5 research outputs found

    A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations

    Get PDF
    Computing Delaunay triangulations in Rd\mathbb{R}^d involves evaluating the so-called in\_sphere predicate that determines if a point xx lies inside, on or outside the sphere circumscribing d+1d+1 points p0,…,pdp_0,\ldots ,p_d. This predicate reduces to evaluating the sign of a multivariate polynomial of degree d+2d+2 in the coordinates of the points x, p0, …, pdx, \, p_0,\, \ldots,\, p_d. Despite much progress on exact geometric computing, the fact that the degree of the polynomial increases with dd makes the evaluation of the sign of such a polynomial problematic except in very low dimensions. In this paper, we propose a new approach that is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. The witness complex Wit(L,W)\mathrm{Wit} (L,W) is defined from two sets LL and WW in some metric space XX: a finite set of points LL on which the complex is built, and a set WW of witnesses that serves as an approximation of XX. A fundamental result of de Silva states that Wit(L,W)=Del(L)\mathrm{Wit}(L,W)=\mathrm{Del} (L) if W=X=RdW=X=\mathbb{R}^d. In this paper, we give conditions on LL that ensure that the witness complex and the Delaunay triangulation coincide when WW is a finite set, and we introduce a new perturbation scheme to compute a perturbed set L′L' close to LL such that Del(L′)=wit(L′,W)\mathrm{Del} (L')= \mathrm{wit} (L', W). Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lov\'asz local lemma. The only numerical operations we use are (squared) distance comparisons (i.e., predicates of degree 2). The time-complexity of the algorithm is sublinear in ∣W∣|W|. Interestingly, although the algorithm does not compute any measure of simplex quality, a lower bound on the thickness of the output simplices can be guaranteed.Comment: 24 page

    Table Based Detection of Degenerate Predicates in Free Space Construction

    Get PDF
    The key to a robust and efficient implementation of a computational geometry algorithm is an efficient algorithm for detecting degenerate predicates. We study degeneracy detection in constructing the free space of a polyhedron that rotates around a fixed axis and translates freely relative to another polyhedron. The structure of the free space is determined by the signs of univariate polynomials, called angle polynomials, whose coefficients are polynomials in the coordinates of the vertices of the polyhedra. Every predicate is expressible as the sign of an angle polynomial f evaluated at a zero t of an angle polynomial g. A predicate is degenerate (the sign is zero) when t is a zero of a common factor of f and g. We present an efficient degeneracy detection algorithm based on a one-time factoring of every possible angle polynomial. Our algorithm is 3500 times faster than the standard algorithm based on greatest common divisor computation. It reduces the share of degeneracy detection in our free space computations from 90% to 0.5% of the running time

    A Probabilistic Approach to Reducing Algebraic Complexity of Delaunay Triangulations

    Get PDF
    International audienceWe propose algorithms to compute the Delaunay triangulation of a point set L using only (squared) distance comparisons (i.e., predicates of degree 2). Our approach is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. We give conditions that ensure that the witness complex and the Delaunay triangulation coincide and we introduce a new perturbation scheme to compute a perturbed set L′ close to L such that the Delaunay triangulation and the witness complex coincide. Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lovász local lemma

    Establishing Robustness of a Spatial Dataset in a Tolerance-Based Vector Model

    Get PDF
    Spatial data are usually described through a vector model in which geometries are rep- resented by a set of coordinates embedded into an Euclidean space. The use of a finite representation, instead of the real numbers theoretically required, causes many robustness problems which are well-known in literature. Such problems are made even worst in a distributed context, where data is exchanged between different systems and several perturbations can be introduced in the data representation. In this context, a spatial dataset is said to be robust if the evaluation of the spatial relations existing among its objects can be performed in different systems, producing always the same result.In order to discuss the robustness of a spatial dataset, two implementation models have to be distinguished, since they determine different ways to evaluate the relations existing among geometric objects: the identity and the tolerance model. The robustness of a dataset in the identity model has been widely discussed in [Belussi et al., 2012, Belussi et al., 2013, Belussi et al., 2015a] and some algorithms of the Snap Rounding (SR) family [Hobby, 1999, Halperin and Packer, 2002, Packer, 2008, Belussi et al., 2015b] can be successfully applied in such context. Conversely, this problem has been less explored in the tolerance model. The aim of this paper is to propose an algorithm inspired by the ones of SR family for establishing or restoring the robustness of a vector dataset in the tolerance model. The main ideas are to introduce an additional operation which spreads instead of snapping geometries, in order to preserve the original relation between them, and to use a tolerance region for such operation instead of a single snapping location. Finally, some experiments on real-world datasets are presented, which confirms how the proposed algorithm can establish the robustness of a dataset

    Snap Rounding with Restore: an Algorithm for Producing Robust Geometric Datasets

    Get PDF
    This paper presents a new algorithm called Snap Rounding with Restore (SRR), which aims to make ge- ometric datasets robust and to increase the quality of geometric approximation and the preservation of topological structure. It is based on the well-known Snap Rounding algorithm, but improves it by eliminat- ing from the snap rounded arrangement the configurations in which the distance between a vertex and a non-incident edge is smaller than half-the-width of a pixel of the rounding grid. Therefore, the goal of SRR is exactly the same as the goal of another algorithm, Iterated Snap Rounding (ISR), and of its evolution, Iterated Snap Rounding with Bounded Drift (ISRBD). However, SRR produces an output with a quality of approximation that is on average better than ISRBD, both under the viewpoint of the distance from the original segments and of the conservation of their topological structure. The paper also reports some cases where ISRBD, notwithstanding the bounded drift, produces strong topological modifications while SRR does not. A statistical analysis on a large collection of input datasets confirms these differences. It follows that the proposed Snap Rounding with Restore algorithm is suitable for applications that require both robustness, a guaranteed geometric approximation and a good topological approximation
    corecore