uri + uoi ,

where, uai = −kai(xi − xj) is the attraction force, kai ∈ R>0 is an established constant.

On the other hand, the repulsion force when a comfortable distance is reached is defined

as uri =
(
− kri(∥xi − xj∥ − ∆)

)
(xi − xj), in which, kri ∈ R>0 is an established constant,

∆ ∈ R>0 is a minimum distance allowed between quadrotors and ∥xi − xj∥ is the euclidean

distance in R3. In addition, it is necessary to avoid obstacles xo = {x ∈ R3 | x ∈ So} in the

environment so another repulsion force is needed,

uoi = koiexp

(
−1

2

∥xdi − xo∥2

r2s

)
(xdi − xo),

where koi ∈ R>0, is an established repulsion constant, and rs ∈ R>0 is the security radius

in which the Quadrotor avoid collisions and depend on the obstacle size. Considering the

generation of desired locations to reach, the objective is to navigate in a known space, being

attracted to interesting points while avoiding collisions with other quadrotors and obstacles.

3.2.2. Sub-Swarm Generation

Every agent is exposed to different attraction and repulsion forces, which help to keep the

swarm cohesion and, at the same time, push the swarm towards the goal. The victims located

in the environment permit an attraction force over close quadrotors, which can disturb the

normal behavior of the swarm, reducing the velocity of the quadrotors close to the victims.

The kr magnitude was set to stop the closest quadrotors to the victims. When the quadrotors

navigate close to the victims, at least one agent must stop near the victim. Once at least
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one quadrotor has stopped close to the victim and alerted the swarm about the finding of a

victim. Which will then start the generation of a sub-swarm around the localization of the

possible victim. A sub-swarm is created by employing the K − nearest algorithm approach.

The K − nearest algorithm behaves as a classifier by selecting as his name indicates the k

closest jth quadrotors to the ith quadrotor. When the neighborhood has been established,

a graph Gss ⊂ Gs where Gs is the main swarm graph. Thus, Gss = (Vss, Ess) where Vss is

composed by the quadrotors belonging to the sub-swarm and Ess is generated considering a

weighted function Wss : Ess → R such that, Wss =
1
qij
, where qij = ∥qi − qj∥ is the distance

between the ith and jth quadrotors. Allowing closer robots is more important to classifying

the ith quadrotor between taking itself to the sub-swarm or remaining in the principal swarm.

Figure 3.1: Sub-swarm generation.

As seen from Figure 3.1, the sub-swarm process is given when some robots in the network

detect a possible victim. When a victim is detected, the main inconvenience is deciding which

robots will remain in the swarm and which will generate a new one. Consequently, with the

K-nearest algorithm in Figure 3.1 is possible to appreciate when a non-filled dot represents

the robot that will be classified as a member of the sub-swarm blue dots or not green dots. It

is possible to note that he is assigned to the sub-swarm, becoming a blue dot and breaking

communication links with the rest of the main swarm.

3.2.3. Formation Control

After the sub-swarm generation is established, an algorithm capable of relocating all the

robots in the sub-swarm around to the possible victim position is carried out. Increasing

the accuracy in the measurements made by the sensor network on the detection of the

possible victim. Besides, having a well-classifying method, even though when far quadrotors

might add noise into the consensus. This algorithm is capable of putting quadrotors closer

to the victims using the well-known rendezvous algorithm, which the original algorithm is

explained in [63]. When a certain modification is made to this algorithm, it is possible to take
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quadrotors to the perimeter of a circle. The Laplacian matrix and the state vector are used,

giving rise to the consensus equation that models the dynamics of the system as follows,

ẋi = −Lxi,

where xi ∈ R3 and L is the Laplacian of the graph Gss. According to [63], the consensus

equation shown above will have a space of agreement A = {X ∈ Rn | xi = xj∀i, j} in which,

when ẋi = 0 there will be a consensus. On the other hand, in the time domain, x(t) = e−Ltx0
in which, when t→∞ is evaluated and performing an expansion in Taylor Series, is possible

to note that except for the first term, all the others are zero. The first term turns out to

be x(t) = e−λ1t((u1)
⊤x0)u1 where the first eigenvalue is zero because the whole exponential

part tends to 1 which causes the following expression ((u1)
⊤x0)u1. Extending it to all the

agents in the graph, we have that the consensus of a non-directed graph is the average of

the system’s initial conditions. This means that the consensus can be written as follows,

consensus =
∑ x0i

n
.

Considering that this rendezvous consensus allows all agents to reach the same position in

space, the next step is guaranteeing both connectivity and collision avoidance. To main-

tain and guarantee the communication among quadrotors in Gss, avoiding collisions among

quadrotors and obstacles, respectively, while approaching the target position. Here artificial

potential functions are used based on [81], which guarantee both requirements and principles

of attraction and repulsion forces inspired by biology known as Reynolds rules. It can be

modeled as follows,

ψij =
1

ρ22 − ||xij||2
− 1

||xij||2 − ρ21
, (3.1)

where ψij is the artificial potential function between the ith and jth quadrotors, ρ2 corresponds

to the connectivity radius permitted among quadrotors and xij corresponds to the distance

between the ith and jth quadrotors. From 3.1, the dynamic of the quadrotors can be imposed

as follows,

ẋi = −
∑
j∈Nσ

i

∇xi
ψij,

note that this function tends to be infinite when the distance between the agents is ρ2. The

more the distance between agents increases, the more the intensity of the attraction among

the robots increments, avoiding communication breaks.

The artificial potential functions approach demonstrates connectivity maintenance by eva-

luating the total energy of the graph connections given by

ψ =
1

2

n∑
i=1

ψi =
1

2

n∑
i=1

∑
j∈Nσ

i

ψij, (3.2)
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where ψ is the total energy of all the links and ψi corresponds to the energy of all the links

concerning the ith quadrotor. From this total energy, it is ascertained whether it is growing,

maintaining, or reducing with time from its derivative concerning time according to

ψ̇ =
1

2

n∑
i=1

∑
j∈Nσ

i

ẋTij∇xi
ψij, (3.3)

demonstrating that the total energy of the links tends to decrease over time, and since the

energy of the links grows due to the loss of connectivity, it is also demonstrated that the

links are maintained. As expected, the cooperative behavior of quadrotors in a sub-swarm

converges to the desired location. Then they spread around the target in a circle formation,

as shown in Figure 3.2.

3.3. Victim Detection

3.3.1. Fundamental Concepts on Neural Networks

CNN is a particular class of ANN (Artificial Neural Network) proposed initially in [54]

to process digital images in classification or identification tasks. These networks employ

convolutional filters with linear rectifiers intended to extract multiple interest features from

the image, such as borders, corners, or specific shapes. After the convolutional filtering, the

resulting images are down-sampled in the so-called pooling process, reducing the image size

but preserving the most relevant information. Those two steps (Convolution and pooling) are

repeated several times, where every time, the result is a more significant number of images

with smaller dimensions. Finally, the values of the resulting images are given as input to

a traditional neural network with fully connected layers whose weights are adjusted in a

supervised training process feed by a large number of images adequately labeled according

to a human victim detection goal. For the case of victim detection, CNN has a single output

in charge of determining if a victim was detected or not.

3.3.2. Distributed Victim Estimation Consensus

Sensors are essential when detecting victims successfully in a search and rescue scenario

because they oversee acquiring all information from the environment. It is relevant to note

that absolute sensors also capture noise in the measurements, which can come from electro-

magnetic noise, poor conditioning, or even external factors depending on the type of sensors.

Sensors are usually modeled using different methods, but considering the methodology wor-

ked here using a quadrotor sub-swarm. The distributed linear least square approach seems

to be the ideal way to model the dynamics of the sensors with presence noise, represented

with additive zero-mean Gaussian noise as shown in Figure 3.4. The sensing of a Gaussian
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signal without noise and in the presence of noise is respectively shown in Figure 3.4. Based

on the work presented in [63], the underlying model involves the estimation of a linear fun-

ction of a variable β ∈ Rq which is additively affected by noise εi in each of the n sensors on

the network belonging to the quadrotor sub-swarm. Then, the model could be described as

follows,

σi = Hiβ + εi, (3.4)

where σi, εi ∈ Rpi×1 and Hi ∈ Rpixq in which each value of the vector σi is a measurement

channel of the ith sensor. Additionally, Hi is assumed to be of rank q, assuring that the

measurements are not entirely redundant.

Taking into account that the Least Squares aim to minimize the error function, we can see

in the centralized case by isolating the error variable ε = σ −Hβ, and then calculating the

square error as,

ε2 = εε⊤ = (σ −Hβ)⊤(σ −Hβ),

thus,

ε⊤ε = σ⊤σ − 2σ⊤Hβ + β⊤H⊤Hβ,

where the result is a function f(β) which as can be seen depends only on β. To find the local

or global minimums, it is necessary to calculate the gradient error and the Hessian matrix,

which in this case are the following,

▽f(β) = df

dβ
= −2H⊤σ + 2H⊤Hβ,

by isolating β, it is found a minimum when,

β̂ = (H⊤H)−1H⊤σ,

furthermore, to prove the minimum function, this must satisfy,

d2f

d2β
= 2H⊤H > 0,

taking as u a non-null vector by multiplying u⊤H⊤Hu > 0→ (Hu)⊤(Hu)→ ∥Hu∥2 > 0, it

is possible to conclude that due to the Hessian matrix is always positive because the function

is convex, the critical point is not just a minimum is optimum.

Considering now the distributed sensor network, this can be modeled as,

β̂ =

(
n∑

i=1

Hi
⊤Hi

)−1( n∑
i=1

Hi
⊤σi

)
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by solving the following distributed optimization function,

min
∑n

i=1 fi(β)

s.t. β ∈ Rq

as was shown previously each fi : Rq → R are convex functions as a result, the target function

is given by the average of the gradient functions of each node as f ∗ = 1
n

∑n
j=1(fi), taking

the same form of the following

β̂ =
1

n

n∑
j=1

σi, (3.5)

this concludes that a consensus among the sensors can be achieved if some conditions are

satisfied. Let’s consider the iterated functioning of a sensor as

β̂i(k + 1) = β̂i(k) + ∆
∑
j∈Ni

wij(β̂j(k)− β̂i(k))

in which β̂i(k) illustrate the estimation of the ith sensor of variable β at iteration k,

ĺım
k→∞

β̂i(k) =

(
1

n

n∑
i=1

σi

)
1, (3.6)

if and only if the sensor network is connected and ρ(Lw(G)) <
2
∆
, where ρ(Lw(G)) corres-

ponds to the maximum eigenvalue of the graph in absolute values, then the agents on the

network will converge to the average of its initial conditions as shown below in Figure 3.5.
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Figure 3.2: Consensus around of a circle.
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Figure 3.3: Digraph scheme.
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(b) Sensing with noise in the signal.

Figure 3.4: Additive Gaussian noise applied to measurements in sensors.
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Figure 3.5: Sensor network converging due to the consensus applied.
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In recent years, accelerated technology development has made it possible to think about

robotics optimizing search and rescue operations. Quadrotors have been demonstrated to

be useful robots in many applications, such as surveillance, aerial construction, and agri-

culture. Its good maneuverability and mobility in a highly-constrained three-dimensional

environment allow it to solve problems and tasks that neither humans nor other platforms

do. Furthermore, using robots to do some tasks that rescuers normally do might avoid put-

ting extra lives at risk, and also, in most cases, quadrotors can move faster than rescuers do,

which possibly can improve the performance in the mission [7]. Tasks such as the delivery of

first aid kits, extraction of survivors, and carrying rescuers’ support devices are tasks that

seem to be worthless. But, it might affect the chances that survivors in a disaster zone re-

main alive; time is precious when discussing search and rescue operations. All of these tasks

involve at least one quadrotor lifting a load and carrying it to a determined place in the envi-

ronment. This approach has been widely explored, considering the reduction of disturbances

in the load, smooth maneuverability, optimal trajectories [29], using grippers, springs, and

visual techniques [59]. Despite the great feasibility of using quadrotors to transport loads,

quadrotors are usually limited in terms of their payload-carrying capacity. However, qua-

drotors can carry payloads beyond their limits by collaborating and performing cooperative

transportation [72]. The same behavior is performed in ants when they cooperate in carrying

food or elements to the nest that a single ant cannot handle. This is the reason why the

objective of this chapter is to show how some ants express this behavior. And how inspired

by this, it is possible to impose the desired behavior on a group of robots that cooperates to

carry a suspended load which could be a victim, first aid kit, or devices needed in a search

and rescue mission.

4.1. Ant Cooperative Load Transportation

Ants, renowned for their remarkable collective behaviors, have long fascinated researchers in

the field of biology. Among their intriguing abilities is the cooperative transportation of heavy

loads, where a group of ants collaboratively transports objects that would be impossible

for an individual ant to carry alone. This unique behavior has captured the attention of

scientists and engineers alike, inspiring investigations into the mechanisms underlying ant

cooperative load transportation and its potential applications in various domains. Research

in the field of ant cooperative load transportation has uncovered many intriguing findings.
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In a study conducted by [61], researchers investigated the load-carrying strategies employed

by leaf-cutter ants. By employing experimental setups that mimicked natural conditions,

the researchers revealed how ants distribute the load among the group members, optimizing

the transportation process. In addition, they found that ants exhibit a division of labor,

with more giant ants taking on heavier loads and smaller ants responsible for clearing the

pathway. This cooperative strategy enables the ants to overcome obstacles and transport

loads efficiently.

Moreover, another research paper by [53] delved into the communication mechanisms em-

ployed by ants during load transportation. Through a series of experiments involving ma-

nipulations of the load and observation of ant behaviors, the researchers discovered that

ants use a combination of tactile and chemical cues to coordinate their movements. They

found that ants adjust their walking speed, direction, and force based on the interactions

with their neighboring ants and the load, thus enabling the group to adapt to changing

environmental conditions. The insights gained from these and other research papers on ant

cooperative load transportation have significant implications beyond biology. One area that

stands to benefit from the lessons learned from ant behavior is the field of multirobot load

transportation, particularly in the context of aerial robots. Aerial robots, such as drones,

are increasingly employed for various applications, including transportation tasks in urban

environments, disaster response, and delivery services. However, the challenges associated

with load transportation in aerial robotics, such as payload capacity, energy constraints, and

coordination, necessitate innovative solutions. By leveraging the efficiency and adaptability

observed in ant colonies, we can envision new strategies and algorithms that enhance the

capabilities of aerial robots in load transportation tasks, ultimately leading to more efficient

and reliable systems.

4.2. Geometric Control

Geometric control [49] is a field within control theory that applies geometric techniques to

analyze and design control systems for various dynamical systems. It considers the system’s

state space and associated geometric structures to understand its behavior. Control-affine

systems, which combine inherent dynamics and external inputs, are a key concept in geome-

tric control. Researchers can analyze controllability, stability, and trajectory tracking using

geometric methods like differential forms and Lie theory [44]. Geometric control theory also

highlights the preservation of a system’s geometric properties, allowing the design of control

strategies that stabilize the system while respecting its intrinsic characteristics. In the case

of quadrotors, we can utilize geometric control to develop effective control systems for their

stabilization and maneuvering.
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4.2.1. Agent Model

Notation and Definitions: {Xw, Yw, Zw} unit vectors along the axis of {W}, {XBi
, YBi

, ZBi
}

unit vectors along the axis of the ith quadrotor {Bi} with respect to {W}, mqi ∈ R>0 mass

of the ith quadrotor, Ji ∈ R3×3 inertia matrix of the ithquadrotor with respect to {Bi}, rqi ,
vqi ∈ R3 position and velocity of the ith quadrotor center-of-mass in {W} Ri ∈ R3 the ro-

tation matrix from {Bi} to{W}, Ωi ∈ R3 angular velocity of ith quadrotor in {Bi}, Fi ∈ R
total thrust produced by the ith quadrotor Mi ∈ R3 moment produced by the ith quadrotor,

ml ∈ R>0 mass of the load, rl, vl ∈ R3 position and velocity of the load in {W} li ∈ R>0

length of the cable from load to ith quadrotor, Ti ∈ R≥0 tension on the cable produced by

the ith quadrotor and the load.

Multi-Quadrotor Dynamics

The localization of each quadrotor UAV is defined by the position of its center of mass

(CoM) and the attitude with respect to the {W} inertial frame. The multi-robot UAV’s

motion can be modeled by applying the Newton-Euler approach to summate forces and

torques concerning the system.

ṙqi = vqi ,

mqi v̇qi = mqig(−Zw) + Fi(ZBi
),

Ṙi = RiΩ̂i,

JiΩ̇i = −Ωi × JiΩi +Mi,

(4.1)

where state variables are defined previously in Notation and Definition. Additionally, ZBi
=

RiZw in which Zw = u3 with u3 = [0 0 1]⊤, g is the gravitational acceleration constant

applied in Zw and the hat map ·̂ : R3 → SO(3) is the skew-symmetric operator matrix as

explained in [60] such that, x̂y = x× y ∀x, y ∈ R3, in which wi = [w1, w2, w3] then,

Ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 , (4.2)

here is assumed that each propeller of the quadrotors is directly controlled, avoiding the

consideration of the motor and propeller dynamics. Also, the direction of the thrust is con-

sidered normal to the quadrotor plane. The total thrust produced by the quadrotors acting

in Zw is the result of the summation of the thrust of each propeller in the quadrotor as

Fi =
∑4

k=1−fk. Assuming the torque generated by each propeller proportionally to the

thrust reached. Since if the quadrotor wants to gain altitude, it requires having a positive

thrust, so, the first and third propellers must rotate clockwise, while the second and fourth

propellers must rotate counterclockwise as shown in Figure 4.1. The thrust of each propeller

fi makes the quadrotor move in (−Zw), the torque generated by the kth propeller of the ith
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Figure 4.1: Quadrotor model: in the robot reference frame to the inertial reference frame.

quadrotor can be written as λk = (−1)kcλffi, in which cλf is a constant given by the design

of the propellers. Here, the linear rotor dynamics can be included, leading to the result of

the total thrust and the total moment of the quadrotor as,
Fi

M1i

M2i

M3i

 =


1 1 1 1

0 −d 0 d

d 0 −d 0

−cλf cλf −cλf cλf



fi1
fi2
fi3
fi4

 .

Multi-Quadrotor Dynamics Lifting a Load.

Following the same procedure described previously, it is possible to identify the system’s

changes when the quadrotors start the lifting maneuver. We obtain the dynamics of the

system as follows

ṙqi = vqi ,

mqi v̇qi = mqig(−Zw) + Fi(ZBi
),−Ti(µi)

Ṙi = RiΩ̂i,

JiΩ̇i = −Ωi × JiΩi +Mi,

ṙl = vl,

mlv̇l =
∑
Ti(µi)−mlg(Zw)

(4.3)
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Figure 4.2: Cooperative transportation: carrying a load by cooperating with a group of

quadrotors.

where µi is the unit vector that goes from the load towards the ith quadrotor, also considering

that the position of the load rl can be determined by the following expression

rl = rqi − liµi.

Cooperative Transport Approach. Quadrotors i and j transporting an object exert

forces Fi, Fj (for robots attached at the ith and jth contact points, we always assume i and j

positionally opposed to each other). The vectors to these contact positions (in the body fixed

frame) are expressed as µi, µj as shown in Fig. 4.2. These forces are summed (over N robots)

to give the net force on the object. Let γ be the vector of net external forces on the body,

then for the planar case (altitude remaining as constant), γx =
∑N

i=1 Fi,x, γy =
∑N

i=1 Fi,y. In

this kind of problem is shown in [52] that if there is no interaction force then the following

equation holds

(Fi − Fj) · (µi − µj) = 0, (4.4)

this is called the Zero Interaction Force Condition (ZIF), one of the control objectives.
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4.2.2. Geometric Control Algorithm Design

Position Based Passivity Controller

As the foregoing mentioned, this controller works to find the desired position at the end

of the first sub-trajectory that places the robots in good positions to lift the load. First, a

matrix that captures the interaction dynamics of the system is defined, called the incidence

matrix, which is filled as follows

dlk(G) : =


+1 if k ∈ L+

i

−1 if k ∈ L−
i

0 otherwise

,

where L+
i and L−

i represents if the link kth points in or out of node ith respectively. The

dynamic model employed for the target positions that will be delivered to the trajectory

generator is a double integrator model. The double integrator dynamics takes the form

ui = miv̇qi , i = 1, ..., N, (4.5)

where ui is the force input control, mi is the mass of agent ith and vqi is the velocity of agent

ith. When the control signal is added, the dynamic equation can be expressed as

ui = −ki(vqi − vr) +miv̇r + udi , ki ≥ 0, (4.6)

where vr is the common and reference velocity, ki is a proportional controller. We consider a

group of agents modeled like the equation (4.5), the control law that is implemented to obtain

the function in (4.6) seeks to guarantee that (∥ṙqi − vr∥) → 0 and ∆k → ∆d
k. According to

Corollary 2.1 in [3], the global asymptotic stability of the system is guaranteed by

ṙqi = Hi

(
−

k∑
i=1

dikψk(∆k)

)
+ vr, i = 1, ..., N,

where Hi denotes the output at time t of a static or dynamic block satisfying |ṙq − vr)| → 0

and (rqi − rqj)→ 0 as t→∞ for every pair of nodes (vi, vj) which are connected by a path.

∆k denotes the differences between rqi and its neighbors rqj . ψk : Rp → Rp are non-linearities

designed such that the target set where the dynamics evolve invariant and asymptotically

stable. In this work the target set can be defined as Λ =
{
∆k | ∆k = ∆d

k

}
where ∆d

k dictates

the desired relative configuration of the nodes. The control law, then, is

udi = −
k∑

i=1

dikψk(∆k −∆d
k),
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giving as a result of replacing in (4.6) as

mi(r̈qi − v̇r) + ki(ṙqi − vr) +
k∑

i=1

dikψk(∆k −∆d
k) = 0, (4.7)

the consensus protocol starts from a potential quadratic function taking into account ψk(∆k) =

▽Pk(∆k) and is related to (4.7) as

Pk =
δk
2

∣∣∆k −∆d
k

∣∣2 , δk ∈ R>0

ψk(∆k) = δk(∆k −∆d
k),

the δk constants are the system feedback gains that regulate the difference between the

desired set and current system conditions. According to our requirements, ∆k is chosen in

the form that the desired shape is a rhombus. Where quadrotors 1 and 3 are aligned and

positional opposed in relation to the load and quadrotors as quadrotors 2 and 4.

Geometric Control Fi

As a result of (4.3), the control variables are two. First, Fi corresponds to the total thrust

produced by the four motors in the ith quadrotor. Second, the moments executed in each

axis Mi that will be shown in the next subsection. As mentioned in Section 1, geometric

control is implemented as depicted in [55]. The procedure begins by defining the position

and velocity errors as epi = rqi − rdesi and evi = vqi − ṙdesi respectively, in this way the desired

thrust takes the form as follows.

F des
i = −Kpepi −Kvevi +mvi(gu3 + r̈desi )−Kg((Fi − Fj) · (µi − µj)), (4.8)

where mvi = mqi + ml, Kp and Kv are diagonal gain matrices and
∥∥F des

i

∥∥ ̸= 0 at any

time, but the motion of the quadrotor is controlled in the projection of F des
i on to the third

body-axis giving, as a result,

Fi = F des
i · ZBi

.

Geometric Control Mi

On the other hand, the variable responsible to control the altitude error and the angular

velocity is Mi. In the case of the altitude error that stabilizes the translational movement

can be chosen as

Zdes
Bi

=
F des
i∥∥F des
i

∥∥ ,
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taking F des
i from (4.8). Here the yaw angle of the quadrotor remains at zero, allowing to

choose Xdes
Bi

= [1 0 0]⊤, obtaining a desired pose as

Rdes
i =

[
Y des
Bi
× Zdes

Bi
Y des
Bi

Zdes
Bi

]
∈ SO(3),

where

Y des
Bi

=
Zdes

Bi
×Xdes

Bi∥∥Zdes
Bi
×Xdes

Bi

∥∥ ,
and finally, defining the pose error as

eRi
=

1

2

(
(Rdes

i )⊤Ri −R⊤
i R

des
i

)∨
, (4.9)

where ∨ represents the vee operator, which is the inverse of the skew-symmetric operator

defined from (4.16) as

w∨ =

 −W23

W13

−W12

 .

As mentioned, under the assumption to remain yaw angle constant, the angular velocity can

be defined as was made in [62], Ωdes
i = ρdesi Xdes

Bi
+ ϱdesi Y des

Bi
, where ρdesi = −hω · Y des

Bi
and

ϱdesi = hω ·Xdes
Bi

where

hω =
mv

Fi

(r̈desi − (Zdes
Bi
· r̈desi )Zdes

Bi
),

thus the angular velocity error is

eΩi
= Ω− Ωdes

i , (4.10)

then in the same way as in the geometric control of Fi, the control of Mi taking (4.108) and

(4.10) is as follows

Mi = −KReRi
−KΩeΩi

+ (Ωi × JiΩi),

again, KR and KΩ are diagonal gain matrices that guarantee the system’s stability.

4.3. Adaptive Control

4.3.1. Agent Model

Notation and Definitions: The notation used for matrices and vectors isX and x, respectively.

We write X⊤ and x⊤ for the transpose of a matrix or a vector. The Euclidean norm is defined
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as ∥X∥2 =
∑n

i=1 |xi|2. We denote A−⊤ = (A⊤)−1 as the inverse of a transposed matrix. The

trace of a matrix is tr(X), where X is square. A directed graph is defined as the pair (V , E),
where V is the set of graph nodes, and E ∈ V × V is the set of communication edges. The

adjacency matrix is defined as A = [aij] where aii = 0 and aij = 1 if (j, i) ∈ E , where i ̸= j.

Regarding the tension T , it is modeled as the opposition force of the thrust generated by the

quadrotor in each axis. This opposition is represented by the well-known spring and damper

system, where the equation that governs the tension is Ti(µi) = −kx− bẋ+ η, x is a vector

that contains the xW , yW , and zW axis.

Figure 4.3: Tension modeled as a Spring-Damping system.

Getting as a result for the altitude dynamic of the form ẋi = Aixi + (bi + fi(xi))ui + ηi for

each quadrotor as

ẋi =

[
0 1

− ki
mqi

− bi
mqi

]
xi +

([
0

1

]
+ fi(xi)

)
Fi + ηi, (4.11)

where fi(xi) is a bounded input uncertainty, ηi is an unstructured bounded dynamic uncer-

tainty, xi ∈ R2 are the agent’s states, ui ∈ R2 are its thrust input, Ai is an unknown matrix

related to the agent’s states, bi are known vectors with heterogeneous quadrotors (Ai ̸=Aj

and bi ̸=bj). This model works for the xW and yW axis. In the case of the zW axis, the term

of gravity has to be added.

4.3.2. Adaptive σ-Modification for State Synchronization

Taking into account that we are working with a DMRAC, the model of the reference is

described as

ẋm = Amxm + bmr, (4.12)

where xm ∈ R2 is the state, r ∈ R is the reference, and Am and bm are matrices of the

reference model. The graph used is shown in Figure 4.5, which conserves the disposition

shown in Figure 4.2, but the links represent communication relations.
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Figure 4.4: Control Scheme.

Figure 4.5: Leader-follower communication graph.

The following assumptions are made to accomplish a matching dynamic to guarantee a

cooperative MRAC and replicate the behavior of the leader or a neighbor, depending on the

case.

Assumption 1. The vector k∗mi and the scalar k∗ri exist and are defined as

Am = Ai + bik
∗⊤
mi , (4.13)

bm = bik
∗
ri. (4.14)

Constants in (4.14) are known as feedback-matching conditions.

Assumption 2. The vector k∗ij and the scalar l∗ij exists and are defined such that

Ai = Aj + bjk
∗⊤
ij , (4.15)

bi = bjk
∗
rij, (4.16)

constants k∗ij and k
∗
rij in (4.16) are known as coupling matching conditions as in [4]. Focusing

on the synchronization from quadrotor q1 to the leader dynamics in the graph depicted in
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Figure 4.5, the following control law is proposed

F1 = kmxm + krr − uad + kg∆1, (4.17)

where kg is a positive constant, km, and kr are adaptive gain vectors obtained from feedback

matching conditions as

k̇⊤m = −sgn (kr∗) γ b⊤mP (x1 − xm)x⊤1 , (4.18)

k̇r = −sgn (kr∗) γ b⊤mP (x1 − xm) r, (4.19)

where the scalar γ > 0 is the adaptive gain, and Am is designed to guarantee that all of

its eigenvalues have negative real parts, such that there exists a definite positive matrix

P ∈ R2×2 and Q ∈ R2×2 in which the following condition is satisfied

PAm + A⊤
mP = −Q, Q > 0, (4.20)

and uad ∈ R is a direct adaptive signal parameterized by linear-in-parameters input uncer-

tainty

uad = θ⊤ϕ(x), (4.21)

where ϕ : R2 → R2 is a known regressor vector, θ ∈ R2×1 is the σ-modification based on [48]

defined as

θ̇ = −γ
(
ϕe1

⊤Pb1 + σθ
)
. (4.22)

where σ is a constant satisfying σ > 0, and e = xm − x1 is the synchronization error.

Once the synchronization dynamic from quadrotor 1 to the leader is achieved, we consider

the case with a third agent which does not have direct communication with the leader. Then,

the proposed control laws for quadrotors 2 and 3 to achieve synchronization without having

communication with the reference model are defined as

F2 = k⊤21x1 + k⊤m2 (x2 − x1 − δ2) + kr21u1 − θ⊤2 ϕ2 + kg∆2. (4.23)

F3 = k⊤31x1 + k⊤m3 (x3 − x1 − δ3) + kr31u1 − θ⊤3 ϕ3 + kg∆3, (4.24)

where δi are constant values adjusted to reach a desired distance between quadrotors in the

xW and yW axis. For the case of the zW axis, the term is ignored due to the desired behavior

to achieve a consensus. The adaptive laws for quadrotor 2 are

k̇⊤21 = −sgn (k∗r2) γ b⊤mP (x2 − x1)x⊤2 , (4.25)

k̇⊤m2 = −sgn (k∗r2) γ b⊤mP (x2 − x1) (x2 − x1)⊤ , (4.26)

k̇r21 = −sgn (k∗r2) γ b⊤mP (x2 − x1)u1, (4.27)

θ̇2 = −γ
(
ϕ2(x2 − x1)⊤Pb2 + σθ2

)
, (4.28)
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and for quadrotor 3

k̇⊤31 = −sgn (k∗r3) γ b⊤mP (x3 − x1)x⊤3 , (4.29)

k̇⊤m3 = −sgn (k∗r3) γ b⊤mP (x3 − x1) (x3 − x1)⊤ , (4.30)

k̇r31 = −sgn (k∗r3) γ b⊤mP (x3 − x1)u1, (4.31)

θ̇3 = −γ
(
ϕ3(x3 − x1)⊤Pb3 + σθ3

)
. (4.32)

The last quadrotor represents a particular case where the dynamic has information from

neither the leader nor the quadrotor 1. So errors e42 = x4 − x2 − δ42 and e43 = x4 − x3 − δ43
have the following dynamics

ė42 = Ame42 + b4
(
u4 − k∗⊤m4x2 − k∗⊤42 e42 − k∗⊤r4 u2 + θ⊤4 ϕ4

)
, (4.33)

ė43 = Ame43 + b4
(
u4 − k∗⊤m4x3 − k∗⊤43 e43 − k∗⊤r4 u3 + θ⊤4 ϕ4

)
, (4.34)

which allows us to obtain the following controller

F4 = k⊤42
x2
2

+ k⊤43
x3
2

+ k⊤m4

e42 + e43
2

+ k⊤r42
u2
2

+ k⊤r43
u3
2
− θ⊤4 ϕ4

2
+ kg∆4, (4.35)

with adaptive laws

k̇⊤42 = −sgn (k∗r4) γ b⊤mP (e42 + e43)x
⊤
2 , (4.36)

k̇⊤43 = −sgn (k∗r4) γ b⊤mP (e42 + e43)x
⊤
3 , (4.37)

k̇⊤m4 = −sgn (k∗r4) γ b⊤mP (e42 + e43) (e42 + e43)
⊤ , (4.38)

k̇r42 = −sgn (k∗r4) γ b⊤mP (e42 + e43)u2, (4.39)

k̇r43 = −sgn (k∗r4) γ b⊤mP (e42 + e43)u3, (4.40)

θ̇4 = −γ
(
ϕ4(e42 + e43)

⊤Pb4 + σθ4
)
. (4.41)

These results allow the system to adapt to a reference given to a leader even when they do

not have direct communication with it. The following theorem is the main contribution, and

it captures the general form of any heterogeneous number of agents that synchronize with

a leader to cooperate in the task. It is used as a DMRAC using σ-modification to overcome

possible uncertainties in its dynamics and in the cable tensions and disturbances such as

wind and minimize error synchronization.

Theorem 1. Consider N agents with dynamics (4.3), where only the quadrotor one directly

communicates with the reference. The other quadrotors employ the following control law.

Fi =

∑N
j=1 aijk

⊤
ijxi∑N

j=1 aij
+
kmi

∑N
j=1 aij(xi − xj − δi)∑N

j=1 aij
+

∑N
j=1 aijkrijui∑N

j=1 aij
−
∑N

j=1 aijθ
⊤
i ϕi∑N

j=1 aij
+

∑N
j=1 aijkg∆i∑N

j=1 aij
,

(4.42)
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with adaptive laws

k̇⊤ij =− sgn(k∗ri)γ b
⊤
mP

[
N∑
j=1

aij(xi − xj)

]
x⊤i , (4.43)

k̇⊤mi =− sgn(k∗ri)γ b
⊤
mP

[
N∑
j=1

aij(xi − xj)

][
N∑
j=1

aij(xj − xi)

]⊤
, (4.44)

k̇rij =− sgn(k∗ri)γ b
⊤
mP

[
N∑
j=1

aij(xi − xj)

]
ui. (4.45)

The matched uncertainty parameter is taken from (4.21), with the σ-modification parameter

defined as

θ̇i = −γ
(
ϕi(xi − xj)⊤Pbi + σθi

)
, (4.46)

then, the control law will synchronize all the quadrotors to the reference leader with a

bounded error.

Proof of Theorem 1: We should guarantee that all agent synchronization errors are bounded,
regardless of whether they are communicated to a reference model. For this, the following
Lyapunov function is used

V (eij , k̃mi, k̃rij , k̃ij , θ̃i, ∆̃i) =
N∑
i=1

 N∑
j=0

aijeij

⊤

P

 N∑
j=0

aijeij

+
N∑
j=1

tr

[
k̃⊤mik̃mi

γ |k∗ri|

]
+ . . . (4.47)

. . .+

N∑
i=1

N∑
j=1

aij tr

[
k̃⊤ij k̃ij

γ |k∗ri|

]
+

N∑
i=1

N∑
j=1

aij
k̃2ri

γ |k∗r |
+

N∑
i=1

tr(θ̃⊤i γ
−1θ̃i) +

N∑
i=1

tr(∆⊤
i γ

−1∆i),

(4.48)

where j = 0 is used as a representation of the reference, k̃mi = kmi − k∗mi, k̃rij = krij − k∗rij,
k̃ij = kij − k∗ij, θ̃i = θi − θ∗i , ∆̃i = ∆i −∆∗

i , ηij = ηi − ηj, the error dynamics represented as

ei = xi − xm, and eij = xi − xj in short notation, and in long notation as

ėij = Am(xi − xj) + bj [ui − k∗⊤ij xi − k∗⊤mi − k∗rijui + θ̃j
⊤
ϕj ]− ηij , (4.49)

ėij = Ameij + bi[k̃
⊤
ijxi + k̃⊤mieij + k̃⊤rijui − θ̃i

⊤
ϕi − θ̃j

⊤
ϕj ]− ηij . (4.50)
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The derivative of (4.48) can be obtained as

V̇ =

N∑
i=1

 N∑
j=0

aijeij

⊤

(PAm +A⊤
mP )

 N∑
j=0

aijeij

+ . . .

. . .+ 2

 N∑
j=0

aijeij

⊤

Pbi

[
N∑
i=1

aij k̃
⊤
ijxi + k̃⊤mi

N∑
i=1

aijeij +

N∑
i=1

aij k̃rijui − θ⊤i ϕi

]
− . . .

. . .− 2

 N∑
j=0

aijeij

⊤

Pηij +
N∑
i=1

tr

(
k̃⊤miγ

−1 ˙̃kmi

|k∗ri|

)
+

N∑
i=1

tr

 k̃⊤ijγ
−1 ˙̃kij

|k∗ri|

+ . . .

. . .+
N∑
i=1

N∑
j=1

aij
k̃rijγ

−1 ˙̃krij
|k∗ri|

− 2

N∑
i=1

N∑
j=1

tr
(
θ̃⊤i ϕi[e

⊤
ijPbi + σθi]

)
+

N∑
i=1

tr

(
∆̃⊤

i γ
−1 ˙̃∆i

|∆∗
i |

)
,

reducing the Lyapunov equation

V̇ = −
N∑
i=1

[
N∑
j=0

aijeij

]⊤
Q

[
N∑
j=0

aijeij

]
− 2

[
N∑
j=0

aijeij

]⊤
Pηij − 2σ

N∑
i=1

N∑
j=1

tr
(
θ̃⊤i θi

)
. (4.51)

hence

V̇ = −
N∑
i=1

[
N∑
j=0

aijeij

]⊤
Q

[
N∑
j=0

aijeij

]
− 2

[
N∑
j=0

aijeij

]⊤
Pηij − 2σ

N∑
i=1

N∑
j=1

tr
(
θ̃⊤i θ̃i + θ̃⊤i θ

∗
i

)
.

(4.52)

therefore V̇ is bounded by

V̇ ≤ −
N∑
i=1

λmı́n (Q)
N∑
j=1

∥eij∥2 + 2
N∑
i=1

N∑
j=1

∥eij∥λmáx(P )η0ij − 2
N∑
i=1

σ∥θ̃i∥2 + 2
N∑
i=1

σ∥θ̃i∥θ0i,

(4.53)

where η0ij = ∥sup |η|∥, θ0i = ∥θ∗i ∥.
Completing square in (4.53) it is possible to see that ∥eij∥, and ∥θ̃i∥ are bounded by α1 ≤
∥eij∥ ≤ α2, and β1 ≤ ∥θ̃i∥ ≤ β2. Thus, V̇ > 0 inside a compact set, but V̇ ≤ 0 outside it.

Then ∥eij∥ has lower bound. ■
Theorem 1 guarantees that all synchronization errors of quadrotors are bounded.

Finally, this procedure is performed for each axis to fulfill the following control approach

requirements. Bearing in mind the special considerations for the zW axis, such as adding

the gravitational g term and avoiding the use of δi, since the desired behavior is to achieve

consensus in altitude. Moreover, the vector F des
i is as follows

F des
i =

F x
i

F y
i

F z
i

 . (4.54)
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Figure 4.6: Multiple quadrotors transporting a cable-suspended load.

4.4. Bilevel Adaptive Control

4.4.1. Problem Statement

We propose the employment of heterogeneous quadrotors (in the sense that they can have

different masses, rotors, and inertial tensors) transporting a cable-suspended load to a desired

position. Figure 4.6 shows the configuration we are using where four quadrotors are attached

to a point-mass load through stretchable cables.

Definition 1 (Cable attached quadrotor) A Cable attached quadrotor is composed of

a quadrotor attached from its center of mass with a cable to another object in the environ-

ment, the maneuverability of a quadrotor considering the restrictions that a cable impose is

considered

We refer to the position of a quadrotor as ri ∈ q, where q = {1, ..., n} is the set of quadrotors.
The mass and inertia tensor of each quadrotor is denoted by mi ∈ R>0 and Ji ∈ R3×3,

respectively. Figure 4.6 illustrates the inertial reference frame, each quadrotor body frame,

and the box frame, which are defined as follows {W} = {xw,yw, zw}, {Qi} = {xqi ,yqi , zqi},
and {B} = {xB,yB, zB} respectively. Note that each frame can be transformed to the inertial

reference frame by using the rotational matrix as xqi = RW
i e1, yqi = RW

i e2, zqi = RW
i e3,

xB = RW
B e1, yB = RW

B e2, and zB = RW
B e3, where e1 = [1 0 0], e2 = [0 1 0], and e3 = [0 0 1]

are unitarian vectors. We refer to the velocity and acceleration of a quadrotor as vi ∈ R3 and

v̇i ∈ R3 in {W}, Rw
i ∈ SO(3) a rotation matrix from each quadrotor frame to the inertial

reference frame, ωi ∈ R3 angular velocity of the i-th quadrotor, fi ∈ R total thrust produced

by the i-th quadrotor, τ i ∈ R3 moment produced by the i-th quadrotor, the length of the

ith cable going from the i-th quadrotor to the load is li ∈ R>0.
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Definition 2 (Box) A box is a cuboid with the following properties, side length : a ∈ R>0,

width : b ∈ R>0, height : c ∈ R>0, mass mb ∈ R>0, and inertia tensor Jb ∈ R3×3, the position,

velocity and acceleration of the box rb ∈ R3, vb ∈ R3, and v̇b ∈ R3 in {W}, angular velocity

ωb, respectively, fT i ∈ R≥0 tension on the cable produced by the box to the i− th quadrotor.

Configuration Space

We next consider the next two scenarios. Quadrotors Moving Free: Here the cable is not

being taut so ∀i, ∥ri − rb∥ < li, then the configuration space is SE(3)n where n is the

number of quadrotors.

Quadrotors Transporting a Cable-suspended Load: Once that all of the quadrotors are lifting

the load, then ∥ri− rb∥ = li + ϵi where ϵi is a small cable deformation which depends on the

tension applied in the cable. Thus the configuration spaces are led to SE(3)×Rn×SO(3)n×
S2n where n is the number of quadrotors, for this particular problem n = 4.

4.4.2. Load Transporting Problem

Here, we propose the employment of four quadrotors to lift a load and carry it to a desired

location. Fig. 4.6 illustrates the inertial reference frame {W} and each quadrotor body frame

which coincides with the center of mass of each quadrotor.

Problem 1 Given a desired trajectory for a load to follow, with desired positions, velocities,

and accelerations rdb , v
d
b , and v̇d

b , respectively, we want to find the control inputs fi, τ i for each

quadrotor which makes the load to follow the desired trajectory, given physical interactions

between the quadrotors due to that they are attached to the same point to the load.

Remark 1. As each quadrotor is attached through a stretchable cable to a point-mass load,

the desired position of each quadrotor when the cable has tension can be computed as

rdi = rdb + li

(
fTi

∥fTi
∥

)
.

Note that the second term captures the direction of the quadrotor from the attaching point

to each quadrotor.

4.4.3. Model Dynamics

As mentioned in the configuration space, we consider two scenarios, one with the quadrotors

moving free and the second with the quadrotors tightening the cables attached to the load.
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Quadrotor Dynamics Moving Free

By using the Newton-Euler approach to a quadrotor the system model is the following [55]

ṙi = vi

miv̇i = −mige3 + fiR
W
i e3

ṘW
i = RW

i ω̂i,

Jiω̇i = −ωi × Jiωi + τ i,

(4.55)

where g is the gravitational constant acceleration applied in e3 and the hat map ·̂ : R3 →
SO(3) defined by the condition that âb = a× b, ∀ a,b ∈ R3 [60].

Quadrotors Transporting the Load

We follow the same procedure to model the dynamics of the quadrotors attached to a cable-

suspended load using the Newton-Euler approach

ṙi = vi

miv̇i = −mige3 + fiR
W
i e3 +RW

b fT i,

ṘW
i = RW

i ω̂i,

Jiω̇i = −ωi × Jiωi + τ i,

ṙb = vb

mbr̈b = −mbge3 +
N∑
i

(RW
b fT i).

(4.56)

Note that the difference here lies in adding the tension force fTi and the loaded dynamic.

Considering that we consider the cable as a spring-damping system [51], the variation in the

position of one quadrotor generates a tension force on the other cables. In the same way, one

quadrotor experiences an opposing force coming from the other cables when it moves. Let’s

define ki and vi as the constant factors coming from the spring and damping effects when

referring to the translational movement in (4.56). Considering ẋ = [ṙxi , v̇
x
i ]

⊤, ẏ = [ṙyi , v̇
y
i ]

⊤,

and ż = [ṙzi , v̇
z
i ]

⊤ as the dynamic of the system in each axis of {W} can be transformed as

ẋi =

[
0 1

− ki
mi
− bi

mi

]
xi +

[
0

fd
xi

]
+
∑
j∈Ni

[
0 1

− kj
mj

− bj
mj

]
xj + ηij, (4.57)

where Ni refers to the neighborhood of the i-th quadrotor, kj, bj, mj are the parameters

of the other quadrotors, and ηij is an unknown parameter collecting the uncertainties and

perturbations. Due to the limited space, we show the procedure to the xw-axis only, even

though the procedure to the yw-axis and zw-axis is the same just remembering that for the
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zi-axis we add the gravity effects. Note that fd
xi

is considered in each of the three axes, but

the thrust of a quadrotor can just be generated in the zqi- axis. Transforming (4.57) in a

compact form, considering ui = [0, fd
xi
]⊤, then

ẋi = Aixi + biui +
∑
j∈Ni

Aijxj + ηij, (4.58)

this is the dynamic model we work with, and in the next section, where the control design

is explained.

4.4.4. Control Design

We split this problem into a translational and rotational control design for the control theory

analysis. First, the translational control depends on the communication that a drone has with

the predefined virtual reference model and the physical interaction. Second, the rotational

control takes the desired thrust controller and translates it to the rotation needed.

Desired Force on the xw-axis Design

The following proposition shows the case where a drone directly communicates with the

reference. A linear reference model is defined as

ẋm = Amxm + bmr(t)
x, (4.59)

where xm ∈ Rn is the reference state, and r(t) is the reference trajectory that we want the

mass to follow. The matrix and vector Am ∈ Rn×n, bm ∈ Rn × p are known and consistent

with linear dynamics.

Proposition 1. Consider a drone x1 with dynamics (4.58) communicated directly with the

reference (4.59). Using the following control law

u1 = kmxm + krr(t)
x − θ⊤ϕ, (4.60)

where km ∈ Rn and kr ∈ Rn are the result of the adaptive laws

k̇⊤
m = −sgn (kr

∗) γ b⊤
mP (x1 − xm)x

⊤
1 , (4.61)

k̇r = −sgn (kr
∗) γ b⊤

mP (x1 − xm) r(t)
x, (4.62)

with the adaptive gain γ > 0 and P ∈ Rn×n the solution of the linear Lyapunov equation

PAm +A⊤
mP = −Q, Q ≻ 0. (4.63)
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The auxiliary control parameter θ⊤ϕ allows suppression of uncertainty parameters with

θ ∈ Rn×p defined as

θ̇ = −γ
(
ϕ (x1 − xm)

⊤Pb1 + σθ
)
, (4.64)

where ϕ : Rn → Rp is a known bounded basis function and σ is an adaptive gain. By

synthesizing the information through the controller and the adaptive laws, it is possible to

achieve synchronization with the reference model.

Proof: It follows by [66].

On the other hand, the proposed control methodology is defined in the following proposi-

tion for drones that are not directly communicated with the reference but have a physical

interconnection.

Proposition 2: Consider a second agent x2 with dynamics (4.58) interconnected and com-

municated with the drone x1, using the following control law

u2 = k⊤
m21x1 + k⊤

m2e21 + kr21u1 + k21x1 − θ⊤
2 ϕ2, (4.65)

with e21 = (x2 − x1) and the adaptive laws

k̇⊤
m21 = −sgn (k∗

r2) γ b⊤
mPe21x

⊤
2 , (4.66)

k̇⊤
m2 = −sgn (k∗

r2) γ b⊤
mPe21e

⊤
21, (4.67)

k̇r21 = −sgn (k∗
r2) γ b⊤

mPe21u1, (4.68)

k̇⊤
21 = −sgn(k∗

r2)γ b⊤
mPe21x

⊤
1 , (4.69)

θ̇2 = −γ
(
ϕe⊤21Pb1 + σθ

)
. (4.70)

Then, the drone is synchronized with the reference model.

Proof: To validate the synchronization of a drone not communicated to the reference model,

an analysis is done using Lyapunov’s theory. The following Lyapunov function is defined

V21 = e⊤21Pe21 + tr

(
k̃⊤
m21k̃m21

γ|k∗
r2|

)
+ tr

(
k̃⊤
m2k̃m2

γ|k∗
r2|

)
(4.71)

+ tr

(
k̃⊤
21k̃21

γ|k∗
r2|

)
+

k̃2
r21

γ|k∗
r2|

+ tr
(
θ̃
⊤
2 γ

−1θ̃2

)
, (4.72)

where k̃m21 = km21−k∗
m21; k̃m2 = km2−k∗

m2; k̃21 = k21−k∗
21; k̃r21 = kr21−k∗

r21; θ̃2 = θ2−θ∗
2.
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Extending the dynamics of the error e21, the equation (4.72) is derived obtaining

V̇21 = e⊤21
(
PAm +A⊤

mP
)
e21 (4.73)

+ 2e⊤21Pb2

(
k̃⊤
m21x1 + k̃⊤

m2e21 + k̃⊤
r21u1 + k̃⊤

21x1 − θ̃
⊤
2 ϕ2

)
(4.74)

+ 2tr

(
k̃⊤
21γ

−1 ˙̃k21

|k∗
r2|

)
+ 2tr

(
k̃⊤
m2γ

−1 ˙̃km2

|k∗
r2|

)
(4.75)

+ 2
k̃⊤
r21γ

−1 ˙̃kr21

|k∗
r2|

− 2tr
(
θ̃
⊤
2 ϕ2[e

⊤
21P− vϕ⊤

2 θ2b
⊤
2 PA

−1
m ]b2

)
, (4.76)

and with mathematical reduction

V̇21 = −e⊤21Qe21 + 2
(
sgn (k∗

r2)b
⊤
mPe21x

⊤
1 + γ−1k̃⊤

m21

) k̃⊤
m21

|k∗
r2|

(4.77)

+ 2
(
sgn (k∗

r2)b
⊤
mPe21e

⊤
21 + γ−1k̃⊤

m2

) k̃⊤
m2

|k∗
r2|

(4.78)

+ 2
(
sgn (k∗

r2)b
⊤
mPe21u1 + γ−1k̃⊤

r21

) k̃⊤
r21

|k∗
r2|

(4.79)

+ 2
(
sgn (k∗

r2)b
⊤
mPe21u1 + γ−1k̃⊤

21

) k̃⊤
21

|k∗
r2|

(4.80)

+ 2vϕ⊤
2 θ̃2b

⊤
2 PA

−1
m b2θ̃2

⊤
ϕ2 (4.81)

+ 2vϕ⊤
2

(
θ⊤
2 ϕ2 + ϵ2

)
b⊤
2 PA

−1
m b2θ̃2

⊤
ϕ2. (4.82)

Considering b⊤
2 PA

−1
m b2 < 0 and defining the boundary parameters β1 = λmı́n(Q), β2 =

λmı́n(b2A
−⊤
m QA−1

m b2) and β3 =
∥b⊤

2 PA−1
m b2∥θ02

β2
, with θ02 = ∥θ∗

2∥ an defining the bound

∥e21∥ ≥

√
vβ2β3∥ϕ2∥2

β1
= ψ2. (4.83)

Therefore, equation (4.72) is bounded by

V̇21 ≤ −λmı́n (Q) ∥e21∥2 (4.84)

+ 2λmáx(P)∥b2∥
(
∥θ∗⊤

2 ϕ2∥+ ∥δϵ2∥
)
∥e21∥ (4.85)

− vλmin(Q)∥A−1
m b2θ

⊤
2 ϕ2∥2, (4.86)

with ∥θ∗⊤
2 ϕ2∥ = ∥supt |θ∗⊤

2 ϕ2|∥, synchronization error ∥e21∥ has as lower bound ψ2, what

leads to V̇21 ≤ 0, this guarantees the boundary of the synchronization error. ■
To generalize the solution to this control problem, the following distributed control law is

defined as

āui = āk⊤
mijxi + kmiΞij + ākrijui + ākijxj − θ⊤

i ϕi, (4.87)
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where Ξij =
∑

j∈Ni
aij(xi − xj) and ā =

∑
j∈Ni

aij. The following adaptive laws are defined

as well

k̇⊤
mij =− sgn(k∗

ri)γ b⊤
mPΞijx

⊤
i (4.88)

k̇⊤
mi =− sgn(k∗

ri)γ b⊤
mPΞijΞ

⊤
ij (4.89)

k̇rij =− sgn(k∗
ri)γ b⊤

mPΞijui (4.90)

k̇⊤
ij =− sgn(k∗

ri)γ b⊤
mPΞijx

⊤
j (4.91)

θ̇i =− γ(ϕieij)Pbi + σθi (4.92)

where γ, v and σ are positive adaptive gains.

Theorem 1. Consider a network of drones with dynamics (4.55), interconnected to each

other and unlinked from the reference model (4.59), then a synchronization is achieved using

the control law (4.87) and the adaptive laws (4.92).

Proof: To validate the boundary of the drone distributed synchronization error, we use

Lyapunov’s theory, where we define the following equation

V =
∑
i∈Ni

Ξ⊤
ijPΞij +

∑
j∈Ni

tr

[
k̃⊤
mik̃mi

γ |k∗
ri|

]
+
∑
i∈Ni

ā tr

[
k̃⊤
mijk̃mij

γ |k∗
ri|

]
(4.93)

+
∑
i∈Ni

ā tr

[
k̃⊤
ijk̃ij

γ |k∗
ri|

]
+
∑
i∈Ni

ā
k̃2
ri

γ |k∗
r|
+
∑
i∈Ni

tr(θ̃
⊤
i γ

−1θ̃i), (4.94)

derived along the dynamics of the synchronization error

ėij = Ameij + bi[k̃
⊤
ijxi + k̃⊤

mijeij + k̃⊤
rijui + k̃⊤

ijxj − θ̃
⊤
i ϕi − θ̃

⊤
j ϕj]. (4.95)

obtaining

V̇ =
∑
i∈Ni

Ξ⊤
ij(PAm +A⊤

mP)Ξij (4.96)

+ 2Ξ⊤
ijPbi

[
āk̃⊤

ijxi + k̃⊤
miāeij + āk̃rijui − θ⊤

j ϕj

]
(4.97)
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tr
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|k∗
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ā
k̃rijγ
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|k∗
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− 2
∑
i∈Ni

∑
j∈Ni

tr
(
θ̃i

⊤
ϕi[e

⊤
ijP− vϕ⊤

i θib
⊤
i PA

−1
m ]bi

)
, (4.100)
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where making mathematical reduction

V̇ = −
∑
iNi

Ξ⊤
ijQΞij +

∑
i∈Ni

2vϕ⊤
i θ̃ib

⊤
i PA

−1
m biθ̃i

⊤
ϕi (4.101)

+
∑
i∈Ni

2vϕ⊤
i

(
θ⊤
i ϕi + ϵi

)
b⊤
i PA

−1
m biθ̃i

⊤
ϕi. (4.102)

Similarly, b⊤
i PA

−1
m bi < 0 thus

2vϕ⊤
i θ̃ib

⊤
i PA

−1
m biθ̃i

⊤
ϕi = −vϕ⊤

i θ̃ib
⊤
i A

−⊤
m QA−1

m biθ̃i
⊤
ϕi. (4.103)

With the definition of the parameters, β2=λmı́n(biA
−⊤
m QA−1

m bi), β3 =
∥b⊤

i PA−1
m bi∥θ0i

β2
, θ0i =

∥θ∗
i ∥ and δϵi = sup |ϵi|, allowing to define the bound

∑
i∈Ni

∑
j∈Ni

∥eij∥ ≥

√
vβ2β3∥ϕi∥2

β1
= ψi, (4.104)

this allows defining the bound of (4.100) as

V̇ ≤ −
∑
i∈Ni

λmı́n (Q)
∑
j∈Ni

∥eij∥2 (4.105)

+ 2
∑
i∈Ni

∑
j∈Ni

λmáx(P)∥bi∥
(
∥θ∗⊤

i ϕi∥+ ∥δϵi∥
)
∥eij∥ (4.106)

−
∑
i∈Ni

vλmin(Q)∥A−1
m biθ

⊤
i ϕi∥2, (4.107)

with ∥θ∗⊤
i ϕi∥ = ∥supt |θ∗⊤

i ϕi|∥, therefore as well ∥eij∥ has as lower bound ψi, so V̇ ≤ 0, then

we can guarantee that all the synchronization errors eij are bounded. ■

Real Thrust Generated on Each Quadrotor fi

Notice that ui contains the desired force on the xw-axis f
d
xi
, in the same way, we can obtain the

desired force for the yw-axis and zw-axis as f
d
yi

and fd
zi
respectively. Lets define the desired

force vector for each quadrotor as fdi = [fd
xi
, fd

yi
, fd

zi
]⊤ ̸= 0. However, the thrust that each

quadrotor can produce is just in the zqi-axis. Thus the force generated must be fi = fdi · zqi .

Rotational Control Design τ i

The input responsible for the attitude control is τ i ∈ R3. To make the attitude error tend

to zero, the translational movement can be expressed as zdqi = fdi /
∥∥fdi ∥∥, taking fdi from the

DMRAC. Hence xd
qi
= [1 0 0]⊤, obtaining a desired attitude as, Rw,d

i =
[
yd
qi
× zdqi y

d
qi
zdqi
]
∈

SO(3), where

yd
qi
=

zdqi × xd
qi∥∥zdqi × xd
qi

∥∥ ,



58 4 Cooperative Load Transportation

and finally, defining the attitude error as

eRi
=

1

2

(
(Rw,d

i )⊤Rw
i −Rw⊤

i Rw,d
i

)∨
, (4.108)

where ∨ represents the vee− operator which is the inverse of the skew-symmetric operator

as in [55]. Angular velocity can be defined as, ωd
i = ρdix

d
qi
+ ϱdiy

d
qi
, where ρdi = −hωi

· yd
qi
and

ϱdi = hωi
· xd

qi
where

hωi
=
mv

fi
(v̇d

i − (zdqi · v̇
d
i )z

d
qi
),

thus the angular velocity error is

eωi
= ωi − ωd

i , (4.109)

thus τ i control input taking (4.109) and (4.108) is as follows

τ i =−KReRi
−Kωeωi

+ (ωi × Jiωi)

− Ji(ω̂iR
w⊤
i Rw,d

i ωd
i −Rw⊤

i Rw,dω̇),

where KR ∈ R3×3 and Kω ∈ R3×3 are positive diagonal gain matrices that guarantee the

stability of the system.



5 Simulation and Results

5.1. Exploration and Navigation

5.1.1. Reinforcement Learning

The results shown here are part of the following work [11], in which the proposed reinfor-

cement learning system is evaluated through a virtual robot simulator V-Rep in the Edu

version. This experiment is used to verify that the agent learns to navigate without colli-

ding. Besides, the performance of some of the important parameters of the proposed system

will be reviewed. The experiment is based on the start-up of a terrestrial robot with differen-

tial traction in an unknown environment. The robot used in this experiment is the virtual

model of a Pioneer 3−DX, and the unknown virtual environment is an office, considering

that in a disaster zone, robots will have to navigate through non-convex indoor spaces. The

robot simulation system used in the experiment is V-Rep (Virtual Robot Experimentation

Platform). This system allows the use of virtual robot models and the building of various

scenarios. The scenario and robot used in this experiment are shown in Figure 5.1.

Robot

The robot used in this experiment is a Pioneer 3−DX. This robot has differential traction

and three distance sensors attached. These sensors were located on the front and the other

two on the sides. The robot is shown in Figure. 5.2. The robot is controlled by setting up

the speed to the left and right wheels, and its kinematics corresponds to the model shown

in Section 2.2.1.

Scenario

The scenario is an office with a size of 10x10 meters. The scenario has sofas, meeting tables,

computers, shelves, sliding doors, walls, plants, and people. All the objects in the scenario

keep a real proportion between them and the robot and have been put as collidable and

detectable to the robot.

Experiment setup

Some important parameters are set to carry out the simulation, which is mentioned below.

The maximum robot speed maxVel is 0,5m/s. The robot has 3 distance sensors (one on
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Figure 5.1: The unknown simulation environment for the robot.

the front and two on the sides). The discretization of the sensors is of 5 levels, where the

maximum level is L4 for distances greater than 4 meters, and the minimum is L0 for distances

less than 1 meter. Since the robot has 3 sensors and the discretization of the sensors is 5

levels, according to (2.6), the number of states of the system is 125. The movements of the

robot were limited to three. Where the robot can move forward, turn left, or turn right.

Given the number of actions, the levels of discretization of the sensors, and the number of

sensors, the dimension of Q is a 125x3 matrix. The coefficients of the reward policy were

defined according to the position of the sensor, a1,3 = 50, a2 = 100, b1,3 = 5, b2 = 20, where

sensors 1 and 3 are located at robot sides and sensor 2 is on the front. The Learning rate

factors were defined as: α∞ = 0,05, αs = 1, and α50 = 8. Discount factor (γ) = 0,5, and

finally, the initial value for the exploration policy ka = 800.
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Figure 5.2: Pioneer 3-DX Robot.

Experimental results

The simulation is to make the robot navigate freely through the non-convex scenario. As the

robot interacts with the environment, the Q-leaning algorithm is executed. The algorithm

adjusts the values of the Q matrix using the acquired experience. The interaction of the

algorithm and the robot is described in four steps as follows:

Step 1 The robot takes the information from the sensors and identifies the current status.

Step 2 Based on the exploration policy, the robot decides the action to be performed and

executes it during an established time.

Step 3 The robot takes information from the sensors and identifies the new state.

Step 4 The values of the matrix Q are updated based on the reward policy, the current

state, and the old state. The states are updated, and it returns to step 2.

The execution of these 4 simple steps is called an episode. For the purpose of this experiment,

about 10,000 episodes are executed. The time elapsed through the 10.000 episodes allowed

the robot to adjust its parameters and learn to navigate without crashing. Within the robot

learning process, some important factors were obtained by observing and analyzing it, such

as the number of crashes, the path followed by the robot during the learning process, the

convergence of the Q(s, a) values, and the effect of the exploration policy will be analyzed

below.
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Path

During the learning process, the robot navigates, exploring different places in the environ-

ment. At the same time, the robot maintains a prudential distance from objects, avoiding

collisions. The path described by the robot is evidence of the exploration and obstacle skills

developed by the robot.

Figure 5.3 shows the robot navigation path through the 10,000 episodes.

Figure 5.3: Generated path by a robot over time in the learning process.

The path followed by the robot in the experiment is depicted in Fig.5.3. The blue line is the
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Figure 5.4: Robot crashes through the learning episodes.

path, and the red circles are the places where the robot crashes more frequently.

Crashes

The crash incident is defined as when the robot collides with a scene object or passes too

close to the objects or walls, as shown by Figure 5.3. The quantification of the crashes is

shown in Fig. 5.4.

Figure 5.4 shows the number of crashes divided by slices of 20 episodes through the first 500

episodes. The system does not register more crash incidents after the 230th episode. This

result could be interpreted as the robot learn to navigate without crashing, and it used the

rest of the episodes to adjust the new Q values to the optimal navigation behavior.

Q-values convergence

The learning process is given by updating Q matrix values over time. After the 230th episode,

the robot learned to avoid obstacles. However, the robot continued its process of learning

and searching for the best actions. The values of the Q matrix reached a stable state where

the updates do not generate major changes. As shown in Figure 5.5.

Figure 5.5 shows that after episode 700, the Q(s = 120) values remain practically constant.

This means that the system converged, and the robot found the best group of actions to

navigate and avoid obstacles. The blue line represents Q(s = 120, a = 1), orange line is
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Figure 5.5: Q values evolution through the learning process.
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Figure 5.6: Explore and exploit policy through the learning process.

Q(s = 120, a = 2), and yellow line is Q(s = 120, a = 3).

Exploration Policy

This policy allows the robot to alternate between two types of behaviors (explore or exploit).

(2.11) shows how the selection of the action that will carry out the behavior selection is made.

During the experiment, the robot used the (2.11) to choose the actions, allowing exploring

or exploiting. Figure 5.6 shows the three possible selection values for the state’s actions.

As described above, the selection values decrease in time, allowing alternating actions. Figure

5.6 shows how the selection values around episode 50 alternate. This values variation allows

the system to alternate the action selection and execute an explore behavior. In contrast,

around episode 720, the values remain constant, always making the same action selection.

This generates an exploit behavior and indicates that the system converged and the robot

found the optimal action.
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5.1.2. Voronoi Tessellation

To verify algorithm functioning, different simulations are performed. In all the figures, the

red filled dots correspond to the robots, the red non-filled dots correspond to the markers of

the interested robot (in a general view, there is no interest robot), the green dots correspond

to the target position of each robot in each iteration, and the blue non-filled dots correspond

to the markers of the non-interest robots. Regarding to the background colors employed,

there are two complementary views of the situation.

The first one uses white color for the known clear areas, black for the obstacles, and gray

for the unknown areas, and the second one uses different colors to identify to which robot is

assigned each area (light red for robot 1, light blue for the robot 2, light green for the robot 3,

cyan for robot 4 and, light yellow for robot 5) and pink for areas that have been unassigned

because there is a marker. Note that the perspective of unconnected robots may be very

different if they are not connected, but when they are, the information sharing increases the

similarity but the markers assignation.

Figure 5.7: Global Map sequence, Gotten by the 5 robots.

In Fig. 5.7, it is possible to observe that each of the 5 robots was randomly deployed within

the mission environment; each agent starts navigating through the environment looking for

their own frontier, realizing a local exploration. Also, as time passes, the number of markers
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increases as expected, preventing the robots from exploring areas that were already explored

even if they do not know them yet. In this simulation, the end condition is when at least

one of the robots determines that the entire map has been explored.

Considering that this determination can be made considering that the unknown area is co-

vered by markers, even if a robot does not yet know the entire area, it can notice when the

exploration process has ended. This approach was taken since, in this particular case, it is

not important that all the robots know the entire environment. However, if this was required,

then it would be enough to establish the full connectivity of the network to guarantee that

condition, so setting and tracking a meeting point previously known by the robots may be

a possible option.

Figure 5.8: Exploration Sequence - Robot 1.

On the other hand, in Figure 5.8, Figure. 5.10, Figure. 5.12, Figure. 5.14, and Figure. 5.16,

all the robots’ individual exploration sequences can be appreciated. It is worth highlighting

that, as mentioned earlier, not all the robots know the entire map at the end of the mission.

However, it is possible to note that the robots communicating with others during their

exploration have more complete versions of the map. Regarding the markers deployment

and sense, it is possible to note that the robots never approach the markers of other robots

(presented as blue non-filled dots) as expected and that the good markers of each robot also

serve as indicators of the path covered by a single robot.
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Figure 5.9: Voronoi Cells Evolution - Robot 1.
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Figure 5.10: Exploration Sequence - Robot 2.

Figure 5.14: Exploration Sequence - Robot 4.

Additionally, in Figures 5.9, 5.11, 5.13, 5.15, and 5.17, we present the evolution in time of

the areas owned by each one of the robots in the mission. Notably, in those figures, the

communication (or its absence) between robots is evidenced when a robot does not have any
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Figure 5.11: Voronoi Cells Evolution - Robot 2.

communication link. It considers the whole map as its exploration zone, excluding the areas

covered by markers. An interesting fact to note is that as time passes, the markers number

increases and the robots lose interest in many areas of the map and focus on exploring their

local environment.
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Figure 5.12: Exploration Sequence - Robot 3.

Figure 5.17: Voronoi Cells Evolution - Robot 5.
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Figure 5.13: Voronoi Cells Evolution - Robot 3.

5.2. Victim Detection Algorithm

5.2.1. Swarm Navigation

To perform experiments for swarm navigation, sub-swarm generation, and victim detection,

the multi-agent model previously explained was implemented using Matlab and V-Rep. The

Matlab implementation evaluated the proposed mathematical model in different scenarios

and behavioral cases as previously named. V-Rep was used to perform simulations of the

proposed swarm behavior model over 3D environments with a virtual model of real robots

like Drones. The principal objective of the V-Rep simulations is to validate the proposed

system using a more realistic environment, as shown in Figure 5.18.

Six different experiments were developed to verify the proposed model in several naviga-

tions, sub-swarm generation, and victim detection situations. Every experiment is shown

in both simulation environments, as named previously (Matlab and V-Rep). Both types of

simulations were performed using 23 agents or Drones, respectively. According to the case,

the trace left by the agent is shown as a solid line behind every agent or Drone. Those lines

show the path every swarm robot follows and depict the collective behavior generated by the

swarm computational model. In Matlab simulations, the green circles represent the initial

locations of the swarm’s agents, the red-filled circle is the agent’s current position, and the

empty red circles are a sample location in the agent path through the simulation time. Next,

every experiment is explained in detail, and the results are analyzed.



5.2 Victim Detection Algorithm 73

Figure 5.15: Voronoi Cells Evolution - Robot 4.

Obstacle avoidance:

The first version of this experiment is performed using 23 agents, and two cases of single

obstacle avoidance are performed. The first case is a small obstacle, as Figure 5.19 shows.

This part of the experiment depicts how the swarm goes around the obstacle to avoid it. In

the V-Rep simulation, the small obstacle is represented by a bunch of trees. This simulation

shows how the obstacle is avoided by the swarm’s drones flying around the trees. This is

possible because the obstacle is relatively small, and the agents can tolerate the obstacle

between the attraction forces. The second version uses a big obstacle, as depicted in Figure

5.20. In the second case, the agents avoid the obstacle by taking a side path. The big obstacle

is represented by a building in V-Rep-simulation, where the swarm of drones navigates,

describing a side path to the building. This avoiding obstacle strategy occurs because there

is insufficient space between the attraction forces to allow broad obstacles to stay between

the agents.

Multiple Obstacles:

This part of the experiment depicts how the swarm goes around several obstacles to avoid

them. This is possible because the obstacles are relatively small, and the agents can tolerate

obstacles between the attraction forces, as depicted by Figure 5.21. This case uses nine

obstacles distributed throughout the area between the start and goal points. For the virtual
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Figure 5.16: Exploration Sequence - Robot 5.

environment, obstacles are represented by nine trees distributed along the search area. It

forces the swarm to navigate through obstacles while avoiding them and moving toward the

goal point. Figure 5.21 shows the agents navigating and exploring the zone. At the same

time, the path described by every agent is drawn, depicting the explored area.

Victim Localization:

This test uses a flat terrain to show how the swarm localizes victims. This process is ac-

complished with the use of the sub-swarm generation process. Once an agent has localized a

victim, it stops near the potential victim. At the same time, the swarm stops because of the

attraction force between the agents. At that moment, the ”Sub-Swarm Generation”process

detaches the agents that found victims. The detached agents create a new swarm surrounding

the victims. The original swarm restarts its movement toward the target point and leaves

behind the swarm agents that are in charge of the victims. Figure 5.22 shows both simulation

styles, where the agents stop near the victims and surround them while the swarm leaves

them behind.

Navigation and Victim Localization:

This is a complete case where the swarm navigates through an area full of obstacles and some

places with potential victims. The experiment uses 23 agents and six victims distributed in
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Figure 5.18: Simulation in a realistic environment and robot platforms using V-Rep.

5 victim places, given there are two victims in the same place as shown by Figure 5.23. This

case depicts how the swarm covered the area navigating through obstacles and localizing

potential victims simultaneously. The simulation shows how the proposed model generates

sub-swarms with more drones in places with more victims or where the probability of finding

victims is greater. This case is represented in the virtual environment simulation, where there

is a place with two victims, and the model assigns a sub-swarm with six drones. This victim’s

place has more assigned drones than the other places.

Convergence analysis of the distributed estimation consensus:

To perform a convergence analysis, it is worth mentioning that the estimation algorithm was

carried out in a computer with the following specs: 7-th generation core-i7 microprocessor,

32 GB installed memory (RAM), and NVIDIA GEFORCE 940MX. Several simulations

were performed to know the algorithm performance under different parameter values. The

principal parameter considered is the number of agents able to take a measurement, which

in this case varies from 3 to 10. Additionally, in the interest of proving the robustness of

the estimation algorithm, the measurement values are settled randomly. In this way, the

algorithm’s convergence depending on the number of agents is shown in figure 5.24. It is

appreciable how the convergence is affected by the number of agents. The more agents give

measurements, the more time the algorithm converges.

As mentioned, several simulation scenarios were performed to know how the variation of

parameters can affect the algorithm convergence. In fact, 30 simulations were carried out

for each variation in the number of agents (3, 5, 7, and 10). The results are summarized
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(a) Small-obstacle avoidance in Matlab. (b) Small-obstacle avoidance in a virtual environ-

ment.

Figure 5.19: Simulation of robots avoiding small obstacles.
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(a) Large-obstacle avoidance in Matlab. (b) Large-obstacle avoidance in a virtual environ-

ment.

Figure 5.20: Simulation of robots avoiding large obstacles.

in Table 5.1, where it is appreciable that increasing the number of agents also increases

the iterations number to converge as the convergence time does. Considering this, the mean

value µ and standard deviation σ for each case was calculated. In which the largest number of

experiments converge between the mean value and the standard deviation, this corresponds

to approximately 68 percent of the experiments converging within the interval [µ−σ, µ+σ].
The fact that the standard deviation is not large numbers shows that the algorithm is robust

under parameter changes.

Table 5.1: Convergence data depending on the number of agents.
Agents Number Average Convergence Iteration Standard Deviation Average Convergence Time

3 176.6 8.3 90.6(mS)

5 404.9 22.4 103.9(mS)

7 602.6 39.4 144.5(mS)

10 1162.4 102.3 226.6(mS)
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(a) Multi-obstacle avoidance in Matlab. (b) Multi-obstacle avoidance in a virtual environ-

ment.

Figure 5.21: Simulation of robots avoiding multi-obstacle scenario.
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(a) Victim localization in Matlab. (b) Victim localization in a virtual environment.

Figure 5.22: Victim localization in convex space.

Effective Coverage Area

An important parameter that should be considered is the effective coverage area. This para-

meter is critical because developed tasks are related to the search and localization of human

beings in a disaster zone. The idea of swarm drone exploration is supported by the aim to

inspect every tiny space in the disaster zone at least once by at least one drone. The most

insignificant failure in the exploration can be translated into the loss of human life, so it is

preferable that more than one drone inspect the same area within the disaster zone. Gene-

rating in this way more robustness to the task of search and localization. This search and

rescue approach greatly emphasizes using a drone swarm, which seeks to increase the proba-

bility of finding victims. The effective coverage area is defined as a corridor through which

the swarm travels. This corridor is as long as the area to explore, and the width depends

on the number of drones since the width of the area depends on the number of drones that

are located across the width of the swarm. The width of the coverage area is directly related

to factors such as the number of drones, comfortable distance between drones (d), and the

radius of sensors coverage (r) used to perform the inspection and search tasks. To analyze
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(a) Navigation and victim localization in Matlab. (b) Navigation and victim localization in a virtual

environment.

Figure 5.23: Navigation and victims localization in an environment with the presence of

obstacles.

the exploration degree of the covered zone, several experiments were carried out in which

the parameter r was varied about d as shown in table 5.2.

The experiment’s aim is the percentage calculation of the unexplored and explored area by

at least one, two, three, or more drones. Figure 5.25 shows the simulation of the experiment

and the representation of different degrees of exploration for the areas covered by the drone

in its trajectory toward the endpoint.

Figure 5.26 shows different experimental cases where several gray color levels depict the

covered area by the swarm through the path to the endpoint. Figure 5.26 shows how explored

area changes according to the relationship between r and d. In Figure 5.26 from (a) to (d) is

showed the covered area using a swarm of 23 agents. The covered area increases according

to r value approaches d. Figure 5.26 (e) and (f) are shown how the explored area is affected

by the swarm agent number. The covered area percentage in relation to the values of r and

d is depicted by Table 5.2. There are described seven experiments where the rate between r

and d is studied from r = d/15 to r = d. From Table5.2, it is concluded that explored area

increases significantly through the increase of the r factor. The equilibrium point is reached

when r = d/4 because at this point, where at least two drones explore 100% and 80% of

the entire area.
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(b) Measurements convergence with 5 agents.
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(c) Measurements convergence with 7 agents.
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(d) Measurements convergence with 10 agents.

Figure 5.24: Convergence analysis with variation in the number of agents and random initial

values.

Table 5.2: Percentage of the covered area according to different rate values between r and

d.

r Uncovered Covered +2 Drones +3 Drones +4 Drones +5 Drones

d/15 43.10% 56.89% 9.55% 0.0014% 0.0% 0.0%

d/8 13.51% 86.48% 42.01% 4.35% 0.0069% 0.0%

d/5 1.73% 98.26% 73.28% 24.57% 3.06% 0.0%

d/4 0.0% 100% 87.77% 54.55% 20.53% 0.20%

d/3 0.0% 100% 94.34% 80.14% 52.72% 14.56%

d/2 0.0% 100% 98.17% 94.04% 85.42% 71.26%

d 0.0% 100% 100% 100% 97.57% 96.11%

Table 5.3 shows how the areas explored by more than one drone increase as the number

of drones increases. This result is quite logical, considering that increasing the number of

drones also increases the number of rows in the swarm. In this case, more drones will follow

roads similar to the path taken by the drones of the first rows, and they will explore similar

disaster zones. The relation between r and d was selected as r = d/4 to ensure the covered

area is close to 100% and focus the results on the percentage of areas explored by more than

one drone.
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Figure 5.25: Formation control applied to the three agents sub-swarm generated by locali-

zation of a victim.

Table 5.3: Percentage of the covered area according to different swarm sizes and r = d/4.

Drone Number Uncovered Covered +2 Drones +3 Drones +4 Drones +5 Drones

7 0.0% 100% 93.14% 16.63% 0.01% 0.0%

12 1.02% 98.87% 83.88% 29.8% 5.03% 0.0%

17 0.0% 100% 89.10% 48.48% 11.87% 0.0%

23 0.0% 100% 87.77% 54.55% 20.53% 0.20%

5.2.2. Sub-Swarm Formation Control

This experiment shows two cases of possible victims with different detection probabilities.

The first case presents two victims in an open field with a high probability of being detected

by the drone sensors, as shown in Figure 5.27. Given that victim detection is easy in this

case, the swarm is made up of 6 agents located in the vicinity of the victims. After Sub-

swarm creation, the consensus and control formation algorithm is performed as shown in

Figure 5.27. As explained previously, the consensus looks to approach every drone to the

victim, reducing the uncertainty of the sensing factor over the possible victim. Additionally,

the formation control redistributes the drones in a circle around the victim to better assist

the victims and balance the sensor measurements. The second case presents a victim with

the body partially covered and a sub-swarm of three agents. Given the difficulty of victim

detection, the number of agents for this case is lower than in the first case. Once the victim

is detected, the sub-swarm executes the consensus and control formation processes, as shown

by Figure 5.28.
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(a) Covered Area by 32 Drones with r = d/15 (b) Covered Area by 32 Drones with r = d/7.

(c) Covered Area by 32 Drones with r = d/4. (d) Covered Area by 32 Drones with r = d/2

(e) Covered Area by 7 Drones with r = d/4. (f) Covered Area by 15 Drones with r = d/4.

Figure 5.26: The covered area by a different number of drones with several relation values

between r and d.

5.2.3. Victim Detection Using Neuronal Networks

To perform experiments where visual victim detection algorithms can be evaluated was per-

formed a virtual scenario with trees, human victims, fire, and Quadrotors in uneven terrain.

The scenario was developed using a combination of Matlab, Python, and V-Rep. Matlab

was used to implement the mathematical model for navigation and consensus algorithms.

Python performed the CNN model and was responsible for detecting human victims. Fi-

nally, V-Rep is a Virtual Robotics Environment used to develop a virtual disaster scenario

where Quadrotor models can be used in SAR operations. The principal reason to perform

these experiments in a virtual environment simulation is because of the difficulty of having

a real disaster scenario where it was possible to achieve this kind of experiment, as depicted

previously by [33].

Each Quadrotor has cameras pointing to the front and the other to the floor as a sensing sys-

tem whose principal aim is human victim detection. The image processing task is performed

by a CNN in charge of image analysis, focusing on identifying potential human victims. The

topology of CNN consists of 3 convolutional neural layers and two fully connected layers.

The convolutional layers have 256 filters, each one and 5 × 5, 3 × 3, and 3 × 3 as kernel

sizes, respectively. The fully connected layers have 512 and 256 neurons, respectively, with

a Linear Rectifier as the activation function. Finally, the output layer has two neurons in

charge of providing the certainty level related to the human victim detection or absence of
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Figure 5.27: Formation control applied to 6 agents sub-swarm generated by localization of

a victim.

it. As depicted in figure 5.29, three cases of victim detection are shown with their respective

Victim Detection Levels (VDL).

Once the Quadrotors are determined as a part of the sub-swarm, they all form a consensus

where everyone navigates through the area near the potential victim and covers the more

extensive possible area around it. While formation consensus is performed, the victim de-

tection certainty level changes according to the visibility and proximity of the Quadrotor to

the potential victim, as depicted by figure 5.29.

Figure 5.30 shows the path followed by six Quadrotors that conform to sub-swarm and the

victim detection level of three of these Quadrotors during the formation consensus.

As shown by figure 5.30, the measurements provided by different quadrotors about victims’

existence in the immediate area can be confusing and dissimilar. For instance, figure 5.30

depicts three different quadrotor cases where D1 is a Quadrotor that starts its navigation

with a total lack of evidence of victim detection. However, while the formation consensus is

performed, victim detection improves considerably. D4 depicts a low and constant detection

level all the time. Finally, D5 is a Quadrotor that loses visual contact with victims but, over

time, recovers some certain detection level.

This possible lack of agreement between all the sub-swarm Quadrotors demonstrates the

need for an estimation consensus to have a concerted victim detection level.
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Figure 5.28: Formation control applied to the three agents sub-swarm generated by locali-

zation of a victim.

5.2.4. Estimation Consensus

As depicted in a previous section, the single measurement provided by a single quadrotor has

a considerable discrepancy compared with the rest of the sub-swarm agents. This discrepancy

is logical if it is considered that a disaster place is a chaotic environment where a measurement

can be affected by fire, debris, interference, and landslides. Following the experiment, the

estimation consensus finds an agreement point among different sub-swarm agents.

Figure 5.31 shows the victim detection value of every Quadrotor and the estimation con-

sensus of those values. Figure 5.31 depicts a massive discrepancy among victim detection

values, e.g., D1 and D2 are totally sure about the existence of a human victim, providing

a victim detection level of 94.38% and 89.4%, respectively. In contrast, D4, D5, and D6

have moderately low victim detection levels, close to 43.05%, 43.33%, and 46.95%. These

discrepancies make clear the variability of quadrotors’ sensing and the need to use consensus

estimation with the intent to determine the victim’s existence in the disaster area.

As explained previously, Figure 5.34 shows the variability of the quadrotors’ measurements
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(a) Total occlusion of the victim

(0% VDL)

(b) Partial occlusion of the victim

(50% VDL)

(c) Victim totally detected (100%

VDL)

Figure 5.29: Victim Detection.

Figure 5.30: Digraph scheme.

(red area) versus the Consensus Estimation value (red line). This Figure shows how the

consensus algorithm evaluates the different values thrown by the quadrotors, and it finds

a consensus value among the other agents to determine the final level of victim detection.

It should be taken into account that this victim detection value is achieved through partial

information based on communication between some agents and their neighbors within the

sub-swarm.

5.3. Cooperative Load Transportation

5.3.1. Geometric Control

Two simulations are carried out to demonstrate the improvements implemented, allowing

us to compare the position errors in the quadrotors. First, we contemplate the switching

dynamics but without the fourth term in (4.8), which is the geometric control developed

in [55]. This algorithm needs predefined waypoints as inputs for the geometric control that

takes the quadrotor to the desired position. Second, we perform the simulation that gathers

all the concepts mentioned in the previous section. Finally, we show the improvements in
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Figure 5.31: Consensus Estimation based on single Quadrotor victim detection.

Figure 5.32: Consensus Estimation vs Quadrotors’ sensing variability.

the position error compared to the one obtained in [55]. The algorithm can take random

initial quadrotors’ positions as long as they are physically possible. This means that robots

cannot be far from the load since they are attached to the load. This is possible by applying

the position-based passivity controller that takes the initial position of each quadrotor and

gives the first group of waypoints. Those waypoints can minimize lifting efforts satisfying

(4.4). In this particular case, the formation is a rhombus when using four quadrotors. Due to

this shape, quadrotors minimize the efforts. Once the first desired position is achieved, the

dynamics of the system change to the one that contemplates the mass in the model. In the

same way, to lift the load to the desired altitude, the control must be modified considering

this time the fourth term in (4.8) and bearing in mind that the body’s mass is changing due

to the load weight. Table 1 defines the simulation parameters needed.

To start analyzing the results, the two simulations previously mentioned are shown in a 3-D

plot in Fig. 5.35, and Figure. 5.36, where dashed lines correspond to the trajectory performed
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Figure 5.33: Drones estimation and Consensus Estimation in a fire environment.

by each quadrotor. Asterisks represent the quadrotors, and the solid dark gray lines are

the cables attached to the brown square load. As expected, regardless of the controller

implemented, both can take the load to the desired altitude. However, there are some changes,

first simulation, which does not contemplate the improvements, presents translation changes

in the x and y-axis suddenly and abruptly. On the other hand, the second simulation also

presents changes in the x and y-axis, but they are shorter and smoother. The changes in the

x and y-axis are due to the new force added when the cable is stretched to the limit, and the

load starts to influence it. Furthermore, the position error is reduced by the improvements

applied in the second simulation. It is worth mentioning that in the single quadrotor, lifting

the load, the tension can be found by summation of forces in the entire system, giving a

result

T =
ml

mq +ml

F,

the forces are all on the z-axis because the quadrotor is over the load. In contrast, in the

multi-quadrotor system, the effects of the forces depend on unit vectors µi, and also the

summation of forces changes to

T1 + T2 + T3 + T4
ml

=
F1 − T1
mq1

+
F2 − T2
mq2

+
F3 − T3
mq3

+
F4 − T4
mq4

,

this is something expected, considering that the mass dynamic depends on the summation

of all the tensions generated in each quadrotor. This new term in control shows that placing

the robots aligned with its positional opposed quadrotor improves the performance of the

task.
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Figure 5.34: Drones estimation, Consensus Estimation, and Max Consensus estimation in

a fire environment.

Table 5.4: Simulation Parameters

Parameter Value Parameter Value

rq1(0) [-0.75, 0.5, 0] rq2(0) [0.75, 0.5, 0]

rq3(0) [0.75, -0.5, 0]rq4(0) [0.75, -0.5, 0]

vq1(0) [0, 0, 0] vq2(0) [0, 0, 0]

vq3(0) [0, 0, 0] rq4(0) [0, 0, 0]

J1 I3[11.7, 11.7, 23.4] mq1 0.505

J2 I3[11.7, 11.7, 23.4] mq2 0.505

J3 I3[11.7, 11.7, 23.4] mq3 0.505

J4 I3[11.7, 11.7, 23.4] mq4 0.505

l1 1.5 l2 1.5

l3 1.5 l4 1.5

kp I3[1.58, 1.56, 1.73] tf 10

kv I3[0.79, 0.79, 0.71] α 10

kR I3[11, 11.7, 7.3] β 10

kΩ I3[1.9, 1.7, 0.29] ml 0.1

kg I3[0.1, 0.1, 0] δi I3
v(t) 0 ki 5
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Figure 5.35: Cooperative transportation: Simulation using conventional geometric control.
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Figure 5.36: Cooperative transportation: Simulation considering improvements of positio-

ning and minimization of effort.
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Figure 5.37: Cooperative transportation: Position evolution in x,y, and z using conventional

geometric control.

Figure 5.38: Cooperative transportation: Position evolution in x,y, and z considering im-

provements of positioning and minimization of effort.
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Figure 5.39: Cooperative transportation: Control Signals, using conventional geometric con-

trol.

As mentioned before, the x and y-axis are the most affected by the use of multiple robots

to lift a suspended-cable load. The reason is that the forces are not just in the z-axis since

the vectors going from quadrotors to mass µi have a point in each component. Figure 5.37

and Figure 5.38 show the evolution of each axis over time. Orange lines represent the z-axis,

the x-axis with blue, and the y-axis with green lines. In the same way, dashed lines are the

desired trajectory generated by solving the cost function, and solid lines are the evolution of

the rq1 states. As shown in the second simulation, considering the improvements is way better

than in the first simulation, where just the conventional geometric control is implemented.

Regarding the z-axis, both satisfy the task, but just the modified controller can make the

position error tend to zero. In the second simulation, quadrotors can correct the position in

x and y faster than in the first simulation. This could be thanks to the modification in the

control law as this term tries to maintain the alignment between the opposed quadrotors,

thus minimizing the efforts and adding additional force to these axes in the controller.

Finally, Figure 5.39 and Figure 5.40 show the signal control applied to quadrotor 1 in both

cases, first, without additional term in the geometric power and second with it, respectively.

The solid blue line represents the F output control, the solid green line is the first term

of vector M in the geometric control, the dashed magenta line is the second term, and the

dashed red line is the third one. As can be seen, the F signal changed in the second simulation

with some oscillations in control caused by the additional term. In the same way, vector M

presents oscillations in the second and third terms, which are the signal produced to correct

the position faster and avoid the trajectory separating in the initial lifting effort.
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Figure 5.40: Cooperative transportation: Control Signals, considering improvements of po-

sitioning and minimization of effort.

5.3.2. Adaptive Control

A simulation is carried out to evaluate the algorithm’s performance divided into two sub-

sections: the DMRAC and the entire simulation.

To accomplish the simulation the following parameters are considered: rq1(0) = [−0,75, 0,5, 0],
rq2(0) = [0,75, 0,5, 0], rq3(0) = [0,75,−0,5, 0], rq4(0) = [0,75,−0,5, 0], vqi(0) = [0, 0, 0],

Ji = I3[11,7, 11,7, 23,4], mqi = Rand[0,3 − 0,7], li = 1,5, kp = I3[1,58, 1,56, 1,73], kv =

I3[1,9, 0,79, 0,71], kR = I3[11, 11,56, 7,73], kω = I3[1,9, 1,7, 0,29], kΩ = I3[0,2, 0,2, 0], ml =

0,15, bi = Rand[0,5 − 1], k = Rand[0,5 − 1], γ = 10, Q = 100 ∗ I2, fi(xi) = 0,1sin(x2i),

ηi = 0,1sin(t), δi = 2 and all coupling vectors are initialized in zero.

DMRAC with σ-Modification

The main objective of this control is to achieve consensus in the zW axis and synchronization

in the yW and xW axis. Fig. 5.41 shows the consensus performed by the quadrotors in the

zW axis. It is distinguishable the trajectory of each quadrotor and the virtual leader. Each

quadrotor begins at a different value, and the consensus is performed to a desired altitude.

At 4.5 seconds of the simulation, the consensus is satisfactory with a small bounded error.

At the beginning of the simulation is noted that the quadrotors suffer trying to achieve the

consensus. This can be caused by the gravity force, which is not contemplated in the virtual

leader. Moreover, it is noted that the perturbation vanishes with time, having less and less

effective as time continues.

Figure 5.42 shows the robot synchronization accomplished by quadrotors in the xW axis.
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Figure 5.41: DMRAC in zW states synchronization of multiple quadrotors.

On the one hand, quadrotors 1 and 4 try to stick to the leader reference because they are

aligned in the configuration. On the other hand, quadrotors 3 and 4 make synchronization

with δi = 2. This kind of synchronization is needed in the xW and yW axis, and in contrast

to the one performed zW axis, sticking to the reference is rapidly achieved. In the case of xW
and yW axis, the F x

i and F y
i are used just for the geometric control and are not contemplated

by the quadrotor model.

Full Simulation

To start analyzing the results, one simulation is shown in a 3-D plot and a top view plot, Fig.

5.43 and Figure 5.44, respectively, where dashed lines correspond to the trajectory performed

by each quadrotor. Asterisks represent the quadrotors, and the solid dark gray lines are the

cables attached to the brown square load. Figure 5.43 depicts the top view of the simulation

to show the behavior of quadrotors in the xW and yW axis, which is interesting since it is

noticeable how quadrotors synchronize trajectories with the quadrotor that is on the other

side of the load right in the opposite place.

Finally, Fig. 5.44 shows the entire simulation in xW , yW , and zW axis. As can be seen,

quadrotors maintain shape and take the load perfectly. Regardless of the lack of information

from other quadrotors, behavior synchronization is achieved by the virtual leader. Even when

each quadrotor has input and model time-varying uncertainties, the control can overcome
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Figure 5.42: States synchronization in xW considering fixed δ’s.

this and reach the desired behavior.

5.3.3. Bilevel Adaptive Control

To show the performance of the algorithm, we perform a numerical simulation in Matlab,

and then in CoppeliaSim robotics simulator, the parameters used in both experiments are

Ji = I3[11,7, 11,7, 23,4]10
−3kg ·m2, I3 is the identity matrix, m1 = 0,505 kg, m2 = 0,405 kg,

m3 = 0,605 kg, m4 = 0,5 kg, ml = 0,5 kg, li = 1,5 m, the proportional control matrices are

KR = diag[0,79, 0,79, 0,71], Kω = diag[0,19, 0,17, 0,29].

First, let us remember the type of graph we are using in this experiment, which is multi-

layer. We use a directed graph to work on the communication system between robots and a

non-directed, fully connected graph to capture the physical interaction from the cables. On

the one hand, it can be seen in Fig. 5.45 the dashed blue and directed arrows represent how

we establish the communication on how robots receive the trajectory reference. Quadrotor

1 is the only one with direct communication to the trajectory reference. Quadrotor 2 and

quadrotor 3 receive the reference from quadrotor 1. Finally, quadrotor 4 gets the reference

from quadrotor 2 and quadrotor 3.

On the other hand, solid yellow lines represent the edges that capture the physical interaction

between the cables that are attached to the same point in the load. Notice that the movement

from one of the quadrotors will affect the dynamics of the others since they are directly
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Figure 5.43: Full simulation top view.

connected by stretched cables. Even when they are following a trajectory due to delays or

disturbances, the physical connection will directly affect the performance of each of the flight

dynamics, which we handle by the adaptive distributed algorithm described in Section 4.4.4.

In Figure 5.46, it can be seen a constant reference trajectory in the x− axis. It is noticeable
that the quadrotors exhibit a trajectory perturbation at the beginning. This is caused by the

random initial location of the quadrotors, then they start to tighten the cable and generate a

force to other quadrotors in the opposite direction. Once the algorithm adapts to the external

perturbations, it converges to the reference. Notice that there are two clusters of signals, blue

and red solid lines, which are the velocity and position of the quadrotors, respectively. It

is worth mentioning that despite reaching the same position, we avoid collisions for those

aligned in y − axis. We achieve this by setting a displacement in the reference signal rdb to

each quadrotor rdi .

To demonstrate that the algorithm can work with time-varying reference trajectories, we

perform a second simulation that works with a sinusoidal reference trajectory shown in Figure

5.47. Here, even when the reference trajectory is time-varying, the system is not disturbed

when the reference changes its tendency. Disturbances to following the trajectory are just
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Figure 5.44: Cooperative transportation using multiple quadrotors simulation.

given in the beginning. Once the system stabilizes, the rest of the simulation quadrotors can

follow the trajectory and remain in a bounded error.

5.4. Hybrid Systems

Here we consider hybrid systems, as introduced in Chapter 2.4, where we have the interaction

and abstraction of the problem by considering continuous dynamics and discrete dynamics.

In the case of exploration and mapping, we can consider different states that track the pro-

gress of the satisfaction of a mission. Then, continuous dynamics is the motion that moves

robots from their current location to their goals, and discrete dynamics defines whether the

robot is tasked to visit a specific region. In the case of exploration and mapping, we can

consider different states that track the progress of the satisfaction of a mission. Then, conti-

nuous dynamics is the motion that moves robots from their current location to their goals,

and discrete dynamics defines whether the robot is tasked to visit a specific region.

For navigation and victim, detection can easily consider two different states, from navigating

the environment to stopping and circulating the region whenever a victim is detected. All
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Figure 5.45: Multi-layer graph: Communication graph, and physical interaction graph.

movements in the environment are considered continuous dynamics. Note that the naviga-

tion also has inner states for going to the goal region and avoiding collision with other robots

and obstacles.

When considering the quadrotors attached to a load using cables, notice that we can abstract

the problem in three different states. First, when the distance between the quadrotors and

the load is less than the length of the cables, here we can consider that quadrotors move

freely in the environment. Second, when the distance between the quadrotors and the load

is equal to the length of the cable here, quadrotors start to experience an external force that

can lead to system instabilities. Lastly, quadrotors carry the load and must compensate for

the force exerted by the load’s weight and external disturbances, as other quadrotor forces

and wind.

Finally, a Finite State Automaton could capture the whole mission where states are the

exploration and mapping, navigation and victim detection, and load transportation allowing

for high-level planning, coordinating when and where to satisfy every task, and tracking the

progress of satisfaction of the mission.

5.4.1. High-Level Planning

In this section, we briefly describe the main concepts from automata theory and temporal

logic, which are crucial for understanding the problem formulation and solution. We first

describe the basics of Linear Temporal Logic (LTL) which helps describe logic specifications

over an environment.
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Figure 5.46: Constant trajectory reference for the load and response of the quadrotors in

the x− axis.

Definition 3 (LTL) An LTL formula ϕ over a set of properties is defined using standard

Boolean operators: ¬ (negation), ∧ (conjunction), ∨ (disjunction), and temporal operators,

⃝ (next), U (until), ♢ (eventually), and □ (always). The semantics of LTL formulae over

P is given concerning infinite words over 2AP , where AP are atomic propositions.

An LTL formulation is widely used to describe desired logical specifications for a system to

satisfy. For instance, let us assume there is an environment with selected regions R1, R2, and

an obstacle O1, if there would be the necessity to describe or impose a particular behavior

such as ”visit R1 or R2 infinitely many times while avoiding collisions with obstacles” this

could be encoded in an LTL form as □♢((R1∨R2)∧¬O1). For the semantics of LTL, please

refer to [70].

When capturing the motion capability of a robot in the environment or configuration space,

we make use of DTS (Deterministic Transition System), which is defined as follows

Definition 4 (Transition System) A weighted transition system (TS) is a tuple T =

(X, xT0 , δT , AP, h, wT ), where:

X is a finite set of states;

xT0 ∈ X is the initial state;

δT ⊆ X ×X is a set of transitions;

AP is a set of properties (atomic propositions);

h : X → 2AP is a labeling function;
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Figure 5.47: Sinusoidal trajectory reference for the load and response of the quadrotors in

the x− axis.

wT : δT → Z>0 is a weight function.

We use the definition of a transition as stated in [6] as (x, x′) ∈ △ by x → x′. Also, a

trajectory is an infinite sequence of states that belongs to the transition system x = x0x1...

such that xk → xk+1, ∀ k ≥ 0.

Even though the LTL formulation can capture the logic desired for the system, it is not easy

to mix it with the transition system that describes the motion in the configuration space to

get a solution. One of the better solutions comes from translating the LTL formulation into

an automaton. Different automatons can be used, but for this project, the one that better

encapsulates the LTL specification is the Büchi Automaton, which is defined as follows

Definition 5 (Büchi Automaton) A (non-deterministic) Büchi Automaton is a tuple B =

(SB, SB′ ,Σ, δ, FB) where:

SB is a finite set of states;

SB′ ⊆ SB is the set of initial states;

Σ is the alphabet of inputs;

δ : SB × Σ→ 2SB is the transition function;

FB ⊆ SB is the set of final or accepting states.

In the same way as in the transition system, a transition (s, s′) ∈ δ(s, σ) is defined as s→B s
′.

A trajectory of the Buc̈hi automaton (s0s1...) is generated by an infinite sequence of symbols
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(σ0σ1...) if (s0 ∈ SB0 and sk →B sk+1 ∀ k ≥ 0. An infinite input sequence over Σ is said to be

accepted by a Buc̈hi automaton B if it generates at least one trajectory of B that intersects

the set FB infinitely many times.

The way to ensure that an agent satisfies an LTL specification while considering the transition

system, which describes the way the robot can move in the environment, is through a product

automaton between the transition system T and the Büchi Automaton B which is defined

below

Definition 6 (Product Automaton) Given a transition system T = (X, xT0 , δT , AP, h, wT )

and a Büchi automaton B = (SB, s
B0 , 2AP , δB, FB), the product automaton (PA) P = T × B

is the tuple P = (SP , SP0 , δP , ωP , FP), where

SP0 = {xo} × SB is the set of initial states;

SP ⊆ X × SB is a set of states which are reachable from some initial state;

δP ⊆ SP × SP is the set of transitions, defined by ((x, s), (x′, s′)) ∈ δP iff x→T x′ and

s→B s
′;

ωP = δB → R+ is inherited from T such that ωP((x, s)(x
′, s′)) = ω((x, x′));

FP = (X × FB) ∩ SP is the set of accepting states of P.

Finally, the solution comes from using algorithms such as Dijkstra’s algorithm to find an

optimal path in the product automaton and projecting it back to the environment. Such

a solution can be computed using off-the-shelf tools such as Optimal Multi-Agent Planner

(LOMAP) [50].



6 Conclusions and Future Work

In this thesis, we have explored the application of bioinspired approaches to enhance the ca-

pabilities of multirobot systems in search and rescue operations. Specifically, we investigated

the bioinspired behavior of ants and leveraged their exploration, navigation, load transpor-

tation, and coordination strategies to develop advanced algorithms for various aspects of

search and rescue missions. The thesis comprised four chapters addressing a different aspect

of bioinspired multirobot systems. The first chapter focused on exploration and mapping

using multirobot systems.

We employed potential functions, Voronoi tessellation, and Q-learning to enable efficient

exploration and mapping of the search area. Potential functions effectively guided the ro-

bots through the environment while avoiding obstacles and maximizing coverage. Voronoi

tessellation facilitated partitioning the search area among the robots, enabling them to explo-

re different regions simultaneously. Finally, Q-learning, a reinforcement learning technique,

allowed the robots to learn and adapt their exploration strategies based on the feedback recei-

ved during the search process. Through these approaches, we achieved improved exploration

efficiency and accurate mapping of the environment.

The second chapter delved into swarm navigation and victim detection. We utilized potential

functions for swarm navigation, enabling the robots to move in a coordinated manner while

avoiding collisions and efficiently exploring the search area. Neural networks were employed

for victim detection, leveraging their ability to recognize and classify victims based on visual

cues and sensor data. Furthermore, we implemented a consensus approach to generate distri-

buted consensus among the swarm robots regarding the presence of a victim. This approach

allowed for efficient victim detection and improved decision-making within the swarm. Com-

bining these techniques, we developed a robust and effective system for swarm navigation

and victim detection in search and rescue scenarios.

In the third chapter, we focused on cooperative load transportation using quadrotors. We

employed geometric and adaptive control techniques to enable the quadrotors to carry and

transport heavy loads attached to cables. Geometric control precisely controlled the qua-

drotors’ positions and orientations during load transportation, ensuring stability and dis-

tribution. Adaptive control techniques were utilized to handle uncertainties and changes in

the load characteristics, enhancing the robustness and adaptability of the system. Through

these approaches, we developed a cooperative load transportation system that expanded the

capabilities of quadrotors in handling heavy payloads, thus contributing to the effectiveness

of search and rescue operations.
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Lastly, in the fourth chapter, we showed case studies for every previous chapter and intro-

duced automata theory for high-level planning of multirobot systems in search and rescue

operations. Automata theory allowed for the specification and synthesis of complex beha-

viors and coordination strategies within the multirobot system. By formalizing the desired

high-level behaviors and constraints, we generated plans and strategies that ensured efficient

coordination, task allocation, and resource optimization within the system.

Overall, this thesis demonstrated the potential of bioinspired algorithms and strategies for en-

hancing the capabilities of multirobot systems in search and rescue operations. Furthermore,

the findings and insights gained from this work have the potential to significantly enhance

the efficiency, adaptability, and coordination of multirobot systems in critical search and

rescue operations.

6.1. Future Work

By continuing to build upon the foundations laid in this thesis, we can further advance the

field and contribute to developing innovative solutions for saving lives and mitigating the

impact of disasters.

Future research directions involve

Further refining and optimizing the proposed algorithms.

Conducting extensive real-world experiments.

Exploring additional bioinspired techniques to tackle the challenges in search and res-

cue missions.

We have already extended the work on this thesis in the following papers. We explored a

distributed swarm particle optimization approach presented in [67] for swarm navigation.

For quadrotors connected by a rope manipulating and transporting objects as presented in

[36], [14], [15], and [35].

For the high-level planning of algorithms using temporal logic and optimization approaches

presented in [19], [17], and [16] and a partial satisfaction approach in case the mission cannot

be fully satisfied presented in [21] and [22].
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