1,171 research outputs found

    Towards the disintermediation of creative music search: Analysing queries to determine important facets

    Get PDF
    Purpose: Creative professionals search for music to accompany moving images in films, advertising, television. Some larger music rights holders (record companies and music publishers) organise their catalogues to allow online searching. These digital libraries are organised by various subjective musical facets as well as by artist and title metadata. The purpose of this paper is to present an analysis of written queries relating to creative music search, contextualised and discussed within the findings of text analyses of a larger research project whose aim is to investigate meaning making in this search process. Method: A facet analysis of a collection of written music queries is discussed in relation to the organisation of the music in a selection of bespoke search engines. Results: Subjective facets, in particular Mood, are found to be highly important in query formation. Unusually, detailed Music Structural aspects are also key. Conclusions: These findings are discussed in relation to disintermediation of this process. It is suggested that there are barriers to this, both in terms of classification and also commercial / legal factors

    Retrieving Ambiguous Sounds Using Perceptual Timbral Attributes in Audio Production Environments

    Get PDF
    For over an decade, one of the well identified problem within audio production environments is the effective retrieval and management of sound libraries. Most of the self-recorded and commercially produced sound libraries are usually well structured in terms of meta-data and textual descriptions and thus allowing traditional text-based retrieval approaches to obtain satisfiable results. However, traditional information retrieval techniques pose limitations in retrieving ambiguous sound collections (ie. sounds with no identifiable origin, foley sounds, synthesized sound effects, abstract sounds) due to the difficulties in textual descriptions and the complex psychoacoustic nature of the sound. Early psychoacoustical studies propose perceptual acoustical qualities as an effective way of describing these category of sounds [1]. In Music Information Retrieval (MIR) studies, this problem were mostly studied and explored in context of content-based audio retrieval. However, we observed that most of the commercial available systems in the market neither integrated advanced content-based sound descriptions nor the visualization and interface design approaches evolved in the last years. Our research was mainly aimed to investigate two things; 1. Development of audio retrieval system incorporating high level timbral features as search parameters. 2. Investigate user-centered approach in integrating these features into audio production pipelines using expert-user studies. In this project, We present an prototype which is similar to traditional sound browsers (list-based browsing) with an added functionality of filtering and ranking sounds by perceptual timbral features such as brightness, depth, roughness and hardness. Our main focus was on the retrieval process by timbral features. Inspiring from the recent focus on user-centered systems ([2], [3]) in the MIR community, in-depth interviews and qualitative evaluation of the system were conducted with expert-user in order to identify the underlying problems. Our studies observed the potential applications of high-level perceptual timbral features in audio production pipelines using a probe system and expert-user studies. We also outlined future guidelines and possible improvements to the system from the outcomes of this research

    Moody Blues: The Social Web, Tagging, and Nontextual Discovery Tools for Music

    Get PDF
    A common thread in discussions about the Next Generation Catalog is that it should incorporate features beyond the mere textual, one-way presentation of data. At the same time, traditional textual description of music materials often prohibits effective use of the catalog by specialists and nonspecialists alike. Librarians at Bowling Green State University have developed the HueTunes project to explore already established connections between music, color, and emotion, and incorporate those connections into a nontextual discovery tool that could enhance interdisciplinary as well as specialist use of the catalog

    Loop Copilot: Conducting AI Ensembles for Music Generation and Iterative Editing

    Full text link
    Creating music is iterative, requiring varied methods at each stage. However, existing AI music systems fall short in orchestrating multiple subsystems for diverse needs. To address this gap, we introduce Loop Copilot, a novel system that enables users to generate and iteratively refine music through an interactive, multi-round dialogue interface. The system uses a large language model to interpret user intentions and select appropriate AI models for task execution. Each backend model is specialized for a specific task, and their outputs are aggregated to meet the user's requirements. To ensure musical coherence, essential attributes are maintained in a centralized table. We evaluate the effectiveness of the proposed system through semi-structured interviews and questionnaires, highlighting its utility not only in facilitating music creation but also its potential for broader applications.Comment: Source code and demo video are available at \url{https://sites.google.com/view/loop-copilot

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Musical Cross Synthesis using Matrix Factorisation

    Get PDF
    The focus of this work is to explore a new method for the creative analysis and manipulation of musical audio content. Given a target song and a source song, the goal is reconstruct the harmonic and rhythmic structure of the target with the timbral components from the source, in such a way that so that both the target and the source material are recognizable by the listener. We refer to this operation as musical cross-synthesis. For this purpose, we propose the use of a Matrix Factorisation method, more specifically, Shift-Invariant Probabilistic Latent Component Analysis (PLCA). The input to the PLCA algorithm are beat synchronous CQT basis functions of the source whose temporal activations are used to approximate the CQT of the target. Using the shift invariant property of the PLCA allows each basis function to be subjected to a range of possible pitch shifts which increases the flexibility of the source to represent the target. To create the resulting musical cross-synthesis the beat synchronous, pitch-shifted CQT basis functions are inverted and concatenated in time

    Evaluation of Drum Rhythmspace in a Music Production Environment

    Get PDF
    In modern computer-based music production, vast musical data libraries are essential. However, their presentation via subpar interfaces can hinder creativity, complicating the selection of ideal sequences. While low-dimensional space solutions have been suggested, their evaluations in real-world music production remain limited. In this study, we focus on Rhythmspace, a two-dimensional platform tailored for the exploration and generation of drum patterns in symbolic MIDI format. Our primary objectives encompass two main aspects: first, the evolution of Rhythmspace into a VST tool specifically designed for music production settings, and second, a thorough evaluation of this tool to ascertain its performance and applicability within the music production scenario. The tool’s development necessitated transitioning the existing Rhythmspace, which operates in Puredata and Python, into a VST compatible with Digital Audio Workstations (DAWs) using the JUCE(C++) framework. Our evaluation encompassed a series of experiments, starting with a composition test where participants crafted drum sequences followed by a listening test, wherein participants ranked the sequences from the initial experiment. The results show that Rhythmspace and similar tools are beneficial, facilitating the exploration and creation of drum patterns in a user-friendly and intuitive manner, and enhancing the creative process for music producers. These tools not only streamline the drum sequence generation but also offer a fresh perspective, often serving as a source of inspiration in the dynamic realm of electronic music production
    • 

    corecore