6 research outputs found

    Comparison of parallel implementation strategies in GPU-accelerated System-on-Chip under proton irradiation

    Get PDF
    Commercial off-the-shelf (COTS) system-on-chip (SoC) are becoming widespread in embedded systems. Many of them include a multicore central processing unit (CPU) and a high-end graphics processing unit (GPU). They combine high computational performance with low power consumption and flexible multilevel parallelism. This kind of device is also being considered for radiation environments where large amounts of data must be processed or compute-intensive applications must be executed. In this article, we compare three different strategies to perform matrix multiplication in the GPU of a Tegra TK1 SoC. Our aim is to analyze how the different use of the resources of the GPU influences not only the computational performance of the algorithm, but also its radiation sensitivity. Radiation experiments with protons were performed to compare the behavior of the three strategies. Experimental results show that most of the errors force a reboot of the platform. The number of errors is directly related with how the algorithms use the internal memories of the GPU and increases with the matrix size. It is also related with the number of transactions with the global memory, which in our experiments is not affected by the radiation. Results show that the smallest cross section is obtained with the fastest algorithm, even if it uses the cores of the GPU more intensively.This work was supported in part by the Valencian Regional Government under Grant PROMETEO/2019/109, in part by Jaume I University under Project UJIB2019-36, and in part by the Spanish Ministry of Science and Innovation under Project PID2019-106455GB-C21 and Project PID2020-113656RB-C21.Publicad

    Multi-Object Tracking System based on LiDAR and RADAR for Intelligent Vehicles applications

    Get PDF
    El presente Trabajo Fin de Grado tiene como objetivo el desarrollo de un Sistema de Detección y Multi-Object Tracking 3D basado en la fusión sensorial de LiDAR y RADAR para aplicaciones de conducción autónoma basándose en algoritmos tradicionales de Machine Learning. La implementación realizada está basada en Python, ROS y cumple requerimientos de tiempo real. En la etapa de detección de objetos se utiliza el algoritmo de segmentación del plano RANSAC, para una posterior extracción de Bounding Boxes mediante DBSCAN. Una Late Sensor Fusion mediante Intersection over Union 3D y un sistema de tracking BEV-SORT completan la arquitectura propuesta.This Final Degree Project aims to develop a 3D Multi-Object Tracking and Detection System based on the Sensor Fusion of LiDAR and RADAR for autonomous driving applications based on traditional Machine Learning algorithms. The implementation is based on Python, ROS and complies with real-time requirements. In the Object Detection stage, the RANSAC plane segmentation algorithm is used, for a subsequent extraction of Bounding Boxes using DBSCAN. A Late Sensor Fusion using Intersection over Union 3D and a BEV-SORT tracking system complete the proposed architecture.Grado en Ingeniería en Electrónica y Automática Industria

    Novel Aggregated Solutions for Robust Visual Tracking in Traffic Scenarios

    Get PDF
    This work proposes novel approaches for object tracking in challenging scenarios like severe occlusion, deteriorated vision and long range multi-object reidentification. All these solutions are only based on image sequence captured by a monocular camera and do not require additional sensors. Experiments on standard benchmarks demonstrate an improved state-of-the-art performance of these approaches. Since all the presented approaches are smartly designed, they can run at a real-time speed

    Teaching a Robot to Drive - A Skill Learning Inspired Approach

    Get PDF
    Roboter können unser Leben erleichtern, indem sie für uns unangenehme, oder sogar gefährliche Aufgaben übernehmen. Um sie effizient einsetzen zu können, sollten sie autonom, adaptiv und einfach zu instruieren sein. Traditionelle 'white-box'-Ansätze in der Robotik basieren auf dem Verständnis des Ingenieurs der unterliegenden physikalischen Struktur des gegebenen Problems. Ausgehend von diesem Verständnis kann der Ingenieur eine mögliche Lösung finden und es in dem System implementieren. Dieser Ansatz ist sehr mächtig, aber gleichwohl limitiert. Der wichtigste Nachteil ist, dass derart erstellte Systeme von vordefiniertem Wissen abhängen und deswegen jedes neue Verhalten den gleichen, teuren Entwicklungszyklus benötigt. Im Gegensatz dazu sind Menschen und einige andere Tiere nicht auf ihre angeborene Verhalten beschränkt, sondern können während ihrer Lebenszeit vielzählige weitere Fähigkeiten erwerben. Zusätzlich scheinen sie dazu kein detailliertes Wissen über den (physikalische) Ablauf einer gegebenen Aufgabe zu benötigen. Diese Eigenschaften sind auch für künstliche Systeme wünschenswert. Deswegen untersuchen wir in dieser Dissertation die Hypothese, dass Prinzipien des menschlichen Fähigkeitslernens zu alternativen Methoden für adaptive Systemkontrolle führen können. Wir untersuchen diese Hypothese anhand der Aufgabe des Autonomen Fahrens, welche ein klassiches Problem der Systemkontrolle darstellt und die Möglichkeit für vielfältige Applikationen bietet. Die genaue Aufgabe ist das Erlernen eines grundlegenden, antizipatorischen Fahrverhaltens von einem menschlichem Lehrer. Nachdem wir relevante Aspekte bezüglich des menschlichen Fähigkeitslernen aufgezeigt haben, und die Begriffe 'interne Modelle' und 'chunking' eingeführt haben, beschreiben wir die Anwendung dieser auf die gegebene Aufgabe. Wir realisieren chunking mit Hilfe einer Datenbank in welcher Beispiele menschlichen Fahreverhaltens gespeichert werden und mit Beschreibungen der visuell erfassten Strassentrajektorie verknüpft werden. Dies wird zunächst innerhalb einer Laborumgebung mit Hilfe eines Roboters verwirklicht und später, im Laufe des Europäischen DRIVSCO Projektes, auf ein echtes Auto übertragen. Wir untersuchen ausserdem das Erlernen visueller 'Vorwärtsmodelle', welche zu den internen Modellen gehören, sowie ihren Effekt auf die Kontrollperformanz beim Roboter. Das Hauptresultat dieser interdisziplinären und anwendungsorientierten Arbeit ist ein System, welches in der Lage ist als Antwort auf die visuell wahrgenommene Strassentrajektorie entsprechende Aktionspläne zu generieren, ohne das dazu metrische Informationen benötigt werden. Die vorhergesagten Aktionen in der Laborumgebung sind Lenken und Geschwindigkeit. Für das echte Auto Lenken und Beschleunigung, wobei die prediktive Kapazität des Systems für Letzteres beschränkt ist. D.h. der Roboter lernt autonomes Fahren von einem menschlichen Lehrer und das Auto lernt die Vorhersage menschlichen Fahrverhaltens. Letzteres wurde während der Begutachtung des Projektes duch ein internationales Expertenteam erfolgreich demonstriert. Das Ergebnis dieser Arbeit ist relevant für Anwendungen in der Roboterkontrolle und dabei besonders in dem Bereich intelligenter Fahrerassistenzsysteme

    Détection et suivi d'objets mobiles perçus depuis un capteur visuel embarqué

    Get PDF
    Cette thèse traite de la détection et du suivi d'objets mobiles dans un environnement dynamique, en utilisant une caméra embarquée sur un robot mobile. Ce sujet représente encore un défi important car on exploite uniquement la vision mono-caméra pour le résoudre. Nous devons détecter les objets mobiles dans la scène par une analyse de leurs déplacements apparents dans les images, en excluant le mouvement propre de la caméra. Dans une première étape, nous proposons une analyse spatio-temporelle de la séquence d'images, sur la base du flot optique épars. La méthode de clustering a contrario permet le groupement des points dynamiques, sans information a priori sur le nombre de groupes à former et sans réglage de paramètres. La réussite de cette méthode réside dans une accumulation suffisante des données pour bien caractériser la position et la vitesse des points. Nous appelons temps de pistage, le temps nécessaire pour acquérir les images analysées pour bien caractériser les points. Nous avons développé une carte probabiliste afin de trouver les zones dans l'image qui ont les probabilités la plus grandes de contenir un objet mobile. Cette carte permet la sélection active de nouveaux points près des régions détectées précédemment en permettant d'élargir la taille de ces régions. Dans la deuxième étape nous mettons en oeuvre une approche itérative pour exécuter détection, clustering et suivi sur des séquences d'images acquises depuis une caméra fixe en intérieur et en extérieur. Un objet est représenté par un contour actif qui est mis à jour de sorte que le modèle initial reste à l'intérieur du contour. Finalement nous présentons des résultats expérimentaux sur des images acquises depuis une caméra embarquée sur un robot mobile se déplaçant dans un environnement extérieur avec des objets mobiles rigides et non rigides. Nous montrons que la méthode est utilisable pour détecter des obstacles pendant la navigation dans un environnement inconnu a priori, d'abord pour des faibles vitesses, puis pour des vitesses plus réalistes après compensation du mouvement propre du robot dans les images.This dissertation concerns the detection and the tracking of mobile objets in a dynamic environment, using a camera embedded on a mobile robot. It is an important challenge because only a single camera is used to solve the problem.We must detect mobile objects in the scene, analyzing their apparent motions on images, excluding the motion caused by the ego-motion of the camera. First it is proposed a spatio-remporal analysis of the image sequence based on the sparse optical flow. The a contrario clustering method provides the grouping of dynamic points, without using a priori information and without parameter tuning. This method success is based on the accretion of sufficient information on positions and velocities of these points. We call tracking time, the time required in order to acquire images analyzed to provide the points characterization. A probabilistic map is built in order to find image areas with the higher probabilities to find a mobile objet; this map allows an active selection of new points close the previously detected mobile regions, making larger these regions. In a second step, it is proposed an iterative approach to perform the detection-clustering-tracking process on image sequences acquired from a fixed camera for indoor or outdoor applications. An object is described by an active contour, updated so that the initial object model remains inside the contour. Finally it is presented experimental results obtained on images acquired from a camera embedded on a mobile robot navigating in outdoor environments with rigid or non rigid mobile objects ; it is shown that the method works to detect obstacles during the navigation in a priori unknown environments, first with a weak speed, then with more a realistic speed, compensating the robot ego-motion in images

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore