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Abstract. We propose algorithms to compute the Delaunay triangu-
lation of a point set L using only (squared) distance comparisons (i.e.,
predicates of degree 2). Our approach is based on the witness complex,
a weak form of the Delaunay complex introduced by Carlsson and de
Silva. We give conditions that ensure that the witness complex and the
Delaunay triangulation coincide and we introduce a new perturbation
scheme to compute a perturbed set L′ close to L such that the Delaunay
triangulation and the witness complex coincide. Our perturbation algo-
rithm is a geometric application of the Moser-Tardos constructive proof
of the Lovász local lemma.

1 Introduction

The witness complex was introduced by Carlsson and de Silva [14] as a weak form
of the Delaunay complex that is suitable for finite metric spaces and is computed
using only distance comparisons. The witness complex Wit(L,W ) is defined from
two sets L and W in some metric space X: a finite set of points L on which the
complex is built, and a set W of witnesses that serves as an approximation of
X. A fundamental result of de Silva [13] states that Wit(L,W ) = Del(L) if
W is the entire Euclidean space X = Rd, and the result extends to spherical,
hyperbolic and tree-like geometries. The result has also been extended to the
case where W = X is a smoothly embedded curve or surface of Rd [2]. However,
when the set W of witnesses is finite, the Delaunay triangulation and the witness
complexes are different and it has been an open question to understand when the
two structures are identical. In this paper, we answer this question and present
an algorithm to compute a Delaunay triangulation using the witness complex.

We first give conditions on L that ensure that the witness complex and the
Delaunay triangulation coincide when W ⊂ Rd is a finite set (Section 3). Some
of these conditions are purely combinatorial and easy to check. In a second part
(Section 4), we show that those conditions can be satisfied by slightly perturbing
the input set L. Our perturbation algorithm is a geometric application of the
Moser-Tardos constructive proof of the general Lovász local lemma. Its analysis
uses the notion of protection of a Delaunay triangulation that we have previously
introduced to study the stability of Delaunay triangulations [3].
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Our algorithm has several interesting properties and we believe that it is a
good candidate for implementation in higher dimensions.

1. Low algebraic degree. The only numerical operations used by the algo-
rithm are (squared) distance comparisons (i.e., predicates of degree 2). In
particular, we do not use orientation or in-sphere predicates, whose degree
depends on the dimension d and are difficult to implement robustly in higher
dimensions.

2. Efficiency. Our algorithm constructs the witness complex Wit(L′,W ) =
Del(L′) of the perturbed set L′ in time sublinear in |W |. See Section 5.

3. Simplex quality. Differently from all papers on this and related topics, we
do not compute the volume or any measure of simplex quality. Nevertheless,
through protection, a lower bound on the thickness of the output simplices
can be guaranteed (see Theorem 3), and the resulting Delaunay triangulation
is stable with respect to small metric or point perturbations [3].

4. No need for coordinates. We can construct Delaunay triangulations of
points that come from some Euclidean space but whose actual positions are
unknown. We simply need to know the interpoint distances.

5. A thorough analysis. Almost all papers in Computational Geometry rely
on oracles to evaluate predicates exactly and assume that the complexity of
those oracles is O(1). Our (probabilistic) analysis is more precise. We only
use predicates of degree 2 (i.e. double precision) and the analysis fully covers
the case of non generic data.

Previous work. Millman and Snoeyink [11] developed a degree-2 Voronoi di-
agram on a U × U grid in the plane. The diagram of n points can be com-
puted using only double precision by a randomized incremental construction in
O(n log n logU) expected time and O(n) expected space. The diagram also an-
swers nearest neighbor queries, but it doesn’t use sufficient precision to determine
a Delaunay triangulation.

Our paper borrows ideas from the controlled perturbation paradigm [9]. The
purpose is to actually perturb the input, thereby reducing the required precision
of the underlying arithmetic and avoiding explicit treatment of degenerate cases.
A specific scheme for Delaunay triangulations in arbitrary dimensions has been
proposed by Funke et al. [8]. Their algorithm relies on a careful analysis of the
usual predicates of degree d+ 2 and is much more demanding than ours.

Notation. In order to avoid boundary complications, we work on the flat torus
Td = Rd/Zd. Boundary issues are discussed in the full version [6] of the paper.
The landmarks form a finite set L ⊂ Td, but the set of witnesses W ⊆ Td is
only required to be closed in Td. If for any x ∈ Td there is a w ∈ W with
‖w − x‖ < ε, we say that W ⊂ Td is an ε-sample. For any finite set L ⊂ Td
there is a λ > 0 such that L is a λ̃-sample for Td for all λ̃ ≥ λ. The parameter λ
is called the sampling radius of L. Also, there is a µ̄ > 0 such that ‖p− q‖ ≥ µ̄λ
for all p, q ∈ L. We call µ̄ the sparsity ratio of L, and we say that L is (λ, µ̄)-net.
Observe that µ̄ < 2. Indeed, if p and q belong to a (λ, µ̄)-net L, and q is the
closest point to p in L, then µ̄λ ≤ ‖p− q‖ < 2λ.
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In order to avoid topological complications associated with the periodic
boundary conditions, we impose the constraint λ ≤ 1/4. A simplex σ ⊂ L is
a finite set. We always assume that L contains a non-degenerate d-simplex (i.e.,
L is not contained in a lower dimensional flat).

2 Delaunay and witness complexes

Definition 1 (Delaunay center and Delaunay complex). A Delaunay cen-
ter for a simplex σ ⊂ L is a point x ∈ Td that satisfies ‖p−x‖ ≤ ‖q−x‖, ∀p ∈ σ
and ∀q ∈ L. The Delaunay complex Del(L) of L is the complex consisting of all
simplexes σ ⊂ L that have a Delaunay center.

Note that x is at equal distance from all the vertices of σ. A Delaunay simplex
is top dimensional if is not the proper face of any Delaunay simplex. The affine
hull of a top dimensional simplex has dimension d. If σ is top dimensional, the
Delaunay center is the circumcenter of σ which we denote cσ. We write Rσ for
the circumradius of σ.

Delaunay [7] showed that if the point set L is generic, i.e., if no empty sphere
contains d+ 2 points on its boundary, then Del(L) is a triangulation of Td (see
the discussion in Section 3), and any perturbation L′ of a finite set L is generic
with probability 1. We refer to this as Delaunay’s theorem.

We introduce now the witness complex that can be considered as a weak
variant of the Delaunay complex.

Definition 2 (Witness and witness complex). Let σ be a simplex with ver-
tices in L ⊂ Td, and let w be a point of W ⊆ Td. We say that w is a witness of
σ if ‖w− p‖ ≤ ‖w− q‖, ∀p ∈ σ and ∀q ∈ L \ σ. The witness complex Wit(L,W )
is the complex consisting of all simplexes σ such that for any simplex τ ⊆ σ, τ
has a witness in W .

Observe that the only predicates involved in the construction of Wit(L,W ) are
(squared) distance comparisons, i.e. polynomials of degree 2 in the coordinates
of the points. This is to be compared with the predicate that decides whether a
point lies inside, on or outside the sphere circumscribing a d-simplex which is a
polynomial of degree d+ 2.

3 Identity of witness and Delaunay complexes

In this section, we make the connection between Delaunay and witness complexes
more precise. We start with de Silva’s result [13]:

Theorem 1. Wit(L,W ) ⊆ Del(L), and if W = Td then Wit(L,W ) = Del(L).

If L is generic, we know that Del(L) is embedded in Td by Delaunay’s theo-
rem. It therefore follows from Theorem 1 that the same is true for Wit(L,W ).
In particular, the dimension of Wit(L,W ) is at most d.
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Identity from protection. When W is not the entire space Td but a finite set of
points, the equality between Del(L) and Wit(L,W ) no longer holds. However, by
requiring that the d-simplices of Del(L) be δ-protected, a property introduced in
[3], we are able to recover the inclusion Del(L) ⊆Wit(L,W ), and establish the
equality between the Delaunay complex and the witness complex with a discrete
set of witnesses.

Definition 3 (δ-protection). We say that a simplex σ ⊂ L is δ-protected at
x ∈ Td if ‖x− q‖ > ‖x− p‖+ δ, ∀p ∈ σ and ∀q ∈ L \ σ.

We say that Del(L) is δ-protected when each Delaunay d-simplex of Del(L)
has a δ-protected Delaunay center. In this sense, δ-protection is in fact a property
of the point set and we also say that L is δ-protected. If Del(L) is δ-protected for
some unspecified δ > 0, we say that L is protected (equivalently L is generic). We
always assume δ < λ since it is impossible to have a larger δ if L is a λ-sample.
The following lemma is proved in [4]. For simplicity, we use star2(p′) to denote
star(star(p; Del(L)); Del(L)), where star(p;K) denotes the star of p in K, i.e.
the smallest subcomplex of K containing the simplices that have p as a vertex.
The link of p, link(p;K), is the simplicial complex defined by the simplices in
star(p) that do not contain p.

Lemma 1 (Inheritance of protection). Let L be a (λ, µ̄)-net and sup-
pose p ∈ L. If every d-simplex in star2(p) is δ-protected, then all simplices in
star(p; Del(L)) are at least δ′-protected where δ′ = µ̄δ

4d .

The following lemma is an easy consequence of the previous one (see [6] for
a proof).

Lemma 2 (Identity from protection). Let L be a (λ, µ̄)-net with p ∈ L. If
all the d-simplices in star2(p) are δ-protected and W is an ε-sample for Td with
δ ≥ 8dε

µ̄ , then star(p; Wit(L,W )) = star(p; Del(L)).

We end this subsection with a result proved in [3, Lemma 3.13] that will be
useful in Section 5. For any vertex p of a simplex σ, the face oppposite p is the
face determined by the other vertices of σ, and is denoted by σp. The altitude
of p in σ is the distance D(p, σ) = d(p, aff(σp)) from p to the affine hull of σp.
The altitude D(σ) of σ is the minimum over all vertices p of σ of D(p, σ). A
poorly-shaped simplex can be characterized by the existence of a relatively small
altitude. The thickness of a j-simplex σ is the dimensionless quantity Θ(σ) that

evaluates to 1 if j = 0 and to D(σ)
j∆(σ) otherwise, where ∆(σ) denotes the diameter

of σ, i.e. the length of its longest edge.

Lemma 3 (Thickness from protection). Suppose σ ∈ Del(L) is a d-simplex
with circumradius less than λ and shortest edge length greater than or equal to
µ̄λ. If every (d − 1)-face of σ is also a face of a δ-protected d-simplex different

from σ, then the thickness of σ satisfies Θ(σ) ≥ δ̄ (µ̄+δ̄)
8d .

In particular, suppose p ∈ L, where L is a (λ, µ̄)-net, and every d-simplex in

star2(p) is δ-protected, then every d-simplex in star(p) is
(
δ̄ µ̄
8d

)
-thick.



5

A combinatorial criterion for identity. The previous result will be useful in
our analysis but does not help to compute Del(L) from Wit(L,W ) since the
δ-protection assumption requires knowledge of Del(L). A more useful result in
this context will be given in Lemma 5. Before stating the lemma, we need to
introduce some terminology and, in particular, the notion of good links.

A complex K is a k-pseudo-manifold if it is a pure k-complex and every
(k − 1)-simplex is the face of exactly two k-simplices.

Definition 4 (Good links). Let K be a complex with vertex set L ⊂ Td. We
say p ∈ L has a good link if link(p;K) is a (d − 1)-pseudo-manifold. If every
p ∈ L has a good link, we say K has good links.

For our purposes, a simplicial complex K is a triangulation of Td if it is a d-
manifold embedded in Td. We observe that a triangulation has good links.

Lemma 4 (Pseudomanifold criterion). If K is a triangulation of Td and
J ⊆ K has the same vertex set, then J = K if and only if J has good links.

A proof is given in [6]. We can now state the lemma that is at the heart of
our algorithm. It follows from Theorem 1, Lemma 4, and Delaunay’s theorem:

Lemma 5 (Identity from good links). If L is generic and the vertices of
Wit(L,W ) have good links, then Wit(L,W ) = Del(L).

4 Turning witness complexes into Delaunay complexes

Let, as before, L be a finite set of landmarks and W a finite set of witnesses. In
this section, we intend to use Lemma 5 to construct Del(L′), where L′ is close to
L, using only comparisons of (squared) distances. The idea is to first construct
the witness complex Wit(L,W ) which is a subcomplex of Del(L) (Theorem 1)
that can be computed using only distance comparisons. We then check whether
Wit(L,W ) = Del(L) using the pseudomanifold criterion (Lemma 4). While there
is a vertex p of Wit(L,W ) that has a bad link (i.e. a link that is not a pseu-
domanifold), we perturb p′ and the set of vertices I(p′), to be exactly defined
in Section 4.2, that are responsible for the bad link L(p′) = link(p′,Wit(L′,W ),
and recompute the witness complex for the perturbed points. We write L′ for the
set of perturbed points at some stage of the algorithm. Each point p′ is randomly
and independently taken from the so-called picking ball B(p, ρ). Upon termina-
tion, we have Wit(L′,W ) = Del(L′). The parameter ρ, the radius of the picking
balls, must satisfy Eq. (2) to be presented later. The steps are described in more
detail in [6, Algo. 1]. The analysis of the algorithm relies on the Moser-Tardos
constructive proof of Lovász local lemma.

4.1 Lovász local lemma

The celebrated Lovász local lemma is a powerful tool to prove the existence of
combinatorial objects [1]. Let A be a finite collection of “bad” events in some
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probability space. The lemma shows that the probability that none of these
events occur is positive provided that the individual events occur with a bounded
probability and there is limited dependence among them.

Lemma 6 (Lovász local lemma). Let A = {A1, . . . , AN} be a finite set of
events in some probability space. Suppose that each event Ai is independent of
all but at most Γ of the other events Aj, and that Pr [Ai] ≤ $ for all 1 ≤ i ≤ N .

If $ ≤ 1
e(Γ+1) (e is the base of the natural logarithm), then Pr

[∧N
i=1 ¬Ai

]
> 0.

Assume that the events depend on a finite set of mutually independent variables
in a probability space. Moser and Tardos [12] gave a constructive proof of Lovász
lemma leading to a simple and natural algorithm that checks whether some event
A ∈ A is violated and randomly picks new values for the random variables on
which A depends. We call this a resampling of the event A. Moser and Tardos
proved that this simple algorithm quickly terminates, providing an assignment
of the random variables that avoids all of the events in A. The expected total
number of resampling steps is at most N/Γ .

4.2 Correctness of the algorithm

We write ρ = ρ̄λ and µ = µ̄λ, and we assume ρ̄ < µ̄/4. The triangle inequal-
ity yields a bound on the sampling radius λ′ and the sparsity ratio µ̄′ of any
perturbed point set L′: λ′ = λ(1 + ρ̄) < 2λ and µ̄′ = µ̄−2ρ̄

1+ρ̄ ≥
µ̄
3 .

We refer to the terminology of the Lovász local lemma. Our variables are the
points of L′ which are randomly and independently taken from the picking balls
B(p, ρ), p ∈ L.

The events are associated to points of L′, the vertices of Wit(L′,W ). We
say that an event happens at p′ ∈ L when the link L(p′) of p′ in Wit(L′,W ) is
not good, i.e., is not a pseudomanifold. We know from Lemma 2 that if p′ is a
vertex of Wit(L′,W ) and L(p′) is not good, then there must exist a d-simplex
in star2(p′) that is not δ-protected for δ = 8dε/µ̄′. We will denote by

– I1(p′) : the set of points of L′ that can be in star2(p′)
– I2(p′) : the set of points of L′ that can violate the δ-protected zone Zδ(σ

′) =
B(cσ, Rσ + δ) \B(cσ, Rσ) for some d-simplex σ′ in star2(p′)

– I(p′) := I1(p′) ∪ I2(p′)
– S(p′) : the set of d-simplices with vertices in I1(p′) that can belong to

star2(p′)

The probability $1(p′) that L(p′) is not good is at most the probability $2(p′)
that one of the simplices of S(p′), say σ′, has its δ-protecting zone Zδ(σ

′) violated
by some point of L′. Write $3(q′, σ′) for the probability that q′ belongs to the
δ-protection zone of the d-simplex σ′. We have

$1(p′) ≤ $2(p′) ≤
∑

q′∈I2(p′)

∑
σ′∈S(p′)

$3(q′, σ′) (1)

The following lemma, proved in [6] upper bounds |I(p′)|, |S(p′)|, Γ and$3(q′, σ′).
Observe that the events p′ and q′ are independent if I(p′) ∩ I(q′) = ∅.
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Lemma 7. (1) |I(p′)| ≤ I =
(

36
µ̄

)d
and |S(p′)| ≤ K= Id+1

(d+1)! . (2) An event is

independent of all but at most Γ =
(

66
µ̄

)d
other events. (3) $3(q′, σ′) ≤ 2πd−1 δ

ρ .

Using Eq. (1) and Lemma 7, we conclude that $1(p′) ≤ 2πd−1 I K δ
ρ .

An event depends on at most Γ other events. Hence, to apply the Lovász
Local Lemma 6, it remains to ensure that $1(p′) ≤ 1/(e(Γ + 1)). In addition,
we also need that δ ≥ 8dε/µ̄′ to be able to apply Lemma 2. We thefore need to

satisfy 8dε
µ̄′ ≤ δ ≤ Jρ where J−1 def

= 2eπd−1IK(Γ + 1). Observe that I, K, Γ and
J depend only on µ̄ and d. We conclude that the conditions of the Lovász local
lemma hold if the parameter ρ satisfies

µ

4
≥ ρ ≥ 24dε

µ̄J
where J−1 def

= 2eπd−1IK(Γ + 1) =

(
2

µ̄

)O(d2)

(2)

Hence, if ε is sufficiently small, we can fix ρ so that Eq. (2) holds. The
algorithm is then guaranteed to terminate. By Lemma 5, the output is Del(L′).

It follows from Moser-Tardos theorem that the expected number of times a

bad link is encountered is O
(
|L|
Γ

)
and since |I(p′)| ≤ I, we get that the number

of point perturbations performed by the algorithm is O
(
I |L|
Γ

)
on expectation.

We sum up the results of this section in

Theorem 2. Under Eq. (2), the algorithm terminates and outputs the Delaunay
triangulation of some set L′ whose distance to L is at most ρ. The number of

point perturbations performed by the algorithm is O
(
I |L|
Γ

)
.

5 Sublinear algorithm

When the set L′ is generic, K = Wit(L′,W ) is embedded in Td and is therefore d-
dimensional. It is well known that the d-skeleton of Wit(L′,W ) can be computed
in time O((|W |+|K|) log |L′|) using only distance comparisons [5]. Although easy
and general, this construction is not efficient when W is large.

In this section, we show how to implement an algorithm called Algorithm 2
with execution time sublinear in |W |. We will assume that the points of W are
located at the centers of the cells of a grid, which is no real loss of generality.
The idea is to restrict our attention to a subset of W , namely the set of full-
leaf-points introduced in Section 5.2. These are points that may be close to the
circumcenter of some d-simplex. A crucial observation is that if a d-simplex has a
bounded thickness, then we can efficiently compute a bound on the number of its
full-leaf-points. This observation will also allow us to guarantee some protection
(and therefore thickness) on the output simplices, as stated in Theorem 3 below.

The approach is based on the relaxed Delaunay complex, which is related to
the witness complex, and was also introduced by de Silva [13]. We first introduce
this, and the structural observations on which the algorithm is based.
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5.1 The relaxed Delaunay complex

The basic idea used to get an algorithm sublinear in |W | is to choose witnesses
for d-simplices that are close to being circumcenters for these simplices. With
this approach, we can in fact avoid looking for witnesses of the lower dimensional
simplices. The complex that we will be computing is a subcomplex of a relaxed
Delaunay complex:

Definition 5 (Relaxed Delaunay complex). Let σ ⊂ L′ be a simplex. An
α-center of σ is any point x ∈ Td such that ‖x− p‖ ≤ ‖x− q‖+α ∀p, q ∈ σ. We
say that x is an α-Delaunay center of σ if ‖x − p‖ ≤ ‖x − q‖ + α ∀p ∈ σ and
∀q ∈ L′. The set of simplices that have an α-Delaunay center in W is a simplicial
complex, called the α-relaxed Delaunay complex, and is denoted Delα(L′,W ).

We say w ∈W is an α-witness for σ ⊂ L′ if ‖w− p‖ ≤ ‖w− q‖+α for all p ∈ σ
and all q ∈ L′ \ σ. We observe that w ∈ W is an α-Delaunay center if and only
if it is an α-center and also an α-witness.

Lemma 8. The distance between an α-Delaunay center for σ ∈ Delα(L′,W )
and the farthest vertex in σ is less than λ′ + α. In particular, ∆σ < 2λ′ + 2α.

If τ ∈ Del(L′) and c is a Delaunay center of τ , then any point in B(c, r) is
a 2r-Delaunay center for τ . Thus Del(L′) ⊆ Del2ε(L′,W ).

If, for some δ ≥ 0, each of the d-simplices in Delα(L′,W ) has a δ-protected
circumcenter, then we have that Delα(L′,W ) ⊆ Del(L′), and with α ≥ 2ε, it
follows (Lemma 8) that Delα(L′,W ) = Del(L′), and Del(L′) is itself δ-protected
and has good links.

Reviewing the analysis of the Moser-Tardos algorithm of Section 4.2, we
observe that the exact same estimate of $2(p′) that serves as an upper bound
on the probability that one of the simplices in star2(p′,Del(L′)) is not δ-protected
at its circumcenter, also serves as an upper bound on the probability that one
of the simplices in star2(p′,Delα(L′,Td)) is not δ-protected at its circumcenter,
provided that 4α+δ ≤ λ′ (using the diameter bound of 2λ′+2α from Lemma 8),
which we will assume from now on. We can therefore modify the algorithm by
replacing Wit(L′,W ) by Delα(L′,W ).

We now describe how to improve this algorithm to make it efficient. For our
purposes it will be sufficient to set α = 2ε. In order to obtain an algorithm
sublinear in |W |, we will not compute the full Del2ε(L′,W ) but only a subcom-
plex we call Del2ε0 (L′,W ). The exact definition of Del2ε0 (L′,W ) will be given in
Section 5.3, but the idea is to only consider d-simplices that show the properties
of being Θ0-thick for some parameter Θ0 to be defined later. This will allow
us to restrict our attention to points of W that lie near the circumcenter. As
explained in Section 5.3, this is done without explicitly computing thickness or
circumcenters.

As will be shown in Section 5.4 (Lemma 12), the modification of the witness
algorithm ([6, Algo. 1]) that computes Del2ε0 (L′,W ) instead of Wit(L′,W ) will
terminate and output a complex Del2ε0 (L′,W ) with good links. However, this is
not sufficient to guarantee that the output is correct, i.e., that Del2ε(L′,W ) =
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Del(L′). In order to obtain this guarantee, we insert an extra procedure check(),
which, without affecting the termination guarantee, will ensure that the simplices
of Del2ε0 (L′,W ) have δ∗-protected circumcenters for a positive δ∗. It follows
that Del2ε0 (L′,W ) ⊆ Del(L′) and, by Lemma 4, that Del2ε0 (L′,W ) = Del(L′).
Pseudocode for this modified perturbation algorithm is presented as Algorithm 2
in [6].

We describe the details of computing Del2ε0 (L′,W ) and of the check() pro-
cedure in the following subsections.

5.2 Computing relaxed Delaunay centers

We observe that the α-Delaunay centers of a d-simplex σ are close to the cir-
cumcenter of σ, provided that σ has a bounded thickness:

Lemma 9 (Clustered α-Delaunay centers). Assume that L′ is a (λ′, µ̄′)-
sample. Let σ be a non degenerate d-simplex, and let x be an α-center for σ at
distance at most Cλ′ from the vertices of σ, for some constant C > 0. Then x
is at distance at most Cα

Θ(σ)µ̄′ from the circumcenter cσ of σ. In particular, if x

is an α-Delaunay center for σ, then ‖cσ − x‖ < 2α
Θ(σ)µ̄′ .

See [6] for a proof. It follows from Lemma 9 that α-Delaunay centers are close
to all the bisecting hyperplanes Hpq = {x ∈ Rd | ‖x − p‖ = ‖x − q‖, p, q ∈ σ}.
The next simple lemma asserts a kind of qualitative converse:

Lemma 10. Let σ be a d-simplex and Hpq be the bisecting hyperplane of p and
q. A point x that satisfies d(x,Hpq) ≤ α, for any p, q ∈ σ is a 2α-center of σ.

Let σ be a d-simplex of Delα(L′,W ) and let Ω̄ be the smallest box with edges
parallel to the coordinate axes that contains σ. Then the edges of Ω̄ have length
at most 2λ′ + 2α (Lemma 8). Any α-Delaunay center for σ is at a distance at
most λ′ + α from Ω̄. Therefore all the α-Delaunay centers for σ lie in an axis-
aligned hypercube Ω with the same center as Ω̄ and with side length at most
4λ′ + 4α < 5λ′. Observe that the diameter (diagonal) z of Ω is at most 5λ′

√
d.

Our strategy is to first compute the α-centers of σ that belong to Ω∩W and
then to determine which ones are α-witnesses for σ. Deciding if an α-center is
an α-witness for σ can be done in constant time since L′ is a (λ′, µ̄′)-net and
∆σ ≤ 2λ′ + 2α (Lemma 8).

We take α = 2ε. To compute the 2ε-Delaunay centers of σ, we will use a
pyramid data structure (it is an octree when d = 3). The pyramid consists of at
most log z

ε levels. Each level h > 0 is a grid of resolution 2−hz. The grid at level
0 consists of the single cell, Ω. Each node of the pyramid is associated to a cell
of a grid. The children of a node ν correspond to a subdivision into 2d subcells
(of the same size) of the cell associated to ν. The leaves are associated to the
cells of the finest grid whose cells have diameter ε.

A node of the pyramid that is intersected by all the bisecting hyperplanes of
σ will be called a full node or, equivalently, a full cell. By our definition of W , a
cell of the finest grid contains an element of W at its center. The full-leaf-points
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are the elements of W associated to full cells at the finest level. By Lemma 10,
the full-leaf-points are 2ε-centers for σ. In order to identify the full-leaf cells, we
traverse the full nodes of the pyramid starting from the root. Note that to decide
if a cell is full, we only have to decide if two corners of a cell are on opposite sides
of a bisecting hyperplane, which reduces to evaluating a polynomial of degree 2
in the input variables. A simple volume argument leads to the following lemma:

Lemma 11. The number of full cells is ≤ nσ(ε) = n0

(Θ(σ)µ̄′)d
log 5

√
dλ′

ε , where n0

depends on d. nσ(ε) is also a bound on the time to compute the full cells.

5.3 Construction of Del2ε0 (L′,W )

By Lemma 8, all the simplices incident to a vertex p′ of Del2ε(L′) are contained
in N(p′) = L′ ∩B(p′, 2λ′ + 4ε), and it follows from the fact that L′ is a (λ′, µ̄′)-

net that |N(p′)| ≤ 2O(d)

(µ̄′)d
. In the first step of the algorithm, we compute, for

each p′ ∈ L′, the set N(p′), and the set of d-simplices Cd(p
′) = {σ = {p′} ∪

σ̃ : |σ̃| = d and σ̃ ⊂ N(p′) \ {p′}}. Observe that |Cd(p′)| =
(|N(p′)|

d

)
= 2O(d2)

(µ̄′)d2
.

We then extract from Cd(p
′) a subset WCd(p

′) of simplices that have a full-leaf-
point that is a 2ε-Delaunay center, and have a number of full cells less than or

equal to n0(ε)
def
= n0

(Θ0µ̄′)d
log 5

√
dλ′

ε . This is done by applying the algorithm of

Section 5.2 with a twist. As soon as a d-simplex appears to have more than n0(ε)
full cells, we stop considering that simplex. The union of the sets WCd(p

′) for
all p′ ∈ L′ is a subcomplex of Del2ε(L′) called Del2ε0 (L′,W ). It contains every
d-simplex σ in Del2ε(L′,W ) that has a 2ε-Delaunay center in W at a distance
less than ε from its actual circumcenter, and satisfies the thickness criterion
Θ(σ) ≥ Θ0. Note, however, that we do not claim that every simplex that has at
most n0(ε) full cells is Θ0-thick. See [6, Algo. 3] for pseudocode describing the

algorithm for constructing Del2ε0 (L,W ). As noted above, |N(p′)| = 2O(d)

(µ̄′)d
for any

p′ ∈ L′, and all the N(p′) can be computed in O(|L′|2) time by a brute force
method. But assuming we have access to “universal hash functions” then we can
use the “grid method” described in [10, Chap. 1] with the sparsity condition

of L to get the complexity down to 2O(d)|L′|
(µ̄′)d

. Using the facts that λ′ < 2λ and

µ̄′ ≥ µ̄
3 (see beginning of Section 4.2), we conclude that the total complexity of

the algorithm is O
(

|L|
Θd

0 (µ̄)d2+d
log λ

ε

)
and is therefore sublinear in |W |.

5.4 Correctness of the algorithm

We will need the following lemma which is an analog of Lemma 2. The lemma
also fixes Θ0. Its proof follows directly from Lemma 3, and the observation that
any simplex with a protected circumcenter is a Delaunay simplex.

Lemma 12. Suppose that the d-simplices in Del(L′) are δ-protected at their

circumcenters, with δ = δ̄λ′. If Θ0 = δ̄µ̄′

8d , then Del(L′) ⊆ Del2ε0 (L′,W ) and if
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in addition every d-simplex of Del2ε0 (L′,W ) has a protected circumcenter, then
Del2ε0 (L′,W ) = Del(L′).

We first show that Algorithm 2 terminates if we desactivate the call to pro-
cedure check(). As discussed after Lemma 8, the analysis of Section 4.2 im-
plies that the perturbations of Algorithm 2 can be expected to produce a point
set L′ for which all the d-simplices in Del2ε(L′,Td) have a δ-protected circum-
center. Since this complex includes both Del(L′) and Del2ε0 (L′,W ), Lemma 12
shows that we can expect the algorithm to terminate with the condition that
Del2ε0 (L′,W ) has good links.

We now examine procedure check() and show that it does not affect the
termination guarantee. By Lemma 3, if Del(L′) is δ-protected, then any σ ∈
Del(L′) satisfies Θ(σ) ≥ Θ0 = δ̄µ̄′

8d . Consider now σ ∈ Del2ε0 (L′,W ). Since the
full leaves of the pyramid data-structure for σ are composed entirely of 2ε-centers
at a distance less than 4

√
dλ′ from any vertex of σ, Lemma 9 implies that, if σ is

Θ0-thick, then ‖x−cσ‖ ≤ 8
√
dε

Θ0µ̄′
. This means that we can restrict our definition of

Del2ε0 (L′,W ) to include only simplices for which the set of full leaves has diameter

less than 16
√
dε

Θ0µ̄′
. Further, we observe that if σ is δ-protected at its circumcenter,

then it will have a (δ−2ε)-protected full-leaf-point; this follows from the triangle
inequality. The check() procedure ensures that all the simplices in Del2ε0 (L′,W )
have these two properties. It follows from the discussion above that activating
procedure check() does not affect the termination guarantee.

The fact that the algorithm terminates yields Del2ε0 (L′,W ) with good links.
In order to apply Lemma 12 to guarantee that Del2ε0 (L′,W ) = Del(L′), we need
to guarantee that the simplices of Del2ε0 (L′,W ) are protected. The following
lemma, proved in [6], provides a bound on δ to ensure such a protection δ∗ > 0.

Lemma 13. If δ = Jρ, with J defined in Eq. (2), then the d-simplices in
Del2ε0 (L′,W ) produced by the modified perturbation algorithm [6, Algo. 2] are

δ∗-protected, with δ∗ = δ −
(

34
√
d

Θ0µ̄′

)
ε.

In order to have δ∗ > 0, we need a lower bound on δ, and hence on the minimal

perturbation radius through δ = Jρ. Therefore we require: Jµ
4 ≥ δ > 34

√
dε

Θ0µ̄′

(compare with (2)). Writing δ̄ = δ
λ′ and Θ0 = δ̄µ̄′

8d , and using λ′ ≥ λ, µ̄′ ≥ µ̄/3
when ρ ≤ µ/4, we obtain the conditions under which Algorithm 2 is guaranteed

to produce a δ∗-protected Delaunay triangulation: Jµ̄
4 ≥ δ̄ > 2448d

3
2

δ̄µ̄2
ε
λ . The

right-hand inequality is satisfied provided δ̄ ≥ 50d
3
4

µ̄

√
ε
λ . We have proved

Theorem 3. If ρ̄ ≤ µ̄/4 and ρ̄ = Ω
(

1
Jµ̄

√
ε
λ

)
(with J defined in Eq. (2)),

Algorithm 2 terminates and outputs the Delaunay triangulation of L′. The De-
launay d-simplices are δ∗-protected, as defined in Lemma 13, and consequently

satisfy a thickness bound of Θ(σ) ≥ δ̄∗(µ̄/3+δ̄∗)
8d . The complexity of the algorithm

is O
(

|L|
Θd

0 µ̄
d2+d

log λ
ε

)
. The constants in Ω and O depend only on d (the depen-

dence being exponential).
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