10 research outputs found

    Fully CMOS Memristor Based Chaotic Circuit

    Get PDF
    This paper demonstrates the design of a fully CMOS chaotic circuit consisting of only DDCC based memristor and inductance simulator. Our design is composed of these active blocks using CMOS 0.18 µm process technology with symmetric ±1.25 V supply voltages. A new single DDCC+ based topology is used as the inductance simulator. Simulation results verify that the design proposed satisfies both memristor properties and the chaotic behavior of the circuit. Simulations performed illustrate the success of the proposed design for the realization of CMOS based chaotic applications

    Bifurcation and Chaos of the Memristor Circuit

    Get PDF
    In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior

    A Simple Third-Order Memristive Band Pass Filter Chaotic Circuit

    Get PDF

    Non-Autonomous Second-Order Memristive Chaotic Circuit

    Get PDF

    Comparative analysis with pedagogical purposes in the design of narrowband suppressor filters with twin-T and FDNR

    Get PDF
    Debido a la complejidad para introducir por primera vez la temática de los convertidores de impedancia en el ámbito universitario, específicamente los giradores (Circuito de Antoniou) y circuitos FDNR (Frequency Dependent Negative Resistance), se elabora una introducción didáctica, básica y detallada de los convertidores de impedancia, específicamente de los giradores y los circuitos FDNR usados en el curso de Electrónica II de la Universidad de la Costa.Due to the complexity to introduce for first time the subject of impedance converters in the university scope, specifically gyrators (Antoniou circuit) and FDNR circuits (Frequency Dependent Negative Resistance), is elaborated a didactic, basic and detailed introduction of the impedance converters, specifically of the gyrators and the FDNR circuits used in the course of Electronics II in the University of the Coast
    corecore